JP2005172940A - Optical film and manufacturing method therefor - Google Patents

Optical film and manufacturing method therefor Download PDF

Info

Publication number
JP2005172940A
JP2005172940A JP2003409373A JP2003409373A JP2005172940A JP 2005172940 A JP2005172940 A JP 2005172940A JP 2003409373 A JP2003409373 A JP 2003409373A JP 2003409373 A JP2003409373 A JP 2003409373A JP 2005172940 A JP2005172940 A JP 2005172940A
Authority
JP
Japan
Prior art keywords
film
roll
temperature
optical
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003409373A
Other languages
Japanese (ja)
Inventor
Kentaro Ogino
健太郎 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003409373A priority Critical patent/JP2005172940A/en
Publication of JP2005172940A publication Critical patent/JP2005172940A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical film not only whose residual phase difference is small in a wide range in both of a transverse direction and a flow direction but also whose dispersion of optical axis is little and which is made of a noncrystalline thermoplastic resin, and a manufacturing method therefor. <P>SOLUTION: The temperature of a film which is extruded from a die installed at an extruding machine and is made of the noncrystalline thermoplastic resin is controlled to a glass transition temperature Tg+80°C or higher at the point immediately before the contact with a cooling roll to control the temperature variation in the transverse direction and the flow direction within 3°C and the film is produced while the film is pressed to the cooling roll in tight contact therewith by an elastic roll which is within 100 μm in the eccentricity deflection during rotation, has a length of 85 to 95% of the total width of the film, and is subjected to temperature control. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学用途やディスプレー分野などに用いられる光学フィルム及びその製造方法に関し、より詳細には、押出成形により得られ、光学歪み(複屈折)や光軸ズレの小さい長尺の光学フィルム及びその製造方法に関する。   The present invention relates to an optical film used in optical applications, display fields, and the like, and more specifically to a method for producing the same, and more specifically, a long optical film obtained by extrusion molding and having small optical distortion (birefringence) and optical axis deviation, and It relates to the manufacturing method.

近年、光学用途やディスプレー分野においては、透明性に優れ、残留位相差が小さく光軸ズレのない光学フィルムが求められている。しかしながら、溶融押出により光学フィルムを製造した場合、製膜時に半溶融状態のフィルムを冷却ロールに引き取る際の変形により歪みが残留し易い。この歪みは光学的には位相差として残留する。残留位相差が大きいと、光学用フィルムとして用いた場合に問題となることが多い。例えば、偏光板の偏光子を保護するためにその両面に積層される偏光子保護用フィルムに用いる場合などは、その残留位相差のために偏光性能が低下する。   In recent years, there has been a demand for optical films that are excellent in transparency, have a small residual phase difference, and have no optical axis misalignment in the field of optical applications and displays. However, when an optical film is produced by melt extrusion, distortion tends to remain due to deformation when the film in a semi-molten state is drawn on a cooling roll during film formation. This distortion remains optically as a phase difference. When the residual phase difference is large, it often becomes a problem when used as an optical film. For example, when used for a polarizer protective film laminated on both surfaces in order to protect the polarizer of the polarizing plate, the polarization performance is degraded due to the residual retardation.

また、変形の方向が必ずしも均一でないことにより光軸、即ち、残留位相差に基づく遅相軸の向きがばらつくという問題があった。光軸の向きが揃っていないと、残留位相差が低くても位相差の高い場合と同様の問題を引き起こす。一般的には、残留位相差が1nm以上になると光軸のバラツキが無視できなくなり、位相差が3nm以下においては許容される光軸バラツキは10°以下程度である。   In addition, since the deformation direction is not necessarily uniform, there has been a problem that the direction of the optical axis, that is, the slow axis based on the residual phase difference varies. If the directions of the optical axes are not aligned, the same problem as when the phase difference is high is caused even if the residual phase difference is low. In general, when the residual phase difference is 1 nm or more, the variation of the optical axis cannot be ignored, and when the phase difference is 3 nm or less, the allowable optical axis variation is about 10 ° or less.

特許文献1には、残留位相差の小さい光学フィルムとして、正の複屈折性を有する熱可塑性樹脂と負の複屈折性を有する熱可塑性樹脂からなる残留位相差3nm以下のフィルムが開示されているが、光軸に関する記載はなく、品質的には必ずしも満足できるものではない。   Patent Document 1 discloses a film having a residual retardation of 3 nm or less made of a thermoplastic resin having positive birefringence and a thermoplastic resin having negative birefringence as an optical film having a small residual retardation. However, there is no description regarding the optical axis, and the quality is not always satisfactory.

この光学歪みを低減する手段として、本発明者らは、非晶性熱可塑性樹脂のガラス転移温度をTgとすると、押出機に取り付けられたダイスからシート状に押し出された非晶性熱可塑性樹脂からなるフィルムが冷却ロールに密着される際に、冷却ロールとの接点直前におけるフィルム温度を制御することで、低残留位相差を実現した(特許文献2参照)。また、タッチロールやエアチャンバ等でフィルムを冷却ロールに対して押圧することにより、フィルムの冷却ロールに対する密着が促進され、冷却ロールに対するフィルムの接点が全面で安定される結果、光軸のバラツキを±10°以下にすることに成功した(特許文献3参照)。更に、特願2002−308807において、ダイスから押し出されたフィルムの全幅の80%以上を低位相差とし、光軸ズレを抑える発明を提案した。しかし、光学フィルムは通常、効率の観点から巻物で使用しており、流れ方向の光学特性の安定が重要であるものの、明確な技術確立ができておらず大きな課題であった。
特開2002−328232号公報 特開2003−131006号公報 特開2003−131036号公報
As means for reducing this optical distortion, the present inventors have proposed that an amorphous thermoplastic resin extruded into a sheet from a die attached to an extruder, where Tg is the glass transition temperature of the amorphous thermoplastic resin. When the film made of is closely attached to the cooling roll, a low residual phase difference was realized by controlling the film temperature immediately before the contact point with the cooling roll (see Patent Document 2). Also, by pressing the film against the cooling roll with a touch roll or air chamber, etc., the adhesion of the film to the cooling roll is promoted, and the contact point of the film with respect to the cooling roll is stabilized over the entire surface. It succeeded in making it into +/- 10 degrees or less (refer patent document 3). Furthermore, in Japanese Patent Application No. 2002-308807, an invention has been proposed in which 80% or more of the entire width of the film extruded from the die is set to a low phase difference to suppress the optical axis shift. However, optical films are usually used in scrolls from the viewpoint of efficiency, and although it is important to stabilize the optical properties in the flow direction, a clear technology has not been established, which has been a major problem.
JP 2002-328232 A JP 2003-131006 A JP 2003-131036 A

本発明の目的は、上述した従来技術の現状に鑑み、幅方向、流れ方向のいずれに対しても広い範囲で残留位相差が小さいだけでなく、光軸バラツキが少ない、非晶性熱可塑性樹脂からなる光学フィルム及びその製造方法を提供することにある。   An object of the present invention is to provide an amorphous thermoplastic resin that not only has a small residual phase difference in a wide range in both the width direction and the flow direction, but also has a small optical axis variation in view of the current state of the prior art described above. It is providing the optical film which consists of, and its manufacturing method.

本願の請求項1に記載の発明に係る光学フィルムは、非晶性熱可塑性樹脂が押出成形されてなる光学フィルムであって、少なくとも長さ100m以上にわたって厚みが100μm以下、全面の80%以上にわたって残留位相差が3nm以下、光軸バラツキがフィルムの流れ方向に対するズレ角度で10°以下であることを特徴とする。   The optical film according to the invention described in claim 1 of the present application is an optical film obtained by extrusion molding of an amorphous thermoplastic resin, and has a thickness of 100 μm or less over a length of at least 100 m and over 80% of the entire surface. The residual phase difference is 3 nm or less, and the optical axis variation is 10 ° or less in terms of a deviation angle with respect to the flow direction of the film.

本発明に係る光学フィルムに用いられる非晶性熱可塑性樹脂は、殆ど結晶構造を取り得ない無定形状態を保つ高分子であり、そのTgは、樹脂によって異なるため特に限定されないが総じて100℃以上のものが好ましく、ノルボルネン系樹脂、ポリカーボネート、ポリメチルメタクリレート、ポリアセタール、オレフィン−マレイミド樹脂、ポリサルホン、ポリエーテルサルホン、ポリアリレート、ポリ塩化ビニル等が例示できる。   The amorphous thermoplastic resin used in the optical film according to the present invention is a polymer that maintains an amorphous state that hardly takes a crystal structure, and its Tg is not particularly limited because it varies depending on the resin, but is generally 100 ° C. or higher. Preferred are norbornene resins, polycarbonates, polymethyl methacrylates, polyacetals, olefin-maleimide resins, polysulfone, polyethersulfone, polyarylate, polyvinyl chloride and the like.

これらの樹脂のうちノルボルネン系樹脂は透明性、耐熱性に優れ、固有複屈折率が低く、光弾性係数が小さいので好ましい。ノルボルネン系樹脂のこれらの長所を活かすことにより、残留位相差が小さく、光軸バラツキの少ない光学フィルムを得ることができる。ノルボルネン系樹脂としては、ノルボルネン系モノマーの開環重合体、付加重合体、ノルボルネン系モノマーとその他のオレフィンとの付加重合体、これらの重合体の変性物が挙げられる。これらのノルボルネン系樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。   Among these resins, norbornene-based resins are preferable because they are excellent in transparency and heat resistance, have a low intrinsic birefringence, and a low photoelastic coefficient. By taking advantage of these advantages of the norbornene resin, it is possible to obtain an optical film having a small residual retardation and little optical axis variation. Examples of norbornene resins include ring-opening polymers of norbornene monomers, addition polymers, addition polymers of norbornene monomers and other olefins, and modified products of these polymers. These norbornene resins may be used alone or in combination of two or more.

上記ノルボルネン系モノマーとしては、ノルボルネン環を有するものであれば特に限定されないが、耐熱性、低線膨張率等に優れた成形品が得られることから、三環体以上の多環ノルボルネン系モノマーを用いることが好ましい。   The norbornene-based monomer is not particularly limited as long as it has a norbornene ring, but since a molded product excellent in heat resistance, low linear expansion coefficient, etc. is obtained, a tricyclic or higher polycyclic norbornene-based monomer is used. It is preferable to use it.

ノルボルネン系モノマーの具体例としては、ノルボルネン、ノルボルナジエン等の二環体;ジシクロペンタジエン、ジヒドロキシペンタジエン等の三環体;テトラシクロドデセン等の四環体;シクロペンタジエン三量体等の五環体;テトラシクロペンタジエン等の七環体;これらのメチル、エチル、プロピル、ブチル等のアルキル、ビニル等のアルケニル、エチリデン等のアルキリデン、フェニル、トリル、ナフチル等のアリール等の置換体;さらにこれらのエステル基、エーテル基、シアノ基、ハロゲン原子、アルコキシカルボニル基、ピリジル基、水酸基、カルボン酸基、アミノ基、無水酸基、シリル基、エポキシ基、アクリル基、メタクリル基等の炭素、水素以外の元素を含有する基、いわゆる極性基を有する置換体等が例示される。これらの中でも、エステル基や無水酸基が好ましい。これらのモノマーは、単独で、または複数種を組み合わせて用いられる。入手が容易であり、反応性に優れ、得られる樹脂成形品の耐熱性が優れる点から、三環体、四環体、及び五環体のモノマーが好ましい。   Specific examples of the norbornene-based monomer include bicyclics such as norbornene and norbornadiene; tricyclics such as dicyclopentadiene and dihydroxypentadiene; tetracyclics such as tetracyclododecene; pentacyclics such as cyclopentadiene trimer. A heptacycle such as tetracyclopentadiene; an alkyl such as methyl, ethyl, propyl, butyl, an alkenyl such as vinyl, an alkylidene such as ethylidene, an aryl such as phenyl, tolyl, and naphthyl; and an ester thereof Group other than carbon and hydrogen, such as group, ether group, cyano group, halogen atom, alkoxycarbonyl group, pyridyl group, hydroxyl group, carboxylic acid group, amino group, hydroxyl group-free, silyl group, epoxy group, acrylic group, methacryl group Examples thereof include substituted groups having a so-called polar group. Among these, an ester group and a hydroxyl group-free are preferable. These monomers are used alone or in combination of two or more. Tricyclic, tetracyclic, and pentacyclic monomers are preferred because they are easily available, have excellent reactivity, and have excellent heat resistance of the resulting resin molded product.

ノルボルネン系樹脂には市販されているものがあり、例えば、日本ゼオン社のゼオノア、ゼオネックス、JSR社のアートン、三井化学社のアペル、ティコナ(TICONA)社のトーパス(TOPAS)などがある。   There are commercially available norbornene resins such as ZEONOR and ZEONEX from Nippon Zeon, Arton from JSR, APPEL from Mitsui Chemicals, and TOPAS from TICONA.

ノルボルネン系モノマーの開環重合体としては、上記ノルボルネン系モノマーを公知の方法で開環重合させたものであり、ノルボルネン系モノマーの単独重合体であってもよいし、異種のノルボルネン系モノマー同士の共重合体もしくはノルボルネン系モノマーとノルボルネン系モノマー以外の環状オレフィンモノマーとの共重合体であってもよい。   The ring-opening polymer of the norbornene-based monomer is obtained by ring-opening polymerization of the norbornene-based monomer by a known method, and may be a homopolymer of norbornene-based monomers, or between different types of norbornene-based monomers. It may be a copolymer or a copolymer of a norbornene monomer and a cyclic olefin monomer other than the norbornene monomer.

ノルボルネン系モノマーとその他のオレフィンとの付加重合体としては、ノルボルネン系モノマーと、α−オレフィン又はノルボルネン系モノマー以外の環状オレフィンとの共重合体が挙げられる。α−オレフィンとしては、炭素数2〜20、好ましくは2〜10のα−オレフィンが、環状オレフィンとしては炭素数5〜12の単環式オレフィンが使用できる。   Examples of addition polymers of norbornene monomers and other olefins include copolymers of norbornene monomers and cyclic olefins other than α-olefins or norbornene monomers. As the α-olefin, an α-olefin having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, and a monocyclic olefin having 5 to 12 carbon atoms can be used.

なお、ノルボルネン系樹脂のうち開環重合体には分子中に二重結合が残存し、また、モノマー中に2個以上の二重結合を有する場合は付加重合体であっても分子中に二重結合が残存するため、これら二重結合を水素添加により飽和させることが耐久性の観点から望ましい。   Of the norbornene-based resins, the ring-opening polymer has double bonds remaining in the molecule, and if the monomer has two or more double bonds, even if it is an addition polymer, Since heavy bonds remain, it is desirable from the viewpoint of durability to saturate these double bonds by hydrogenation.

本発明において、残留位相差は3nm以下である必要がある。残留位相差が3nm以下のフィルムは、光ディスクや液晶ディスプレーなどの光学用途に好適である。特に、液晶ディスプレーの場合、例えば、位相差板の原反フィルムや偏光板に用いられる偏光子保護用のフィルムでは特に低位相差であることが求められており、本発明に係る光学フィルムは残留位相差が非常に小さいため、このような用途に特に効果的に用いられる。   In the present invention, the residual phase difference needs to be 3 nm or less. A film having a residual retardation of 3 nm or less is suitable for optical applications such as optical discs and liquid crystal displays. In particular, in the case of a liquid crystal display, for example, a film for protecting a polarizer used for an original film of a retardation plate or a polarizing plate is required to have a particularly low retardation, and the optical film according to the present invention has a residual level. Since the phase difference is very small, it is particularly effectively used for such applications.

本発明において、光軸とは位相差に基づく遅相軸の方向を指す。溶融押出製膜の場合、フィルムは引き取り方向に変形して分子が配向するため、通常、光軸は樹脂の流れ方向(MD)を向く。従って、本発明においてはMDを基準とした光軸のズレでバラツキを評価するが、この際のズレ角度は絶対角度とする。光学フィルムにおいて光軸バラツキがMDに対するズレ角度で10°以下の場合には、比較的位相差の向きが揃っているため、本発明に係る光学フィルムを光学用途に用いた場合、良品率を高めることができる。また、押出フィルム全面の80%以上にわたり上記光学特性を満足することは、製造効率の観点から好ましい。また、流れ方向において上記光学特性が安定して生産できることは、製造効率の観点や検査工程の短縮化からも非常に有効である。特に、光学フィルムを偏光子保護用に用いる場合は、偏光子が長尺の巻物である場合、連続接着が可能となり非常に有効である。   In the present invention, the optical axis refers to the direction of the slow axis based on the phase difference. In the case of melt extrusion film formation, since the film is deformed in the take-up direction and the molecules are oriented, the optical axis is usually directed in the resin flow direction (MD). Accordingly, in the present invention, the variation is evaluated by the deviation of the optical axis with respect to the MD, but the deviation angle at this time is an absolute angle. In the optical film, when the optical axis variation is 10 ° or less with respect to the MD, the phase difference direction is relatively uniform. Therefore, when the optical film according to the present invention is used for optical applications, the yield rate is increased. be able to. Moreover, it is preferable from a viewpoint of manufacturing efficiency to satisfy the above optical characteristics over 80% or more of the entire surface of the extruded film. In addition, the stable production of the optical characteristics in the flow direction is very effective from the viewpoint of manufacturing efficiency and shortening of the inspection process. In particular, when an optical film is used for protecting a polarizer, when the polarizer is a long roll, continuous bonding is possible, which is very effective.

本発明におけるフィルム全面とは、金型から押し出された樹脂がドローして、冷却ロール上で冷却され固化した後のフィルムの全幅を指す。また、フィルムの厚みは、液晶表示装置等に使用された場合に全体の厚さを小さくするために薄ければ薄いほど好ましく、100μm以下とされ、より好ましくは80μm以下、更に好ましくは60μm以下とされる。   The entire film surface in the present invention refers to the entire width of the film after the resin extruded from the mold has been drawn, cooled on a cooling roll and solidified. Further, the thickness of the film is preferably as thin as possible in order to reduce the overall thickness when used in a liquid crystal display device or the like, and is set to 100 μm or less, more preferably 80 μm or less, and further preferably 60 μm or less. Is done.

本願の発明に係る光学フィルムの製造方法は特に限定されるものではないが、請求項3に記載する製造方法に従って製造することができる。請求項3に記載の光学フィルムの製造方法は、押出機に取り付けられたダイスから押し出された非晶性熱可塑性樹脂からなるフィルムを冷却ロールに密着させて冷却固化しながら引き取る光学フィルムの製造方法であって、冷却ロールとの接点直前におけるフィルムの温度を樹脂のガラス転移温度Tg+80℃以上に制御し、幅方向、流れ方向の温度バラツキを3℃以内に制御するとともに、回転時の偏心振れが100μm以内であり、フィルムの全幅に対して85〜95%の長さを有する、温調された弾性ロールによってフィルムを冷却ロールに対して押圧して密着させることを特徴とする。   Although the manufacturing method of the optical film which concerns on invention of this application is not specifically limited, It can manufacture according to the manufacturing method described in Claim 3. The method for producing an optical film according to claim 3, wherein the film made of an amorphous thermoplastic resin extruded from a die attached to an extruder is brought into close contact with a cooling roll and taken up while being cooled and solidified. The temperature of the film immediately before the contact point with the cooling roll is controlled to the glass transition temperature Tg + 80 ° C. or more of the resin, the temperature variation in the width direction and the flow direction is controlled to within 3 ° C. The film is pressed against the cooling roll by a temperature-controlled elastic roll having a length of 100 μm or less and having a length of 85 to 95% with respect to the entire width of the film.

ダイスから押し出されたフィルムの冷却ロールとの接点直前におけるフィルム温度をTg+80℃以上とすることにより、この状態で非晶性熱可塑性樹脂からフィルムが変形されたとしても、樹脂に生じる応力は著しく小さくなるとともに光学歪みの発生が抑制される結果、フィルムに残留する位相差を3nm以下とすることができる。   By setting the film temperature immediately before the contact with the cooling roll of the film extruded from the die to Tg + 80 ° C. or higher, even if the film is deformed from the amorphous thermoplastic resin in this state, the stress generated in the resin is extremely small. As a result, the occurrence of optical distortion is suppressed, so that the phase difference remaining in the film can be 3 nm or less.

この理由は、非晶性熱可塑性樹脂が結晶性熱可塑性樹脂に比べて、樹脂の温度が高温になればなるほど変形したときに内部応力を発生しにくいためである。従って、製膜時において樹脂に変形を与える際に、適切な温度制御を行うことにより発生する樹脂の内部応力は小さくなり、残留位相差の発生を抑えることができる。また、冷却ロールとの接点直前におけるフィルム温度のバラツキは幅方向、流れ方向ともに3℃以下である必要があり、好ましくは1℃以下である。なお、フィルムの流れ方向の温度バラツキとは、製膜工程における経時に伴う温度の振れを表す。   This is because the amorphous thermoplastic resin is less likely to generate an internal stress when it is deformed as the temperature of the resin becomes higher than that of the crystalline thermoplastic resin. Therefore, when the resin is deformed during film formation, the internal stress of the resin generated by appropriate temperature control is reduced, and the occurrence of a residual phase difference can be suppressed. Further, the film temperature variation immediately before the contact point with the cooling roll needs to be 3 ° C. or less in both the width direction and the flow direction, and preferably 1 ° C. or less. The temperature variation in the film flow direction represents temperature fluctuations with time in the film forming process.

冷却ロールとの接点直前におけるフィルム温度をTg+80℃以上とする具体的な方法については特に限定されず、例えば、金型の温度を高温で制御する方法が挙げられる。この場合、金型温度を上げ過ぎると樹脂によっては劣化することがあるので、熱劣化しない程度の温度条件を採用することにより、上記残留位相差を満足することができる光学フィルムを確実に得ることができる。また、エアギャップを狭める方法を用いてもよい。この場合には、ダイラインやフィルムの厚み精度を十分に考慮してエアギャップの大きさを設定すればよい。更には、金型出口から冷却ロールに到るエアギャップ部を保温ないし加熱する方法なども考えられる。保温ないし加熱する手段としては、当分野で公知のものを採用すればよい。
一方、冷却ロールとの接点直前におけるフィルム温度のバラツキを3℃以下にする具体的な方法としては、例えば、金型温度の温調精度を上げたり、ダイス近傍、ロール近傍、エアギャップ等の製膜部をフードで覆うことにより、外乱を極力排除する方法が考えられる。
The specific method of setting the film temperature immediately before the contact point with the cooling roll to Tg + 80 ° C. or higher is not particularly limited, and examples thereof include a method of controlling the mold temperature at a high temperature. In this case, if the mold temperature is raised too much, it may deteriorate depending on the resin, so by adopting a temperature condition that does not cause thermal deterioration, it is possible to reliably obtain an optical film that can satisfy the residual retardation. Can do. Further, a method of narrowing the air gap may be used. In this case, the size of the air gap may be set taking into account the thickness accuracy of the die line and film. Furthermore, a method of keeping or heating the air gap portion from the mold outlet to the cooling roll is also conceivable. Any means known in the art may be employed as the means for maintaining or heating.
On the other hand, as a specific method of setting the film temperature variation immediately before the contact point with the cooling roll to 3 ° C. or less, for example, the temperature control accuracy of the mold temperature is increased, or the production of the vicinity of the die, the vicinity of the roll, the air gap, etc. A method of eliminating disturbance as much as possible by covering the membrane with a hood is conceivable.

本発明の光学フィルムの製造方法において、ダイスから出た溶融樹脂を引き落として冷却ロールに密着させる際に、金属ロールからなる冷却ロールに対し押圧して接点安定化を行うために、ロール表面が弾性を有するタッチロールを用いて幅方向に均一な力を与える必要がある。   In the optical film manufacturing method of the present invention, when the molten resin from the die is pulled down and brought into close contact with the cooling roll, the roll surface is elastic in order to press against the cooling roll made of a metal roll to stabilize the contact. It is necessary to apply a uniform force in the width direction using the touch roll having

通常、シートの型押し成形時には2本の対をなすロール間に溶融樹脂を膜状に通過させ挟圧するため、ロールは圧力に耐える材質からなる堅牢な構造を有するものであることが要求される。しかしながら、冷却ロールとタッチロールのいずれもが剛性の金属ロールの場合は、樹脂の微妙な厚みムラを吸収できず、ロールとフィルムとの密着が不十分となって厚みムラやフレアの原因となり、光学フィルムの製造には不向きである。従って、本発明においてはタッチロールとして弾性ロールを使用するのである。   Usually, when a sheet is stamped and formed, the molten resin is passed between two pairs of rolls to form a film and sandwiched, so that the rolls are required to have a robust structure made of a material that can withstand the pressure. . However, if both the cooling roll and the touch roll are rigid metal rolls, they cannot absorb the subtle thickness unevenness of the resin, resulting in insufficient adhesion between the roll and the film, resulting in thickness unevenness and flare. It is not suitable for the production of optical films. Therefore, in the present invention, an elastic roll is used as the touch roll.

弾性ロールとしては、炭素鋼、ステンレス鋼、アルミニウム等の金属製の軸芯の外周を弾性材料で被覆したものが好適に用いられる。弾性材料としては表面が平滑であり柔軟なものであればよく、シリコーンゴム、フッ素ゴム等が挙げられ、また、複数の材質のものが多層に積層されたものでもよい。更に、多層の場合はその中で一つでも柔軟なものがあればよく、例えば、内層を弾性材料で構成し、最表面に金属製のスリーブなどを装着してもよい。特に、金属の場合は表面の平滑度を優れたものとすることができるため好ましい材料である。金属スリーブの材質としては、炭素鋼やステンレス鋼、電鋳法で製造されたニッケル等が挙げられる。また、その表面をクロム等でメッキするなどしたものでもよい。
金属スリーブを採用する場合、その厚みは所定の圧力を加えたとき、冷却ロールとフィルムとが密着するのに十分な柔軟性を示すものであればよく、柔軟性が金属の種類によってそれぞれ異なるため、特に限定されるものではない。例えば、電鋳ニッケルを用いた場合には100μm〜1mm程度の範囲で適宜選択されればよい。
As the elastic roll, a material in which the outer circumference of a metal shaft core made of carbon steel, stainless steel, aluminum or the like is coated with an elastic material is suitably used. Any elastic material may be used as long as it has a smooth surface and is flexible, and examples thereof include silicone rubber and fluororubber, and a plurality of materials may be laminated in multiple layers. Furthermore, in the case of a multilayer, it is sufficient that at least one of them is flexible. For example, the inner layer may be made of an elastic material, and a metal sleeve or the like may be attached to the outermost surface. In particular, a metal is a preferable material because the surface smoothness can be excellent. Examples of the material of the metal sleeve include carbon steel, stainless steel, nickel manufactured by electroforming, and the like. Further, the surface thereof may be plated with chromium or the like.
When a metal sleeve is used, the thickness of the metal sleeve only needs to be flexible enough to allow the cooling roll and the film to adhere to each other when a predetermined pressure is applied, and the flexibility varies depending on the type of metal. There is no particular limitation. For example, when electroformed nickel is used, it may be appropriately selected within a range of about 100 μm to 1 mm.

ところで、一般的に弾性ロールは金属ロールに比べて、回転時の偏心振れ精度に劣る。偏心振れが100μmを超える場合には、挟圧時の圧力が変動して、流れ方向の位相差や光軸ズレが変動するため、弾性ロールの偏心振れは100μm以下、好ましくは50μm以下、より好ましくは30μm以下にする必要がある。偏心振れを抑えるには、弾性ロール製作工程において、弾性被覆材料を研磨する際の精度を上げることが肝要である。   By the way, generally an elastic roll is inferior to the eccentric runout accuracy at the time of rotation compared with a metal roll. When the eccentric runout exceeds 100 μm, the pressure at the time of pinching fluctuates, and the phase difference in the flow direction and the optical axis deviation fluctuate. Therefore, the eccentric runout of the elastic roll is 100 μm or less, preferably 50 μm or less, more preferably Needs to be 30 μm or less. In order to suppress the eccentric runout, it is important to increase the accuracy in polishing the elastic coating material in the elastic roll manufacturing process.

本発明の製造方法において、弾性ロールの幅はフィルムの全幅に対して85〜95%とされる必要がある。85%を下回ると、製膜したフィルムの光学特性を全幅の80%以上で満足することが困難となって製品効率が低下し、逆に、95%を超えると、押出フィルム端部の厚肉の影響を受けるため、弾性ロールの全幅での接点安定化の効果が小さくなり、やはり全幅の80%以上で上記光学特性を満足するのが困難となる。   In the production method of the present invention, the width of the elastic roll needs to be 85 to 95% with respect to the entire width of the film. If it is less than 85%, it is difficult to satisfy the optical characteristics of the formed film at 80% or more of the total width, and the product efficiency decreases. Conversely, if it exceeds 95%, the thickness of the end of the extruded film is increased. Therefore, the effect of stabilizing the contact at the full width of the elastic roll becomes small, and it becomes difficult to satisfy the optical characteristics at 80% or more of the full width.

また、一般的にロール温度は残留位相差や光軸に大きく影響を与えるため、本発明においては冷却ロールとタッチロールいずれも温調される必要がある。従って、各ロールは適当な温度に調節できる構造の軸芯部を有することが好ましい。好適に用いられる温度調節手段としては、シーズヒータを軸芯部に組み込んでロールを加熱する電気加熱方式、誘導発熱式コイルによる電磁誘導作用によってロールを加熱する誘導発熱方式、軸芯部内に設けられた流路に温度制御用の熱媒体を循環させてロールを間接加熱する熱媒体循環加熱方式等が挙げられる。特に好ましい方式は熱媒体循環加熱方式であり、この熱媒体は気体でもよいが、水、油等の液体の方が好ましい。熱媒体流路の好適な例としては、内部に2条または4条のスパイラル構造を有するものが挙げられる。   In general, since the roll temperature greatly affects the residual phase difference and the optical axis, both the cooling roll and the touch roll need to be temperature-controlled in the present invention. Therefore, it is preferable that each roll has an axial core part having a structure that can be adjusted to an appropriate temperature. The temperature adjusting means preferably used is an electric heating method in which a sheathed heater is incorporated in the shaft core portion to heat the roll, an induction heating method in which the roll is heated by electromagnetic induction action by an induction heat generating coil, and provided in the shaft core portion. For example, a heat medium circulation heating method in which a heat medium for temperature control is circulated through the flow path to indirectly heat the roll. A particularly preferable method is a heat medium circulation heating method, and this heat medium may be a gas, but is preferably a liquid such as water or oil. Preferable examples of the heat medium flow path include those having a spiral structure of two or four inside.

ロール温度のバラツキが幅方向で変動する場合は、幅方向に歪みのバラツキができるため、位相差にバラツキができるだけでなく、特に光軸バラツキの原因となる。また、経時で平均温度が変わると、製膜時にフィルムに与える歪み量が異なるため、残留位相差の大きさが異なる恐れがあり、ロール温度は幅方向では5℃以下、好ましくは1℃以下、経時での平均温度は5℃以下、好ましくは3℃以下に制御する必要がある。   When the variation in roll temperature varies in the width direction, distortion can occur in the width direction, which not only causes variations in phase difference but also causes variations in the optical axis. In addition, if the average temperature changes with time, the amount of strain applied to the film during film formation is different, so there is a possibility that the magnitude of the residual phase difference is different, and the roll temperature is 5 ° C. or less in the width direction, preferably 1 ° C. or less. It is necessary to control the average temperature over time to 5 ° C. or lower, preferably 3 ° C. or lower.

本発明に係る光学フィルムの製造方法において、弾性ロール、冷却ロールの平均温度は、用いられる樹脂によっても異なるが総じて樹脂のガラス転移温度Tg〜Tg−100℃の範囲とされるのが好ましい。 In the method for producing an optical film according to the present invention, the average temperature of the elastic roll and the cooling roll is preferably in the range of the glass transition temperature Tg to Tg-100 ° C. of the resin, although it varies depending on the resin used.

弾性ロールの形状は通常は円筒状であるが、中央部が若干太いクラウン形状でも問題はない。弾性ロールと冷却ロールの外径は特に限定されず、同一でもよいし、どちらか一方が他方に比べて大きくてもよい。
弾性ロールの圧力は冷却ロールとフィルムが完全に密着する圧力以上であればよく、樹脂の粘度などによって適宜に設定されればよい。
弾性ロールの硬度は、所定の圧力を加えたときに冷却ロールとフィルムとが密着するのに十分な柔軟性があればよい。例えば、シリコーンゴムの場合、ショアーAで30〜90度であればよい。
The shape of the elastic roll is usually a cylindrical shape, but there is no problem even if the central portion has a slightly thick crown shape. The outer diameters of the elastic roll and the cooling roll are not particularly limited and may be the same, or one of them may be larger than the other.
The pressure of the elastic roll only needs to be equal to or higher than the pressure at which the cooling roll and the film are completely adhered to each other, and may be appropriately set depending on the viscosity of the resin.
The hardness of the elastic roll only needs to be flexible enough to allow the cooling roll and the film to adhere to each other when a predetermined pressure is applied. For example, in the case of silicone rubber, it may be 30 to 90 degrees on Shore A.

本発明の光学フィルムによれば、100m以上の長尺にわたって残留位相差ならびに光軸ズレが安定して小さいため、例えば偏光子の保護フィルムとして用いられるような場合にも、長尺品同士の貼り合わせが可能となって、生産性の大幅向上が見込める。また、本発明の製造方法によれば、このような光学フィルムの幅効率を大幅に上昇させることができるとともに、長さ方向に連続かつ安定的に生産できる。   According to the optical film of the present invention, since the residual phase difference and the optical axis deviation are stably small over a length of 100 m or more, even when used as a protective film for a polarizer, for example, It can be combined, and a significant improvement in productivity can be expected. Moreover, according to the manufacturing method of this invention, while the width efficiency of such an optical film can be raised significantly, it can produce continuously and stably in a length direction.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
非晶性熱可塑性樹脂として熱可塑性飽和ノルボルネン樹脂(日本ゼオン社製、商品名「ゼオノア1600」、Tg=168℃)をL/D=32の単軸押出機に供給し、押出機に取り付けられた金型リップ幅1800mm、金型温度310℃のTダイから140℃に温度調節されたロール径350mmの冷却ロール上に押出し、厚さ40μm、幅1710mmのフィルムを製造した。
このとき、エアギャップは65mmとし、フィルムの冷却ロールに対する接点安定化装置として、金属芯にショア硬度70度のシリコーンゴムを厚み5mmで被覆し、更に、50μmのクロムメッキを施した200μm厚みの電鋳ニッケルスリーブでシリコーンゴム周囲を被覆した、ロール径250mm、ロール幅1600mmの弾性タッチロールを120℃に温度調節し、2kgf/cmのタッチ圧で使用した。なお、弾性タッチロールの偏心振れは70μm、冷却ロールとの接点直前のフィルム温度バラツキは250. 9〜252. 0℃の範囲であった。
(Example 1)
A thermoplastic saturated norbornene resin (trade name “ZEONOR 1600”, manufactured by Nippon Zeon Co., Ltd., Tg = 168 ° C.) as an amorphous thermoplastic resin is supplied to an L / D = 32 single-screw extruder and attached to the extruder. The film was extruded from a T-die having a mold lip width of 1800 mm and a mold temperature of 310 ° C. onto a cooling roll having a roll diameter of 350 mm adjusted to 140 ° C. to produce a film having a thickness of 40 μm and a width of 1710 mm.
At this time, the air gap is 65 mm, and as a contact stabilization device for the film cooling roll, a metal core is coated with a silicone rubber having a shore hardness of 70 degrees with a thickness of 5 mm, and further a 50 μm chrome plating is applied to a 200 μm thick electric current. An elastic touch roll having a roll diameter of 250 mm and a roll width of 1600 mm, in which the periphery of silicone rubber was coated with a cast nickel sleeve, was temperature-controlled at 120 ° C. and used at a touch pressure of 2 kgf / cm. The eccentric touch roll had an eccentric runout of 70 μm, and the film temperature variation just before the contact with the cooling roll was in the range of 250.9 to 252.0 ° C.

なお、ロールの偏心振れは次のようにして測定した。即ち、ロール近傍に固定したスタンドに真円度測定機(ミツトヨ社製、商品名「ダイヤルゲージ2109S−10」)をセットし、測定針をロールの法線方向から接触させ、この状態でロールを回転させた際に得られる測定値の最大値と最小値との差を偏心振れとした。測定はロール幅方向の中央、両端から約20cm内側の計3カ所で行い、平均値を採用した。   The eccentric runout of the roll was measured as follows. That is, a roundness measuring machine (trade name “Dial Gauge 2109S-10”, manufactured by Mitutoyo Corporation) is set on a stand fixed in the vicinity of the roll, and the measuring needle is brought into contact with the normal direction of the roll. The difference between the maximum value and the minimum value of the measured values obtained when rotating was defined as the eccentric shake. The measurement was performed at a total of three locations about 20 cm inside from the center in the roll width direction, and the average value was adopted.

得られたフィルムについて100m毎に500mまで、フィルムの中心から両端部に25mmピッチ(幅方向最端部のピッチのみそれぞれ27mm)で、全幅の80%を計53点、及び各点の流れ方向に50cmピッチで3点の合計159点の残留位相差と光軸バラツキを測定し、残留位相差の平均値と最大値、光軸ズレの最大値を表1に示した。なお、位相差及び光軸は、複屈折測定装置(王子計測機器社製、商品名「KOBRA−21ADH」)を用い、590nm光で測定した。   The obtained film is up to 500 m every 100 m, with 25 mm pitch from the center of the film to both ends (only the pitch at the extreme end in the width direction is 27 mm each), and 80% of the total width is 53 points in total, and the flow direction of each point A total of 159 residual phase differences and optical axis variations were measured at a pitch of 50 cm, and the average and maximum residual phase differences and the maximum optical axis deviation were shown in Table 1. In addition, the phase difference and the optical axis were measured with 590 nm light using a birefringence measuring apparatus (trade name “KOBRA-21ADH” manufactured by Oji Scientific Instruments).

(実施例2)
偏心振れが40μmの弾性タッチロールを用いたこと以外は実施例1と同様にしてフィルムを製造した。なお、冷却ロールとの接点直前のフィルム温度バラツキは250. 9〜252. 0℃の範囲であった。実施例1同様の評価結果を表1に示した。
(Example 2)
A film was produced in the same manner as in Example 1 except that an elastic touch roll having an eccentric runout of 40 μm was used. The film temperature variation just before the contact point with the cooling roll was in the range of 250.9 to 252.0 ° C. The evaluation results similar to those in Example 1 are shown in Table 1.

(比較例1)
ロール幅が1300mm、偏心振れが150μmの弾性タッチロールを用いたこと以外は実施例1と同様にしてフィルムを製造した。なお、冷却ロールとの接点直前のフィルム温度バラツキは250. 9〜252. 0℃の範囲であった。実施例1同様の評価結果を表1に示した。
(Comparative Example 1)
A film was produced in the same manner as in Example 1 except that an elastic touch roll having a roll width of 1300 mm and an eccentric runout of 150 μm was used. The film temperature variation just before the contact point with the cooling roll was in the range of 250.9 to 252.0 ° C. The evaluation results similar to those in Example 1 are shown in Table 1.

(比較例2)
ロール幅が1700mm、偏心振れが65μmの弾性タッチロールを用いたこと以外は実施例1と同様にしてフィルムを製造した。なお、冷却ロールとの接点直前のフィルム温度バラツキは250. 9〜252. 0℃の範囲であった。実施例1同様の評価結果を表1に示した。
(Comparative Example 2)
A film was produced in the same manner as in Example 1 except that an elastic touch roll having a roll width of 1700 mm and an eccentric runout of 65 μm was used. The film temperature variation just before the contact point with the cooling roll was in the range of 250.9 to 252.0 ° C. The evaluation results similar to those in Example 1 are shown in Table 1.

(比較例3)
金型及びロール周辺部に故意に送風して気流を乱した以外は実施例1と同様にしてフィルムを製造した。このとき、冷却ロールとの接点直前のフィルム温度バラツキは242℃〜250℃の範囲であった。実施例1同様の評価結果を表1に示した。
(Comparative Example 3)
A film was produced in the same manner as in Example 1 except that the airflow was disturbed by intentionally blowing air around the mold and the roll. At this time, the film temperature variation just before the contact point with the cooling roll was in the range of 242 ° C to 250 ° C. The evaluation results similar to those in Example 1 are shown in Table 1.

なお、フィルム温度バラツキの測定は、実施例1の押出に先立ち、タッチロールを離反した状態で500m押し出した際の最高温度と最低温度を測定したデータを実施例1,2、比較例1,2に代用した。また、比較例3の押出に先立ち、タッチロールを離反した状態で500m押し出した際の最高温度と最低温度を測定したデータを比較例3のデータとして代用した。 In addition, the measurement of film temperature variation measured the data which measured the maximum temperature and the minimum temperature at the time of extruding 500m in the state which separated the touch roll prior to extrusion of Example 1, Example 1, 2, Comparative Example 1, 2. Was substituted. Further, prior to the extrusion of Comparative Example 3, data obtained by measuring the maximum temperature and the minimum temperature when the touch roll was pushed out with a distance of 500 m was used as the data of Comparative Example 3.

Figure 2005172940
Figure 2005172940

Claims (3)

非晶性熱可塑性樹脂が押出成形されてなる光学フィルムであって、少なくとも長さ100m以上にわたって厚みが100μm以下、全面の80%以上にわたって残留位相差が3nm以下、光軸バラツキがフィルムの流れ方向に対するズレ角度で10°以下である光学フィルム。   An optical film obtained by extruding an amorphous thermoplastic resin, having a thickness of 100 μm or less over a length of at least 100 m, a residual retardation of 3 nm or less over 80% of the entire surface, and an optical axis variation in the direction of flow of the film The optical film which is 10 degrees or less in the gap angle with respect to. 前記非晶性熱可塑性樹脂がノルボルネン系樹脂である請求項1に記載の光学フィルム。   The optical film according to claim 1, wherein the amorphous thermoplastic resin is a norbornene resin. 押出機に取り付けられたダイスから押し出された非晶性熱可塑性樹脂からなるフィルムを冷却ロールに密着させて冷却固化しながら引き取る光学フィルムの製造方法であって、冷却ロールとの接点直前におけるフィルムの温度を樹脂のガラス転移温度Tg+80℃以上に制御し、幅方向、流れ方向の温度バラツキを3℃以内に制御するとともに、回転時の偏心振れが100μm以内であり、フィルムの全幅に対して85〜95%の長さを有する、温調された弾性ロールによってフィルムを冷却ロールに対して押圧して密着させることを特徴とする請求項1又は2のいずれかに記載の光学フィルムの製造方法。   An optical film manufacturing method in which a film made of an amorphous thermoplastic resin extruded from a die attached to an extruder is brought into close contact with a cooling roll and then cooled and solidified. The temperature is controlled to the glass transition temperature Tg + 80 ° C. or more of the resin, the temperature variation in the width direction and the flow direction is controlled to within 3 ° C., and the eccentric runout during rotation is within 100 μm. The method for producing an optical film according to claim 1, wherein the film is pressed against and adhered to the cooling roll with a temperature-controlled elastic roll having a length of 95%.
JP2003409373A 2003-12-08 2003-12-08 Optical film and manufacturing method therefor Pending JP2005172940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409373A JP2005172940A (en) 2003-12-08 2003-12-08 Optical film and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409373A JP2005172940A (en) 2003-12-08 2003-12-08 Optical film and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005172940A true JP2005172940A (en) 2005-06-30

Family

ID=34730775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409373A Pending JP2005172940A (en) 2003-12-08 2003-12-08 Optical film and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005172940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120009430A (en) 2009-03-19 2012-01-31 코니카 미놀타 옵토 인코포레이티드 Method for producing optical film, optical film, and apparatus for producing optical film
US8906279B2 (en) 2006-06-21 2014-12-09 Konica Minolta Opto, Inc. Manufacturing method of polarizing plate protective film, polarizing plate protective film, polarizing plate, and liquid crystal display device
KR101737368B1 (en) 2008-12-10 2017-05-18 후지필름 가부시키가이샤 Film and method of manufacturing the same, optical compensation film for liquid crystal display panel, polarization plate and liquid crystal display device
JP2018015979A (en) * 2016-07-28 2018-02-01 株式会社クラレ Method for producing resin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906279B2 (en) 2006-06-21 2014-12-09 Konica Minolta Opto, Inc. Manufacturing method of polarizing plate protective film, polarizing plate protective film, polarizing plate, and liquid crystal display device
KR101737368B1 (en) 2008-12-10 2017-05-18 후지필름 가부시키가이샤 Film and method of manufacturing the same, optical compensation film for liquid crystal display panel, polarization plate and liquid crystal display device
KR20120009430A (en) 2009-03-19 2012-01-31 코니카 미놀타 옵토 인코포레이티드 Method for producing optical film, optical film, and apparatus for producing optical film
JP2018015979A (en) * 2016-07-28 2018-02-01 株式会社クラレ Method for producing resin film

Similar Documents

Publication Publication Date Title
JP4506733B2 (en) Manufacturing method of optical film
JP4373834B2 (en) Manufacturing method of optical film
TW200909186A (en) Device for manufacturing optical film and method for manufacturing the same
JP4277531B2 (en) Optical film and method for producing the same
JP4514625B2 (en) Film production method
JP2008039807A (en) Method for manufacturing longitudinal uniaxial oriented retardation film and longitudinal uniaxial oriented retardation film
JP2008039808A (en) Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate
JP3846566B2 (en) Method for producing thermoplastic resin sheet
JP2005172940A (en) Optical film and manufacturing method therefor
JP4088135B2 (en) Manufacturing method of optical film
JP2006224462A (en) T-die and manufacturing method of thermoplastic resin film using it
JP2007030410A (en) Manufacturing method of optical film
JP3846567B2 (en) Method for producing thermoplastic resin sheet
JP2010120304A (en) Norbornene resin film, method of manufacturing norbornene resin film, polarization plate, optical compensation film for liquid crystal display panel, and antireflection film
JP4662855B2 (en) Method for producing retardation film
JP2008272983A (en) Cycloolefin resin film, its manufacturing method, polarization plate, optical compensation film antireflection film and liquid crystal display device
JP4292912B2 (en) Optical film
JP2005280218A (en) Optical film manufacturing method
JP4913995B2 (en) Manufacturing method of optical film
JP2012032647A (en) Retardation film having light diffusion function, manufacturing method thereof, composite polarizing plate, polarizing plate and backlight unit for liquid crystal display device
JP2005284141A (en) Optical film and manufacturing method therefof
JP2015214025A (en) Apparatus and method for producing thermoplastic resin sheet and thermoplastic resin sheet obtained therefrom
JP2006018212A (en) Method for manufacturing retardation film
JP2006153983A (en) Method for manufacturing optical film and optical film
JP2015214024A (en) Apparatus and method for producing thermoplastic resin sheet and thermoplastic resin sheet obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090924