JP2005175234A - Imaging device and optical apparatus - Google Patents

Imaging device and optical apparatus Download PDF

Info

Publication number
JP2005175234A
JP2005175234A JP2003414030A JP2003414030A JP2005175234A JP 2005175234 A JP2005175234 A JP 2005175234A JP 2003414030 A JP2003414030 A JP 2003414030A JP 2003414030 A JP2003414030 A JP 2003414030A JP 2005175234 A JP2005175234 A JP 2005175234A
Authority
JP
Japan
Prior art keywords
refractive index
photographing lens
optical axis
lens
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414030A
Other languages
Japanese (ja)
Inventor
Hideki Dobashi
英記 土橋
Akihiko Nagano
明彦 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003414030A priority Critical patent/JP2005175234A/en
Priority to US11/009,294 priority patent/US7060961B2/en
Publication of JP2005175234A publication Critical patent/JP2005175234A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device in which the utilization efficiency of incident light is raised even when the pupil position of a photographing lens is changed large, and to provide an optical apparatus. <P>SOLUTION: The imaging device includes a high refractive index part (5) covering at least part of a plurality of photoelectric converters 3 arranged in one-dimensional or two-dimensional manner, and a low refractive index part (7) provided on the periphery of the high refractive index part (5). The interface between the high refractive index part (5) and the low refractive index pard (7) has a surface substantially parallel to the optical axis of the photographing lens and an oblique surface having an angle different from the parallel surface. The oblique surface is provided at the side near the optical axis of the photographing lens at the incident side when the light beam from the photographing lens is transmitted. The optical apparatus with the photographing lens and the imaging device is provided in which the pupil distance from the imaging device is 10 mm or less, and a micro optical apparatus can incorporate the light beam without waste even if the pupil position of the photographing lens is changed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は被写体像を撮像する為の撮像素子の内部構造及び該撮像素子を備える光学機器に関するものである。   The present invention relates to an internal structure of an image sensor for capturing a subject image and an optical apparatus including the image sensor.

撮像素子に入射した光線の取り込み効率を向上させるために特許文献1に記載されているような構造を採用するものが提案されている。特許文献1に記載の構造は、図7に示すように、撮像素子表面に第1のマイクロレンズ21および第2のマイクロレンズ2を備えたものであり、撮影レンズの光軸近傍にある画素と離れた所に存在する画素(チップの周辺部)について記載されている。第1のマイクロレンズ21は、カラーフィルタ膜11の上に設けられた第1レンズ成型膜12を加工して上部を凸レンズ形状にした層内レンズであり、また、第2のマイクロレンズ2は第2レンズ成型膜13を加工してレンズ形状にしたものである。第2のマイクロレンズ2で集光された入射光線Lは第1のマイクロレンズ21(層内レンズ)に入射し、さらに集光作用を受けて光電変換部3へと導かれる。その際、画素がチップの周辺部1aに向うに従って第1、第2のマイクロレンズをそれぞれt1、t2だけ中心方向にずらすことによって周辺においても光線の取り込み効率を落とさないように工夫されている。   In order to improve the efficiency of capturing light rays incident on the image sensor, there has been proposed one employing a structure as described in Patent Document 1. As shown in FIG. 7, the structure described in Patent Document 1 includes a first microlens 21 and a second microlens 2 on the surface of an image sensor, and includes a pixel in the vicinity of the optical axis of a photographing lens. A pixel (peripheral part of the chip) existing at a distant place is described. The first microlens 21 is an in-layer lens in which the first lens molding film 12 provided on the color filter film 11 is processed to form a convex lens in the upper part, and the second microlens 2 is the first microlens 2. The two-lens molding film 13 is processed into a lens shape. The incident light L collected by the second microlens 2 enters the first microlens 21 (intralayer lens), and further receives a condensing action and is guided to the photoelectric conversion unit 3. At that time, the first and second microlenses are shifted in the center direction by t1 and t2 as the pixels face the peripheral portion 1a of the chip, respectively, so that the efficiency of capturing light rays is not lowered at the periphery.

また、撮像素子に入射した光線を効率良く光電変換部に導くための構造が特許文献2に記載されている。特許文献2に記載の形態に基づいた構造を図8に示す。15は樹脂からなるキャップ層で1.6程度の屈折率を持つ材質で形成される。14は低屈折率層であり、キャップ層15よりも低屈折率の樹脂や空気や窒素等の不活性ガスが充填された中空に形成されている。その上に平坦化層16を設けて表面を平坦にした後、マイクロレンズ2を形成するというものである。キャップ層15から低屈折率層14に向かう光線は臨界角を超えると界面で全反射するということを利用して斜入射光42を全反射させて光電変換部3に導こうというものである。
特開平10−229180号公報 特開平06−224398号公報
Patent Document 2 describes a structure for efficiently guiding light incident on an image sensor to a photoelectric conversion unit. The structure based on the form described in Patent Document 2 is shown in FIG. Reference numeral 15 denotes a cap layer made of resin, which is formed of a material having a refractive index of about 1.6. Reference numeral 14 denotes a low refractive index layer, which is formed in a hollow filled with a resin having a lower refractive index than the cap layer 15 and an inert gas such as air or nitrogen. The microlens 2 is formed after the surface is flattened by providing the flattening layer 16 thereon. The light beam traveling from the cap layer 15 toward the low refractive index layer 14 is totally reflected at the interface when exceeding the critical angle, so that the oblique incident light 42 is totally reflected and led to the photoelectric conversion unit 3.
JP-A-10-229180 Japanese Patent Laid-Open No. 06-224398

しかし、上記従来例には図9〜図12に示すような次の問題点が存在する。図9は、撮像素子201に焦点距離が可変の撮影レンズ群202を取り付けた状態を示し、(a)は広角側の状態で(b)は望遠側の状態を示してしる。ここで撮像素子201は従来よく用いられる撮像素子表面にマイクロレンズを備えたもので層内レンズは存在しないものとして話を進めていくことにする。撮影レンズ群202が広角位置から望遠位置に変化すると撮影レンズ群202の瞳位置はT1からT2に変化する。撮像素子201から見るとレンズを通って撮像素子201に入射する光線はすべて瞳位置から発せられたものとみなすことができる。レンズの瞳から出た光線が撮像素子に到達する関係を模式的に示したものが図10となる。撮影レンズ群202を通して被写体像を取り込む撮像領域101の下方に位置する画素において広角側の瞳位置から入射した光線が光電変換部3に到達すると図11に示すような像17となる。図11は1画素を上方から見た図で撮影レンズの光軸中心は図の右斜め上方に位置する。この時、撮像素子上に設けられたマイクロレンズは、撮影レンズの光軸方向に若干ずらして配置することによって瞳の像がシリコンウェハ1に設けられた光電変換部3上に生じるようにしている。光電変換部3に生じた電荷をスイッチングするためのPoly-Si配線層8はある程度の光線は透過するが吸収されるものも多いため基本的にはPoly-Si配線層8は避けたところに瞳の像17を形成するようにしている。   However, the conventional example has the following problems as shown in FIGS. FIG. 9 shows a state where a photographing lens group 202 with a variable focal length is attached to the image sensor 201, where (a) shows a wide-angle state and (b) shows a telephoto state. Here, it is assumed that the image sensor 201 is provided with a microlens on the surface of an image sensor that is often used in the past, and that there is no in-layer lens. When the photographic lens group 202 changes from the wide-angle position to the telephoto position, the pupil position of the photographic lens group 202 changes from T1 to T2. When viewed from the image sensor 201, all light rays that enter the image sensor 201 through the lens can be regarded as being emitted from the pupil position. FIG. 10 schematically shows a relationship in which the light beam emitted from the pupil of the lens reaches the image sensor. When a light beam incident from the wide-angle pupil position reaches a photoelectric conversion unit 3 in a pixel located below the imaging region 101 that captures the subject image through the photographing lens group 202, an image 17 as shown in FIG. FIG. 11 is a view of one pixel as viewed from above, and the center of the optical axis of the photographing lens is located obliquely upward to the right of the drawing. At this time, the microlens provided on the imaging element is arranged slightly shifted in the optical axis direction of the photographing lens so that an image of a pupil is generated on the photoelectric conversion unit 3 provided on the silicon wafer 1. . The Poly-Si wiring layer 8 for switching the electric charge generated in the photoelectric conversion unit 3 transmits a certain amount of light but absorbs many rays. Therefore, the pupil is basically avoided where the Poly-Si wiring layer 8 is avoided. The image 17 is formed.

したがって、望遠側にズームを行うとその像17は画素の対角方向に移動して図12のようになる。図10の下方に位置する画素において瞳の中心から出射しマイクロレンズの中心軸近傍を通る光線(主光線)がレンズ光軸となす角度を広角側θ1、望遠側θ2とすると、入射角度差θ=θ1−θ2は一般的に撮影レンズのズーム比が大きくなるに従って大きくなる傾向にある。また、撮影レンズの瞳径はレンズの明るさ(Fナンバー)によって決定し、レンズが明るくなる程大きくなる。これらのことからズーム比を大きくすると光電変換部3に生じる瞳の像の位置が広角側と望遠側で大きく離れてしまい(入射角度差が大きくなる)、ズーム途中で光電変換部からはみ出てしまったりAL配線層9によってケラレてしまったりしてしまう。またレンズが明るくなると光電変換部により大きな像が生じることになることからさらに光電変換部3に当たる光線が少なくなってしまうことがある。そうすると画素内に入った光線を光電変換部に取り込む効率が極端に低下してしまう問題点を有する。   Therefore, when zooming to the telephoto side, the image 17 moves in the diagonal direction of the pixel as shown in FIG. In the pixel located in the lower part of FIG. 10, assuming that the angle formed by the light beam (chief ray) emitted from the center of the pupil and passing near the central axis of the microlens is the lens optical axis is the wide angle side θ1 and the telephoto side θ2, the incident angle difference θ = Θ1-θ2 generally tends to increase as the zoom ratio of the taking lens increases. The pupil diameter of the taking lens is determined by the brightness (F number) of the lens, and increases as the lens becomes brighter. For these reasons, when the zoom ratio is increased, the position of the pupil image generated in the photoelectric conversion unit 3 is greatly separated from the wide angle side and the telephoto side (incident angle difference is increased), and it protrudes from the photoelectric conversion unit during zooming. The AL wiring layer 9 may cause vignetting. In addition, when the lens becomes bright, a large image is generated in the photoelectric conversion unit, so that the light rays that hit the photoelectric conversion unit 3 may be further reduced. If it does so, it has the problem that the efficiency which takes in the light ray which entered in the pixel to a photoelectric conversion part falls extremely.

もし、瞳位置が変化しない、すなわちレンズの焦点距離が固定(単焦点レンズ)でかつレンズが交換できないような光学機器の場合であれば、そのレンズに特化した量だけマイクロレンズをずらして瞳像中心をほぼ光電変換部の中心になるようにすれば良いが、ズームレンズや交換式のレンズシステムといった瞳位置が変化する光学機器の場合は前記のような理由からマイクロレンズ2をずらすことだけでは十分対応できない。これは、図7に示すような層内レンズ(第1のマイクロレンズ21)を持った構造であっても同様に起こるものである。この場合はマイクロレンズ2で集光した光線のうち層内レンズに入射しなかったり、入射しても光電変換部に導かれなかったりしてその分が損失となる問題点を有している。   If the pupil position does not change, that is, in the case of an optical device in which the focal length of the lens is fixed (single focal length lens) and the lens cannot be replaced, the pupil is shifted by a micro lens amount that is specific to the lens. The center of the image may be approximately the center of the photoelectric conversion unit. However, in the case of an optical apparatus in which the pupil position changes, such as a zoom lens or an interchangeable lens system, only the micro lens 2 is shifted for the reasons described above. Is not enough. This occurs similarly even in a structure having an intralayer lens (first microlens 21) as shown in FIG. In this case, there is a problem that the light beam collected by the microlens 2 does not enter the in-layer lens or is not guided to the photoelectric conversion unit even if it is incident, resulting in a loss.

また図8のような構造の場合、高屈折率のキャップ層15の入射側が小さなRの円弧状となっているため斜入射の角度が強くなると円弧部に当たる光線が全反射せずに抜けてしまって別の画素に入ってしまうなどの問題を生じることになる。   In the case of the structure as shown in FIG. 8, the incident side of the cap layer 15 having a high refractive index has a small R-arc shape. Therefore, when the angle of oblique incidence is increased, the light beam hitting the arc portion is not totally reflected and escapes. This causes problems such as entering another pixel.

本発明は、このような従来の問題点に着眼してなされたもので、その目的は、撮影レンズの瞳位置が大きく変動する場合においても入射光の利用効率を高めた撮像素子及び光学機器を提供することを課題とする   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an imaging device and an optical apparatus that improve the use efficiency of incident light even when the pupil position of the photographing lens varies greatly. The challenge is to provide

上記課題を解決するために、請求項1に記載の撮像素子は、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備えることで、撮影レンズの瞳位置が変動しても無駄なく光線を取り込むことができるというものである。   In order to solve the above-described problem, the imaging device according to claim 1 includes a high refractive index portion that covers at least a part of a plurality of photoelectric conversion units arranged one-dimensionally or two-dimensionally, and the high refractive index portion. And an interface between the high refractive index portion and the low refractive index portion at an angle different from a plane substantially parallel to the optical axis of the photographing lens and the substantially parallel surface. The tilted surface is provided on the incident side when light rays from the photographic lens are transmitted and on the surface close to the optical axis of the photographic lens, so that the pupil position of the photographic lens varies. However, it is possible to capture light rays without waste.

また、請求項2は、請求項1記載の撮像素子において、傾斜面の角度は撮影レンズ光軸からの距離によらずどの画素も略同一に構成することによって、簡単に所望の構造が形成できるというものである。   According to a second aspect of the present invention, in the image pickup device according to the first aspect, a desired structure can be easily formed by configuring the pixels so that the angle of the inclined surface is substantially the same regardless of the distance from the optical axis of the photographing lens. That's it.

また、請求項3は、請求項1又は2記載の撮像素子において、外部からの光線を集光するための光電変換部に対応する複数のマイクロレンズを備え、マイクロレンズの中心軸は、撮影レンズの光軸より離れるに従って光電変換部の中心軸に対して撮影レンズの光軸側に異なる量ずつずらして配置することで、高屈折率部の構造を場所によって変更することなく容易に製造することができるというものである。   According to a third aspect of the present invention, in the imaging device according to the first or second aspect, the microlens includes a plurality of microlenses corresponding to a photoelectric conversion unit for condensing light rays from the outside, and the central axis of the microlens is a photographing lens. The structure of the high-refractive-index part can be easily manufactured without changing depending on the location by disposing it by different amounts on the optical axis side of the photographic lens with respect to the central axis of the photoelectric conversion part as it moves away from the optical axis It can be done.

また、請求項4に記載の光学機器は、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備える撮像素子と、この撮像素子からの瞳距離が10mm以下の撮影レンズとを具備することにより、超小型の光学機器を実現できるというものである。   The optical device according to claim 4 is a low refractive index portion provided around a high refractive index portion that covers at least a part of a plurality of photoelectric conversion portions arranged one-dimensionally or two-dimensionally, and a low refractive index portion provided around the high refractive index portion. A refractive index portion, and an interface between the high refractive index portion and the low refractive index portion includes a surface substantially parallel to the optical axis of the photographing lens and an inclined surface having an angle different from the substantially parallel surface. An imaging element provided on the incident side when a light beam from the photographic lens is transmitted and near the optical axis of the photographic lens, and a photographic lens having a pupil distance from the imaging element of 10 mm or less. It is possible to realize an ultra-compact optical device.

さらには、請求項5に記載の光学機器は、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備える撮像素子と、最長焦点距離での瞳距離と最短焦点距離での瞳距離との比が2以上である焦点距離が可変の撮影レンズとを具備することにより、焦点距離が可変の超小型の光学機器を実現できるというものである。   Furthermore, the optical apparatus according to claim 5 is provided in a periphery of the high refractive index portion and a high refractive index portion that covers at least a part of the plurality of photoelectric conversion units arranged one-dimensionally or two-dimensionally. A low-refractive-index part, and an interface between the high-refractive-index part and the low-refractive-index part is a plane substantially parallel to the optical axis of the photographic lens, and an inclined surface having an angle different from the substantially parallel plane. The inclined surface has an imaging element provided on the incident side when light rays from the photographic lens are transmitted and on the surface close to the optical axis of the photographic lens, and a pupil distance and a shortest focal distance at the longest focal length. By providing a photographic lens with a variable focal length that is 2 or more in terms of the pupil distance, an ultra-compact optical device with a variable focal length can be realized.

本発明によれば、請求項1に記載の撮像素子は、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備えることで、撮影レンズの瞳位置の変動に強く高倍率のズームレンズや交換レンズなどでも効率よく光線を取り込むことができるようになった。   According to the present invention, the imaging device according to claim 1 includes a high refractive index portion covering at least a part of a plurality of photoelectric conversion units arranged one-dimensionally or two-dimensionally, and a periphery of the high refractive index portion. The interface between the high refractive index portion and the low refractive index portion has an angle different from the plane substantially parallel to the optical axis of the photographing lens and the plane parallel to the optical axis of the photographing lens. An inclined surface, and the inclined surface is provided on the incident side when the light beam from the photographing lens is transmitted and close to the optical axis of the photographing lens, so that it is highly resistant to fluctuations in the pupil position of the photographing lens. It has become possible to capture light efficiently even with a zoom lens or interchangeable lens with a magnification.

また、請求項1記載の撮像素子において、傾斜面の角度は撮影レンズ光軸からの距離によらず略同一に構成することによって、高屈折率部の構造を簡単化でき構造が作成しやすくできた。   Further, in the image pickup device according to claim 1, by configuring the angle of the inclined surface to be substantially the same regardless of the distance from the optical axis of the photographing lens, the structure of the high refractive index portion can be simplified and the structure can be easily created. It was.

さらに、請求項1又は2記載の撮像素子において、外部からの光線を集光するための光電変換部に対応する複数のマイクロレンズを備え、マイクロレンズの中心軸は撮影レンズの光軸より離れるに従って光電変換部の中心軸に対して撮影レンズの光軸側に異なる量ずつずらして配置することで、高屈折率部の構造を場所によって変更することなく容易に製造することができるようになった。   The image pickup device according to claim 1 or 2, further comprising a plurality of microlenses corresponding to a photoelectric conversion unit for condensing light rays from the outside, wherein the center axis of the microlens is separated from the optical axis of the photographing lens. By disposing different amounts on the optical axis side of the photographic lens with respect to the central axis of the photoelectric conversion part, it has become possible to easily manufacture the structure of the high refractive index part without changing depending on the location. .

また、請求項4に記載の光学機器では、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備える撮像素子と、この撮像素子からの瞳距離が10mm以下の撮影レンズとを具備することにより、超小型の光学機器を実現できるようになった。   In the optical device according to claim 4, a high refractive index portion that covers at least a part of a plurality of photoelectric conversion portions arranged one-dimensionally or two-dimensionally, and a low refractive index portion provided around the high refractive index portion. A refractive index portion, and an interface between the high refractive index portion and the low refractive index portion includes a surface substantially parallel to the optical axis of the photographing lens and an inclined surface having an angle different from the substantially parallel surface. An imaging element provided on the incident side when a light beam from the photographic lens is transmitted and near the optical axis of the photographic lens, and a photographic lens having a pupil distance from the imaging element of 10 mm or less. It became possible to realize an ultra-compact optical instrument.

さらには、請求項5に記載の光学機器では、1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備える撮像素子と、最長焦点距離での瞳距離と最短焦点距離での瞳距離との比が2以上である焦点距離が可変の撮影レンズとを具備することにより、焦点距離が可変の超小型の光学機器を実現できるようになった。   Furthermore, in the optical device according to claim 5, the high refractive index portion covering at least a part of the plurality of photoelectric conversion portions arranged one-dimensionally or two-dimensionally, and provided around the high refractive index portion. A low-refractive-index part, and an interface between the high-refractive-index part and the low-refractive-index part is a plane substantially parallel to the optical axis of the photographic lens, and an inclined surface having an angle different from the substantially parallel plane. The inclined surface has an imaging element provided on the incident side when light rays from the photographic lens are transmitted and on the surface close to the optical axis of the photographic lens, and a pupil distance and a shortest focal distance at the longest focal length. It is possible to realize an ultra-compact optical apparatus having a variable focal length by including a photographing lens having a variable focal length that is 2 or more in terms of the pupil distance.

以下に本発明の実施例について説明する。   Examples of the present invention will be described below.

図1は撮像素子の断面図で、1はシリコンウェハ、2はマイクロレンズ、3は受光した光子を電荷へと変換する機能を有する光電変換部、4は光線を波長分離するための波長選択部であるカラーフィルタ、5は高屈折率部、6は光電変換部を保護するために設けられたパッシベーション膜、7は低屈折率部、8は光電変換部の電荷を制御するゲートの役割を果たすPoly配線層、9はアルミニウムなどの金属でできた配線層である。   FIG. 1 is a cross-sectional view of an image pickup device. 1 is a silicon wafer, 2 is a microlens, 3 is a photoelectric conversion unit having a function of converting received photons into electric charges, and 4 is a wavelength selection unit for wavelength-separating light rays. These are color filters, 5 is a high refractive index portion, 6 is a passivation film provided to protect the photoelectric conversion portion, 7 is a low refractive index portion, and 8 is a gate that controls the charge of the photoelectric conversion portion. Poly wiring layer 9 is a wiring layer made of metal such as aluminum.

図1において、マイクロレンズ2は、上に凸の球面形状であり正のレンズパワーを有する。従ってマイクロレンズ2上に到達した光線は光電変換部3に対して集光する働きを持つ。これにより、より広範囲の光線を光電変換部3に取り込むことができるため撮像素子の感度を上げることが可能となる。高屈折率部5は屈折率2.5の二酸化チタン(TiO2)や屈折率2.0の窒化ケイ素(SiN)のような高屈折率の材料で形成され、低屈折率部7は屈折率1.46の二酸化ケイ素(SiO2)といった低屈折率の材料を用いて成形する。またパッシベーション膜6は屈折率1.6程度の酸窒化ケイ素(SiON)を用いることが多い。これにより高屈折率部5に入射した光線はパッシベーション膜6および低屈折率部7との界面で臨界角を超える光線が全反射するようになるため、カラーフィルタ4から光電変換部3に至るまでの導光路の役割を果たすようになる。また図2には形状を分かりやすくするため高屈折率部5のみを取り出したものを示す。高屈折率部5は光電変換部3に近い部分で光軸とほぼ平行な面をもつ角柱部51と光線の入射側に存在して角柱部51とは異なる角度を持つ傾斜面であるテーパ部52で構成されている。角柱部51は上面(マイクロレンズ側)から見るとほぼ正方形の形状をなしていて光軸と平行な面としては4面存在する。テーパ部52も同様に上面から見るとほぼ正方形の形状をなしているが切る高さによってその大きさが異なる。図1で撮影レンズの光軸は高屈折率部5の右側に存在しており、テーパ部52の形状は撮影レンズの光軸に近い面のみにテーパが付けられ、遠い側の面は角柱部51と同じ角度(光軸と平行)の面となっている。すなわち、撮影レンズの光軸に近い2面はテーパが付けられているが遠い2面は角柱部51から続く光軸と平行な面を持つように構成されている。撮像領域101の上部(マイクロレンズ側)から高屈折率部5を見たときのテーパの付き方を示したものが図3となる。本図は簡単のため、撮影レンズの光軸中心近傍のものと四隅(対角部)の画素についてのみ表現している。撮影レンズの光軸から近い面のみにテーパを形成していることからテーパの方向は撮像素子中心(撮影レンズの光軸中心)を原点とした4つの象限で異なっている。第1象限の画素100amnは左下、第2象限の画素100bmnは右下、第3象限の画素100cmnは右上、第4象限の画素100amnは左上に向かってそれぞれテーパが形成されているがテーパの角度はどの象限についても同一としている。高屈折率部5を形成する方法としては、低屈折率部7およびパッシベーション膜6を平坦に形成しその上にレジストを塗布してエッチングを行い光電変換部3近傍まで穴を開ける。その後、高屈折率部5の材料(SiN)を蒸着するというものである。またテーパ部においては穴を形成するときのエッチング条件を制御することによって所望の形状になるようにすることができる。エッチング条件が変わるとテーパの角度が変わったり所望の形状とならなかったりすることから、本構成のようにすべて同じテーパ角度の構造であれば場所によって条件を変更する必要がないため容易に作成することができる。   In FIG. 1, the microlens 2 has an upward convex spherical shape and has positive lens power. Therefore, the light beam that has reached the microlens 2 has a function of focusing on the photoelectric conversion unit 3. Thereby, since a wider range of light rays can be taken into the photoelectric conversion unit 3, the sensitivity of the imaging element can be increased. The high refractive index portion 5 is formed of a high refractive index material such as titanium dioxide (TiO2) having a refractive index of 2.5 or silicon nitride (SiN) having a refractive index of 2.0, and the low refractive index portion 7 is formed of a refractive index of 1. Molded using a low refractive index material such as .46 silicon dioxide (SiO2). The passivation film 6 is often made of silicon oxynitride (SiON) having a refractive index of about 1.6. As a result, the light incident on the high refractive index portion 5 is totally reflected at the interface between the passivation film 6 and the low refractive index portion 7, so that the light rays exceeding the critical angle are totally reflected from the color filter 4 to the photoelectric conversion portion 3. To act as a light guide. FIG. 2 shows only the high refractive index portion 5 taken out for easy understanding of the shape. The high refractive index portion 5 is a portion near the photoelectric conversion portion 3 and has a prism portion 51 having a surface substantially parallel to the optical axis, and a tapered portion that exists on the incident side of the light beam and is an inclined surface having an angle different from that of the prism portion 51. 52. When viewed from the upper surface (microlens side), the prism portion 51 has a substantially square shape, and there are four surfaces parallel to the optical axis. Similarly, when viewed from above, the tapered portion 52 has a substantially square shape, but the size of the tapered portion 52 differs depending on the cut height. In FIG. 1, the optical axis of the photographing lens is present on the right side of the high refractive index portion 5, and the shape of the tapered portion 52 is tapered only on the surface close to the optical axis of the photographing lens, and the surface on the far side is a prism portion. The surface has the same angle as 51 (parallel to the optical axis). That is, the two surfaces close to the optical axis of the photographic lens are tapered, but the two distant surfaces have a surface parallel to the optical axis continuing from the prism portion 51. FIG. 3 shows how the taper is attached when the high refractive index portion 5 is viewed from the upper part (microlens side) of the imaging region 101. For the sake of simplicity, this figure shows only the pixels near the center of the optical axis of the photographing lens and the pixels at the four corners (diagonal portions). Since the taper is formed only on the surface close to the optical axis of the photographing lens, the direction of the taper is different in four quadrants with the center of the imaging element (the optical axis center of the photographing lens) as the origin. The first quadrant pixel 100amn has a lower left corner, the second quadrant pixel 100bmn has a lower right corner, the third quadrant pixel 100cmn has an upper right corner, and the fourth quadrant pixel 100amn has an upper left taper. Is the same for every quadrant. As a method for forming the high refractive index portion 5, the low refractive index portion 7 and the passivation film 6 are formed flat, a resist is applied thereon, etching is performed, and a hole is formed to the vicinity of the photoelectric conversion portion 3. Thereafter, a material (SiN) for the high refractive index portion 5 is deposited. Further, the tapered portion can be formed in a desired shape by controlling the etching conditions when forming the hole. If the etching conditions change, the taper angle may change or the desired shape may not be obtained, so it is not necessary to change the conditions depending on the location as long as the structure has the same taper angle as in this configuration. be able to.

次に本構造における撮像素子内の光線の挙動について図4〜図6を用いて説明する。図4は撮影レンズの光軸近傍に存在する画素に入射した光線を示したものである。本図から分かるように中心近傍であるにもかかわらずマイクロレンズ2が光電変換部3の中心軸から撮影レンズの光軸側にずれていることが分かる。通常、撮影レンズの光軸近傍に存在する画素のマイクロレンズの中心軸は光電変換部の中心軸とほぼ一致するように配置されている。本構成の場合は高屈折率部5の入射側が撮影レンズの光軸に近い面のみにテーパを設けるという構造を採っており、その構造は撮影レンズの光軸近傍の画素においても同様である。ゆえに高屈折率部5の入射側の開口中心は光電変換部3の中心軸より撮影レンズの光軸方向にずれた位置にあるためマイクロレンズ2をシフトさせることによって高屈折率部5が対称形状でなくても入り口でケラレることなく光線を入射させることができ効率を落とすことがない。また、本構成のようにマイクロレンズ2を備えることによって入射光線を絞ることができるため高屈折率部5の入射側の開口が画素開口より小さくても十分に光線を取り込むことができる。マイクロレンズ2を備えない場合は高屈折率部5の入射側の開口を画素開口とほぼ同じにすることが望ましい。   Next, the behavior of light rays in the image sensor in this structure will be described with reference to FIGS. FIG. 4 shows light rays incident on a pixel existing in the vicinity of the optical axis of the photographing lens. As can be seen from this figure, it can be seen that the microlens 2 is displaced from the central axis of the photoelectric conversion unit 3 toward the optical axis side of the photographing lens even though it is near the center. Usually, the center axis of the microlens of the pixel existing in the vicinity of the optical axis of the photographing lens is arranged so as to substantially coincide with the center axis of the photoelectric conversion unit. In the case of this configuration, a structure is adopted in which a taper is provided only on a surface where the incident side of the high refractive index portion 5 is close to the optical axis of the photographing lens, and the structure is the same for pixels near the optical axis of the photographing lens. Therefore, since the opening center on the incident side of the high refractive index portion 5 is shifted from the central axis of the photoelectric conversion portion 3 in the optical axis direction of the photographic lens, the high refractive index portion 5 is symmetrical by shifting the microlens 2. Even if it is not, light can enter without vignetting at the entrance, and efficiency is not reduced. Further, since the incident light can be narrowed by providing the microlens 2 as in this configuration, the light can be sufficiently captured even if the incident-side opening of the high refractive index portion 5 is smaller than the pixel opening. When the microlens 2 is not provided, it is desirable that the opening on the incident side of the high refractive index portion 5 is substantially the same as the pixel opening.

次に図5、6は撮影レンズの光軸から離れた位置に存在する画素に入射した光線を示したもので、図5は撮影レンズの焦点距離が短い広角側で瞳距離が近距離(例えば、図9(a)におけるT1=8mm)、図6は撮影レンズの焦点距離が長い望遠側で瞳距離が遠距離(例えば、図9(b)におけるT2=20mm)の場合のものである。撮影レンズの光軸から距離が離れているためマイクロレンズ2のずらし量は大きく、またカラーフィルタ4も若干ずらすことによってうまく光線を取り込めるようにしている。撮影レンズの焦点距離が短く瞳距離が近距離の場合、入射光線41は高屈折率部5内の撮影レンズの光軸から遠い面(光軸と平行な面)で全反射して光電変換部3に導かれており、かなり高い位置の面を利用していることが分かる。   Next, FIGS. 5 and 6 show light rays incident on a pixel located at a position away from the optical axis of the photographing lens. FIG. 5 shows a short distance (for example, a pupil distance on the wide-angle side where the focal length of the photographing lens is short). FIG. 9A shows a case where the photographing lens has a long focal length and a pupil distance is long (for example, T2 = 20 mm in FIG. 9B). Since the distance from the optical axis of the photographing lens is large, the shift amount of the microlens 2 is large, and the color filter 4 is also slightly shifted so that the light beam can be captured well. When the focal length of the photographic lens is short and the pupil distance is short, the incident light beam 41 is totally reflected by a surface (a surface parallel to the optical axis) far from the optical axis of the photographic lens in the high refractive index portion 5 and a photoelectric conversion unit. It can be seen that it uses a fairly high surface.

撮影レンズの焦点距離を長くして瞳距離が遠距離になった時の光線を図6に示す。瞳距離が遠い場合は近い場合と異なり界面の全反射をあまり利用していない。これに関しては撮影レンズの光軸近傍の画素と類似しているが高屈折率部5に入射する位置が異なっている。この時に重要になるのは高屈折率部5の入射側の部分である。前述の通り、入射する光線が撮影レンズの光軸方向にずれてくるが撮影レンズの光軸側にテーパが設けてあるためカラーフィルタ4から出た光線は高屈折率部5に直接入射している。もし、テーパがなかった場合はまず低屈折率部6に入射してから高屈折率部5へ向かうようになる。そうすると反対側の面(撮影レンズの光軸から遠い面)で全反射できず透過してしまい光電変換部3へ入射できなくなって損失となる。   FIG. 6 shows a light beam when the focal length of the taking lens is increased and the pupil distance becomes long. When the pupil distance is long, the total reflection at the interface is not used much, unlike when the pupil distance is close. In this regard, it is similar to a pixel in the vicinity of the optical axis of the photographic lens, but the position incident on the high refractive index portion 5 is different. What is important at this time is a portion on the incident side of the high refractive index portion 5. As described above, the incident light beam is shifted in the optical axis direction of the photographing lens, but since the taper is provided on the optical axis side of the photographing lens, the light beam emitted from the color filter 4 is directly incident on the high refractive index portion 5. Yes. If there is no taper, it first enters the low refractive index portion 6 and then moves toward the high refractive index portion 5. As a result, the opposite surface (the surface far from the optical axis of the photographic lens) cannot be totally reflected and transmitted, and cannot enter the photoelectric conversion unit 3, resulting in a loss.

このように高屈折率部5の形状を光線の入射側でかつ撮影レンズの光軸に近い方の面のみにテーパ形状とすることによって撮影レンズの瞳距離が大きく変動しても光線の取り込み効率を落とすことがない撮像素子とすることができる。   As described above, the shape of the high refractive index portion 5 is tapered only on the light incident side and the surface closer to the optical axis of the photographing lens. It is possible to obtain an image sensor that does not drop the image.

よって、この実施例1の撮像素子は、該撮像素子への入射光線の画角の冗長性が大きいため、焦点距離が短く瞳距離が短い撮影レンズやズーム比が大きな焦点距離可変の撮影レンズを具備した光学機器に適しており、例えば、最短瞳距離T1≦10mmの撮影レンズや、また撮影レンズの焦点距離が長いときの瞳距離T2と焦点距離が短いときの瞳距離T1の比T2/T1が2以上のレンズ構成でも、受光効率が高い光学機器を提供可能であるため、超小型の光学機器を実現することが可能となる。   Therefore, since the imaging device of the first embodiment has a large redundancy of the angle of view of the incident light to the imaging device, a photographing lens with a short focal length and a short pupil distance or a variable focal length photographing lens with a large zoom ratio is used. For example, a photographing lens with the shortest pupil distance T1 ≦ 10 mm, or a ratio T2 / T1 of the pupil distance T2 when the focal distance of the photographing lens is long and the pupil distance T1 when the focal distance is short. However, even with two or more lens configurations, it is possible to provide an optical device with high light receiving efficiency, so that an ultra-compact optical device can be realized.

本発明に係る実施例1を表す図である。It is a figure showing Example 1 which concerns on this invention. 本発明に係る実施例1の高屈折率部を示す斜視図である。It is a perspective view which shows the high refractive index part of Example 1 which concerns on this invention. 本発明に係る実施例1の高屈折率部を上方より見た図である。It is the figure which looked at the high refractive index part of Example 1 which concerns on this invention from the upper direction. 撮影レンズ光軸近傍画素の光線トレース図である。It is a light ray trace figure of the photographic lens optical axis vicinity pixel. 撮影レンズ光軸から離れた画素の光線トレース図(瞳距離が近い場合)Ray tracing diagram of pixels away from the optical axis of the taking lens (when pupil distance is short) 撮影レンズ光軸から離れた画素の光線トレース図(瞳距離が遠い場合)Ray tracing diagram of pixels away from the optical axis of the taking lens (when pupil distance is far) 従来の形態を表す図A diagram showing a conventional configuration 別の従来の形態を表す図The figure showing another conventional form ズームレンズを撮像素子に適応した場合の図Figure when the zoom lens is applied to the image sensor 瞳位置と撮像素子の関係を示す模式図Schematic diagram showing the relationship between pupil position and image sensor 瞳が近距離の場合の瞳の像を示す図The figure which shows the image of the pupil when a pupil is a short distance 瞳が遠距離の場合の瞳の像を示す図The figure which shows the image of the pupil when a pupil is a long distance

符号の説明Explanation of symbols

1……シリコンウェハ
2……マイクロレンズ
3……光電変換部
4……カラーフィルタ
5……高屈折率部
51……角柱部
52……テーパ部
6……パッシベーション膜
7……低屈折率部
8……Poly配線層
9……配線層
10……平坦化膜
11……カラーフィルタ膜
12……第1レンズ成形膜
13……第2レンズ成形膜
14……キャップ層
15……マイクロレンズ支持層
15……低屈折率層
17……カラーフィルタ
21……第1のマイクロレンズ
22……第2のマイクロレンズ
40、41,42……物体光
42……物体光(斜入射光)
100……画素
100amn……第1象限画素
100bmn……第2象限画素
100cmn……第3象限画素
100dmn……第4象限画素
101……撮像領域
201……撮像素子
202……撮影レンズ群
DESCRIPTION OF SYMBOLS 1 ... Silicon wafer 2 ... Micro lens 3 ... Photoelectric conversion part 4 ... Color filter 5 ... High refractive index part 51 ... Square column part 52 ... Taper part 6 ... Passivation film 7 ... Low refractive index part 8 ... Poly wiring layer 9 ... wiring layer 10 ... flattening film 11 ... color filter film 12 ... first lens molding film 13 ... second lens molding film 14 ... cap layer 15 ... micro lens support Layer 15... Low refractive index layer 17... Color filter 21... First microlens 22... Second microlenses 40, 41, 42.
100 ... Pixel 100 amn ... First quadrant pixel 100 bmn ... Second quadrant pixel 100 cmn ... Third quadrant pixel 100 dmn ... Fourth quadrant pixel 101 ... Imaging area 201 ... Imaging element 202 ... Shooting lens group

Claims (5)

1次元又は2次元的に配列される複数の光電変換部の少なくとも一部を覆う高屈折率部と、前記高屈折率部の周辺に設けられる低屈折率部とが備えられ、
前記高屈折率部と前記低屈折率部の界面は、撮影レンズの光軸に略平行な面と、前記略平行な面とは異なる角度を持つ傾斜面とを有し、
前記傾斜面は、撮影レンズからの光線が透過する際の入射側で、かつ撮影レンズの光軸の近い面に備えてなることを特徴とする撮像素子。
A high refractive index portion that covers at least a part of a plurality of photoelectric conversion portions arranged one-dimensionally or two-dimensionally, and a low refractive index portion provided around the high refractive index portion,
The interface between the high refractive index portion and the low refractive index portion has a surface substantially parallel to the optical axis of the photographic lens and an inclined surface having an angle different from the substantially parallel surface;
The imaging device according to claim 1, wherein the inclined surface is provided on an incident side when a light beam from the photographing lens is transmitted and on a surface near the optical axis of the photographing lens.
請求項1記載の撮像素子において、前記傾斜面の角度は撮影レンズの光軸からの距離によらず、どの画素も略同一であることを特徴とする撮像素子。   2. The imaging device according to claim 1, wherein the angle of the inclined surface is substantially the same for all pixels regardless of the distance from the optical axis of the photographing lens. 請求項1又は2記載の撮像素子において、外部からの光線を集光するための前記光電変換部に対応する複数のマイクロレンズを備え、
前記マイクロレンズの中心軸は、撮影レンズの光軸から離れるに従って光電変換部の中心軸に対して撮影レンズの光軸側に異なる量ずつずらして配置されていることを特徴とする撮像素子。
In the imaging device according to claim 1 or 2, comprising a plurality of microlenses corresponding to the photoelectric conversion unit for condensing light from the outside,
The image pickup device, wherein the center axis of the microlens is arranged so as to be shifted by a different amount toward the optical axis side of the photographing lens with respect to the central axis of the photoelectric conversion unit as the distance from the optical axis of the photographing lens increases.
請求項1〜3いずれか記載の撮像素子を備えた光学機器において、前記撮像素子からの瞳距離が10mm以下の撮影レンズが設けられることを特徴とする光学機器。   4. An optical apparatus comprising the imaging device according to claim 1, wherein an imaging lens having a pupil distance from the imaging element of 10 mm or less is provided. 請求項4記載の光学機器のおいて、前記撮影レンズは焦点距離が可変に設けられるとともに、最長焦点距離での瞳距離と最短焦点距離での瞳距離との比が2以上であることを特徴とする光学機器。   5. The optical apparatus according to claim 4, wherein the photographing lens has a variable focal length, and a ratio of a pupil distance at the longest focal length to a pupil distance at the shortest focal length is 2 or more. Optical equipment.
JP2003414030A 2003-12-12 2003-12-12 Imaging device and optical apparatus Pending JP2005175234A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003414030A JP2005175234A (en) 2003-12-12 2003-12-12 Imaging device and optical apparatus
US11/009,294 US7060961B2 (en) 2003-12-12 2004-12-10 Image sensing element and optical instrument having improved incident light use efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414030A JP2005175234A (en) 2003-12-12 2003-12-12 Imaging device and optical apparatus

Publications (1)

Publication Number Publication Date
JP2005175234A true JP2005175234A (en) 2005-06-30

Family

ID=34733953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414030A Pending JP2005175234A (en) 2003-12-12 2003-12-12 Imaging device and optical apparatus

Country Status (1)

Country Link
JP (1) JP2005175234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182765A (en) * 2009-02-04 2010-08-19 Sony Corp Solid-state image pickup apparatus and electronic apparatus
US7860352B2 (en) 2005-06-17 2010-12-28 Panasonic Corporation Light-collecting apparatus and contact-type solid-state imaging apparatus using the same
US8817162B2 (en) 2010-04-12 2014-08-26 Canon Kabushiki Kaisha Solid-state imaging device with optical waveguide and blocking member
CN115442530A (en) * 2022-09-02 2022-12-06 北京高普乐光电科技股份公司 Method and device for linkage of field angle of camera and rotating speed of rotary table

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860352B2 (en) 2005-06-17 2010-12-28 Panasonic Corporation Light-collecting apparatus and contact-type solid-state imaging apparatus using the same
JP2010182765A (en) * 2009-02-04 2010-08-19 Sony Corp Solid-state image pickup apparatus and electronic apparatus
US8817162B2 (en) 2010-04-12 2014-08-26 Canon Kabushiki Kaisha Solid-state imaging device with optical waveguide and blocking member
CN115442530A (en) * 2022-09-02 2022-12-06 北京高普乐光电科技股份公司 Method and device for linkage of field angle of camera and rotating speed of rotary table
CN115442530B (en) * 2022-09-02 2023-09-19 北京高普乐光电科技股份公司 Linkage method and device for camera field angle and turntable rotating speed

Similar Documents

Publication Publication Date Title
US7060961B2 (en) Image sensing element and optical instrument having improved incident light use efficiency
KR100733853B1 (en) Solid-state image sensing element and its design support method, and image sensing device
JP4548702B2 (en) Imaging apparatus and imaging system
JP2005251804A (en) Imaging device
JP4740018B2 (en) Solid-state imaging device, camera, and signal processing method
JP6518071B2 (en) Solid-state imaging device and camera
JP5283371B2 (en) Solid-state image sensor
US10403664B2 (en) Photoelectric conversion apparatus and imaging system
US20050161584A1 (en) Solid-state imaging device and camera
JPH08107194A (en) Solid state image sensor
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
JP5554139B2 (en) Composite type imaging device and imaging apparatus provided with the same
WO2013008395A1 (en) Solid-state imaging element and imaging device
JP2008218650A (en) Solid photographing element
JP2006121065A (en) Solid-state imaging device
JP2007180156A (en) Solid-state imaging element
JP4532968B2 (en) Focus detection device
US10665734B2 (en) Image sensor and image capturing apparatus
JP2008042024A (en) Solid-state imaging device
JP2005175234A (en) Imaging device and optical apparatus
JP2006032713A (en) Solid-state imaging element
JP5188011B2 (en) Image sensor
JP2005175233A (en) Imaging device
JP2008016559A (en) Solid-state imaging apparatus
JP4708721B2 (en) Solid-state image sensor