JP2005174748A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2005174748A
JP2005174748A JP2003413416A JP2003413416A JP2005174748A JP 2005174748 A JP2005174748 A JP 2005174748A JP 2003413416 A JP2003413416 A JP 2003413416A JP 2003413416 A JP2003413416 A JP 2003413416A JP 2005174748 A JP2005174748 A JP 2005174748A
Authority
JP
Japan
Prior art keywords
fuel cell
carbonated water
electrode
fuel
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413416A
Other languages
Japanese (ja)
Inventor
Shugo Azuma
秀剛 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003413416A priority Critical patent/JP2005174748A/en
Publication of JP2005174748A publication Critical patent/JP2005174748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the corrosion of the catalyst-carrying carbon of an oxidizer electrode at the start and stop of a fuel cell system. <P>SOLUTION: At the time of starting and stopping a fuel cell system, a pressure control valve 8 at an oxidizer electrode exit 4b is closed when at least the supply of oxidizer gas is stopped, then a flow rate control valve 10 of carbonated water is opened and a carbonated water pump 11 is driven, and the carbonated water is introduced from the carbonated water tank 9 into the oxidizer electrode 4 of a fuel cell stack 1. At this time, the carbonated water is supplied from the oxidizer electrode exit 4b to the oxidizer electrode 4, and thereby the carbonated water is supplied from the portion of the oxidizer electrode closer to the fuel electrode exit. Thereby, the corrosion of the catalyst-carrying carbon of the oxidizer electrode on the side closer to the fuel electrode exit where oxygen is easily introduced by the invasion of air from the outside can be effectively prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池システムに係り、特に触媒担持体としてカーボンを使用した燃料電池システムに関する。   The present invention relates to a fuel cell system, and more particularly to a fuel cell system using carbon as a catalyst carrier.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。すなわち、燃料電池車両は、高圧水素タンク、液体水素タンク、水素吸蔵合金タンクなどの水素貯蔵装置を車両に搭載し、そこから供給される水素と、酸素を含む空気とを燃料電池に送り込んで反応させ、燃料電池から取り出した電気エネルギで駆動輪につながるモータを駆動するものであり、排出物質は水だけであるという究極のクリーン車両である。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, solid polymer fuel cells using solid polymer electrolytes are attracting attention as power sources for electric vehicles because of their low operating temperature and easy handling. That is, a fuel cell vehicle is equipped with a hydrogen storage device such as a high-pressure hydrogen tank, a liquid hydrogen tank, or a hydrogen storage alloy tank in the vehicle, and reacts by supplying hydrogen supplied therefrom and air containing oxygen to the fuel cell. This is the ultimate clean vehicle that drives the motor connected to the drive wheels with the electric energy extracted from the fuel cell, and the only exhaust material is water.

固体高分子型の燃料電池では、次に示す反応が起きることにより、燃料極から外部回路を通り酸化剤極に電子が流れる。   In the polymer electrolyte fuel cell, the following reaction occurs, whereby electrons flow from the fuel electrode through the external circuit to the oxidant electrode.

(化1)
アノード(燃料極 ):H2 →2H+ +2e- …(1)
カソード(酸化剤極):2H+ +2e- +(1/2)O2 →H2O …(2)
(Chemical formula 1)
Anode (fuel electrode): H 2 → 2H + + 2e (1)
Cathode (oxidant electrode): 2H + + 2e + (1/2) O 2 → H 2 O (2)

ところで、燃料電池の運転停止時に水素及び空気の供給を停止しても、それらの供給手段と燃料電池とを接続する配管内及び燃料電池内には水素及び空気が残留する。このとき燃料電池と外部回路との電気的接続が絶たれると、単セルの燃料極と酸化剤極との間には1〔V〕近い電位差が生じ、その結果電極触媒の劣化や電池構成部品の腐食等が起こる。例えば、燃料電池に炭素製セパレータを用いた場合、下記式(式中、COs は、carbon surface oxideを表す)の反応が起こり得る。   By the way, even if the supply of hydrogen and air is stopped when the operation of the fuel cell is stopped, hydrogen and air remain in the piping connecting the supply means and the fuel cell and in the fuel cell. If the electrical connection between the fuel cell and the external circuit is interrupted at this time, a potential difference close to 1 [V] is generated between the fuel electrode and oxidant electrode of the single cell, resulting in deterioration of the electrode catalyst and battery components. Corrosion etc. occur. For example, when a carbon separator is used for a fuel cell, a reaction represented by the following formula (where COs represents a carbon surface oxide) may occur.

(化2)
C + [O2- ] → COs + 2e- …(3)
COs + [O2- ] → CO2 + 2e- …(4)
また、残留した空気中の酸素と水素が反応すると1〔mol〕の酸素に対して2〔mol〕の水素が消費されるので、燃料極の圧力低下が酸化剤極の圧力低下より大きく、燃料極と酸化剤極との間に圧力差が生じ固体電解質膜が劣化する恐れがある。
(Chemical formula 2)
C + [O 2− ] → COs + 2e (3)
COs + [O 2− ] → CO 2 + 2e (4)
Further, when oxygen in the remaining air reacts with hydrogen, 2 [mol] of hydrogen is consumed with respect to 1 [mol] of oxygen, so that the pressure drop of the fuel electrode is larger than the pressure drop of the oxidizer electrode. There may be a pressure difference between the electrode and the oxidizer electrode, which may deteriorate the solid electrolyte membrane.

この解決策として、従来の燃料電池の停止時に残留ガスをパージする方法が採られている。例えば、窒素等の不活性ガスボンベを燃料電池システムに備え、燃料電池の運転停止時に、不活性ガスボンベから供給した不活性ガスで燃料電池内部を置換する方法が知られている(特許文献1)。
特開平7−272740号公報(第5頁、図1)
As a solution to this, a conventional method of purging residual gas when the fuel cell is stopped is employed. For example, a method is known in which an inert gas cylinder such as nitrogen is provided in a fuel cell system and the inside of the fuel cell is replaced with an inert gas supplied from the inert gas cylinder when the fuel cell is stopped (Patent Document 1).
JP-A-7-272740 (5th page, FIG. 1)

しかしながら上記パージ方法は、主に燃料電池内のガス経路内のガスをパージするのみで多孔質体に担持された触媒近傍の残留ガスは除去しにくい。よって、パージ後空気雰囲気で燃料電池システムを保管する場合、燃料極側および酸化剤極側経路が空気置換される過程において、燃料極側触媒で局所的に触媒に水素と酸素が付加している状態が混在することがある。このときに酸化剤極側触媒付近に酸素が残留する場合、膜を介して燃料極側に酸素がある領域の反対にある酸化剤極側で逆電流により水素イオンを必要とする反応がおこる。酸化剤極側では基本的に水素がないため、水から水素イオンが取り出され、残った酸素イオンは、触媒担持体の炭素と反応して二酸化炭素となる反応を起こす。反応により生成された二酸化炭素ガスは、酸化剤ガス通路中へ放散してしまい触媒担持炭素の腐食が発生し、触媒のPt微粒子が凝集して触媒有効表面積が著しく減少するという問題点があった。   However, the above purge method mainly purges the gas in the gas path in the fuel cell, and it is difficult to remove the residual gas in the vicinity of the catalyst supported on the porous body. Therefore, when storing the fuel cell system in an air atmosphere after purging, hydrogen and oxygen are locally added to the catalyst by the fuel electrode side catalyst in the process of air replacement of the fuel electrode side and the oxidant electrode side path. There may be mixed states. If oxygen remains in the vicinity of the oxidant electrode side catalyst at this time, a reaction requiring hydrogen ions occurs by a reverse current on the oxidant electrode side opposite to the region where oxygen is present on the fuel electrode side through the membrane. Since there is basically no hydrogen on the oxidizer electrode side, hydrogen ions are extracted from the water, and the remaining oxygen ions react with carbon of the catalyst carrier to generate carbon dioxide. The carbon dioxide gas produced by the reaction is diffused into the oxidant gas passage, causing corrosion of the catalyst-carrying carbon, and there is a problem that the Pt fine particles of the catalyst are aggregated to significantly reduce the effective catalyst surface area. .

同様の現象は燃料極側が停止中に充分空気置換されたあとの水素導入起動時にも発生する。   The same phenomenon occurs at the start of hydrogen introduction after the fuel electrode side is sufficiently replaced with air during the stop.

上記問題点を解決するため、本発明は、固体高分子電解質膜を挟む燃料極と酸化剤極を備えた燃料電池システムにおいて、炭酸水を貯蔵する炭酸水貯蔵手段と、燃料電池の起動時または停止時に、前記酸化剤極に前記炭酸水貯蔵手段から炭酸水を導入する炭酸水導入手段と、を備えたことを要旨とする。   In order to solve the above problems, the present invention provides a fuel cell system including a fuel electrode and an oxidant electrode sandwiching a solid polymer electrolyte membrane, carbonated water storage means for storing carbonated water, The gist of the present invention is that it comprises carbonated water introduction means for introducing carbonated water from the carbonated water storage means to the oxidizer electrode when the operation is stopped.

本発明によれば、燃料電池の起動時または停止時に、酸化剤極側で水素イオンを必要とする反応が生じても、供給された炭酸水中に含まれる水素イオンが反応することにより、酸化剤極の触媒担持炭素の腐食を防止することができるという効果がある。   According to the present invention, even when a reaction that requires hydrogen ions occurs on the oxidant electrode side when the fuel cell is started or stopped, the hydrogen ions contained in the supplied carbonated water react to react with each other. There is an effect that corrosion of the electrode catalyst-supporting carbon can be prevented.

具体的には、二酸化炭素を水に溶かすと、次のような平衡反応により炭酸を生じて酸性を呈する。   Specifically, when carbon dioxide is dissolved in water, carbonic acid is produced by the following equilibrium reaction to exhibit acidity.

(化3)
2O + CO2 ⇔ H2CO3 ⇔ H+ + HCO3 - …(5)
この炭酸水を燃料電池の運転停止時に酸化剤極へ導入すると、酸化剤極へ水素イオンが供給され、酸化剤極側で水素イオンを必要とする反応が生じても、供給された炭酸水中に含まれる水素イオンが反応する。
(Chemical formula 3)
H 2 O + CO 2 ⇔ H 2 CO 3 ⇔ H + + HCO 3 - ... (5)
When this carbonated water is introduced into the oxidizer electrode when the fuel cell is stopped, hydrogen ions are supplied to the oxidizer electrode, and even if a reaction requiring hydrogen ions occurs on the oxidizer electrode side, The contained hydrogen ions react.

次に、図面を参照して本発明の実施の形態を詳細に説明する。尚、以下に説明する各実施例は、特に限定されないが燃料電池車両に好適な燃料電池システムである。   Next, embodiments of the present invention will be described in detail with reference to the drawings. In addition, although each Example described below is not specifically limited, it is a fuel cell system suitable for a fuel cell vehicle.

図1は、本発明に係る燃料電池システムの実施例1を説明する要部構成図であり、請求項1及び2に対応する。
燃料電池スタック1は、固体高分子電解質膜3を挟んで燃料極2と酸化剤極4が対設された単セルが複数積層されているが、図1では模式的に表示してある。
FIG. 1 is a main part configuration diagram for explaining a first embodiment of a fuel cell system according to the present invention, and corresponds to claims 1 and 2.
In the fuel cell stack 1, a plurality of unit cells each having a fuel electrode 2 and an oxidant electrode 4 are stacked with a solid polymer electrolyte membrane 3 interposed therebetween, which are schematically shown in FIG.

燃料極2には、図示しない燃料供給装置から燃料である水素ガスが供給される。酸化剤極4には、酸化剤供給装置としてのブロアやコンプレッサ等から空気が供給される。水素ガス及び空気ともに、図中左側から燃料極2及び酸化剤極4に供給され、図中右側から排出される並向流型のガス供給を行うものとする。   Hydrogen gas, which is fuel, is supplied to the fuel electrode 2 from a fuel supply device (not shown). Air is supplied to the oxidant electrode 4 from a blower, a compressor or the like as an oxidant supply device. Both hydrogen gas and air are supplied to the fuel electrode 2 and the oxidant electrode 4 from the left side in the figure, and are supplied in a cocurrent flow type gas discharged from the right side in the figure.

酸化剤極入口4aには、運転停止時に炭酸水を注入したときの圧力を逃がすための圧力開放弁7が接続されている。酸化剤極出口4bには、運転時の空気圧力を調整する空気圧力調整弁8が接続されている。   Connected to the oxidant electrode inlet 4a is a pressure release valve 7 for releasing the pressure when carbonated water is injected when the operation is stopped. An air pressure adjusting valve 8 that adjusts the air pressure during operation is connected to the oxidant electrode outlet 4b.

炭酸水タンク9は、炭酸水を貯蔵する炭酸水貯蔵手段である。炭酸水タンク9から流量調整弁10及び炭酸水ポンプ11を介して、空気圧力調整弁8の上流部の酸化剤極出口配管に炭酸水供給管12が合流接続されている。流量調整弁10、炭酸水ポンプ11及び炭酸水供給管12が炭酸水導入手段である。   The carbonated water tank 9 is carbonated water storage means for storing carbonated water. A carbonated water supply pipe 12 is joined from the carbonated water tank 9 to the oxidant electrode outlet pipe upstream of the air pressure regulating valve 8 via the flow rate regulating valve 10 and the carbonated water pump 11. The flow rate adjusting valve 10, the carbonated water pump 11, and the carbonated water supply pipe 12 are carbonated water introduction means.

次に、上記構成による燃料電池システムの作用を説明する。
燃料電池システムの起動時または停止時に、少なくとも酸化剤ガス供給停止状態において酸化剤極出口4bの圧力調節弁8を閉じた後、炭酸水の流量調節弁10を開き炭酸水ポンプ11を駆動して、炭酸水タンク9から燃料電池スタック1の酸化剤極4内に炭酸水を導入する。このとき、炭酸水は、酸化剤極出口4bから酸化剤極4へ供給されるので、燃料極出口に近い酸化剤極の部分から炭酸水が供給されることになる。
Next, the operation of the fuel cell system having the above configuration will be described.
At the time of starting or stopping the fuel cell system, at least when the oxidant gas supply is stopped, the pressure control valve 8 at the oxidant electrode outlet 4b is closed, then the carbonated water flow rate control valve 10 is opened and the carbonated water pump 11 is driven. Then, carbonated water is introduced from the carbonated water tank 9 into the oxidant electrode 4 of the fuel cell stack 1. At this time, since carbonated water is supplied from the oxidant electrode outlet 4b to the oxidant electrode 4, carbonated water is supplied from the portion of the oxidant electrode close to the fuel electrode outlet.

これにより、外部からの空気侵入により酸素が導入し易い燃料極出口に近い側の酸化剤極の触媒担持炭素の腐食を効果的に防ぐことができる。また、必要に応じて酸化剤極の圧力を監視して酸化剤極入口4aから分岐した圧力開放弁7を調節することによって酸化剤極圧力が制御可能となる。   Thereby, it is possible to effectively prevent the corrosion of the catalyst-supporting carbon of the oxidant electrode on the side close to the fuel electrode outlet where oxygen is easily introduced due to air intrusion from the outside. Further, the oxidant electrode pressure can be controlled by monitoring the pressure of the oxidant electrode and adjusting the pressure release valve 7 branched from the oxidant electrode inlet 4a as necessary.

以上説明した本実施例によれば、燃料電池の起動時または停止時に、酸化剤極側で水素イオンを必要とする反応が生じても、供給された炭酸水中に含まれる水素イオンが反応することにより、酸化剤極の触媒担持炭素の腐食を防止することができるという効果がある。   According to the present embodiment described above, even when a reaction that requires hydrogen ions occurs on the oxidizer electrode side when the fuel cell is started or stopped, the hydrogen ions contained in the supplied carbonated water react. As a result, the corrosion of the catalyst-supporting carbon of the oxidizer electrode can be prevented.

図2は、本発明に係る燃料電池システムの実施例2を説明する要部構成図であり、請求項3及び4に対応する。
燃料電池スタック1は、固体高分子電解質膜3を挟んで燃料極2と酸化剤極4が対設された単セルが複数積層されているが、図2では模式的に表示してある。酸化剤極4の固体高分子電解質膜3側と反対側には、多孔質セパレータ5を介して純水経路6が設けられている。
FIG. 2 is a main part configuration diagram for explaining Example 2 of the fuel cell system according to the present invention, and corresponds to claims 3 and 4.
In the fuel cell stack 1, a plurality of unit cells each having a fuel electrode 2 and an oxidant electrode 4 are stacked with a solid polymer electrolyte membrane 3 interposed therebetween, which are schematically shown in FIG. On the opposite side of the oxidizer electrode 4 from the solid polymer electrolyte membrane 3 side, a pure water path 6 is provided via a porous separator 5.

純水経路6は、燃料電池スタック1の冷却と酸化剤極4での生成水回収による高電流域での発電性能向上を目的としている。酸化剤極4での生成水回収は、酸化剤極4の圧力に対して純水経路6の圧力が低くなるよう差圧を設定することで可能となる。   The pure water path 6 is intended to improve the power generation performance in a high current region by cooling the fuel cell stack 1 and recovering the generated water at the oxidant electrode 4. The generated water can be recovered at the oxidant electrode 4 by setting the differential pressure so that the pressure of the pure water passage 6 is lower than the pressure of the oxidant electrode 4.

燃料極2には、図示しない燃料供給装置から燃料である水素ガスが供給される。酸化剤極4には、酸化剤供給装置としてのブロアやコンプレッサ等から空気が供給される。水素ガス及び空気ともに、図中左側から燃料極2及び酸化剤極4に供給され、図中右側から排出される並向流型のガス供給を行うものとする。   Hydrogen gas, which is fuel, is supplied to the fuel electrode 2 from a fuel supply device (not shown). Air is supplied to the oxidant electrode 4 from a blower, a compressor or the like as an oxidant supply device. Both hydrogen gas and air are supplied to the fuel electrode 2 and the oxidant electrode 4 from the left side in the figure, and are supplied in a cocurrent flow type gas discharged from the right side in the figure.

酸化剤極入口4aには、運転停止時に炭酸水を注入したときの圧力を逃がすための圧力開放弁7が接続されている。酸化剤極出口4bには、運転時の空気圧力を調整する空気圧力調整弁8が接続されている。   Connected to the oxidant electrode inlet 4a is a pressure release valve 7 for releasing the pressure when carbonated water is injected when the operation is stopped. An air pressure adjusting valve 8 that adjusts the air pressure during operation is connected to the oxidant electrode outlet 4b.

炭酸水タンク9は、炭酸水を貯蔵する炭酸水貯蔵手段である。純水を貯蔵する純水タンク20と、炭酸水タンク9とは、三方弁21により選択的にポンプ22の入口側と連通可能となっている。ポンプ22の出口側は、純水供給管26を介して燃料電池スタック1の純水経路入口6aに接続されている。   The carbonated water tank 9 is carbonated water storage means for storing carbonated water. The pure water tank 20 for storing pure water and the carbonated water tank 9 can be selectively communicated with the inlet side of the pump 22 by a three-way valve 21. The outlet side of the pump 22 is connected to the pure water path inlet 6 a of the fuel cell stack 1 via the pure water supply pipe 26.

純水経路出口6bは、純水の圧力を調整する圧力調整弁25を介して純水タンク20の入口で接続されている。また、ポンプ22の出口に接続されている純水供給管26から分岐して純水タンク20に戻るバイパス経路23と、バイパス経路23の流量を調整する流量調整弁24が設けられている。   The pure water passage outlet 6b is connected to the inlet of the pure water tank 20 via a pressure adjusting valve 25 that adjusts the pressure of pure water. A bypass path 23 that branches from the pure water supply pipe 26 connected to the outlet of the pump 22 and returns to the pure water tank 20 and a flow rate adjustment valve 24 that adjusts the flow rate of the bypass path 23 are provided.

通常運転時の純水の流れは、純水タンク20から三方弁21を介してポンプ22に吸い込まれ、ポンプ22の出口から純水供給管26を介して純水経路入口6aから燃料電池スタック1に供給される。純水経路6の純水は、多孔質セパレータ5を介して酸化剤極4と水分交換する。   The flow of pure water during normal operation is sucked into the pump 22 from the pure water tank 20 through the three-way valve 21, and from the outlet of the pump 22 through the pure water supply pipe 26 to the fuel cell stack 1 from the pure water path inlet 6 a. To be supplied. Pure water in the pure water path 6 exchanges moisture with the oxidant electrode 4 via the porous separator 5.

純水経路6と酸化剤極4との水分交換は、運転条件にもよるが、酸化剤極出口4b側では、酸化剤極4から純水経路6への生成水の回収が支配的であり、酸化剤極入口4a側では、純水経路6から酸化剤極4への加湿による純水消費が支配的である。余剰の純水は純水経路出口6bから排出され、圧力調整弁25を介して純水タンク20へ戻る。   Although the water exchange between the pure water path 6 and the oxidant electrode 4 depends on the operating conditions, the recovery of the produced water from the oxidant electrode 4 to the pure water path 6 is dominant on the oxidant electrode outlet 4b side. On the oxidant electrode inlet 4a side, pure water consumption due to humidification from the pure water path 6 to the oxidant electrode 4 is dominant. Excess pure water is discharged from the pure water passage outlet 6 b and returns to the pure water tank 20 via the pressure regulating valve 25.

通常運転時には、燃料電池スタック1において、燃料ガス及び空気は図中左から右へ流れ、純水は図中右から左へ流れるようになっている。即ち、燃料電池スタックへのガス供給に関しては並向流型であり、このガスと水分交換する純水は、ガスの流れ方向と対向する対向流型である。   During normal operation, in the fuel cell stack 1, fuel gas and air flow from left to right in the figure, and pure water flows from right to left in the figure. That is, the gas supply to the fuel cell stack is a parallel flow type, and the pure water that exchanges moisture with the gas is a counter flow type that faces the gas flow direction.

次に、上記構成による燃料電池システムの作用を説明する。
燃料電池システムの起動時または停止時に、少なくとも酸化剤ガス供給停止状態において、ポンプ22上流の三方弁21を炭酸水タンク9とポンプ22が連通するよう切換え、ポンプ22により炭酸水を燃料電池スタック1の純水経路6に供給する。そして純水経路6の圧力を調整する圧力調節弁25を調整することにより、酸化剤極4と純水経路6の差圧を減少するよう制御することで酸化剤極4側に炭酸水を供給可能となる。尚、必要に応じて酸化剤極4の圧力を監視して酸化剤極4上流から分岐した圧力開放弁7を調節することによって酸化剤極圧力が制御可能となる。
Next, the operation of the fuel cell system having the above configuration will be described.
At the time of starting or stopping the fuel cell system, at least when the oxidant gas supply is stopped, the three-way valve 21 upstream of the pump 22 is switched so that the carbonated water tank 9 and the pump 22 communicate with each other. To the pure water path 6. Then, by adjusting the pressure control valve 25 that adjusts the pressure of the pure water path 6, carbonated water is supplied to the oxidant electrode 4 side by controlling to reduce the differential pressure between the oxidant electrode 4 and the pure water path 6. It becomes possible. The oxidant electrode pressure can be controlled by monitoring the pressure of the oxidant electrode 4 and adjusting the pressure release valve 7 branched from the upstream side of the oxidant electrode 4 as necessary.

本実施例によれば、実施例1と同様に、燃料電池の起動時または停止時に、酸化剤極側で水素イオンを必要とする反応が生じても、供給された炭酸水中に含まれる水素イオンが反応することにより、酸化剤極の触媒担持炭素の腐食を防止することができるという効果がある。   According to this example, as in Example 1, even when a reaction requiring hydrogen ions occurs on the oxidizer electrode side when the fuel cell is started or stopped, the hydrogen ions contained in the supplied carbonated water By reacting, there is an effect that corrosion of the catalyst-supporting carbon of the oxidant electrode can be prevented.

また、純水循環用のポンプを炭酸水導入用に共用することができ、炭酸水導入経路を新規に構成するための部品点数を低減できるという効果がある。   Further, the pump for circulating pure water can be shared for introducing carbonated water, and the number of parts for newly constructing the carbonated water introduction path can be reduced.

さらに、本実施例によれば、酸化剤ガス流路と純水流路の流れ方向が互いに対向するので、純水流路圧力上昇の際に圧力が上昇しやすく酸化剤ガス流路に炭酸水が浸透しやすい純水入口から触媒担持炭素が腐食し易い酸化剤ガス流路出口に効果的に炭酸水を供給することができるという効果がある。   Furthermore, according to the present embodiment, since the flow directions of the oxidant gas channel and the pure water channel are opposed to each other, when the pressure of the pure water channel increases, the pressure easily rises and carbonated water penetrates into the oxidant gas channel Thus, there is an effect that carbonated water can be effectively supplied from the pure water inlet, which is easy to perform, to the oxidant gas channel outlet where the catalyst-supported carbon is likely to corrode.

本発明に係る燃料電池システムの実施例1を説明する要部構成図である。It is a principal part block diagram explaining Example 1 of the fuel cell system which concerns on this invention. 本発明に係る燃料電池システムの実施例2を説明する要部構成図である。It is a principal part block diagram explaining Example 2 of the fuel cell system which concerns on this invention.

符号の説明Explanation of symbols

1…燃料電池スタック
2…燃料極
3…固体高分子電解質膜
4…酸化剤極
4a…酸化剤極入口
4b…酸化剤極出口
7…圧力開放弁
8…空気圧力調整弁
9…炭酸水タンク
10…流量調整弁
11…炭酸水ポンプ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 2 ... Fuel electrode 3 ... Solid polymer electrolyte membrane 4 ... Oxidant electrode 4a ... Oxidant electrode inlet 4b ... Oxidant electrode outlet 7 ... Pressure release valve 8 ... Air pressure regulating valve 9 ... Carbonated water tank 10 ... Flow control valve 11 ... Carbonated water pump

Claims (4)

固体高分子電解質膜を挟む燃料極と酸化剤極を備えた燃料電池システムにおいて、
炭酸水を貯蔵する炭酸水貯蔵手段と、
燃料電池の起動時または停止時に、前記酸化剤極に前記炭酸水貯蔵手段から炭酸水を導入する炭酸水導入手段と、
を備えたことを特徴とする燃料電池システム。
In a fuel cell system having a fuel electrode and an oxidant electrode sandwiching a solid polymer electrolyte membrane,
Carbonated water storage means for storing carbonated water;
Carbonated water introduction means for introducing carbonated water from the carbonated water storage means to the oxidant electrode when the fuel cell is started or stopped; and
A fuel cell system comprising:
炭酸水を燃料極出口に近い酸化剤極に導入することを特徴とする請求項1記載の燃料電池システム。   2. The fuel cell system according to claim 1, wherein carbonated water is introduced into the oxidizer electrode close to the fuel electrode outlet. 固体高分子電解質膜を挟む燃料極と酸化剤極と、前記酸化剤極の酸化剤ガス流路と多孔質体を介して隣接する純水流路と、を備えた燃料電池システムにおいて、
炭酸水を貯蔵する炭酸水貯蔵手段と、
燃料電池の起動時または停止時に、前記酸化剤ガス流路の圧力よりも高い圧力で前記純水流路に炭酸水を導入する炭酸水導入手段と、
を備えたことを特徴とする燃料電池システム。
In a fuel cell system comprising a fuel electrode and an oxidant electrode sandwiching a solid polymer electrolyte membrane, an oxidant gas channel of the oxidant electrode, and a pure water channel adjacent through a porous body,
Carbonated water storage means for storing carbonated water;
Carbonated water introduction means for introducing carbonated water into the pure water flow path at a pressure higher than the pressure of the oxidant gas flow path when starting or stopping the fuel cell;
A fuel cell system comprising:
酸化剤ガス流路と純水流路の流れ方向が互いに対向することを特徴とする請求項3記載の燃料電池システム。   The fuel cell system according to claim 3, wherein the flow directions of the oxidant gas channel and the pure water channel oppose each other.
JP2003413416A 2003-12-11 2003-12-11 Fuel cell system Pending JP2005174748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413416A JP2005174748A (en) 2003-12-11 2003-12-11 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413416A JP2005174748A (en) 2003-12-11 2003-12-11 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2005174748A true JP2005174748A (en) 2005-06-30

Family

ID=34733559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413416A Pending JP2005174748A (en) 2003-12-11 2003-12-11 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2005174748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059734A (en) * 2004-08-23 2006-03-02 Toshiba Fuel Cell Power Systems Corp Fuel cell system and its starting/shutdown method
JP2018137049A (en) * 2017-02-20 2018-08-30 独立行政法人国立高等専門学校機構 Fuel cell including electrolyte membrane comprising eggshell membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059734A (en) * 2004-08-23 2006-03-02 Toshiba Fuel Cell Power Systems Corp Fuel cell system and its starting/shutdown method
JP4633403B2 (en) * 2004-08-23 2011-02-16 東芝燃料電池システム株式会社 Fuel cell system and start / stop method thereof
JP2018137049A (en) * 2017-02-20 2018-08-30 独立行政法人国立高等専門学校機構 Fuel cell including electrolyte membrane comprising eggshell membrane

Similar Documents

Publication Publication Date Title
US8221923B2 (en) Stop method for fuel cell system and fuel cell system
JP4877711B2 (en) Fuel cell system
JP2003243020A (en) Fuel cell system
JP2004513485A (en) How to improve the operating efficiency of fuel cell power equipment
JP2007035509A (en) Fuel cell system
WO2008027043A1 (en) Avoiding coolant slump into reactant fields during pem fuel cell shutdown
JP2004139950A (en) Fuel cell system
JP2006196402A (en) Control unit of fuel cell system
JP4581382B2 (en) Fuel cell system
JP2005032652A (en) Fuel cell system
JP2004327360A (en) Fuel cell system
JP5538192B2 (en) Fuel cell system
JP5722669B2 (en) Control method of fuel cell system
JP2005174748A (en) Fuel cell system
JP5485930B2 (en) Control method of fuel cell system
US8153319B2 (en) System and method for purging condensate from an electrochemical cell stack prior to operation
JP2017152174A (en) Stop control method for fuel cell system
JP2005158554A (en) Fuel cell system
US20050095469A1 (en) Method for inerting the anodes of fuel cells
JP5583536B2 (en) Method for stopping operation of fuel cell system
JP2005267910A (en) Fuel cell system, and control method of the same
JP2004071348A (en) Fuel circulation type fuel cell system
JP6023403B2 (en) Fuel cell system and its operation stop method
JP5480085B2 (en) Method for stopping operation of fuel cell system
JP5480086B2 (en) Method for stopping operation of fuel cell system