JP2005175941A - High-frequency electromagnetic wave transmission line - Google Patents

High-frequency electromagnetic wave transmission line Download PDF

Info

Publication number
JP2005175941A
JP2005175941A JP2003413669A JP2003413669A JP2005175941A JP 2005175941 A JP2005175941 A JP 2005175941A JP 2003413669 A JP2003413669 A JP 2003413669A JP 2003413669 A JP2003413669 A JP 2003413669A JP 2005175941 A JP2005175941 A JP 2005175941A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
transmission line
frequency electromagnetic
core
wave transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413669A
Other languages
Japanese (ja)
Inventor
Koji Yamada
浩治 山田
Seiichi Itabashi
聖一 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003413669A priority Critical patent/JP2005175941A/en
Publication of JP2005175941A publication Critical patent/JP2005175941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency electromagnetic wave transmission line usable even in a frequency domain higher than that of a metal waveguide. <P>SOLUTION: The high-frequency electromagnetic wave transmission line 1 has a core 11 having a higher dielectric constant than the surroundings 12. When an incident angle θ<SB>0</SB>to the boundary face 13 of the core 11 and the surroundings 12 is larger than a critical angle, an electromagnetic wave propagated inside the core 11 is totally reflected with the boundary face 13. Therefore, the electromagnetic wave does not leak to the surroundings 12 and is confined inside the core 11. The high-frequency electromagnetic wave transmission line 1 can be very easily manufactured since it does not have a hollow structure. The low-loss transmission line can be realized by forming the high-frequency electromagnetic wave transmission line 1 by using a material with a smaller loss in a high-frequency domain. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高周波電磁波を伝送する高周波電磁波伝送線路に関するものである。   The present invention relates to a high frequency electromagnetic wave transmission line for transmitting high frequency electromagnetic waves.

従来より、高周波電磁波の伝送には、金属導波管が使用されている。図3は、従来の高周波電磁波伝送線路である金属導波管の一構成例を示す断面図である。
金属導波管101は、所定方向に延びる金属部材111にその一端と他端との間を貫通する中空部112が形成された中空導体構造を有している。電磁波は中空部112内を伝搬する。電磁波が伝搬する方向を電磁波伝送方向という。中空部112の電磁波伝送方向に垂直な断面は、図3(b)に示すような四角形をしている。四角形の各辺の長さは、電磁波を単一モードで伝搬させるために、伝搬させる電磁波の自由空間中の波長のほぼ半分程度の寸法となっている(例えば、非特許文献1または2参照。)。
Conventionally, a metal waveguide has been used for transmission of high-frequency electromagnetic waves. FIG. 3 is a cross-sectional view showing a configuration example of a metal waveguide that is a conventional high-frequency electromagnetic wave transmission line.
The metal waveguide 101 has a hollow conductor structure in which a hollow portion 112 penetrating between one end and the other end of a metal member 111 extending in a predetermined direction is formed. The electromagnetic wave propagates in the hollow portion 112. The direction in which the electromagnetic wave propagates is called the electromagnetic wave transmission direction. The cross section perpendicular to the electromagnetic wave transmission direction of the hollow portion 112 has a quadrangular shape as shown in FIG. The length of each side of the quadrangle is about half the wavelength in the free space of the propagating electromagnetic wave in order to propagate the electromagnetic wave in a single mode (see, for example, Non-Patent Document 1 or 2). ).

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
中島将光著、「マイクロ波光学」、第1版、森北出版、1975年4月15日、p.49−62およびp.272 細野敏夫著、「電磁波光学の基礎」、第1版、昭晃堂、昭和48年6月20日、p.96−99
The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
Nakashima Masamitsu, “Microwave Optics”, 1st Edition, Morikita Publishing, April 15, 1975, p. 49-62 and p. 272 Toshio Hosono, "Basics of Electromagnetic Wave Optics", 1st edition, Shoshodo, June 20, 1973, p. 96-99

上述したように、金属導波管101では、中空部112の断面寸法は、伝搬させる電磁波の波長のほぼ半分程度の寸法となっている。このため、電磁波の周波数が高くなり波長が短くなるにつれて、中空部112の断面寸法は小さくなっていく。例えば、電磁波の周波数が0.1THzでは中空部112の断面寸法は1mm程度であるのに対し、10THzになると10μm程度と非常に小さくなる。しかし、このような断面寸法をもつ中空導体構造の製造は困難であり、たとえできたとしても非常に高価なものとなる。
また、金属導波管101は、0.1THz以上の周波数領域では損失が大きくなり、方向性結合器などの単純なデバイスすら構築することが困難となる。
このような理由により、実用的なデバイスの構築が可能な金属導波管101は、0.1THz以下でしか実用化されていない。
As described above, in the metal waveguide 101, the cross-sectional dimension of the hollow portion 112 is approximately half the wavelength of the electromagnetic wave to be propagated. For this reason, the cross-sectional dimension of the hollow part 112 becomes small as the frequency of electromagnetic waves becomes high and the wavelength becomes short. For example, when the frequency of the electromagnetic wave is 0.1 THz, the cross-sectional dimension of the hollow portion 112 is about 1 mm, but when it becomes 10 THz, the cross-sectional dimension becomes as small as about 10 μm. However, it is difficult to manufacture a hollow conductor structure having such a cross-sectional dimension, and even if it can be made, it is very expensive.
Further, the metal waveguide 101 has a large loss in a frequency region of 0.1 THz or more, and it is difficult to construct even a simple device such as a directional coupler.
For this reason, the metal waveguide 101 capable of constructing a practical device has been put into practical use only at 0.1 THz or less.

本発明はこのような課題を解決するためになされたものであり、その目的は、金属導波管よりも高い周波数領域でも使用可能な高周波電磁波伝送線路を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a high-frequency electromagnetic wave transmission line that can be used even in a higher frequency region than a metal waveguide.

このような目的を達成するために、本発明に係る高周波電磁波伝送線路は、周波数が0.1THz以上10THz以下の高周波電磁波を伝送する高周波電磁波伝送線路であって、所定方向に延び周囲よりも誘電率が高い誘電体からなるコアを有することを特徴とする。   In order to achieve such an object, a high-frequency electromagnetic wave transmission line according to the present invention is a high-frequency electromagnetic wave transmission line that transmits a high-frequency electromagnetic wave having a frequency of 0.1 THz to 10 THz and extends in a predetermined direction and is more dielectric than the surroundings. It has a core made of a dielectric having a high rate.

ここで、コアについては、上記所定方向に垂直な断面を四角形にしてもよい。
コアについてはまた、上記所定方向に垂直な断面の一辺の長さを、上記誘電体中を高周波電磁波が伝搬する際の波長の1/4倍以上、波長以下にしてもよい。好ましくは、上記波長の1/3倍以上、上記波長の2/3倍以下にするとよい。
上記誘電体については、その周囲に対する誘電率の比を2以上100以下にしてもよい。好ましくは、9以上25以下にするとよい。
Here, the core may have a quadrangular cross section perpendicular to the predetermined direction.
For the core, the length of one side of the cross section perpendicular to the predetermined direction may be not less than 1/4 times the wavelength when the high frequency electromagnetic wave propagates in the dielectric. Preferably, the wavelength is 1/3 times or more of the wavelength and 2/3 times or less of the wavelength.
About the said dielectric material, you may make ratio of the dielectric constant with respect to the circumference | surroundings 2-100. Preferably, it is 9 or more and 25 or less.

上述した高周波電磁波伝送線路は、コアの周囲を覆い上記誘電体よりも誘電率が低い周辺部を更に有するものであってもよい。
周辺部については、上記所定方向に垂直な方向の厚みを、周辺部を構成する媒体中を高周波電磁波が伝搬する際の波長以上にしてもよい。
これらの場合には、コアを、シリコン、ゲルマニウム、砒化ガリウム、酸化アルミニウム、ダイアモンド状炭素の少なくとも1つから構成し、周辺部を、真空、空気、ポリエチレン、ポリテトラフルオロエチレン、パラフィン、ポリスチレン、酸化硅素系化合物の少なくとも1つから構成してもよい。
あるいは、コアを、ポリエチレン、ポリテトラフルオロエチレン、パラフィン、ポリスチレン、酸化硅素系化合物の少なくとも1つから構成し、周辺部を、真空または空気から構成してもよい。
The high-frequency electromagnetic wave transmission line described above may further include a peripheral portion that covers the periphery of the core and has a dielectric constant lower than that of the dielectric.
About a peripheral part, you may make the thickness of the direction perpendicular | vertical to the said predetermined direction more than the wavelength when a high frequency electromagnetic wave propagates in the medium which comprises a peripheral part.
In these cases, the core is composed of at least one of silicon, germanium, gallium arsenide, aluminum oxide, diamond-like carbon, and the periphery is vacuum, air, polyethylene, polytetrafluoroethylene, paraffin, polystyrene, oxide You may comprise from at least 1 of a silicon compound.
Alternatively, the core may be composed of at least one of polyethylene, polytetrafluoroethylene, paraffin, polystyrene, and silicon oxide-based compound, and the peripheral portion may be composed of vacuum or air.

上述したように、本発明に係る高周波電磁波伝送線路は、周囲よりも誘電率が高いコアを有する。コア内部を伝搬する電磁波は、コア内部と周囲との境界面であるコア表面への入射角が臨界角よりも大きければ、コア表面で全反射されるので、周囲には漏れず、コア内部に閉じ込められる。よって、電磁波をコアに集中した状態で、コアが延びる方向に伝送できる。
また、この高周波電磁波伝送線路は、中空構造を有しないので、中空構造を有する金属導波管101と比較して、製造が非常に容易である。
また、この高周波電磁波伝送線路は、金属以外の多様な材料を用いて形成できる。このため、高周波領域で損失の小さい材料を用いることにより、低損失な伝送線路を実現できる。
したがって、本発明によれば、金属導波管101よりも高い周波数領域に対しても、低損失な伝送線路を安価に製造することが可能となる。
As described above, the high-frequency electromagnetic wave transmission line according to the present invention has a core having a dielectric constant higher than that of the surroundings. Electromagnetic waves propagating inside the core are totally reflected at the core surface if the angle of incidence on the core surface, which is the boundary between the core interior and the surroundings, is larger than the critical angle, so it does not leak into the surroundings and enter the core. Be trapped. Therefore, the electromagnetic wave can be transmitted in the direction in which the core extends while being concentrated on the core.
Moreover, since this high frequency electromagnetic wave transmission line does not have a hollow structure, it is very easy to manufacture compared to the metal waveguide 101 having a hollow structure.
The high-frequency electromagnetic wave transmission line can be formed using various materials other than metal. For this reason, a low-loss transmission line is realizable by using a material with a small loss in a high frequency region.
Therefore, according to the present invention, a low-loss transmission line can be manufactured at low cost even in a frequency region higher than that of the metal waveguide 101.

次に、本発明の一実施の形態について、図面を参照しながら詳細に説明する。図1は、本発明の一実施の形態に係る高周波電磁波伝送線路の要部構成を示す図である。
図1に示す高周波電磁波伝送線路1は、所定方向に延びる第1の誘電体からなるコア11と、コア11の全周を覆う第2の誘電体からなる周辺部12とから構成されている。コア11の誘電体の比誘電率をεr1、周辺部12の誘電体の比誘電率をεr2とすると、
εr1 > εr2
の関係が成立している。電磁波はコア11の内部を伝搬していく。電磁波が伝搬する方向を電磁波伝送方向という。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a main configuration of a high-frequency electromagnetic wave transmission line according to an embodiment of the present invention.
A high-frequency electromagnetic wave transmission line 1 shown in FIG. 1 includes a core 11 made of a first dielectric extending in a predetermined direction and a peripheral portion 12 made of a second dielectric covering the entire circumference of the core 11. When the relative dielectric constant of the dielectric of the core 11 is ε r1 and the relative dielectric constant of the dielectric of the peripheral portion 12 is ε r2 ,
ε r1 > ε r2
The relationship is established. The electromagnetic wave propagates inside the core 11. The direction in which the electromagnetic wave propagates is called the electromagnetic wave transmission direction.

図2は、高周波電磁波伝送線路1の電磁波伝送原理を説明するための図である。この図において、コア11の内部を伝搬する電磁波がコア11と周辺部12との境界面(すなわちコア11の表面)13に入射する場合に、境界面13の法線ベクトルnに対する電磁波の入射角θ0が臨界角θcよりも大きくなると、電磁波は境界面13において全反射される。したがって、電磁波の入射角θ0を臨界角θcよりも大きくすることにより、電磁波は周辺部12には漏れず、コア11に閉じ込められるので、電磁波をコア11に集中した状態で伝送できる。 FIG. 2 is a diagram for explaining an electromagnetic wave transmission principle of the high-frequency electromagnetic wave transmission line 1. In this figure, when an electromagnetic wave propagating inside the core 11 is incident on the boundary surface 13 between the core 11 and the peripheral portion 12 (that is, the surface of the core 11), the incident angle of the electromagnetic wave with respect to the normal vector n of the boundary surface 13 When θ 0 becomes larger than the critical angle θ c , the electromagnetic wave is totally reflected at the boundary surface 13. Therefore, by making the incident angle θ 0 of the electromagnetic wave larger than the critical angle θ c , the electromagnetic wave does not leak into the peripheral portion 12 and is confined in the core 11, so that the electromagnetic wave can be transmitted in a state concentrated on the core 11.

高周波電磁波伝送線路1は、中空構造を有しないので、中空構造を有する金属導波管101と比較して、製造が非常に容易である。さらに、高周波電磁波伝送線路1は、金属以外の多様な材料を用いて形成できるので、高周波領域で損失の小さい材料を用いることにより、低損失な伝送線路を実現できる。したがって、本実施の形態によれば、金属導波管よりも高い0.1THz以上の周波数領域に対しても、低損失な伝送線路を安価に製造することが可能となる。ただし、シリコンをはじめ多くの材料は、電磁波の周波数が10THzを超えると、イオン共振やフォノン吸収などにより電磁波の吸収が非常に大きくなるため、10THz以下の周波数領域で使用することが好ましい。なお、0.1THz以下の周波数領域での使用も可能である。
また、高周波電磁波伝送線路1は、周辺部12が金属のような電磁波遮蔽体ではないので、外部からコア11への電磁波の導入が容易になるという効果も得られる。
Since the high-frequency electromagnetic wave transmission line 1 does not have a hollow structure, it is much easier to manufacture than the metal waveguide 101 having a hollow structure. Furthermore, since the high-frequency electromagnetic wave transmission line 1 can be formed using various materials other than metal, a low-loss transmission line can be realized by using a material having a small loss in the high-frequency region. Therefore, according to the present embodiment, a low-loss transmission line can be manufactured at low cost even in a frequency region of 0.1 THz or higher, which is higher than that of a metal waveguide. However, many materials such as silicon are preferably used in a frequency region of 10 THz or less because when the frequency of the electromagnetic wave exceeds 10 THz, the absorption of the electromagnetic wave becomes very large due to ion resonance or phonon absorption. In addition, use in a frequency region of 0.1 THz or less is also possible.
Moreover, since the peripheral part 12 is not an electromagnetic wave shielding body like a metal, the high frequency electromagnetic wave transmission line 1 also has an effect of facilitating introduction of electromagnetic waves from the outside to the core 11.

高周波電磁波伝送線路1の各部の構成について、さらに説明する。
[コア11の断面形状]
図1(b)には、電磁波伝送方向に垂直なコア11の断面形状を長方形にした例が示されている。このような形状のコア11は、例えば、周辺部12の一部となる平面基板上に誘電体を堆積し、この誘電体の不要部分をエッチングするなどの簡単なプロセスで製造できる。なお、コア11の断面形状は必ずしも長方形でなくてもよく、円形などの他の形状であってもよい。
The configuration of each part of the high-frequency electromagnetic wave transmission line 1 will be further described.
[Cross-sectional shape of core 11]
FIG. 1B shows an example in which the cross-sectional shape of the core 11 perpendicular to the electromagnetic wave transmission direction is rectangular. The core 11 having such a shape can be manufactured by a simple process, for example, by depositing a dielectric on a flat substrate which is a part of the peripheral portion 12 and etching unnecessary portions of the dielectric. In addition, the cross-sectional shape of the core 11 does not necessarily need to be a rectangle, and may be another shape such as a circle.

[コア11の寸法]
コア11を構成する第1の誘電体からなる一様媒体中を電磁波が伝搬する際の波長をλ1とすると、コア11の断面形状が長方形である場合には、長方形の長辺の長さL1を略λ1以下にすることが好ましい。このような寸法にすることにより、実用的な高周波伝送線路に必要とされる単一モード条件を満たすことが可能となる。
[Dimensions of core 11]
When the wavelength when the electromagnetic wave propagates in the uniform medium made of the first dielectric constituting the core 11 is λ 1 , the length of the long side of the rectangle when the cross-sectional shape of the core 11 is a rectangle L 1 is preferably set to approximately λ 1 or less. By using such dimensions, it becomes possible to satisfy the single mode condition required for a practical high-frequency transmission line.

有限要素法(岡本勝就著、「光導波路の基礎」、コロナ社、1992年)や平面波展開法(S.G.Johnson,J.D.Joannopoulos,“Brock-iterative frequency-domain methods for Maxwell's equations in a plainwave basis”,Opt.Express,vol.8,pp.173-190,2001)による固有値解析用いた伝搬モード解析によれば、例えば比誘電率εr1=12の第1の誘電体で形成され断面形状が2:1の長方形をしたコア11と、比誘電率εr2=2の第2の誘電体で形成された周辺部12とからなる高周波電磁界伝送線路1に対し、周波数が1THzの電磁波を導入すると、コア11の形状を長辺の長さL1が100μmより小さい長方形にした場合に単一モード条件を満たすという結果が得られた。
一方、比誘電率εr1=12の第1の誘電体中における1THz電磁波の波長λ1は87μmであるから、長方形の長辺の長さL1をλ1以下にするという上述した条件を満たすように、L1を87μm(<100μm)にすれば、単一モード条件も満たすことが分かる。
Finite element method (Katsuaki Okamoto, “Basics of optical waveguide”, Corona, 1992) and plane wave expansion method (SGJohnson, JD Joannopoulos, “Brock-iterative frequency-domain methods for Maxwell's equations in a plainwave basis”, Opt. Express, vol.8, pp.173-190, 2001) According to the propagation mode analysis using eigenvalue analysis, for example, the first dielectric having a relative dielectric constant ε r1 = 12 and the cross-sectional shape is 2: 1 When an electromagnetic wave having a frequency of 1 THz is introduced into a high-frequency electromagnetic field transmission line 1 composed of a rectangular core 11 and a peripheral portion 12 formed of a second dielectric having a relative dielectric constant ε r2 = 2, the core 11 The result of satisfying the single mode condition was obtained when the long side length L 1 was made a rectangle smaller than 100 μm.
On the other hand, since the wavelength λ 1 of the 1 THz electromagnetic wave in the first dielectric having the relative dielectric constant ε r1 = 12 is 87 μm, the above-described condition that the long side length L 1 of the rectangle is λ 1 or less is satisfied. Thus, it can be seen that if L 1 is 87 μm (<100 μm), the single mode condition is also satisfied.

しかし、長方形の短辺の長さL2を略λ1/4より小さくすると、コア11から周辺部12への電磁波の漏れが非常に大きくなり、伝送損失が増大する。このため、L2を略λ1/4より小さくしないことが好ましい。したがって、コア11の断面形状が長方形である場合には、長方形の各辺の長さL1,L2を略λ1/4以上、略λ1以下にすることが好ましい。
なお、コア11の断面形状が長方形以外の形状である場合にも、その寸法を略λ1/4以上、略λ1以下にすることが好ましい。例えば、コア11の断面形状が円形である場合には、円の直径を略λ1/4以上、略λ1以下にすることが好ましい。
より好ましくは、コア11の断面形状の寸法を、略λ1/3以上、略2λ1/3以下にするとよい。
However, when the short sides of the rectangle the length L 2 smaller than approximately lambda 1/4, the leakage of electromagnetic waves from the core 11 to the peripheral portion 12 becomes very large, the transmission loss increases. Therefore, it is preferable not to less than about lambda 1/4 to L 2. Therefore, when the cross-sectional shape of the core 11 is rectangular, the length of each side of the rectangle L 1, L 2 approximately lambda 1/4 or more, it is preferable to substantially lambda 1 or less.
Incidentally, when the cross-sectional shape of the core 11 has a shape other than a rectangle may, its dimensions approximately lambda 1/4 or more, it is preferable to substantially lambda 1 or less. For example, when the cross-sectional shape of the core 11 is circular, the diameter of a circle approximately lambda 1/4 or more, it is preferable to substantially lambda 1 or less.
More preferably, the dimensions of the cross-sectional shape of the core 11, substantially lambda 1/3 or more, may be less than or equal to approximately 2 [lambda] 1/3.

[コア11の周辺部12に対する誘電率の比]
コア11の周辺部12に対する誘電率の比(εr1/εr2)は、略2以上にすることが好ましい。時間領域有限差分法による電磁場伝搬解析(宇野亨著、「FDTD法による電磁界およびアンテナ解析」、コロナ社、1998年)によれば、コア11の断面形状を2:1の長方形とし、各辺の長さL1,L2を略λ1/4〜略λ1にした状態において、コア11の周辺部12に対する誘電率の比を2以上にすると、電磁波をコア11に強く閉じ込めることができ、外部への電磁波の漏れ損失を低減できるという結果が得られた。よって、伝送損失を低減できる。
なお、周辺部12を誘電率が比較的大きい誘電体で構成する場合を考慮すると、コア11の周辺部12に対する誘電率の比は、略100以下にすることが好ましい。
より好ましくは、誘電率の比は、略9以上、略25以下にするとよい。
[Ratio of dielectric constant to peripheral portion 12 of core 11]
The ratio of the dielectric constant (ε r1 / ε r2 ) to the peripheral portion 12 of the core 11 is preferably about 2 or more. According to electromagnetic field propagation analysis by time domain finite difference method (Satoshi Uno, “Electromagnetic field and antenna analysis by FDTD method”, Corona, 1998), the cross-sectional shape of the core 11 is a 2: 1 rectangle, and each side in a state where the the lengths L 1, L 2 and a substantially lambda 1 /. 4 to approximately lambda 1, when the ratio of the dielectric constant with respect to the peripheral portion 12 of the core 11 into two or more, it is possible to strongly confine electromagnetic core 11 As a result, the leakage loss of electromagnetic waves to the outside can be reduced. Therefore, transmission loss can be reduced.
In consideration of the case where the peripheral portion 12 is made of a dielectric having a relatively large dielectric constant, the ratio of the dielectric constant of the core 11 to the peripheral portion 12 is preferably about 100 or less.
More preferably, the dielectric constant ratio is about 9 or more and about 25 or less.

[周辺部12の厚み]
周辺部12を構成する第2の誘電体からなる一様媒体中を電磁波が伝搬する際の波長をλ2とすると、電磁波伝送方向に垂直な方向の周辺部12の厚みを、略λ2以上にすることが好ましい。時間領域有限差分去による電磁場伝搬解析によれば、上述したのと同じ条件の下では、周辺部12の厚みをλ2以上にすると、外部への電磁波の漏れ損失を無視できるという結果が得られた。よって、伝送損失を低減できる。
[Thickness of peripheral portion 12]
When the wavelength when the electromagnetic wave propagates through the uniform medium made of the second dielectric constituting the peripheral portion 12 is λ 2 , the thickness of the peripheral portion 12 in the direction perpendicular to the electromagnetic wave transmission direction is approximately λ 2 or more. It is preferable to make it. According to the electromagnetic field propagation analysis by finite difference in the time domain, under the same conditions as described above, when the thickness of the peripheral portion 12 is λ 2 or more, the leakage loss of electromagnetic waves to the outside can be ignored. It was. Therefore, transmission loss can be reduced.

[コア11および周辺部12の構成材料の例1]
コア11を構成する第1の誘電体として、シリコン、ゲルマニウム、砒化ガリウム、酸化アルミニウムまたはダイアモンド状炭素を用いる。また、周辺部12を構成する第2の誘電体として、ポリエチレン、ポリテトラフルオロエチレン(テフロン(登録商標))、パラフィン、ポリスチレンまたは酸化硅素系化合物を用いる。
[Example 1 of constituent materials of core 11 and peripheral portion 12]
Silicon, germanium, gallium arsenide, aluminum oxide, or diamond-like carbon is used as the first dielectric constituting the core 11. In addition, polyethylene, polytetrafluoroethylene (Teflon (registered trademark)), paraffin, polystyrene, or a silicon oxide-based compound is used as the second dielectric constituting the peripheral portion 12.

周辺部12を構成する第2の誘電体として例示した材料は、0.1THz〜10THzという周波数領域において低い誘電率をもつことが知られており、比誘電率は2.5程度またはそれ以下である。これに対し、コア11を構成する第1の誘電体として例示した材料は、比誘電率が5以上であるので、上記の周波数領域において上記の誘電率の比(2≦εr1/εr2≦100)が満たされる。よって、これらの材料を組み合わせてコア11および周辺部12を構成することにより、漏れ損失の少ない高周波電磁波伝送線路1を実現できる。さらに、これらの材料は上記の周波数領域における電磁波の吸収が少ないので、吸収損失も低減できる。 The material exemplified as the second dielectric constituting the peripheral portion 12 is known to have a low dielectric constant in the frequency region of 0.1 THz to 10 THz, and the relative dielectric constant is about 2.5 or less. is there. On the other hand, the material exemplified as the first dielectric constituting the core 11 has a relative dielectric constant of 5 or more, and therefore the above dielectric constant ratio (2 ≦ ε r1 / ε r2 ≦ in the above frequency region). 100) is satisfied. Therefore, the high frequency electromagnetic wave transmission line 1 with little leakage loss is realizable by comprising the core 11 and the peripheral part 12 combining these materials. Furthermore, since these materials have little absorption of electromagnetic waves in the above frequency region, absorption loss can also be reduced.

また、周辺部12を真空または空気で構成してもよい。真空または空気の比誘電率は、1または1に非常に近い値なので、上述したコア11を構成する第1の誘電体との関係で、やはり漏れ損失および吸収損失が少ない高周波電磁波伝送線路1を実現できる。なお、周辺部12を真空で構成する場合には、コア11を真空容器に収容する。周辺部12を空気で構成する場合には、コア11を空気中に配置してもよい。この際、コア11の外周がなるべく空気以外のものに触れないように、電磁波の伝送に影響が少ないコア11の支持構造を設けてもよい。   Moreover, you may comprise the peripheral part 12 with a vacuum or air. Since the relative permittivity of vacuum or air is very close to 1 or 1, the high-frequency electromagnetic wave transmission line 1 that also has little leakage loss and absorption loss in relation to the first dielectric constituting the core 11 described above. realizable. In addition, when the peripheral part 12 is comprised with a vacuum, the core 11 is accommodated in a vacuum vessel. When the peripheral portion 12 is made of air, the core 11 may be disposed in the air. At this time, a support structure for the core 11 that has little influence on the transmission of electromagnetic waves may be provided so that the outer periphery of the core 11 does not touch anything other than air as much as possible.

[コア11および周辺部12の構成材料の例2]
コア11を構成する第2の誘電体として、ポリエチレン、ポリテトラフルオロエチレン、パラフィン、ポリスチレンまたは酸化硅素系化合物を用いる。また、周辺部12を真空または空気で構成する。
[Example 2 of constituent materials of core 11 and peripheral portion 12]
As the second dielectric constituting the core 11, polyethylene, polytetrafluoroethylene, paraffin, polystyrene or a silicon oxide compound is used. Further, the peripheral portion 12 is constituted by vacuum or air.

周辺部12を構成する真空または空気の比誘電率は、0.1THz〜10THzという周波数領域において1または1に非常に近い値をもつ。これに対し、コア11を構成する第1の誘電体として例示した材料の比誘電率は、上記の周波数領域において2以上であるので、上記の誘電率の比(2≦εr1/εr2≦100)が満たされる。よって、このような構成にすることにより、漏れ損失の少ない高周波電磁波伝送線路1を実現できる。また、これらの材料は上記周波数領域における電磁波の吸収が少ないので、吸収損失も低減できる。さらに、これらの材料は上記の周波数領域における電磁波の吸収が、例1で挙げた材料と比較して更に少ないので、吸収損失を更に低減できる。 The relative permittivity of vacuum or air constituting the peripheral portion 12 has a value very close to 1 or 1 in a frequency region of 0.1 THz to 10 THz. On the other hand, since the relative dielectric constant of the material exemplified as the first dielectric constituting the core 11 is 2 or more in the frequency region, the dielectric constant ratio (2 ≦ ε r1 / ε r2 ≦ 100) is satisfied. Therefore, the high frequency electromagnetic wave transmission line 1 with little leakage loss is realizable by setting it as such a structure. Moreover, since these materials have little absorption of electromagnetic waves in the frequency region, absorption loss can be reduced. Furthermore, since these materials absorb much less electromagnetic waves in the above frequency region than the materials mentioned in Example 1, the absorption loss can be further reduced.

[その他]
周辺部12は、必ずしも一様材料で構成される必要はない。周辺部12の誘電率がコア11の誘電率よりも小さいという条件を満たしていれば、多様な材料を用いた複合構造で周辺部12を構成してもよい。例えば、高周波電磁波伝送線路1の下部周辺部を固体材料で構成し、上部周辺部を別の固体材料または真空や空気で構成してもよい。
コア11もまた、一様材料で構成されなくてもよい場合がある。例えば、コア11の中心軸線から外周に向かって誘電率が次第に小さくなるような構造にしてもよい。
[Others]
The peripheral portion 12 does not necessarily need to be made of a uniform material. As long as the condition that the dielectric constant of the peripheral portion 12 is smaller than the dielectric constant of the core 11 is satisfied, the peripheral portion 12 may be configured by a composite structure using various materials. For example, the lower peripheral part of the high frequency electromagnetic wave transmission line 1 may be made of a solid material, and the upper peripheral part may be made of another solid material, vacuum or air.
The core 11 may also not be made of a uniform material. For example, a structure may be employed in which the dielectric constant gradually decreases from the central axis of the core 11 toward the outer periphery.

本発明は、通信をはじめ、高周波電磁波が使用される分野に利用可能である。   The present invention is applicable to fields where high-frequency electromagnetic waves are used, including communication.

高周波電磁波伝送線路の要部構成を示す図であり、(a)は電磁波伝送方向に平行な断面、(b)は電磁波伝送方向に垂直な断面(A−A′線方向の断面)をそれぞれ示している。It is a figure which shows the principal part structure of a high frequency electromagnetic wave transmission line, (a) shows the cross section parallel to an electromagnetic wave transmission direction, (b) shows the cross section (AA 'line direction cross section) perpendicular | vertical to an electromagnetic wave transmission direction, respectively. ing. 高周波電磁波伝送線路の電磁波伝送原理を説明するための図である。It is a figure for demonstrating the electromagnetic wave transmission principle of a high frequency electromagnetic wave transmission line. 従来の高周波電磁波伝送線路である金属導波管の一構成例を示す断面図であり、(a)は電磁波伝送方向に平行な断面、(b)は電磁波伝送方向に垂直な断面(B−B′線方向の断面)をそれぞれ示している。It is sectional drawing which shows one structural example of the metal waveguide which is the conventional high frequency electromagnetic wave transmission line, (a) is a cross section parallel to an electromagnetic wave transmission direction, (b) is a cross section perpendicular | vertical to an electromagnetic wave transmission direction (BB). 'Cross-section in the line direction).

符号の説明Explanation of symbols

1…高周波電磁波伝送線路、11…コア、12…周辺部、13…境界面。
DESCRIPTION OF SYMBOLS 1 ... High frequency electromagnetic wave transmission line, 11 ... Core, 12 ... Peripheral part, 13 ... Boundary surface.

Claims (8)

周波数が0.1THz以上10THz以下の高周波電磁波を伝送する高周波電磁波伝送線路であって、
所定方向に延び、周囲よりも誘電率が高い誘電体からなるコアを有することを特徴とする高周波電磁波伝送線路。
A high-frequency electromagnetic wave transmission line for transmitting a high-frequency electromagnetic wave having a frequency of 0.1 THz to 10 THz,
A high-frequency electromagnetic wave transmission line comprising a core made of a dielectric material extending in a predetermined direction and having a dielectric constant higher than that of the surroundings.
請求項1に記載された高周波電磁波伝送線路において、
前記コアは、前記所定方向に垂直な断面が四角形をしていることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to claim 1,
The high-frequency electromagnetic wave transmission line, wherein the core has a quadrangular cross section perpendicular to the predetermined direction.
請求項2に記載された高周波電磁波伝送線路において、
前記コアは、前記所定方向に垂直な断面の一辺の長さが、前記誘電体中を前記高周波電磁波が伝搬する際の波長の1/4倍以上、前記波長以下であることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to claim 2,
The core is characterized in that the length of one side of the cross section perpendicular to the predetermined direction is not less than ¼ times the wavelength when the high-frequency electromagnetic wave propagates in the dielectric and not more than the wavelength. Electromagnetic transmission line.
請求項1〜3のいずれか1項に記載された高周波電磁波伝送線路において、
前記誘電体は、その周囲に対する誘電率の比が2以上100以下であることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line described in any one of claims 1 to 3,
The dielectric material has a dielectric constant ratio of 2 to 100 with respect to the periphery thereof.
請求項1〜4のいずれか1項に記載された高周波電磁波伝送線路において、
前記コアの周囲を覆い、前記誘電体よりも誘電率が低い周辺部を更に有することを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to any one of claims 1 to 4,
A high frequency electromagnetic wave transmission line characterized by further comprising a peripheral portion covering the periphery of the core and having a dielectric constant lower than that of the dielectric.
請求項5に記載された高周波電磁波伝送線路において、
前記周辺部は、前記所定方向に垂直な方向の厚みが、前記周辺部を構成する媒体中を前記高周波電磁波が伝搬する際の波長以上であることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to claim 5,
The high frequency electromagnetic wave transmission line, wherein the peripheral portion has a thickness in a direction perpendicular to the predetermined direction that is equal to or greater than a wavelength at which the high frequency electromagnetic wave propagates in a medium constituting the peripheral portion.
請求項5または6に記載された高周波電磁波伝送線路において、
前記コアは、シリコン、ゲルマニウム、砒化ガリウム、酸化アルミニウム、ダイアモンド状炭素の少なくとも1つからなり、
前記周辺部は、真空、空気、ポリエチレン、ポリテトラフルオロエチレン、パラフィン、ポリスチレン、酸化硅素系化合物の少なくとも1つからなることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to claim 5 or 6,
The core is made of at least one of silicon, germanium, gallium arsenide, aluminum oxide, diamond-like carbon,
The peripheral portion is made of at least one of vacuum, air, polyethylene, polytetrafluoroethylene, paraffin, polystyrene, and silicon oxide-based compound.
請求項5または6に記載された高周波電磁波伝送線路において、
前記コアは、ポリエチレン、ポリテトラフルオロエチレン、パラフィン、ポリスチレン、酸化硅素系化合物の少なくとも1つからなり、
前記周辺部は、真空または空気からなることを特徴とする高周波電磁波伝送線路。
In the high frequency electromagnetic wave transmission line according to claim 5 or 6,
The core is made of at least one of polyethylene, polytetrafluoroethylene, paraffin, polystyrene, silicon oxide compound,
The high frequency electromagnetic wave transmission line, wherein the peripheral portion is made of vacuum or air.
JP2003413669A 2003-12-11 2003-12-11 High-frequency electromagnetic wave transmission line Pending JP2005175941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413669A JP2005175941A (en) 2003-12-11 2003-12-11 High-frequency electromagnetic wave transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413669A JP2005175941A (en) 2003-12-11 2003-12-11 High-frequency electromagnetic wave transmission line

Publications (1)

Publication Number Publication Date
JP2005175941A true JP2005175941A (en) 2005-06-30

Family

ID=34733734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413669A Pending JP2005175941A (en) 2003-12-11 2003-12-11 High-frequency electromagnetic wave transmission line

Country Status (1)

Country Link
JP (1) JP2005175941A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195886A (en) * 2011-03-17 2012-10-11 Hiroshima Univ Inter-chip communication system and semiconductor device
CN103633403A (en) * 2012-08-24 2014-03-12 香港城市大学 Transmission line and methods for fabricating thereof
CN104347920A (en) * 2013-08-02 2015-02-11 Tdk株式会社 Dielectric line and electronic component
JP2015156713A (en) * 2015-04-24 2015-08-27 Tdk株式会社 Electronic component
JP2016019123A (en) * 2014-07-08 2016-02-01 Tdk株式会社 Transmission line and electronic component
CN107395128A (en) * 2017-07-10 2017-11-24 中国电子科技集团公司第十三研究所 Terahertz frequency mixer
CN111697291A (en) * 2020-07-20 2020-09-22 苏州银琈玛电子科技有限公司 Total reflection microwave device and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195886A (en) * 2011-03-17 2012-10-11 Hiroshima Univ Inter-chip communication system and semiconductor device
CN103633403A (en) * 2012-08-24 2014-03-12 香港城市大学 Transmission line and methods for fabricating thereof
CN104347920A (en) * 2013-08-02 2015-02-11 Tdk株式会社 Dielectric line and electronic component
JP2015032969A (en) * 2013-08-02 2015-02-16 Tdk株式会社 Dielectric line and electronic component
US9601816B2 (en) 2013-08-02 2017-03-21 Tdk Corporation Dielectric line and electronic component
JP2016019123A (en) * 2014-07-08 2016-02-01 Tdk株式会社 Transmission line and electronic component
JP2015156713A (en) * 2015-04-24 2015-08-27 Tdk株式会社 Electronic component
CN107395128A (en) * 2017-07-10 2017-11-24 中国电子科技集团公司第十三研究所 Terahertz frequency mixer
CN111697291A (en) * 2020-07-20 2020-09-22 苏州银琈玛电子科技有限公司 Total reflection microwave device and preparation method thereof
CN111697291B (en) * 2020-07-20 2024-06-11 苏州银琈玛电子科技有限公司 Total reflection microwave device and preparation method thereof

Similar Documents

Publication Publication Date Title
Xu et al. High-order mode of spoof surface plasmon polaritons and its application in bandpass filters
Malekabadi et al. High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands
Bingham et al. THz parallel plate photonic waveguides
US3386787A (en) Macroscopic optical waveguides
Wiederhold et al. Nonreciprocal acoustic propagation and leaky-wave radiation in a waveguide with flow
JP2006245926A (en) Positive-negative dielectric constant medium or positive-negative permeability medium made of meta-material, and waveguide for propagating surface wave employing the same
WO2005022221A1 (en) Electromagnetic wave frequency filter
WO2016050184A1 (en) Broadband three-port optical circulator having introduced therein triangular guide column
JP2635471B2 (en) Double bulkhead polarization rotator
Lerat et al. Determination of the effective parameters of a metamaterial by field summation method
Yang et al. Topology-empowered membrane devices for terahertz photonics
JP5442804B2 (en) Millimeter wave band filter
JP2005175941A (en) High-frequency electromagnetic wave transmission line
Yan et al. Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines
Maksimenko et al. Coupled-mode theory of an irregular waveguide with impedance walls
Tong et al. Compact topological waveguide for acoustic enhanced directional radiation
Li et al. Controlling asymmetric retroreflection of metasurfaces via localized loss engineering
JPH09139603A (en) Circularly polarized wave-linearly polarized wave converter
Wen et al. Observing flat wavefront formation with diffusive transport in microwave graphene with topological insulator protected edges
Wang et al. Compact acoustic amplifiers based on non-adiabatic compression of sound in metamaterial waveguides
US11044549B1 (en) Supercoupling power dividers, and methods for making and using same
Tajik et al. Dielectric resonator antenna fed by photonic crystal waveguide based on silicon-on-glass technology
JP2005204023A (en) High-frequency electromagnetic wave antenna
Seetharaman et al. Realizing an ultra-wideband backward-wave metamaterial waveguide
Lei et al. Negative group velocity characteristics of spoof surface plasmon polaritons