JP2005175232A - Solid-state imaging device for imaging and focus detection - Google Patents

Solid-state imaging device for imaging and focus detection Download PDF

Info

Publication number
JP2005175232A
JP2005175232A JP2003414028A JP2003414028A JP2005175232A JP 2005175232 A JP2005175232 A JP 2005175232A JP 2003414028 A JP2003414028 A JP 2003414028A JP 2003414028 A JP2003414028 A JP 2003414028A JP 2005175232 A JP2005175232 A JP 2005175232A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
solid
pair
vertical ccd
focus detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414028A
Other languages
Japanese (ja)
Inventor
Terutake Kadohara
輝岳 門原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003414028A priority Critical patent/JP2005175232A/en
Publication of JP2005175232A publication Critical patent/JP2005175232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging device which enables focus detection by a phase difference detection method by a CCD sensor which also enables moving video shooting. <P>SOLUTION: A pair of photodiodes 101-1, 101-2 are disposed adjacent in a horizontal direction, a pair of vertical CCD charge transfer paths 102-1, 102-2 are disposed alternately and one on-chip micro lens is disposed each pair of the photodiodes 101-1, 101-2. Furthermore, a barrier for isolation is not provided between the pair of photodiodes 101-1, 101-2 and cross talk of sensitivity is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はデジタルスティルカメラ、ビデオカメラ等撮影装置の撮影用固体撮像素子に関するものであり、特に焦点検出用撮像素子としても用いるものである。   The present invention relates to a solid-state image sensor for photographing of a photographing apparatus such as a digital still camera or a video camera, and is particularly used as an image sensor for focus detection.

従来、受光部(フォト・ダイオード)と垂直転送部(CCD:Charge Coupled Device で
構成)が蓄積電荷用読み出しゲートを挟んで縦に交互に配置されているインターライン型CCDセンサがデジタルカメラ、ビデオ等の撮影用としてよく用いられている。
Conventionally, an interline CCD sensor in which a light receiving unit (photo diode) and a vertical transfer unit (consisting of a CCD: Charge Coupled Device) are alternately arranged vertically with a storage charge readout gate interposed therebetween is a digital camera, video, etc. It is often used for shooting.

図5は従来の一般的なインターライン型CCDセンサの概略構成図である。101 は
開口部を備えた受光部であるフォト・ダイオードで、入射光に応じて光電変換を行い、電荷信号を発生する。102は垂直転送部で、フォト・ダイオード101で発生した電荷信号を不図示の蓄積電荷用読み出しゲートを介して矢印のように取り出す。
FIG. 5 is a schematic diagram of a conventional general interline CCD sensor. Reference numeral 101 denotes a photo diode which is a light receiving portion having an opening, and performs photoelectric conversion according to incident light to generate a charge signal. Reference numeral 102 denotes a vertical transfer unit which takes out a charge signal generated by the photodiode 101 as indicated by an arrow through a storage charge read gate (not shown).

このCCDセンサの受光領域での1画素単位の領域は図中の103(波線で囲まれた範囲)となり、実際には縦・横に密に接した状態で配置されることとなる。垂直転送部102に取り出された電荷信号は図での縦方向の矢印のように水平転送部104へ順に送り出され、水平転送部104により水平方向の矢印のようにセンサの外部へと送り出される。なお、いわゆるオンチップマイクロレンズ105は図のように受光部101と中心を合わせて配置されるのが基本的である。ただし、撮影領域の周辺領域においてはオンチップマイクロレンズを若干シフトさせ、撮影光束を無駄なく受光させるのが一般的である。   An area of one pixel unit in the light receiving area of the CCD sensor is 103 (a range surrounded by a wavy line) in the figure, and is actually arranged in a state of being in close contact vertically and horizontally. The charge signals taken out by the vertical transfer unit 102 are sequentially sent to the horizontal transfer unit 104 as indicated by the vertical arrows in the figure, and are sent out of the sensor by the horizontal transfer unit 104 as indicated by the horizontal arrows. The so-called on-chip microlens 105 is basically arranged so as to be aligned with the light receiving unit 101 as shown in the figure. However, in the peripheral region of the photographing region, it is general that the on-chip microlens is slightly shifted so that the photographing light flux is received without waste.

一方、特許文献1では図6のように、1つのフォト・ダイオード101に対し2系統の垂直転送部102−1、102−2を受光部の両側にほぼ対象的に配置した例が開示されている。これは、同じ受光部の電荷信号を異なるタイミングで取り出し、後で差を取ることで暗電流とスミアの影響を排除するためとしている。なお、このCCDセンサの受光領域での1画素単位の領域を図5と同様に示すと、103(波線で囲まれた範囲)となり、オンチップマイクロレンズ105も図のように受光部101と中心を合わせて配置されることとなる。   On the other hand, as shown in FIG. 6, Patent Document 1 discloses an example in which two vertical transfer units 102-1 and 102-2 are disposed substantially on both sides of a light receiving unit for one photodiode 101. Yes. This is intended to eliminate the influence of dark current and smear by taking out charge signals of the same light receiving portion at different timings and taking the difference later. If the area of one pixel unit in the light receiving area of the CCD sensor is shown in the same manner as in FIG. 5, it becomes 103 (range surrounded by a wavy line), and the on-chip microlens 105 is also centered on the light receiving part 101 as shown in the figure. Will be arranged together.

また、特許文献2では図7のような平面図の開示は無いが、一対2つのフォト・ダイオード受光部101−1、101−2の両側にそれぞれ垂直転送部102−1、102−2を受光部の両側に配置し、更にオンチップマイクロレンズを2つのフォト・ダイオードに対して1つを配置する例が開示されている。これにより、フォト・ダイオードの面積を増加させて光感度の向上とスミア防止が可能としている。このCCDセンサの受光領域での1画素単位の領域も同様に示すと、103(波線で囲まれた範囲)となり、オンチップマイクロレンズ105は図のように二つの受光部101−1と101−2の中間に中心を合わせて配置されることになる。なお、図中の106はチャンネルストップ領域で、隣接画素単位間の隔離を目的としたものである。   Further, in Patent Document 2, there is no disclosure of a plan view as shown in FIG. 7, but the vertical transfer units 102-1 and 102-2 are received on both sides of the pair of two photodiode light receiving units 101-1 and 101-2, respectively. An example in which one on-chip microlens is arranged for two photodiodes is also disclosed. As a result, the area of the photodiode is increased to improve the photosensitivity and prevent smear. Similarly, the area of one pixel unit in the light receiving area of the CCD sensor is 103 (a range surrounded by a wavy line), and the on-chip microlens 105 includes two light receiving units 101-1 and 101- as shown in the figure. 2 is arranged with the center in the middle. Incidentally, reference numeral 106 in the figure denotes a channel stop region for the purpose of separating adjacent pixel units.

他方、特許文献3は本出願人により開示されている位相作検出方式による焦点検出可能な撮像素子及び装置である。ここでは、CMOS(Complementary Metal-Oxide Semiconductor)構造のセンサにより、1つの受光部を2分割し、それぞれの受光電荷を加算して
読み出す撮影モードと別々に読み出す焦点検出モードを特徴としたものである。
特開平07−264491号公報 特開平09−064329号公報 特開2001−083407号公報
On the other hand, Patent Document 3 is an imaging device and apparatus capable of focus detection by a phase detection method disclosed by the present applicant. Here, a sensor having a CMOS (Complementary Metal-Oxide Semiconductor) structure is characterized by an imaging mode in which one light receiving unit is divided into two parts, and each received light charge is added and read out separately, and a focus detection mode that is read out separately. .
JP 07-264491 A Japanese Patent Laid-Open No. 09-064329 JP 2001-083407 A

上記本出願人による開示例はCMOSセンサによるものであるが、CMOSセンサとCCDセンサの特徴はそれぞれ一長一短である。特に動画撮影時に撮影画面全体の同時性が保たれる電子シャッター機能は今のところCCDに顕著な優位性がある。   Although the above-mentioned disclosure example by the present applicant is based on a CMOS sensor, the features of the CMOS sensor and the CCD sensor are both advantages and disadvantages. In particular, the electronic shutter function that maintains the synchronism of the entire shooting screen during moving image shooting has a significant advantage over the CCD.

そこで本発明では、きれいな動画撮影も可能なCCDセンサでの位相作検出方式による焦点検出可能な固体撮像素子を実現することを課題とする。   Therefore, an object of the present invention is to realize a solid-state imaging device capable of focus detection by a phase detection method using a CCD sensor capable of capturing beautiful moving images.

上記課題を解決するために本発明では、同一半導体基板上に二次元状に形成された光電変換素子群と、前記光電変換素子群からの信号電荷を垂直方向に転送する垂直CCDレジスタ群と前記垂直CCDレジスタ群の転送ゲートと共用化され前記光電変換素子群からの信号電荷を前記垂直CCDレジスタ群に転送する選択ゲートを備える垂直CCD電荷転送路部と、前記各垂直CCD電荷転送路からの信号電荷を水平方向に転送する水平読み出し部とを有する固体撮像素子において、水平方向に一対の前記光電変換素子と一対の前記垂直CCD電荷転送路を交互に配置し、前記各光電変換素子における信号電荷は隣接した前記垂直CCD電荷転送路へ読み出され、前記一対の光電変換素子間には隔離のための障壁を設けず感度のクロストークを持たせ、前記一対の光電変換素子毎に1個のオンチップマイクロレンズを設けた固体撮像素子を採用し、
更に、オンチップマイクロレンズを4つの光電変換素子毎に設け、同一のマイクロレンズの領域下にある4つの光電変換素子の間には障壁を設けない事を特徴とする固体撮像素子も提案するものである。
In order to solve the above problems, in the present invention, a photoelectric conversion element group formed two-dimensionally on the same semiconductor substrate, a vertical CCD register group for transferring signal charges from the photoelectric conversion element group in the vertical direction, A vertical CCD charge transfer path unit that is shared with a transfer gate of a vertical CCD register group and includes a selection gate that transfers a signal charge from the photoelectric conversion element group to the vertical CCD register group; In a solid-state imaging device having a horizontal readout unit that transfers signal charges in the horizontal direction, a pair of the photoelectric conversion elements and a pair of vertical CCD charge transfer paths are alternately arranged in the horizontal direction, and signals in the photoelectric conversion elements The charge is read out to the adjacent vertical CCD charge transfer path, and no cross-talk of sensitivity is provided between the pair of photoelectric conversion elements without providing an isolation barrier. Myself understood, employing a solid-state image sensor provided with one on-chip microlens for each of the pair of photoelectric conversion elements,
Furthermore, a solid-state imaging device is also proposed in which an on-chip microlens is provided for every four photoelectric conversion elements, and no barrier is provided between the four photoelectric conversion elements under the same microlens area. It is.

なお、上記固体撮像素子は撮影用と焦点検出用を兼用するものである。   The solid-state image sensor is used for both photographing and focus detection.

これにより1つの固体撮像素子においても、動画及び静止画での撮像機能と測距機能の両立が可能になる。   As a result, even with a single solid-state imaging device, it is possible to achieve both an imaging function for moving images and still images and a ranging function.

以上説明した本発明によれば、CCD撮像素子を用いた一眼レフレックスカメラにおいても専用の焦点検出用センサを備えることなく、ずれ検出方式による焦点検出・調節動作が可能になり、測距時間が短く軽快なずれ検出方式の有効性を十分引き出すことが可能になる。   According to the present invention described above, even in a single-lens reflex camera using a CCD image sensor, a focus detection / adjustment operation by a deviation detection method can be performed without providing a dedicated focus detection sensor, and a distance measurement time can be reduced. The effectiveness of the short and light deviation detection method can be fully exploited.

また、撮像素子自身であるため、コンパクトタイプのデジタルカメラで一般的なコントラスト検出方式であるぼけAFでの合焦確認も容易となる。   In addition, since the image pickup device itself is used, it is easy to check the focus with the blur AF, which is a general contrast detection method for a compact digital camera.

以下に本発明の実施例について説明する。
以下、本発明の実施例に係る撮像及び焦点検出用の固体撮像素子について、図を参照しながら詳細に説明する。
Examples of the present invention will be described below.
Hereinafter, a solid-state imaging device for imaging and focus detection according to an embodiment of the present invention will be described in detail with reference to the drawings.

一般的に、撮影レンズを通過した光束をセンサ上に再結像させて自動的に焦点調節させる方法は大きく二つの方式に分類され、ぼけ方式とずれ方式などと呼ばれている。
現在、ずれ方式と呼ばれる一対のセンサ上の像信号における相対的位置ずれを検出する方法が一眼レフカメラ等では一般的となっている。
In general, a method of automatically refocusing a light beam that has passed through a photographing lens by re-imaging on a sensor is roughly classified into two methods, which are called a blur method and a shift method.
Currently, a method of detecting a relative positional shift in image signals on a pair of sensors, called a shift method, is common in single-lens reflex cameras and the like.

ここでは、このずれ方式について図8を用いて簡単に説明する。基本的構成要素は図8に示したように、撮影レンズ(LNS)による被写体像が形成される予定結像面近傍に視野
マスク(MSK)とフィールドレンズ(FLDL)を配置し、その後方に多孔の絞り(DP-a、b)と2次結像レンズを有する2次光学系(AFL-a、b)を、更にその後方に複数の光電変換素子列(SNS-a、b)を配置したものである。
Here, this shift method will be briefly described with reference to FIG. As shown in FIG. 8, the basic components are a field mask (MSK) and a field lens (FLDL) placed near the intended imaging plane where the subject image is formed by the photographic lens (LNS), and a porous film behind it. A secondary optical system (AFL-a, b) having a diaphragm (DP-a, b) and a secondary imaging lens, and a plurality of photoelectric conversion element arrays (SNS-a, b) arranged behind it Is.

そして、上記の構成により撮影レンズの異なる2つの瞳領域(PUP-a、b)を通過した光束による2つの被写体像をそれぞれ異なる光電変換素子列上に再結像し、この2つの被写体像の相対的位置関係、即ち『ずれ』が撮影レンズの合焦状態により変化する事を利用して自動焦点検出装置が実現されている。   Then, with the above configuration, the two subject images formed by the light beams that have passed through the two pupil regions (PUP-a, b) of the photographing lens are re-imaged on different photoelectric conversion element arrays, and the two subject images. An automatic focus detection device is realized by utilizing the fact that the relative positional relationship, that is, “deviation” changes depending on the focus state of the photographing lens.

上記2つの被写体像の相対位置関係であるずれ量はその相関を求めることで得られる。これを具体的に求める演算方法の一例について図9を用いて説明する。   The shift amount, which is the relative positional relationship between the two subject images, can be obtained by obtaining the correlation. An example of a calculation method for specifically obtaining this will be described with reference to FIG.

図9に示した2つの被写体像(A、B像)のAND領域の面積U(A、B像の小さい方の値の総和)を片方の像(図ではA像)を光電変換素子1画素(ビット)ずつシフトさせ、その最大値を求めていく。2像が一致していれば必然的に最大値となるので、最大値をもたらすシフト量が2像の相対的ずれ量となる。   The area U (the sum of the smaller values of the A and B images) of the AND region of the two subject images (A and B images) shown in FIG. 9 is converted into one image (A image in the figure) and one pixel of the photoelectric conversion element. Shift by (bits) and find the maximum value. If the two images coincide with each other, the maximum value is inevitably obtained. Therefore, the shift amount that causes the maximum value is the relative shift amount of the two images.

以上のような構成からなるずれ方式を撮像素子にて実現する場合、上記特許文献3により開示されているように、2つの受光部をひとつのマイクロレンズ下で隣接して配置する必要がある。   When the shift method having the above-described configuration is realized by an image sensor, it is necessary to arrange two light receiving units adjacent to each other under one microlens as disclosed in Patent Document 3 above.

そこで実施例1では、水平方向に一対の光電変換素子と一対の垂直CCD電荷転送路を交互に配置し、各光電変換素子における信号電荷を隣接する垂直CCD電荷転送路へ読み出すものとし、一対の光電変換素子毎に1個のオンチップマイクロレンズを設けるものと
する。図1は上記構成の具体的一例を示すものである。なお、以下の説明では図5等に準拠した表記を行うものとする。
In the first embodiment, therefore, a pair of photoelectric conversion elements and a pair of vertical CCD charge transfer paths are alternately arranged in the horizontal direction, and signal charges in each photoelectric conversion element are read out to adjacent vertical CCD charge transfer paths. One on-chip microlens is provided for each photoelectric conversion element. FIG. 1 shows a specific example of the above configuration. In the following description, the notation conforming to FIG.

図1に示すように、開口部を備えた受光部であるフォト・ダイオード101−1、101−2は隣接して配置され、入射光に応じて光電変換を行い、電荷信号を発生する。垂直転送部102−1、102−2は、フォト・ダイオード101−1、101−2で発生した電荷信号を不図示の蓄積電荷用読み出しゲートを介して矢印のように左右に振り分けて取り出すものである。   As shown in FIG. 1, the photodiodes 101-1 and 101-2 which are light receiving parts having openings are arranged adjacent to each other, and perform photoelectric conversion according to incident light to generate a charge signal. The vertical transfer units 102-1 and 102-2 distribute and extract the charge signals generated by the photodiodes 101-1 and 101-2 to the left and right as indicated by arrows through a storage charge readout gate (not shown). is there.

このCCDセンサの受光領域での撮像における1画素単位の領域は図中の103(波線で囲まれた範囲)となり、実際には縦・横に密に接した状態で配置されることとなる。   An area of one pixel unit in imaging in the light receiving area of the CCD sensor is 103 (a range surrounded by a wavy line) in the figure, and is actually arranged in a state of being in close contact vertically and horizontally.

垂直転送部102−1、102−2に取り出された電荷信号は図での縦方向の矢印のように水平転送部104へ順に送り出され、水平転送部104により水平方向の矢印のようにセンサの外部へと送り出される。   The charge signals taken out to the vertical transfer units 102-1 and 102-2 are sequentially sent to the horizontal transfer unit 104 as indicated by the vertical arrows in the figure, and the horizontal transfer unit 104 outputs the sensor signals as indicated by the horizontal arrows. Sent to the outside.

撮像動作においては、1画素単位の電荷信号を得るために外部でフォト・ダイオード101−1、101−2で発生した電荷信号を加算するが、焦点検出動作では加算せずにそれぞれを図2におけるA、B像を構成する信号として扱う。   In the imaging operation, the charge signals generated by the photodiodes 101-1 and 101-2 are externally added to obtain a charge signal in units of one pixel. Treated as signals constituting A and B images.

また、オンチップマイクロレンズ105は図のように受光部101−1、101−2の隣接部と中心を合わせて配置する。ただし、撮影領域の周辺領域においてはオンチップマイクロレンズを若干シフトさせ、撮影光束を無駄なく受光させることは有効となる。   Further, the on-chip microlens 105 is disposed so as to be aligned with the adjacent portion of the light receiving portions 101-1 and 101-2 as shown in the figure. However, it is effective to slightly shift the on-chip microlens in the peripheral area of the imaging area so as to receive the imaging light flux without waste.

なお、図中の106はチャンネルストップ領域であるが、本提案の構成上、隣接する垂直転送部の間にのみ設ける事とする。これにより、フォト・ダイオード101−1、101−2間で感度のクロストークが発生するが、これは焦点検出動作における瞳分割像の形状を滑らかにする効果がある。   In the figure, reference numeral 106 denotes a channel stop region, but it is provided only between adjacent vertical transfer units because of the proposed configuration. As a result, sensitivity crosstalk occurs between the photodiodes 101-1 and 101-2. This has the effect of smoothing the shape of the pupil-divided image in the focus detection operation.

この実施例2では、画素及びオンチップマイクロレンズの配置関係と焦点検出動作における視野(基線長)方向の関係について説明する。   In the second embodiment, an arrangement relationship between pixels and on-chip microlenses and a relationship between a visual field (base line length) direction in a focus detection operation will be described.

上述の実施例1では、一つのオンチップマイクロレンズ下に対し2つの受光部が構成されている。この構成例では,焦点検出動作において検出可能な視野(基線長)方向は横方向、すなわち画素の並び方向であり、信号としては縦線の検知が可能となる。
図2に受光部の並び方向と視野方向の関係を示した。
In the above-described first embodiment, two light receiving units are configured below one on-chip microlens. In this configuration example, the visual field (baseline length) direction detectable in the focus detection operation is the horizontal direction, that is, the pixel arrangement direction, and a vertical line can be detected as a signal.
FIG. 2 shows the relationship between the arrangement direction of the light receiving portions and the viewing direction.

同図において、(A)は縦線検知可能な配置、(B)は横線検知可能な配置である。それぞれにおいて矢印方向の『ずれ』が検出可能となり、従ってそれに垂直方向の成分に対しての焦点検出が有効となる。   In the figure, (A) is an arrangement capable of detecting a vertical line, and (B) is an arrangement capable of detecting a horizontal line. In each case, the “shift” in the direction of the arrow can be detected, and therefore focus detection for the component in the vertical direction is effective.

一般的な被写体に対し焦点検出可能とするには、上記のような横あるいは縦方向のみに検出可能なだけでは不充分で、両方向での焦点検出能力(縦横検知)が望まれる。   In order to be able to detect a focus on a general subject, it is not sufficient to detect only in the horizontal or vertical direction as described above, and focus detection capability (vertical and horizontal detection) in both directions is desired.

この実施例2は、図3に示すように、上記問題に対し横方向のみでなく縦方向にも同時に焦点検出可能とするため、一つのオンチップマイクロレンズ下に対し4つの受光部を構成したものである。   In the second embodiment, as shown in FIG. 3, in order to enable simultaneous focus detection not only in the horizontal direction but also in the vertical direction with respect to the above problem, four light receiving portions are configured under one on-chip microlens. Is.

図3において、受光部であるフォト・ダイオードは101−1、101−2、101−3、101−4で、図示のように隣接して配置され、入射光に応じて光電変換を行い、電荷信号を発生する。また、図1同様に垂直転送部102−1、102−2が設けられて、各々のフォト・ダイオード101−1、101−3及び101−2、101−4で発生した電荷信号を不図示の蓄積電荷用読み出しゲートを介して矢印のように左右に振り分けて取り出す。   In FIG. 3, the photodiodes that are light receiving portions are 101-1, 101-2, 101-3, and 101-4, which are arranged adjacent to each other as shown in the figure, perform photoelectric conversion according to incident light, and charge Generate a signal. Similarly to FIG. 1, vertical transfer units 102-1 and 102-2 are provided, and charge signals generated by the respective photodiodes 101-1, 101-3 and 101-2, 101-4 are not shown. The stored charge is sorted out to the left and right as indicated by the arrow through the readout gate for accumulated charges.

また、オンチップマイクロレンズ105は図示のように4つの受光部101−1、101−2、101−3、101−4の中央部と中心を合わせて配置する。   Further, the on-chip microlens 105 is arranged so that the center and the center of the four light receiving units 101-1, 101-2, 101-3, and 101-4 are aligned as shown in the figure.

このCCDセンサの受光領域での撮像における1画素単位の領域は図中の103(波線で
囲まれた範囲)となり、実際には図1同様縦・横に密に接した状態で配置される。図中106はチャンネルストップ領域であるが、本実施例でも、隣接する垂直転送部の間にのみ設け、フォト・ダイオード101−1、101−2、101−3、101−4間で感度のクロストークを発生させる。この構成を採用することで図4に示したように、横方向のみでなく縦方向にも焦点検出用視野を設定することが可能となり、エリア上に受光部が配置されながらも縦横密にずれ方式での焦点検出領域の設定が可能になる。
An area of one pixel unit in imaging in the light receiving area of the CCD sensor is 103 (a range surrounded by a wavy line) in the figure, and is actually arranged in a state of being in close contact vertically and horizontally as in FIG. In the figure, reference numeral 106 denotes a channel stop region. Also in this embodiment, it is provided only between adjacent vertical transfer units, and sensitivity crossing between the photodiodes 101-1, 101-2, 101-3, and 101-4. Generate talk. By adopting this configuration, as shown in FIG. 4, it is possible to set the focus detection visual field not only in the horizontal direction but also in the vertical direction. The focus detection area can be set by the method.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例1での焦点検出視野方向の説明図である。It is explanatory drawing of the focus detection visual field direction in Example 1 of this invention. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 本発明の実施例2での焦点検出視野方向の説明図である。It is explanatory drawing of the focus detection visual field direction in Example 2 of this invention. 本発明の実施例に係る従来例の説明図である。It is explanatory drawing of the prior art example which concerns on the Example of this invention. 本発明の実施例に係る従来例の説明図である。It is explanatory drawing of the prior art example which concerns on the Example of this invention. 本発明の実施例に係る従来例の説明図である。It is explanatory drawing of the prior art example which concerns on the Example of this invention. ずれ方式による焦点検出方法の説明図である。It is explanatory drawing of the focus detection method by a shift | offset | difference system. ずれ方式による焦点検出方法の説明図である。It is explanatory drawing of the focus detection method by a shift | offset | difference system.

符号の説明Explanation of symbols

LNS 撮影レンズ
PUP 撮影レンズの瞳領域
SNS 焦点検出用光電変換素子列
MSK 焦点検出用視野マスク
FLDL 焦点検出用フィールドレンズ
DP 焦点検出用絞り
AFL 焦点検出用2次光学系
101-1、101-2 フォト・ダイオード
101-3、101-4 フォト・ダイオード
102 垂直転送部
104 水平転送部
105 オンチップマイクロレンズ
106 チャンネルストップ領域
LNS lens
PUP pupil lens pupil area
SNS Photoelectric conversion element array for focus detection
MSK focus detection field mask
FLDL focus detection field lens
DP Aperture for focus detection
Secondary optical system for AFL focus detection
101-1, 101-2 Photo diode
101-3, 101-4 Photo diode
102 Vertical transfer section
104 Horizontal transfer section
105 On-chip micro lens
106 Channel stop area

Claims (3)

同一半導体基板上に二次元状に形成された光電変換素子群と、前記光電変換素子群からの信号電荷を垂直方向に転送する垂直CCDレジスタ群と、前記垂直CCDレジスタ群の転送ゲートと共用化されるとともに前記光電変換素子群からの信号電荷を前記垂直CCDレジスタ群に転送する選択ゲートを備える垂直CCD電荷転送路部と、前記各垂直CCD電荷転送路からの信号電荷を水平方向に転送する水平読み出し部とを有する固体撮像素子において、
水平方向に一対の前記光電変換素子と一対の前記垂直CCD電荷転送路が交互に配置されて、前記各光電変換素子における信号電荷が隣接した前記垂直CCD電荷転送路へ読み出され、
前記一対の光電変換素子間には隔離のための障壁を設けず、感度のクロストークを持たせるとともに、
前記一対の光電変換素子毎に1個のオンチップマイクロレンズを設けることを特徴とする固体撮像素子。
A photoelectric conversion element group formed two-dimensionally on the same semiconductor substrate, a vertical CCD register group for transferring signal charges from the photoelectric conversion element group in the vertical direction, and a transfer gate of the vertical CCD register group And a vertical CCD charge transfer path section having a selection gate for transferring signal charges from the photoelectric conversion element group to the vertical CCD register group, and signal charges from the vertical CCD charge transfer paths are transferred in the horizontal direction. In a solid-state imaging device having a horizontal readout unit,
A pair of the photoelectric conversion elements and a pair of the vertical CCD charge transfer paths are alternately arranged in the horizontal direction, and signal charges in the photoelectric conversion elements are read to the adjacent vertical CCD charge transfer paths,
Without providing a barrier for isolation between the pair of photoelectric conversion elements, to give a crosstalk of sensitivity,
A solid-state imaging device, wherein one on-chip microlens is provided for each pair of photoelectric conversion devices.
請求項1記載の固体撮像素子において、オンチップマイクロレンズを4つの光電変換素子毎に設け、同一のマイクロレンズの領域下にある4つの光電変換素子の間には障壁を設けないことを特徴とする固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein an on-chip microlens is provided for every four photoelectric conversion elements, and no barrier is provided between the four photoelectric conversion elements under the same microlens area. A solid-state imaging device. 請求項1又は2記載の固体撮像素子において、撮影用と焦点検出用とを兼用することを特徴とする固体撮像素子。   3. The solid-state image pickup device according to claim 1, wherein the solid-state image pickup device is used both for photographing and for focus detection.
JP2003414028A 2003-12-12 2003-12-12 Solid-state imaging device for imaging and focus detection Pending JP2005175232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414028A JP2005175232A (en) 2003-12-12 2003-12-12 Solid-state imaging device for imaging and focus detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414028A JP2005175232A (en) 2003-12-12 2003-12-12 Solid-state imaging device for imaging and focus detection

Publications (1)

Publication Number Publication Date
JP2005175232A true JP2005175232A (en) 2005-06-30

Family

ID=34733951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414028A Pending JP2005175232A (en) 2003-12-12 2003-12-12 Solid-state imaging device for imaging and focus detection

Country Status (1)

Country Link
JP (1) JP2005175232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111257A1 (en) * 2011-02-16 2012-08-23 シャープ株式会社 Solid state image sensor and electronic information device
CN103081106A (en) * 2010-09-07 2013-05-01 佳能株式会社 Image sensor and image capture apparatus
JP2013172210A (en) * 2012-02-17 2013-09-02 Canon Inc Imaging device
US9947707B2 (en) 2014-08-29 2018-04-17 Samsung Electronics Co., Ltd. Image sensor and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081106A (en) * 2010-09-07 2013-05-01 佳能株式会社 Image sensor and image capture apparatus
EP2614527A1 (en) * 2010-09-07 2013-07-17 Canon Kabushiki Kaisha Image sensor and image capture apparatus
EP2614527A4 (en) * 2010-09-07 2014-10-15 Canon Kk Image sensor and image capture apparatus
US9165964B2 (en) 2010-09-07 2015-10-20 Canon Kabushiki Kaisha Image sensor and image capture apparatus
WO2012111257A1 (en) * 2011-02-16 2012-08-23 シャープ株式会社 Solid state image sensor and electronic information device
JP2012169541A (en) * 2011-02-16 2012-09-06 Sharp Corp Solid-state imaging element, and electronic information apparatus
JP2013172210A (en) * 2012-02-17 2013-09-02 Canon Inc Imaging device
US9947707B2 (en) 2014-08-29 2018-04-17 Samsung Electronics Co., Ltd. Image sensor and manufacturing method thereof
US11488996B2 (en) 2014-08-29 2022-11-01 Samsung Electronics Co., Ltd. Image sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP7298635B2 (en) Imaging element and imaging device
US8754976B2 (en) Image-capturing apparatus including image sensor utilizing pairs of focus detection pixels
US8681261B2 (en) Image-capturing apparatus having image sensor utilizing focus detection pixel pairs
JP5693082B2 (en) Imaging device
JP4720508B2 (en) Imaging device and imaging apparatus
US9742984B2 (en) Image capturing apparatus and method of controlling the same
JP5455397B2 (en) Optical equipment
JP6408372B2 (en) SOLID-STATE IMAGING DEVICE, ITS DRIVE CONTROL METHOD, AND ELECTRONIC DEVICE
US8466998B2 (en) Solid-state image sensor and imaging apparatus equipped with solid-state image sensor
JP4957413B2 (en) Solid-state imaging device and imaging apparatus using the same
JP5422889B2 (en) Solid-state imaging device and imaging apparatus using the same
KR101886059B1 (en) Image capturing apparatus and method of controlling the same
JP5076416B2 (en) Imaging device and imaging apparatus
WO2010055835A1 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
JPWO2013042518A1 (en) Digital camera
JP5211590B2 (en) Image sensor and focus detection apparatus
CN102348051A (en) Image pickup apparatus
US20120099006A1 (en) Image pickup apparatus
JP2012220790A (en) Imaging apparatus
JP6627656B2 (en) Focus detection device
JP2012165070A (en) Solid state imaging element and imaging apparatus using the same
JP2005175232A (en) Solid-state imaging device for imaging and focus detection
JP5341479B2 (en) Imaging device
JP2003032538A (en) Imaging apparatus
JP2010039106A (en) Imaging element, focus detection device and imaging apparatus