JP2005175810A - Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device - Google Patents

Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device Download PDF

Info

Publication number
JP2005175810A
JP2005175810A JP2003412262A JP2003412262A JP2005175810A JP 2005175810 A JP2005175810 A JP 2005175810A JP 2003412262 A JP2003412262 A JP 2003412262A JP 2003412262 A JP2003412262 A JP 2003412262A JP 2005175810 A JP2005175810 A JP 2005175810A
Authority
JP
Japan
Prior art keywords
sir
signal
interference signal
signal power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003412262A
Other languages
Japanese (ja)
Inventor
Takashi Iwai
敬 岩井
Toshihiro Kasahara
稔弘 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003412262A priority Critical patent/JP2005175810A/en
Publication of JP2005175810A publication Critical patent/JP2005175810A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide SIR measuring equipment capable of accurately measuring the SIR of a reception signal by simple signal processing, to provide a radio communication device having the SIR measuring equipment, and to provide a base station device capable of accurately measuring SIR for HARQ-ACK even if especially using the base station for W-CDMA radio communication. <P>SOLUTION: An SIR calculation section 106 calculates the SIR of the reception signal after RAKE synthesis, by dividing RSCP inputted from a desired signal power calculator 103 by ISCP inputted from an interference signal power corrector 105. Then, the SIR calculator 106 inputs the calculated SIR to a configuration section, or the like for decoding HARQ-ACK (not shown). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、携帯電話や基地局装置に代表される無線通信装置及びその基地局装置、並びにその無線通信装置に搭載可能な装置であって受信信号に含まれる希望信号の電力を分子としその受信信号に含まれる干渉信号の電力を分母とする比即ち希望信号対干渉信号電力比(SIR:Signal-to-Interference power Ratio)を測定する希望信号対干渉信号電力比測定装置(以下、「SIR測定装置」と称する場合がある)に関する。   The present invention relates to a radio communication device typified by a mobile phone or a base station device, its base station device, and a device that can be mounted on the radio communication device, and uses the power of a desired signal contained in a received signal as a numerator. A signal-to-interference power ratio measurement apparatus (hereinafter referred to as “SIR measurement”) that measures a signal-to-interference signal power ratio (SIR) using the power of an interference signal included in a signal as a denominator. May be referred to as an “apparatus”).

従来、直交位相変調方式による無線通信において、無線通信装置がRAKE合成後の受信信号に基づいてSIR測定を行う技術が検討されている(例えば、特許文献1参照)。この特許文献1に記載された技術では、RAKE合成後の受信信号に含まれる既知のデータパターンを平均化し、この平均化された既知のデータパターン(以下、「平均シンボル」と称する場合がある)の電力レベルを希望信号電力(RSCP:Received Signal Code Power)とし、RAKE合成後の受信信号に含まれる既知のデータパターンについての分散値を干渉信号電力(ISCP:Interference Signal Code Power)として、RSCPを分子としISCPを分母とする比を求めることによりその受信信号のSIRを算出する。   Conventionally, in wireless communication using a quadrature modulation method, a technique in which a wireless communication apparatus performs SIR measurement based on a received signal after RAKE combining has been studied (for example, see Patent Document 1). In the technique described in Patent Document 1, a known data pattern included in a received signal after RAKE combining is averaged, and this averaged known data pattern (hereinafter, sometimes referred to as “average symbol”). The desired signal power (RSCP) is the desired signal power (RSCP), the dispersion value for the known data pattern included in the received signal after RAKE combining is the interference signal power (ISCP: Interference Signal Code Power), and RSCP is The SIR of the received signal is calculated by obtaining a ratio with the numerator and ISCP as the denominator.

図5は、特許文献1に記載された技術で使用されるSIR測定装置の一般的な構成を示す図であって、QPSK方式で変調された受信信号を復調し、復調後の受信信号の同相成分(Ich成分)と直交成分(Qch成分)とをそれぞれRAKE合成した後に、その受信信号のSIRを測定するSIR測定装置10の構成を示すブロック図である。SIR測定装置10は、既知パターン生成部11、平均シンボル算出部12、希望信号電力算出部13、干渉信号電力算出部14及びSIR算出部15を具備する。   FIG. 5 is a diagram showing a general configuration of an SIR measurement apparatus used in the technique described in Patent Document 1, and demodulates a reception signal modulated by the QPSK method and in-phase the received signal after demodulation. FIG. 2 is a block diagram showing a configuration of an SIR measurement apparatus 10 that measures the SIR of a received signal after RAKE combining a component (Ich component) and a quadrature component (Qch component). The SIR measurement apparatus 10 includes a known pattern generation unit 11, an average symbol calculation unit 12, a desired signal power calculation unit 13, an interference signal power calculation unit 14, and an SIR calculation unit 15.

既知パターン生成部11は、送信側無線通信装置と受信側無線通信装置との間で既知となっているデータパターンを生成し、生成された既知のデータパターンを平均シンボル算出部12に入力する。   The known pattern generation unit 11 generates a data pattern that is known between the transmission-side wireless communication device and the reception-side wireless communication device, and inputs the generated known data pattern to the average symbol calculation unit 12.

平均シンボル算出部12は、図示しない受信信号処理部から入力されてくるRAKE合成後の受信信号の同相成分と直交成分とのそれぞれについて、それらのN(Nは任意の整数)シンボル分を既知パターン生成部11から入力されてくる既知のデータパターンに乗算して象限を合わせ、その後に平均化することによって平均シンボルを生成する。また、平均シンボル算出部12は、生成した同相成分の平均シンボルと生成した直交成分の平均シンボルとを個別に希望信号電力算出部13及び干渉信号電力算出部14にそれぞれ入力する。   The average symbol calculation unit 12 obtains N (N is an arbitrary integer) symbols for a known pattern for each of the in-phase component and the quadrature component of the received signal after RAKE synthesis input from a received signal processing unit (not shown). An average symbol is generated by multiplying a known data pattern input from the generation unit 11 to match quadrants and then averaging. The average symbol calculation unit 12 individually inputs the generated average symbol of the in-phase component and the generated average symbol of the orthogonal component to the desired signal power calculation unit 13 and the interference signal power calculation unit 14, respectively.

希望信号電力算出部13は、平均シンボル算出部12から入力されてくる同相成分の平均シンボルと直交成分の平均シンボルとについて、その同相成分の平均シンボルの電力(rscp.i)と直交成分の平均シンボルの電力(rscp.q)とをそれぞれ測定し、測定されたそれらの電力を合成することによってRSCPを算出する。そして、希望信号電力算出部13は、算出されたRSCPをSIR算出部15に入力する。 The desired signal power calculation unit 13 receives the average symbol power (rscp.i 2 ) of the in-phase component and the quadrature component of the average symbol of the in-phase component and the average symbol of the quadrature component input from the average symbol calculation unit 12. The RSCP is calculated by measuring the average symbol power (rscp.q 2 ) and combining the measured powers. Then, the desired signal power calculation unit 13 inputs the calculated RSCP to the SIR calculation unit 15.

干渉信号電力算出部14は、図示しない受信信号処理部から入力されてくるRAKE合成後の受信信号の同相成分及び直交成分と、平均シンボル算出部12から入力されてくる同相成分の平均シンボル及び直交成分の平均シンボルと、に基づいて、同相成分の既知のデータパターンの分散値と直交成分の既知のデータパターンの分散値と算出し、算出された二つの分散値を加算することによってISCPを算出する。そして、干渉信号電力算出部14は、算出されたISCPをSIR算出部15に入力する。   The interference signal power calculation unit 14 receives an in-phase component and a quadrature component of the received signal after RAKE combining input from a reception signal processing unit (not shown), and an average symbol and quadrature of the in-phase component input from the average symbol calculation unit 12. Based on the average symbol of the component, the variance value of the known data pattern of the in-phase component and the variance value of the known data pattern of the quadrature component are calculated, and the ISCP is calculated by adding the two calculated variance values To do. Then, the interference signal power calculation unit 14 inputs the calculated ISCP to the SIR calculation unit 15.

SIR算出部15は、希望信号電力算出部13から入力されてくるRSCPを干渉信号電力算出部14から入力されてくるISCPで除することによってRAKE合成後の受信信号のSIRを算出する。   The SIR calculation unit 15 calculates the SIR of the received signal after RAKE combining by dividing the RSCP input from the desired signal power calculation unit 13 by the ISCP input from the interference signal power calculation unit 14.

このSIR測定装置10における受信信号のSIRの算出手順について、より具体的に説明する。ここで、RAKE合成後の受信信号に含まれる既知のデータパターンの同相成分をRx〔n〕.i、同直交成分をRx〔n〕.q及び平均シンボルの算出の際に使用された整数をN、並びに既知のデータパターンをref〔n〕とすると、RSCPは、RAKE合成後の受信信号に含まれる平均シンボルの電力として、下記式(1)、式(2)及び式(3)により求められる。   The procedure for calculating the SIR of the received signal in the SIR measuring apparatus 10 will be described more specifically. Here, the in-phase component of the known data pattern included in the received signal after RAKE combining is represented by Rx [n]. i, the same orthogonal component is represented by Rx [n]. Assuming that the integer used in the calculation of q and the average symbol is N, and the known data pattern is ref [n], RSCP represents the power of the average symbol included in the received signal after RAKE combining as 1), it is calculated | required by Formula (2) and Formula (3).

Figure 2005175810
Figure 2005175810

Figure 2005175810
RSCP=rscp.i+rscp.q ・・・(3)
Figure 2005175810
RSCP = rscp. i 2 + rscp. q 2 (3)

ここで、式(1)及び式(2)は平均シンボル算出部12において演算され、式(3)は希望信号電力算出部13において演算される。   Here, Equations (1) and (2) are calculated by the average symbol calculation unit 12, and Equation (3) is calculated by the desired signal power calculation unit 13.

また、ISCPは、RAKE合成後の受信信号に含まれる既知のデータパターンの分散値として、ISCPの同相成分をiscp〔n〕.i及びその直交成分をiscp〔n〕.qとすると、下記式(4)、式(5)及び式(6)により求められる。なお、式(4)、式(5)及び式(6)は全て、干渉信号電力算出部14において演算されることになる。   Also, the ISCP uses the in-phase component of ISCP as iscp [n] .n as a dispersion value of a known data pattern included in the received signal after RAKE synthesis. i and its orthogonal components are iscp [n]. If it is set to q, it will obtain | require by following formula (4), Formula (5), and Formula (6). It should be noted that the equations (4), (5), and (6) are all calculated by the interference signal power calculation unit 14.

iscp〔n〕.i=ref〔n〕×Rx〔n〕.i−rscp.i ・・・(4)
iscp〔n〕.q=ref〔n〕×Rx〔n〕.q−rscp.q ・・・(5)
iscp [n]. i = ref [n] × Rx [n]. i-rscp. i (4)
iscp [n]. q = ref [n] × Rx [n]. q-rscp. q (5)

Figure 2005175810
Figure 2005175810

そして、RAKE合成後の受信信号のSIRは、RSCPを分子としISCPを分母とする比として、下記式(7)により求められる。なお、下記式(7)は、SIR算出部15において演算される。   Then, the SIR of the received signal after RAKE synthesis is obtained by the following equation (7) as a ratio with RSCP as the numerator and ISCP as the denominator. The following equation (7) is calculated by the SIR calculation unit 15.

Figure 2005175810
Figure 2005175810

このように特許文献1に記載された技術では、RAKE合成後の受信信号の同相成分と直交成分とを共に用いて、その受信信号のSIRが測定される。   As described above, in the technique described in Patent Document 1, the SIR of the received signal is measured using both the in-phase component and the quadrature component of the received signal after RAKE combining.

ところで、一方では、受信信号の同相成分又は直交成分のいずれか一方のみを用いて、その受信信号のSIRを測定しようとする試みもなされている(例えば、特許文献2参照)。
特開2003−32168号公報 特開2002−290344号公報
Meanwhile, on the other hand, an attempt has been made to measure the SIR of the received signal using only either the in-phase component or the quadrature component of the received signal (see, for example, Patent Document 2).
JP 2003-32168 A JP 2002-290344 A

しかしながら、特許文献1に記載された技術では、RAKE合成後の受信信号の同相成分と直交成分とを共に用いなければSIRを測定することができないため、SIR測定装置における受信信号の信号処理がやや煩雑になる問題がある。   However, in the technique described in Patent Document 1, since SIR cannot be measured unless both the in-phase component and the quadrature component of the received signal after RAKE combining are used, the signal processing of the received signal in the SIR measuring device is somewhat There is a problem that becomes complicated.

また、特許文献1に記載された技術では、例えばW−CDMA方式の無線通信において、上り回線のHS−DPCCH(Dedicated Physical Control Channel(Uplink)for HS-DSCH)の受信信号のSIRを測定する場合に、HS−DPCCHと直交する別のチャネルで同じ拡散コードが使用されるため、この別のチャネルの受信信号がHS−DPCCHの受信信号にとって干渉信号となってしまうことから、HS−DPCCHの受信信号のSIRを正確に測定することができない、という問題がある。具体的には、3GPP(3rd Generation Partnership Project)では、W−CDMA方式の無線通信における上りチャネルにおいて、DPDCH(Dedicated Physical Data CHannel)が同相成分として、HS−DPCCHが直交成分としてマッピングされ、これらのチャネルに同じ拡散コードが使用される、と規定されている。そのため、HS−DPCCHで送信されるHARQ−ACK(Hybrid-ARQ Acknowledgement)についてのSIRを測定する場合には、同相成分であるDPDCHがHARQ−ACKを干渉してしまうため、そのSIRを正確に測定できない、という問題がある。   Further, in the technique described in Patent Document 1, for example, in the case of W-CDMA wireless communication, the SIR of the received signal of the uplink HS-DPCCH (Dedicated Physical Control Channel (Uplink) for HS-DSCH) is measured. In addition, since the same spreading code is used in another channel orthogonal to the HS-DPCCH, the reception signal of this other channel becomes an interference signal for the reception signal of the HS-DPCCH. There is a problem that the SIR of the signal cannot be measured accurately. Specifically, in 3GPP (3rd Generation Partnership Project), in the uplink channel in W-CDMA wireless communication, DPDCH (Dedicated Physical Data CHannel) is mapped as an in-phase component and HS-DPCCH is mapped as an orthogonal component. It is specified that the same spreading code is used for the channel. Therefore, when measuring SIR for HARQ-ACK (Hybrid-ARQ Acknowledgment) transmitted on HS-DPCCH, DPDCH, which is an in-phase component, interferes with HARQ-ACK, so that SIR is accurately measured. There is a problem that it is not possible.

さらに、特許文献2に記載された技術では、SIR測定装置が逆拡散されただけでRAKE合成されていない受信信号を用いてRSCP及びISCPを算出しているため、その受信信号にはフェージングやAFC(Automatic Freqency Control)残渣等の影響によって位相回転が生じていることから、その受信信号の同相成分又は直交成分のいずれか一方のみを用いてRSCP及びISCPを正確に算出することは理論的に困難である、という問題がある。   Furthermore, in the technique described in Patent Document 2, RSCP and ISCP are calculated using a reception signal that has been despread by the SIR measurement device and is not RAKE-combined. Therefore, the reception signal includes fading and AFC. (Automatic Freqency Control) Since phase rotation occurs due to the influence of residue, etc., it is theoretically difficult to accurately calculate RSCP and ISCP using only one of the in-phase component and quadrature component of the received signal. There is a problem that.

本発明はかかる点に鑑みてなされたものであり、簡素な信号処理によって受信信号のSIRを正確に測定することのできるSIR測定装置、並びにこのSIR測定装置を具備する無線通信装置、特にW−CDMA方式の無線通信に使用されてもHARQ−ACKについてSIRを正確に測定することのできる基地局装置を提供することを目的とする。   The present invention has been made in view of the above points, and an SIR measuring apparatus capable of accurately measuring the SIR of a received signal by simple signal processing, and a wireless communication apparatus equipped with the SIR measuring apparatus, particularly a W- An object of the present invention is to provide a base station apparatus that can accurately measure the SIR of HARQ-ACK even when used for CDMA wireless communication.

本発明に係る希望信号対干渉信号電力比測定装置は、RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方に基づいて前記受信信号に含まれる希望信号の電力を算出する希望信号電力算出手段と、RAKE合成後の前記受信信号の前記同相成分又は前記直交成分のいずれか一方に基づいて前記受信信号に含まれる干渉信号の電力を算出する干渉信号電力算出手段と、算出された前記希望信号電力を分子とし算出された前記干渉信号電力を分母とする比を算出する希望信号対干渉信号電力比算出手段と、を具備する構成を採る。   A desired signal to interference signal power ratio measuring apparatus according to the present invention calculates desired signal power included in a received signal based on either the in-phase component or the quadrature component of the received signal after RAKE combining. A calculation means; an interference signal power calculation means for calculating power of an interference signal included in the reception signal based on either the in-phase component or the quadrature component of the reception signal after RAKE combining; A desired signal-to-interference signal power ratio calculating unit that calculates a ratio using the desired signal power as a numerator and the interference signal power calculated as a denominator is employed.

この構成によれば、RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方のみを用いて、その受信信号のRSCP及びISCPが算出されるため、その受信信号に簡素な信号処理を施すだけでその受信信号のSIRを正確に測定することができる。   According to this configuration, since only the in-phase component or the quadrature component of the received signal after RAKE combining is used to calculate the RSCP and ISCP of the received signal, simple signal processing is performed on the received signal. The SIR of the received signal can be accurately measured only by this.

本発明に係る希望信号対干渉信号電力比測定装置は、前記発明において、前記干渉信号電力算出手段は、RAKE合成後の前記受信信号の前記同相成分又は前記直交成分のいずれか一方に基づいて、前記受信信号に含まれる前記干渉信号の電力の分散値を2倍に補正することにより、前記干渉信号電力を算出する、構成を採る。   The desired signal to interference signal power ratio measuring apparatus according to the present invention is the above-described invention, wherein the interference signal power calculation means is based on either the in-phase component or the quadrature component of the received signal after RAKE combining. The interference signal power is calculated by correcting the interference value of the interference signal included in the received signal by twice.

この構成によれば、前記発明による効果に加えて、ISCPの算出値を2倍に補正するだけであるため、RAKE合成後の受信信号に簡素な信号処理を施すだけでそのSIRの正確性を一層高めることができる。   According to this configuration, in addition to the effect of the present invention, since the calculated value of ISCP is only corrected by a factor of 2, the SIR accuracy can be increased by simply performing simple signal processing on the received signal after RAKE combining. It can be further enhanced.

本発明に係る無線通信装置は、前記発明に係る希望信号対干渉信号電力比測定装置を具備する構成を採る。   The radio communication apparatus according to the present invention employs a configuration including the desired signal to interference signal power ratio measuring apparatus according to the present invention.

この構成によれば、本発明に係るSIR測定装置を具備するため、受信信号に複雑な信号処理を施さなくてもよいことから、応答速度が速く、かつ、消費電力の少ない無線通信装置が得られる。   According to this configuration, since the SIR measurement device according to the present invention is provided, it is not necessary to perform complicated signal processing on the received signal, so that a wireless communication device with high response speed and low power consumption can be obtained. It is done.

本発明に係る基地局装置は、前記発明に係る無線通信装置であって、前記希望信号電力算出手段は、RAKE合成後のHS−DPCCHの前記受信信号に含まれる前記希望信号の電力を算出し、前記干渉信号電力算出手段は、RAKE合成後のHS−DPCCHの前記受信信号に含まれる前記干渉信号の電力を算出する、構成を採る。   A base station apparatus according to the present invention is the wireless communication apparatus according to the present invention, wherein the desired signal power calculation means calculates the power of the desired signal included in the received signal of the HS-DPCCH after RAKE combining. The interference signal power calculating means calculates the power of the interference signal included in the received signal of the HS-DPCCH after RAKE combining.

この構成によれば、RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方に基づいてその受信信号のRSCP及びISCPが算出されるため、W−CDMA方式の無線通信に利用可能な基地局装置を提供することができる。   According to this configuration, since the RSCP and ISCP of the received signal are calculated based on either the in-phase component or the quadrature component of the received signal after RAKE combining, the base usable for W-CDMA wireless communication A station apparatus can be provided.

本発明に係る基地局装置は、前記発明において、前記希望信号対干渉信号電力比算出手段によって算出された希望信号対干渉信号電力比をHARQ−ACKの復号に用いる、構成を採る。   The base station apparatus according to the present invention employs a configuration in which the desired signal-to-interference signal power ratio calculated by the desired signal-to-interference signal power ratio calculating unit is used for decoding HARQ-ACK in the above-described invention.

この構成によれば、前記発明による効果に加えて、本発明に係るSIR測定装置によって算出されたSIRがHARQ−ACKの復号に用いられるため、その復号性能を高めることができる。   According to this configuration, in addition to the effects of the present invention, the SIR calculated by the SIR measuring apparatus according to the present invention is used for decoding HARQ-ACK, so that the decoding performance can be improved.

本発明によれば、RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方に基づいてその受信信号のRSCP及びISCPが算出されるため、その同相成分と直交成分とが互いに干渉し合う場合でも、簡素な信号処理によってその受信信号のSIRを正確に測定することができる。従って、本発明によれば、W−CDMA方式の無線通信におけるHARQ−ACKのSIRを正確に測定することができる。   According to the present invention, since the RSCP and ISCP of the received signal are calculated based on either the in-phase component or the quadrature component of the received signal after RAKE combining, the in-phase component and the quadrature component interfere with each other. Even in this case, the SIR of the received signal can be accurately measured by simple signal processing. Therefore, according to the present invention, the SIR of HARQ-ACK in W-CDMA wireless communication can be accurately measured.

本発明の骨子は、RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方のみに基づいて、その受信信号のSIRを測定することである。   The gist of the present invention is to measure the SIR of the received signal based only on either the in-phase component or the quadrature component of the received signal after RAKE synthesis.

以下、本発明の一実施の形態について、適宜図を参照しつつ詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.

図1は、本実施の形態に係るSIR測定装置100の構成を示すブロック図である。SIR測定装置100は、通常は携帯電話等の移動体通信端末装置や基地局装置に代表される無線通信装置に組み込まれて使用される。また、本実施の形態では、SIR測定装置100にRAKE合成後の受信信号の直交成分(Qch成分)のみが入力されるものとする。   FIG. 1 is a block diagram showing a configuration of an SIR measuring apparatus 100 according to the present embodiment. The SIR measurement device 100 is normally used by being incorporated in a mobile communication terminal device such as a mobile phone or a wireless communication device represented by a base station device. In the present embodiment, it is assumed that only the quadrature component (Qch component) of the received signal after RAKE combining is input to SIR measurement apparatus 100.

SIR測定装置100は、既知パターン生成部101、平均シンボル算出部102、希望信号電力算出部103、干渉信号電力算出部104、干渉信号電力補正部105及びSIR算出部106を具備する。   The SIR measurement apparatus 100 includes a known pattern generation unit 101, an average symbol calculation unit 102, a desired signal power calculation unit 103, an interference signal power calculation unit 104, an interference signal power correction unit 105, and an SIR calculation unit 106.

既知パターン生成部101は、送信側無線通信装置と受信側無線通信装置との間で既知となっているデータパターンを生成し、生成された既知のデータパターンを平均シンボル算出部102に入力する。   The known pattern generation unit 101 generates a data pattern that is known between the transmission-side wireless communication device and the reception-side wireless communication device, and inputs the generated known data pattern to the average symbol calculation unit 102.

平均シンボル算出部102は、図示しない受信信号処理部から入力されてくるRAKE合成後の受信信号の直交成分について、そのN(Nは任意の整数)シンボル分を既知パターン生成部101から入力されてくる既知のデータパターンに乗算して象限を合わせ、その後に平均化することによって平均シンボルを生成する。また、平均シンボル算出部12は、生成した直交成分の平均シンボルを希望信号電力算出部103及び干渉信号電力算出部104に逐次入力する。   The average symbol calculation unit 102 receives, from the known pattern generation unit 101, N (N is an arbitrary integer) symbols of orthogonal components of the RAKE-combined reception signal input from a reception signal processing unit (not shown). An average symbol is generated by multiplying the known data pattern to match the quadrant and then averaging. The average symbol calculation unit 12 sequentially inputs the generated average symbol of orthogonal components to the desired signal power calculation unit 103 and the interference signal power calculation unit 104.

希望信号電力算出部103は、平均シンボル算出部102から入力されてくる直交成分の平均シンボルの電力を測定することによってRSCPを算出し、算出されたRSCPをSIR算出部106に入力する。   Desired signal power calculation section 103 calculates RSCP by measuring the average symbol power of orthogonal components input from average symbol calculation section 102, and inputs the calculated RSCP to SIR calculation section 106.

干渉信号電力算出部104は、図示しない受信信号処理部から入力されてくるRAKE合成後の受信信号の直交成分と、平均シンボル算出部102から入力されてくる直交成分の平均シンボルと、に基づいて、直交成分の既知のデータパターンの分散値即ちISCP´を算出し、算出されたISCP´を干渉信号電力補正部105に入力する。   Interference signal power calculation section 104 is based on the orthogonal component of the received signal after RAKE synthesis input from a reception signal processing section (not shown) and the average symbol of the orthogonal component input from average symbol calculation section 102. The dispersion value of the known data pattern of the orthogonal component, that is, ISCP ′ is calculated, and the calculated ISCP ′ is input to the interference signal power correcting unit 105.

干渉信号電力補正部105は、干渉信号電力算出部104から入力されてくるISCP´を2倍に補正し、補正後のISCPをSIR算出部106に入力する。   Interference signal power correction section 105 corrects ISCP ′ input from interference signal power calculation section 104 by a factor of 2, and inputs the corrected ISCP to SIR calculation section 106.

SIR算出部106は、希望信号電力算出部103から入力されてくるRSCPを干渉信号電力補正部105から入力されてくるISCPで除することによってRAKE合成後の受信信号のSIRを算出する。そして、SIR算出部106は、算出したSIRを図示しないHARQ−ACKの復号処理を行う構成部等に入力する。   The SIR calculation unit 106 calculates the SIR of the received signal after RAKE combining by dividing the RSCP input from the desired signal power calculation unit 103 by the ISCP input from the interference signal power correction unit 105. Then, the SIR calculation unit 106 inputs the calculated SIR to a component that performs HARQ-ACK decoding processing (not shown).

さらに、この図示しないHARQ−ACKの復号処理を行う構成部では、SIR算出部106から入力されてくるSIRを用いて、そのHARQ−ACKがACKであるのかNACKであるのかDTX(信号なし)であるのかが判定される。例えば、SIR算出部106から入力されてくるSIRと既定の閾値との大小を比較することによって、そのHARQ−ACKがDTX(信号なし)であるか否かの判定精度を高めることができる。   Further, the constituent unit that performs the HARQ-ACK decoding process (not shown) uses the SIR input from the SIR calculation unit 106 to determine whether the HARQ-ACK is ACK or NACK by DTX (no signal). It is determined whether there is any. For example, by comparing the size of the SIR input from the SIR calculation unit 106 with a predetermined threshold value, it is possible to improve the determination accuracy of whether or not the HARQ-ACK is DTX (no signal).

次いで、SIR測定装置100における受信信号のSIRの算出手順について、より具体的に説明する。RAKE合成では受信信号の同期検波が必然的に行われるため、RAKE合成後の受信信号には、フェージング等に由来する位相回転が同期検波によって補正されて殆ど残存しない。従って、RAKE合成後の受信信号に基づいてそのSIRを測定する場合には、希望信号の大部分が直交成分上に存在すると仮定することができる。そして、このように仮定した場合には、rscp.i=0となることから、式(3)より、RSCPは下記式(8)によって求められる。なお、RAKE合成後の受信信号のrscp.qは平均シンボル算出部102において算出され、そのRSCPは希望信号電力算出部103において算出されることになる。   Next, the procedure for calculating the SIR of the received signal in the SIR measuring apparatus 100 will be described more specifically. In RAKE synthesis, synchronous detection of the received signal is inevitably performed. Therefore, in the received signal after RAKE synthesis, phase rotation derived from fading or the like is corrected by synchronous detection and hardly remains. Therefore, when measuring the SIR based on the received signal after RAKE combining, it can be assumed that most of the desired signal exists on the orthogonal component. If this assumption is made, rscp. Since i = 0, RSCP is obtained by the following equation (8) from equation (3). Note that the rscp. q is calculated by the average symbol calculation unit 102, and its RSCP is calculated by the desired signal power calculation unit 103.

RSCP=rscp.q ・・・(8) RSCP = rscp. q 2 (8)

一方で、RAKE合成後の受信信号であっても雑音等の干渉信号は同相成分上にも直交成分上にも一様に分布すると仮定できるため、下記式(9)が成り立つことになる。   On the other hand, even if it is a received signal after RAKE combining, it can be assumed that interference signals such as noise are uniformly distributed on both the in-phase component and the quadrature component, and therefore the following equation (9) holds.

Figure 2005175810
Figure 2005175810

そこで、式(9)を式(6)に当てはめて、先ず干渉信号電力算出部104において下記式(10)によってISCP´を算出し、続いて干渉信号電力補正部105において下記式(11)によってISCP´を2倍に補正することでISCPを算出することができる。   Therefore, the equation (9) is applied to the equation (6). First, the interference signal power calculation unit 104 calculates ISCP ′ by the following equation (10), and then the interference signal power correction unit 105 calculates the following equation (11). The ISCP can be calculated by correcting ISCP ′ by a factor of two.

Figure 2005175810
ISCP=ISCP´×2 ・・・(11)
Figure 2005175810
ISCP = ISCP ′ × 2 (11)

そして、SIR算出部106において、式(8)によって算出されたRSCPを式(11)によって算出されたISCPで除することにより、RAKE合成後の受信信号の直交成分のみに基づいてそのSIRを算出することができる。   Then, the SIR calculation unit 106 calculates the SIR based only on the orthogonal component of the received signal after RAKE combining by dividing the RSCP calculated by the equation (8) by the ISCP calculated by the equation (11). can do.

図2、図3及び図4に、本実施の形態に係るSIR測定装置100と従来の技術に係るSIR測定装置10とを用いてHARQ−ACK(直交するDPDCHが干渉信号となっている)についてのRSCP、ISCP及びSIRをシミュレーションで算出した結果と、従来の技術に係るSIR測定装置10を用いてパイロット信号(直交する同相成分が干渉信号となっていない)についてのRSCP、ISCP及びSIRをシミュレーションで算出した結果と、をそれぞれ示す。図2、図3及び図4において、「△」は本実施の形態に係るSIR測定装置100を用いたHARQ−ACKについてのシミュレーション結果を、「□」は従来の技術に係るSIR測定装置10を用いたパイロット信号についてのシミュレーション結果を、「×」は従来の技術に係るSIR測定装置10を用いたHARQ−ACKについてのシミュレーション結果を、それぞれ示す。なお、図2、図3及び図4において、それらの横軸には入力信号即ちHARQ−ACK又はパイロット信号のSIR〔dB〕を採り、またそれらの縦軸には各シミュレーション結果である測定SIR〔dB〕を採る。   2, 3, and 4, HARQ-ACK (orthogonal DPDCH is an interference signal) using the SIR measurement apparatus 100 according to the present embodiment and the SIR measurement apparatus 10 according to the related art. Simulation of RSCP, ISCP, and SIR of RSCP, ISCP, and SIR for pilot signal (in-phase component that is orthogonal is not an interference signal) using SIR measurement apparatus 10 according to the prior art And the results calculated in. 2, 3, and 4, “Δ” indicates a simulation result of HARQ-ACK using the SIR measuring apparatus 100 according to the present embodiment, and “□” indicates the SIR measuring apparatus 10 according to the related art. A simulation result for the used pilot signal and “x” indicate a simulation result for HARQ-ACK using the SIR measuring apparatus 10 according to the related art. 2, 3, and 4, the horizontal axis thereof represents the SIR [dB] of the input signal, that is, the HARQ-ACK or the pilot signal, and the vertical axis thereof represents the measurement SIR [ dB].

図2より明らかなように、本実施の形態に係るSIR測定装置100によれば、直交するDPDCHが干渉信号となっているHARQ−ACKについてのSIR測定において、ほぼ期待値通りのSIRを算出できることが判る。また図2より、本実施の形態に係るSIR測定装置100によれば、従来の技術に係るSIR測定装置10よりも正確にHARQ−ACKのSIRを測定できることが判る。   As can be seen from FIG. 2, the SIR measurement apparatus 100 according to the present embodiment can calculate SIR almost as expected in SIR measurement for HARQ-ACK in which orthogonal DPDCH is an interference signal. I understand. 2 that the SIR measuring apparatus 100 according to the present embodiment can measure the HAIR-ACK SIR more accurately than the SIR measuring apparatus 10 according to the prior art.

従って、本実施の形態に係るSIR測定装置100によれば、RAKE合成後の受信信号の直交成分のみを用いてそのRSCP及びISCPが算出されるため、その直交成分に簡素な信号処理を施すだけでその受信信号のSIRを正確に測定することができる。   Therefore, according to SIR measuring apparatus 100 according to the present embodiment, the RSCP and ISCP are calculated using only the orthogonal components of the received signal after RAKE combining, and therefore simple signal processing is only performed on the orthogonal components. Thus, the SIR of the received signal can be accurately measured.

また、SIR測定装置100によれば、干渉信号電力算出部104において式(10)によりISCP´が算出され、算出されたISCP´が干渉信号電力補正部105で2倍に補正されるだけで正確なISCPが算出されるため、RAKE合成後の受信信号の直交成分に簡素な信号処理を施すだけでそのSIRの正確性を一層高めることができる。   Further, according to the SIR measuring apparatus 100, the ISCP ′ is calculated by the interference signal power calculation unit 104 by the equation (10), and the calculated ISCP ′ is accurately corrected only by being doubled by the interference signal power correction unit 105. Since the correct ISCP is calculated, the accuracy of the SIR can be further improved by simply performing simple signal processing on the orthogonal component of the received signal after RAKE combining.

また、SIR測定装置100を具備する基地局装置等の無線通信装置によれば、SIR測定装置100における受信信号の信号処理が簡素であるため、その応答速度と消費電力とを改善することができる。   In addition, according to a wireless communication device such as a base station device provided with the SIR measurement device 100, since the signal processing of the received signal in the SIR measurement device 100 is simple, the response speed and power consumption can be improved. .

また、SIR測定装置100を具備する基地局装置によれば、RAKE合成後の受信信号の直交成分に基づいてそのRSCP及びISCPが算出されるため、W−CDMA方式の無線通信に利用することができる。   Further, according to the base station apparatus provided with the SIR measuring apparatus 100, the RSCP and ISCP are calculated based on the orthogonal components of the received signal after RAKE combining, so that it can be used for W-CDMA wireless communication. it can.

また、SIR測定装置100を具備する基地局装置によれば、SIR測定装置100によって算出されたSIRがHARQ−ACKの復号に用いられるため、その復号性能を高めることができる。   Moreover, according to the base station apparatus provided with the SIR measuring apparatus 100, since the SIR calculated by the SIR measuring apparatus 100 is used for decoding HARQ-ACK, the decoding performance can be improved.

なお、本実施の形態に係るSIR測定装置100やこれを具備する無線通信装置について、次のように応用したり、変形したりしてもよい。   Note that the SIR measuring apparatus 100 according to the present embodiment and the wireless communication apparatus including the SIR measuring apparatus 100 may be applied or modified as follows.

本実施の形態では、無線通信装置がSIR測定装置100を一つ具備し、SIR測定装置100にRAKE合成後の受信信号の直交成分のみが入力される場合について説明したが、本発明はこの場合に限定されるものではなく、例えば無線通信装置がSIR測定装置100を二つ具備し、各SIR測定装置100がRAKE合成後の受信信号の同相成分と直交成分とについて、それぞれ個別にSIRを測定するようにしてもよい。また、例えば、無線通信装置がSIR測定装置100を一つ具備し、このSIR測定装置100がRAKE合成後の受信信号の同相成分と直交成分とについて、時分割で交互にSIRを測定するようにしてもよい。   In the present embodiment, the case where the wireless communication apparatus includes one SIR measurement apparatus 100 and only the orthogonal component of the received signal after RAKE combining is input to the SIR measurement apparatus 100 has been described. For example, the wireless communication device includes two SIR measuring devices 100, and each SIR measuring device 100 individually measures the SIR for the in-phase component and the quadrature component of the received signal after RAKE combining. You may make it do. In addition, for example, the wireless communication apparatus includes one SIR measuring apparatus 100, and the SIR measuring apparatus 100 alternately measures SIR in time division with respect to the in-phase component and the quadrature component of the received signal after RAKE combining. May be.

また、本実施の形態では、干渉信号電力補正部105が干渉信号電力算出部104から入力されてくるISCP´を2倍に補正する場合について説明したが、本発明はこの場合に限定されるものではなく、例えばSIR測定装置100から干渉信号電力補正部105を取り除いて、SIR算出部106の下流に配置される構成部がSIR算出部106から出力されてくるSIRの半値を正確なSIRとして使用するようにしてもよい。   In the present embodiment, the case where interference signal power correction section 105 corrects ISCP ′ input from interference signal power calculation section 104 by a factor of two has been described, but the present invention is limited to this case. Instead, for example, the interference signal power correcting unit 105 is removed from the SIR measuring apparatus 100, and a component arranged downstream of the SIR calculating unit 106 uses the half value of the SIR output from the SIR calculating unit 106 as an accurate SIR. You may make it do.

本発明に係る希望信号対干渉信号電力比測定装置、無線通信装置及び基地局装置は、受信信号の同相成分と直交成分とが互いに干渉し合う場合でも、簡素な信号処理によってそのSIRを正確に測定することができるという効果を有し、無線通信システム特にW−CDMA方式による無線通信システム等にとって有用である。   The desired signal-to-interference signal power ratio measuring apparatus, radio communication apparatus, and base station apparatus according to the present invention can accurately calculate the SIR through simple signal processing even when the in-phase component and the quadrature component of the received signal interfere with each other. It has the effect that it can be measured, and is useful for a wireless communication system, particularly a wireless communication system using the W-CDMA system.

本発明に係るSIR測定装置の構成を示すブロック図The block diagram which shows the structure of the SIR measuring apparatus based on this invention 本発明に係るSIR測定装置によるSIR測定のシミュレーション結果を示す図The figure which shows the simulation result of the SIR measurement by the SIR measuring apparatus which concerns on this invention 本発明に係るSIR測定装置によるSIR測定のシミュレーション結果を示す図The figure which shows the simulation result of the SIR measurement by the SIR measuring apparatus which concerns on this invention 本発明に係るSIR測定装置によるSIR測定のシミュレーション結果を示す図The figure which shows the simulation result of the SIR measurement by the SIR measuring apparatus which concerns on this invention 従来の技術に係るSIR測定装置の構成を示すブロック図The block diagram which shows the structure of the SIR measuring apparatus based on a prior art

符号の説明Explanation of symbols

100 希望信号対干渉信号電力比(SIR)測定装置
101 既知パターン生成部
102 平均シンボル算出部
103 希望信号電力算出部
104 干渉信号電力算出部
105 干渉信号電力補正部
106 SIR算出部
DESCRIPTION OF SYMBOLS 100 Desired signal to interference signal power ratio (SIR) measurement apparatus 101 Known pattern generation part 102 Average symbol calculation part 103 Desired signal power calculation part 104 Interference signal power calculation part 105 Interference signal power correction part 106 SIR calculation part

Claims (5)

RAKE合成後の受信信号の同相成分又は直交成分のいずれか一方に基づいて前記受信信号に含まれる希望信号の電力を算出する希望信号電力算出手段と、
RAKE合成後の前記受信信号の前記同相成分又は前記直交成分のいずれか一方に基づいて前記受信信号に含まれる干渉信号の電力を算出する干渉信号電力算出手段と、
算出された前記希望信号電力を分子とし算出された前記干渉信号電力を分母とする比を算出する希望信号対干渉信号電力比算出手段と、を具備することを特徴とする希望信号対干渉信号電力比測定装置。
Desired signal power calculating means for calculating the power of the desired signal included in the received signal based on either the in-phase component or the quadrature component of the received signal after RAKE combining;
Interference signal power calculating means for calculating power of an interference signal included in the received signal based on either the in-phase component or the quadrature component of the received signal after RAKE combining;
Desired signal-to-interference signal power ratio calculating means for calculating a ratio using the calculated desired signal power as a numerator and the calculated interference signal power as a denominator. Ratio measuring device.
前記干渉信号電力算出手段は、RAKE合成後の前記受信信号の前記同相成分又は前記直交成分のいずれか一方に基づいて、前記受信信号に含まれる前記干渉信号の電力の分散値を2倍に補正することにより、前記干渉信号電力を算出する、ことを特徴とする請求項1記載の希望信号対干渉信号電力比測定装置。   The interference signal power calculation unit corrects the dispersion value of the power of the interference signal included in the reception signal by a factor of two based on either the in-phase component or the quadrature component of the reception signal after RAKE combining. The desired signal-to-interference signal power ratio measuring apparatus according to claim 1, wherein the interference signal power is calculated by: 請求項1記載の希望信号対干渉信号電力比測定装置を具備することを特徴とする無線通信装置。   A wireless communication apparatus comprising the desired signal to interference signal power ratio measuring apparatus according to claim 1. 請求項3記載の無線通信装置である基地局装置であって、
前記希望信号電力算出手段は、RAKE合成後のHS−DPCCHの前記受信信号に含まれる前記希望信号の電力を算出し、
前記干渉信号電力算出手段は、RAKE合成後のHS−DPCCHの前記受信信号に含まれる前記干渉信号の電力を算出する、ことを特徴とする基地局装置。
A base station apparatus that is a wireless communication apparatus according to claim 3,
The desired signal power calculating means calculates the power of the desired signal included in the received signal of HS-DPCCH after RAKE combining,
The base station apparatus, wherein the interference signal power calculation means calculates the power of the interference signal included in the received signal of HS-DPCCH after RAKE combining.
前記希望信号対干渉信号電力比算出手段によって算出された希望信号対干渉信号電力比をHARQ−ACKの復号に用いる、ことを特徴とする請求項4記載の基地局装置。   5. The base station apparatus according to claim 4, wherein the desired signal-to-interference signal power ratio calculated by the desired signal-to-interference signal power ratio calculating unit is used for HARQ-ACK decoding.
JP2003412262A 2003-12-10 2003-12-10 Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device Pending JP2005175810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003412262A JP2005175810A (en) 2003-12-10 2003-12-10 Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003412262A JP2005175810A (en) 2003-12-10 2003-12-10 Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device

Publications (1)

Publication Number Publication Date
JP2005175810A true JP2005175810A (en) 2005-06-30

Family

ID=34732759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412262A Pending JP2005175810A (en) 2003-12-10 2003-12-10 Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device

Country Status (1)

Country Link
JP (1) JP2005175810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013669A1 (en) * 2005-07-26 2007-02-01 Nec Corporation Method of measuring channel quality in closed loop transmit diversity communication system
EP2275464A1 (en) 2005-06-15 2011-01-19 Nippon Soda Co., Ltd. Method for producing a polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275464A1 (en) 2005-06-15 2011-01-19 Nippon Soda Co., Ltd. Method for producing a polymer
WO2007013669A1 (en) * 2005-07-26 2007-02-01 Nec Corporation Method of measuring channel quality in closed loop transmit diversity communication system
JP2009503913A (en) * 2005-07-26 2009-01-29 日本電気株式会社 Channel quality measurement method in closed loop transmit diversity communication system
US8054905B2 (en) 2005-07-26 2011-11-08 Nec Corporation Method of measuring transmit quality in a closed loop diversity communication system
JP4873190B2 (en) * 2005-07-26 2012-02-08 日本電気株式会社 Channel quality measurement method in closed loop transmit diversity communication system
CN101233698B (en) * 2005-07-26 2012-10-03 日本电气株式会社 Method of measuring channel quality in closed loop transmit diversity communication system

Similar Documents

Publication Publication Date Title
JP3202658B2 (en) Variable rate CDMA transmission power control method
JP4146235B2 (en) Method and apparatus for determining a closed loop power control set point for a forward link in a wireless packet data communication system
CA2380005A1 (en) Method and apparatus for determining the closed loop power control set point in a wireless packet data communication system
US8605771B2 (en) Data to pilot ratio estimation
JP4870687B2 (en) Interference estimation in the presence of frequency error
EP1542358A1 (en) AGC system, AGC method, and receiver using the AGC system
US20090274197A1 (en) Method and apparatus for compensating for phase noise of symbols spread with a long spreading code
JP2005175810A (en) Device for measuring desired signal versus interference signal power ratio, radio communication device, and base station device
JP2006033102A (en) Mobile communication system, transmission power control method in mobile communication system, and mobile station
JP3910959B2 (en) Communication apparatus and outer loop power control method
KR20050119650A (en) Dual loop signal quality based link adaptation
JP4084058B2 (en) Receive level measurement circuit
JP2005303670A (en) Portable communications terminal device and transmission power control method
JP2004056540A (en) Device and method for received field strength measurement, and portable communication terminal device
JP2005167710A (en) Device for measuring power and measuring method
JP4789077B2 (en) How to determine signal quality parameters
EP2367384B1 (en) Mobile terminal and power control method taking into account communication environment for threshold adjustment
WO2000042712A1 (en) Receiver and method of reception
JP4779523B2 (en) Received electric field strength detection circuit and method, and receiver using the same
JP3602509B2 (en) Demodulation device and demodulation method
JP2007189672A (en) Channel estimation apparatus
JP2005328355A (en) Communication equipment
JP2006080585A (en) Reception level measurement circuit
KR20010066567A (en) Forward power control device for digital communication system
AU2002248273A1 (en) Method and apparatus for determining the forward link closed loop power control set point in a wireless packet data communication system