JP2005172641A - Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status - Google Patents

Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status Download PDF

Info

Publication number
JP2005172641A
JP2005172641A JP2003414025A JP2003414025A JP2005172641A JP 2005172641 A JP2005172641 A JP 2005172641A JP 2003414025 A JP2003414025 A JP 2003414025A JP 2003414025 A JP2003414025 A JP 2003414025A JP 2005172641 A JP2005172641 A JP 2005172641A
Authority
JP
Japan
Prior art keywords
test piece
main body
pressure vessel
reactor pressure
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003414025A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshimoto
賢太郎 吉本
Minoru Tomimatsu
実 冨松
Takatoshi Hirota
貴俊 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003414025A priority Critical patent/JP2005172641A/en
Publication of JP2005172641A publication Critical patent/JP2005172641A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring test piece of a reactor pressure vessel which has a characteristic that when stress of a specific level corresponding to the operation state works in high temperature region not causing brittle fracture and when temperature lowers to a region possible to cause brittle fracture, stress lowers to a level not causing brittle fracture, and a method for monitoring/evaluating the degradation in the reactor pressure vessel by using the test piece. <P>SOLUTION: A recess part 23 is provided to one side of a test piece body 16a, a notch 24 is continuously provided on the bottom of the recess part 23. A stress adding function member 26 is inserted in the recess part 23. The test piece body 16a and the stress adding function member 26 are arranged in this state in a reactor, so that a load works on the test piece body 16a during temperature elevation in the reactor and thus degradation of materials used in the reactor pressure vessel 1 can be historically monitored. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、商用軽水炉の原子炉圧力容器に使用される材料の劣化状態を経年的に監視する試験片及びその監視・評価方法に関するものである。   The present invention relates to a test piece for monitoring a deterioration state of a material used for a reactor pressure vessel of a commercial light water reactor over time, and a method for monitoring and evaluating the test piece.

一般に、加圧水型原子炉は、原子炉圧力容器の炉心の核反応熱により昇温された高温高圧の原子炉冷却材を、原子炉圧力容器の外側に設けた蒸気発生器へ導いてタービン駆動用蒸気を発生させている(例えば、特許文献1参照)。
このように、沸騰水型原子炉圧力容器も含めて原子炉圧力容器は、熱エネルギー発生源の炉心を収納する容器であり、高温高圧に加えて炉心の燃料からの中性子の照射も受ける厳しい環境の下で使用されるため、高い信頼性が要求されていると共に、長期にわたり健全性を確認しなくてはならない機器である。原子炉圧力容器に使用されている材料は、中性子照射を受けて照射脆化を生じることから、脆化の進行を監視する一方、脆化量の評価を行い、脆性破壊を生じないように運転を管理する必要がある。
特開2002−257971号公報
Generally, a pressurized water reactor is used to drive a turbine by introducing a high-temperature and high-pressure reactor coolant heated by the nuclear reaction heat of the reactor pressure vessel core to a steam generator provided outside the reactor pressure vessel. Steam is generated (see, for example, Patent Document 1).
In this way, reactor pressure vessels, including boiling water reactor pressure vessels, are vessels that contain the core of the thermal energy generation source, and are exposed to harsh environments that are subject to neutron irradiation from core fuel in addition to high temperature and pressure Therefore, it is a device that requires high reliability and must be sound for a long time. The materials used in the reactor pressure vessel undergo irradiation embrittlement when irradiated with neutrons, so the progress of embrittlement is monitored while the amount of embrittlement is evaluated and operation is performed so as not to cause brittle fracture. Need to manage.
JP 2002-257971 A

現在、原子炉圧力容器の中性子照射による脆化量の評価は、原子炉圧力容器内に設置された監視試験片(原子炉圧力容器より採取)による試験結果を基にして行われている。   At present, the evaluation of the embrittlement amount by neutron irradiation of the reactor pressure vessel is performed based on the test results obtained by monitoring test pieces (collected from the reactor pressure vessel) installed in the reactor pressure vessel.

しかしながら、上述した原子炉圧力容器には、通常の運転状態で15kgf/mm2程度の応力が作用しているのに対して、従来の監視試験片には負荷が作用していない状態で中性子照射を受けているので、応力の作用により脆化への影響がある場合に、監視試験片の試験結果にはその効果が含まれていないことになる。
一方、監視試験片に常時応力を付与した状態では、原子炉の運転停止により温度が低下した場合に、監視試験片が脆性破壊を起こすことにより破壊してしまう可能性がある。
However, while the reactor pressure vessel described above is subjected to a stress of about 15 kgf / mm 2 in a normal operating state, neutron irradiation is performed in a state where no load is applied to the conventional monitoring specimen. Therefore, when there is an influence on the embrittlement due to the action of stress, the test result of the monitoring test piece does not include the effect.
On the other hand, in a state where stress is constantly applied to the monitoring test piece, there is a possibility that the monitoring test piece breaks due to brittle fracture when the temperature decreases due to the shutdown of the reactor.

本発明はこのような実状に鑑みてなされたものであって、その目的は、脆性破壊を起こさない高温領域では運転状態に対応した所定レベルの応力が作用し、脆性破壊を起こす可能性のある低温領域になると、脆性破壊を起こさないレベルまで応力が低下する特徴を有する原子炉圧力容器の監視試験片及びその試験片を用いて原子炉圧力容器の劣化状態を監視・評価する方法を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to cause a predetermined level of stress corresponding to the operating state in a high temperature region where no brittle fracture occurs, which may cause brittle fracture. Provided are a reactor pressure vessel monitoring test piece having a characteristic that stress is reduced to a level at which brittle fracture does not occur at a low temperature region, and a method for monitoring and evaluating the deterioration state of the reactor pressure vessel using the test piece. There is.

上記従来技術の有する課題を解決するため、本発明においては、試験片本体の片側に凹部を設け、該凹部の底面に切欠き部を連続して設けると共に、前記凹部内に応力付加機能部材を挿入し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしている。   In order to solve the above-described problems of the prior art, in the present invention, a recess is provided on one side of the test piece body, a notch is continuously provided on the bottom surface of the recess, and a stress applying function member is provided in the recess. In this state, by placing the test piece body and the stress applying functional member in the furnace, a load acts on the test piece body at the time of temperature rise in the furnace, and it is used for a reactor pressure vessel. The deterioration state of the material is monitored over time.

また、本発明においては、試験片本体の片側に切欠き部を設け、前記試験片本体を間において応力付加機能部材を前記切欠き部と交差する方向へそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の両端を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしている。   Further, in the present invention, a notch portion is provided on one side of the test piece main body, and the stress applying functional member is disposed in a direction intersecting the notch portion with the test piece main body interposed therebetween, and the test piece main body and Both ends of the stress applying functional member are fixed with a jig, and in this state, the test piece main body and the stress applying functional member are arranged in the furnace, thereby loading the test piece main body at the time of temperature rise in the furnace. Acts to monitor the deterioration of the materials used in the reactor pressure vessel over time.

さらに、本発明においては、試験片本体の片側に切欠き部を設け、前記試験片本体の2箇所の支持点及び1箇所の負荷点に応力付加機能部材をそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の周囲を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしている。   Furthermore, in the present invention, a notch portion is provided on one side of the test piece main body, stress applying function members are respectively arranged at two support points and one load point of the test piece main body, and the test piece main body And the periphery of the stress applying functional member is fixed with a jig, and in this state, the test piece main body and the stress applying functional member are disposed in the furnace, so that the test piece main body can be attached to the test piece main body when the furnace is heated. The load is applied and the deterioration state of the material used for the reactor pressure vessel is monitored over time.

上述の如く、本発明に係る原子炉圧力容器の監視試験片は、試験片本体の片側に凹部を設け、該凹部の底面に切欠き部を連続して設けると共に、前記凹部内に応力付加機能部材を挿入し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしているので、脆性破壊を起こさない高温領域では運転状態に対応した所定レベルの応力を試験片本体に作用させ、脆性破壊を起こす可能性のある低温領域になると、脆性破壊を起こさないレベルまで試験片本体に対する応力を低減することができる。したがって、本発明の監視試験片を使用すれば、原子炉圧力容器の劣化状態を精度良く、迅速かつ経年的に監視することが可能となり、原子炉圧力容器の信頼性を確保できる。   As described above, the reactor pressure vessel monitoring test piece according to the present invention is provided with a recess on one side of the test piece body, a notch is continuously provided on the bottom surface of the recess, and a stress applying function in the recess. A member is inserted, and in this state, the test piece main body and the stress applying functional member are disposed in the furnace, so that a load acts on the test piece main body when the temperature rises in the furnace, and the reactor pressure vessel Since deterioration of the materials used is monitored over time, there is a possibility of causing brittle fracture by applying a predetermined level of stress corresponding to the operating condition to the test piece body in a high temperature range where brittle fracture does not occur. When the temperature is low, the stress on the test piece body can be reduced to a level at which brittle fracture does not occur. Therefore, if the monitoring test piece of the present invention is used, it is possible to monitor the deterioration state of the reactor pressure vessel with high accuracy, promptly and over time, and to ensure the reliability of the reactor pressure vessel.

また、本発明に係る原子炉圧力容器の監視試験片は、試験片本体の片側に切欠き部を設け、前記試験片本体を間において応力付加機能部材を前記切欠き部と交差する方向へそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の両端を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしているので、上記発明と同様の効果を得ることができると共に、別の観点からシャルピー衝撃特性や破壊靭性特性を調べることができる。   Further, the reactor pressure vessel monitoring test piece according to the present invention is provided with a notch portion on one side of the test piece main body, and the stress applying functional member in the direction intersecting the notch portion between the test piece main bodies, respectively. At the same time, both ends of the test piece main body and the stress applying functional member are fixed with a jig, and in this state, the test piece main body and the stress applying functional member are arranged in the furnace. Since the load acts on the test piece main body at the time of temperature and the deterioration state of the material used for the reactor pressure vessel is monitored over time, the same effect as the above invention can be obtained, Charpy impact characteristics and fracture toughness characteristics can be examined from another viewpoint.

さらに、本発明に係る原子炉圧力容器の監視試験片は、試験片本体の片側に切欠き部を設け、前記試験片本体の2箇所の支持点及び1箇所の負荷点に応力付加機能部材をそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の周囲を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしているので、上記発明と同様の効果を得ることができると共に、別の観点からシャルピー衝撃特性や破壊靭性特性を調べることができる。   Furthermore, the monitoring test piece of the reactor pressure vessel according to the present invention is provided with a notch portion on one side of the test piece body, and a stress applying function member is provided at two support points and one load point of the test piece body. Each of the test piece main body and the stress applying functional member is fixed with a jig, and in this state, the test piece main body and the stress applying functional member are arranged in the furnace. Since a load acts on the test piece body at the time of temperature rise and the deterioration state of the material used for the reactor pressure vessel is monitored over time, the same effect as the above invention can be obtained. From another viewpoint, Charpy impact characteristics and fracture toughness characteristics can be examined.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on illustrated embodiments.

図1〜図5は、本発明に係る原子炉圧力容器の監視試験片の第1実施形態を示している。図1は本実施形態の監視試験片が配置される原子炉圧力容器を概略的に示す断面図、図2は図1の原子炉圧力容器内に照射試験片カプセルを設置した状態を示す要部断面図、図3は図2の照射試験片カプセルを示す斜視図、図4は本実施形態の監視試験片を示す概略平面図、図5は本実施形態の監視試験片の試験片本体に応力を付与する応力付加機能部材の使用材料の相違に基づく温度模式図である。   1 to 5 show a first embodiment of a monitoring test piece for a reactor pressure vessel according to the present invention. FIG. 1 is a cross-sectional view schematically showing a reactor pressure vessel in which a monitoring test piece of this embodiment is arranged, and FIG. 2 is a main part showing a state in which an irradiation test piece capsule is installed in the reactor pressure vessel of FIG. FIG. 3 is a perspective view showing the irradiation test piece capsule of FIG. 2, FIG. 4 is a schematic plan view showing the monitoring test piece of this embodiment, and FIG. 5 is stress on the test piece body of the monitoring test piece of this embodiment. It is a temperature schematic diagram based on the difference in the used material of the stress addition functional member which provides.

第1実施形態の原子炉圧力容器1は、図1に示す如く、有底円筒状に形成された容器本体2と該容器本体2の上方開口部に着脱自在に取付けられる蓋体3を備えた構造物であり、容器本体2の側壁上部には、冷却材入口ノズル4及び冷却材出口ノズル5が設けられている。また、容器本体2の内部には、上方開口部に近い棚部から円筒形の炉心槽6が支持され、該炉心槽6と容器本体2との間にはダウンカマー7が画成されている。そして、炉心槽6の下部には、下部炉心支持板8及び下部炉心板9が水平に設けられており、炉心槽6は下部炉心支持板8の位置で容器本体2から水平方向に支持されている。
下部炉心板9の上方には、図示しない多数の燃料集合体が互いに隣接して配設され、炉心10を形成している。燃料集合体の上端は、上部炉心板11によって押さえられており、その上方には上部プレナム12が形成されている。この上部プレナム12は、炉心槽6のノズルフランジを介して出口ノズル5へ連通している。なお、容器本体2の底部は、半球殻状の鏡板13として形成されており、該鏡板13と下部炉心支持板8との間は、下部プレナム14となっている。
As shown in FIG. 1, the reactor pressure vessel 1 of the first embodiment includes a vessel body 2 formed in a bottomed cylindrical shape and a lid 3 that is detachably attached to an upper opening of the vessel body 2. A coolant inlet nozzle 4 and a coolant outlet nozzle 5 are provided on the upper side wall of the container body 2. A cylindrical core tank 6 is supported inside the container body 2 from a shelf near the upper opening, and a downcomer 7 is defined between the core tank 6 and the container body 2. . A lower core support plate 8 and a lower core plate 9 are horizontally provided at the lower portion of the core tank 6, and the core tank 6 is supported in the horizontal direction from the vessel body 2 at the position of the lower core support plate 8. Yes.
A number of fuel assemblies (not shown) are arranged adjacent to each other above the lower core plate 9 to form a core 10. The upper end of the fuel assembly is pressed by the upper core plate 11, and an upper plenum 12 is formed above it. The upper plenum 12 communicates with the outlet nozzle 5 via the nozzle flange of the core 6. The bottom of the container body 2 is formed as a hemispherical end plate 13, and a lower plenum 14 is formed between the end plate 13 and the lower core support plate 8.

このような構造の原子炉圧力容器1における冷却材Cの流れを説明すると、まず、冷却材Cは図示しない冷却材ポンプによって配管を流れ、入口ノズル4を通って内部のダウンカマー7へ流入する。そして、冷却材Cは、矢印に示すようにダウンカマー7内を流下すると共に、下部プレナム14内で反転し、下部炉心支持板8と下部炉心板9を貫流して炉心10内に入る。炉心10内では、冷却材Cが燃料集合体の燃料棒の外側をこれに沿って上向きに流れながら、核反応熱を吸収して昇温する。その後、冷却材Cは炉心10内を上昇し、上部プレナム12に至った後、冷却材Cは水平方向に向きを変え、蒸気発生器へ向けて出口ノズル5から流出することになる。   The flow of the coolant C in the reactor pressure vessel 1 having such a structure will be described. First, the coolant C flows through a pipe by a coolant pump (not shown) and flows into the internal downcomer 7 through the inlet nozzle 4. . Then, the coolant C flows down in the downcomer 7 as indicated by an arrow, reverses in the lower plenum 14, flows through the lower core support plate 8 and the lower core plate 9, and enters the core 10. In the core 10, while the coolant C flows upward along the outside of the fuel rod of the fuel assembly, it absorbs the nuclear reaction heat and rises in temperature. Thereafter, the coolant C rises in the core 10 and reaches the upper plenum 12, and then the coolant C turns in the horizontal direction and flows out from the outlet nozzle 5 toward the steam generator.

一方、本実施形態の原子炉圧力容器1内には、図2に示す如く、密封された長尺の照射試験片カプセル15が配設されている。この照射試験片カプセル15内には、原子炉圧力容器1に使用される材料の中性子による劣化状態を経年的に監視し、脆化量の評価を行うのに用いる各種の監視試験片16及び負荷用治具17,18が複数列に封入されて配置されている。
このため、照射試験片カプセル15は、図3に示す如く、上下端に上部プラグ19及び底部プラグ20を備えており、監視試験片16及び負荷用治具17,18は、温度モニタ21及びスペーサ22等を介在させた状態で、上部プラグ19と底部プラグ20との間に配置されている。また、照射試験片カプセル15は、監視試験片16及び負荷用治具17,18を封入した状態で、上部プラグ19及び底部プラグ20によって炉心槽6の外周面に取付けられており、これによって、監視試験片16が原子炉圧力容器1と同一の環境下に置かれるようになっている。なお、図3は、本実施形態での監視試験片16及び負荷用治具17,18の配置の一例を示したものである。
On the other hand, in the reactor pressure vessel 1 of the present embodiment, as shown in FIG. 2, a long sealed irradiation test piece capsule 15 is disposed. In this irradiation test piece capsule 15, various monitoring test pieces 16 and loads used for monitoring the deterioration state of the material used for the reactor pressure vessel 1 by neutrons over time and evaluating the amount of embrittlement. The jigs 17 and 18 are arranged in a plurality of rows.
Therefore, as shown in FIG. 3, the irradiation test piece capsule 15 includes an upper plug 19 and a bottom plug 20 at the upper and lower ends, and the monitoring test piece 16 and the load jigs 17 and 18 include a temperature monitor 21 and a spacer. In the state where 22 etc. are interposed, it arrange | positions between the upper part plug 19 and the bottom part plug 20. FIG. Moreover, the irradiation test piece capsule 15 is attached to the outer peripheral surface of the reactor core 6 by the upper plug 19 and the bottom plug 20 in a state in which the monitoring test piece 16 and the load jigs 17 and 18 are enclosed. The monitoring test piece 16 is placed in the same environment as the reactor pressure vessel 1. FIG. 3 shows an example of the arrangement of the monitoring test piece 16 and the load jigs 17 and 18 in the present embodiment.

第1実施形態の監視試験片16は、図4に示す如く、コンパクトテンション試験片(CT試験片)である試験片本体16aを備えている。そして、試験片本体16aの片側側面の中央には、断面コ字状の凹部23が設けられていると共に、該凹部23の底面には、反対側側面へ向かって延びる切欠き部24及びクラック25が連続して設けられている。これら切欠き部24及びクラック25は、応力負荷の影響が試験片本体16aに強く及ぶように設けられたものである。
また、試験片本体16aの凹部23内には、図4(a)に示す如く、これとほぼ同じ断面形状であって、ほぼ同一寸法の応力付加機能部材26が楔として挿入配置されている。
The monitoring test piece 16 of the first embodiment includes a test piece main body 16a which is a compact tension test piece (CT test piece) as shown in FIG. A concave portion 23 having a U-shaped cross section is provided at the center of one side surface of the test piece main body 16a, and a notch portion 24 and a crack 25 extending toward the opposite side surface are formed on the bottom surface of the concave portion 23. Are provided continuously. These notches 24 and cracks 25 are provided so that the stress load is strongly applied to the test piece main body 16a.
Further, as shown in FIG. 4A, a stress applying function member 26 having substantially the same cross-sectional shape and having substantially the same dimensions is inserted and disposed in the recess 23 of the test piece main body 16a as a wedge.

応力付加機能部材26としては、室温(約25℃)から原子炉圧力容器1の運転温度域(炉内運転温度、約290℃)の範囲内に熱弾性型マルテンサイト変態(形状記憶効果)を有する材料が用いられており、図4(b)に示すように、昇温するのに伴って応力付加機能部材26が形状記憶効果で拡大して広がり、試験片本体16aに対して応力負荷が矢印方向(切欠き部24及びクラック25が開口する方向)へ作用するように構成されている。このような応力付加機能部材26の候補材料として、Fe−Mn−Si系合金やFe−Cr−Ni−Mn−Si系合金などが挙げられるが、核変換に伴う放射化による被曝低減のため、Coを含まない材料を選定することが好ましい。
また、応力付加機能部材26としては、試験片本体16aの材料(例えば、低合金鋼)よりも線膨張係数の大きい材料を用いることも可能であり、図4(b)に示すように、昇温するのに伴って応力付加機能部材26が熱膨張差で拡大して広がり、試験片本体16aに対して応力負荷が矢印方向(切欠き部24及びクラック25が開口する方向)へ作用するように構成されている。このような応力付加機能部材26の候補材料として、オーステナイト系ステンレス鋼などが挙げられる。
なお、図5で示す如く、応力付加機能部材26の材料として形状記憶合金を使用した場合は、実線のように運転温度の途中で急激に付与応力が発生し、その後に一定応力となる特性を有している。また、線膨張係数の高い材料を使用した場合は、破線のように運転温度の上昇に伴って徐々に付与応力が大きくなる特性を有している。
As the stress application function member 26, a thermoelastic martensitic transformation (shape memory effect) is performed within a range from room temperature (about 25 ° C.) to the operating temperature range of the reactor pressure vessel 1 (in-furnace operating temperature, about 290 ° C.). As shown in FIG. 4B, as the temperature rises, the stress applying functional member 26 expands and expands due to the shape memory effect, and the stress load is applied to the test piece main body 16a. It is comprised so that it may act on the arrow direction (the direction which the notch 24 and the crack 25 open). Candidate materials for such a stress application function member 26 include Fe-Mn-Si based alloys and Fe-Cr-Ni-Mn-Si based alloys, etc., but for reducing exposure due to activation associated with transmutation, It is preferable to select a material that does not contain Co.
Further, as the stress application function member 26, a material having a linear expansion coefficient larger than that of the material of the test piece main body 16a (for example, low alloy steel) can be used. As shown in FIG. As the temperature increases, the stress application function member 26 expands and expands due to the difference in thermal expansion so that the stress load acts on the test piece main body 16a in the direction of the arrow (the direction in which the notch 24 and the crack 25 open). It is configured. A candidate material for such a stress application function member 26 is austenitic stainless steel.
As shown in FIG. 5, when a shape memory alloy is used as the material of the stress application function member 26, a characteristic that an applied stress abruptly occurs in the middle of the operating temperature as shown by a solid line and thereafter becomes a constant stress. Have. In addition, when a material having a high linear expansion coefficient is used, the applied stress gradually increases as the operating temperature increases as indicated by the broken line.

第1実施形態の試験片本体16a及び応力付加機能部材26を備えた監視試験片16を用いて、原子炉圧力容器1の中性子照射による脆化量の評価を行うには、まず、当該監視試験片16が封入された照射試験片カプセル15を炉内に配置し、この状態で原子炉圧力容器1を一定期間運転する。この間、試験片本体16aには、脆性破壊しない高温領域において、原子炉圧力容器1の運転状態に対応した所定のレベルの応力が応力付加機能部材26によって切欠き部24及びクラック25が開口する方向へ負荷されている。
次いで、定期点検時等に際して原子炉圧力容器1の運転を停止し、蓋体3を取外して上部開口を開き、照射試験片カプセル15を容器本体2から取出すと共に、この照射試験片カプセル15から監視試験片16を取出す。この間、監視試験片16が脆性破壊の可能性のある低温領域にあっても、脆性破壊しないレベルまで試験片本体16aへの応力負荷が低減されている。
その後、試験片本体16aに設けた一対の嵌合孔27を用いて、監視試験片16を図示しない試験機の治具に設置する。この状態で、当該試験機によって試験片本体16aの切欠き部24及びクラック25の開口する方向へ負荷荷重を与えて破壊靭性を測定すれば、原子炉圧力容器1の中性子照射による脆化量が監視試験片16を通じて評価でき、原子炉圧力容器1の劣化状態を経年的に監視することが可能になる。
In order to evaluate the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 using the monitoring test piece 16 including the test piece main body 16a and the stress application function member 26 of the first embodiment, first, the monitoring test is performed. The irradiation test piece capsule 15 in which the piece 16 is enclosed is placed in the furnace, and the reactor pressure vessel 1 is operated for a certain period in this state. During this time, a predetermined level of stress corresponding to the operating state of the reactor pressure vessel 1 is applied to the test piece main body 16a in a high temperature region where no brittle fracture occurs. Is being loaded.
Next, the operation of the reactor pressure vessel 1 is stopped at the time of periodic inspection, the lid 3 is removed, the upper opening is opened, and the irradiation test piece capsule 15 is taken out from the container main body 2 and monitored from this irradiation test piece capsule 15. The test piece 16 is taken out. During this time, even if the monitoring test piece 16 is in a low temperature region where there is a possibility of brittle fracture, the stress load on the test piece main body 16a is reduced to a level at which brittle fracture does not occur.
Thereafter, the monitoring test piece 16 is installed in a jig of a tester (not shown) using a pair of fitting holes 27 provided in the test piece main body 16a. In this state, if the fracture toughness is measured by applying a load load in the direction in which the notch 24 and the crack 25 of the test piece main body 16a are opened by the test machine, the amount of embrittlement due to neutron irradiation of the reactor pressure vessel 1 is increased. It can be evaluated through the monitoring test piece 16, and the deterioration state of the reactor pressure vessel 1 can be monitored over time.

図6は本発明の第2実施形態に係る監視試験片の3点曲げ試験片の昇温時状態を示す概略平面図であり、上記第1実施形態と同一部位には同一符号を付して説明を省略する。
本発明の第2実施形態に係る監視試験片16が第1実施形態のものと異なるのは、試験片本体16bが3点曲げ試験片であるという点である。このため、試験片本体16bは、図6に示すように平面視で長方形に形成されており、長辺の片側側面の中央には、断面コ字状の凹部23が設けられていると共に、該凹部23の底面には、反対側側面へ向かって延びる切欠き部24及びクラック25が連続して設けられている。
FIG. 6 is a schematic plan view showing the temperature rising state of the three-point bending test piece of the monitoring test piece according to the second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals. Description is omitted.
The monitoring test piece 16 according to the second embodiment of the present invention is different from that of the first embodiment in that the test piece main body 16b is a three-point bending test piece. Therefore, the test piece main body 16b is formed in a rectangular shape in a plan view as shown in FIG. 6, and a concave portion 23 having a U-shaped cross section is provided at the center of one side surface of the long side. The bottom surface of the recess 23 is continuously provided with a notch 24 and a crack 25 extending toward the opposite side surface.

第2実施形態の試験片本体16b及び応力付加機能部材26を備えた監視試験片16を用いて、原子炉圧力容器1の中性子照射による脆化量の評価を行うには、第1実施形態と同様にして原子炉圧力容器1を一定期間運転し、運転停止後、照射試験片カプセル15から監視試験片16を取出す。そして、図6に示す如く、試験片本体16bの凹部23側である下面の両端の2箇所を支持点として支持した状態で図外の試験機の治具に設置する。この状態で、当該試験機によって試験片本体16bの凹部23と反対側である上面の中央の1箇所を負荷点として、矢印方向に荷重を加えて破壊靭性を測定すれば、上記第1実施形態と同様、原子炉圧力容器1の中性子照射による脆化量が監視試験片16を通じて評価することができる。   In order to evaluate the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 using the test specimen 16 provided with the specimen main body 16b and the stress application function member 26 of the second embodiment, Similarly, the reactor pressure vessel 1 is operated for a certain period, and after the operation is stopped, the monitoring test piece 16 is taken out from the irradiation test piece capsule 15. Then, as shown in FIG. 6, the test piece main body 16 b is installed on a jig of a test machine (not shown) in a state where the two positions on both ends of the lower surface on the concave portion 23 side are supported as support points. In this state, if the test machine is used to measure the fracture toughness by applying a load in the direction of the arrow with one place at the center of the upper surface opposite to the concave portion 23 of the test piece body 16b as the load point, the first embodiment described above. Similarly, the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 can be evaluated through the monitoring test piece 16.

図7は本発明の第3実施形態に係る監視試験片の3点曲げ試験片の昇温時状態を示す概略平面図であり、上記第2実施形態と同一部位には同一符号を付して説明を省略する。
本発明の第3実施形態に係る監視試験片16が第2実施形態のものと異なるのは、3点曲げ試験片である試験片本体16bの片側側面の中央に応力付加機能部材36を挿入する凹部が設けられておらず、切欠き部24及びクラック25のみが設けられているという点である。一方、応力付加機能部材36は、図7に示す如く、上記第1及び第2実施形態の応力付加機能部材26と同様の材料で、かつ試験片本体16bの長さ寸法と同じ大きさの棒状体に形成されており、試験片本体16bを間において切欠き部24及びクラック25と交差する方向へそれぞれ間隔を開けて配置されている。しかも、試験片本体16b及び応力付加機能部材36の両端は、負荷用治具17によってそれぞれ固定されている。
FIG. 7 is a schematic plan view showing the temperature rising state of the three-point bending test piece of the monitoring test piece according to the third embodiment of the present invention. The same parts as those in the second embodiment are denoted by the same reference numerals. Description is omitted.
The monitoring test piece 16 according to the third embodiment of the present invention is different from that of the second embodiment in that the stress applying function member 36 is inserted in the center of one side surface of the test piece main body 16b which is a three-point bending test piece. The recess is not provided, and only the notch 24 and the crack 25 are provided. On the other hand, as shown in FIG. 7, the stress application function member 36 is a rod-like material made of the same material as the stress application function member 26 of the first and second embodiments and having the same size as the length of the test piece main body 16b. It is formed in the body, and is arranged at intervals in the direction intersecting the notch 24 and the crack 25 with the test piece main body 16b interposed therebetween. In addition, both ends of the test piece main body 16b and the stress application function member 36 are fixed by the loading jig 17, respectively.

第3実施形態の試験片本体16b及び応力付加機能部材36を備えた監視試験片16を用いて、原子炉圧力容器1の中性子照射による脆化量の評価を行うには、第1実施形態と同様にして原子炉圧力容器1を一定期間運転し、運転停止後、照射試験片カプセル15から監視試験片16及び負荷用治具17を取出す。そして、試験片本体16bと応力付加機能部材36及び負荷用治具17とを分離し、図6に示すものと同様、試験片本体16bの切欠き部24側である下面の両端の2箇所を支持点として支持した状態で図外の試験機の治具に設置する。この状態で、当該試験機によって試験片本体16bの切欠き部24と反対側である上面の中央の1箇所を負荷点として、切欠き部24の方向に荷重を加えて破壊靭性を測定すれば、上記第2実施形態と同様、原子炉圧力容器1の中性子照射による脆化量が監視試験片16を通じて評価することができる。   In order to evaluate the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 using the test specimen 16 provided with the specimen main body 16b and the stress application function member 36 of the third embodiment, Similarly, the reactor pressure vessel 1 is operated for a certain period, and after the operation is stopped, the monitoring test piece 16 and the load jig 17 are taken out from the irradiation test piece capsule 15. Then, the test piece main body 16b is separated from the stress applying function member 36 and the loading jig 17, and, similar to the one shown in FIG. 6, two places on both ends of the lower surface on the cutout portion 24 side of the test piece main body 16b. Install it on the jig of the testing machine (not shown) while supporting it as a supporting point. In this state, if the test machine is used to measure the fracture toughness by applying a load in the direction of the notch 24 with the central portion of the upper surface opposite to the notch 24 of the test piece body 16b as a load point. As in the second embodiment, the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 can be evaluated through the monitoring test piece 16.

図8は本発明の第4実施形態に係る監視試験片の3点曲げ試験片の昇温時状態を示す概略平面図であり、上記第2及び第3実施形態と同一部位には同一符号を付して説明を省略する。
本発明の第4実施形態に係る監視試験片16が第2及び第3実施形態のものと異なるのは、3点曲げ試験片である試験片本体16bの片側側面の中央に応力付加機能部材36を挿入する凹部が設けられておらず、切欠き部24及びクラック25のみが設けられているという点である。また、応力付加機能部材46は、図8に示す如く、上記第1実施形態〜第3実施形態の応力付加機能部材26,36と同様の材料であるが、平面視で四角形状に形成されており、試験片本体16bの2箇所の支持点及び1箇所の負荷点の合計3箇所に配置されている点である。しかも、試験片本体16b及び各応力付加機能部材46の周囲は、これを囲む大きさに形成された枠状体の負荷用治具18によって固定されている。
FIG. 8 is a schematic plan view showing the temperature rising state of the three-point bending test piece of the monitoring test piece according to the fourth embodiment of the present invention. The same reference numerals are used for the same parts as those in the second and third embodiments. A description thereof will be omitted.
The monitoring test piece 16 according to the fourth embodiment of the present invention is different from that of the second and third embodiments in that the stress applying functional member 36 is provided at the center of one side surface of the test piece main body 16b which is a three-point bending test piece. There is no recessed portion for inserting a stub, and only the notch portion 24 and the crack 25 are provided. Further, as shown in FIG. 8, the stress application function member 46 is made of the same material as the stress application function members 26 and 36 of the first to third embodiments, but is formed in a square shape in plan view. In other words, the test piece body 16b is arranged at a total of three places including two support points and one load point. Moreover, the periphery of the test piece main body 16b and each stress applying functional member 46 is fixed by a frame-shaped load jig 18 formed in a size surrounding the test piece main body 16b and each stress applying functional member 46.

第4実施形態の試験片本体16b及び応力付加機能部材46を備えた監視試験片16を用いて、原子炉圧力容器1の中性子照射による脆化量の評価を行うには、第1実施形態と同様にして原子炉圧力容器1を一定期間運転し、運転停止後、照射試験片カプセル15から監視試験片16及び負荷用治具18を取出す。そして、試験片本体16bと応力付加機能部材46及び負荷用治具18とを分離し、図6に示すものと同様、試験片本体16bの切欠き部24側である下面の両端の2箇所を支持点として支持した状態で図外の試験機の治具に設置する。この状態で、当該試験機によって試験片本体16bの切欠き部24と反対側である上面の中央の1箇所を負荷点として、切欠き部24の方向に荷重を加えて破壊靭性を測定すれば、上記第2実施形態と同様、原子炉圧力容器1の中性子照射による脆化量が監視試験片16を通じて評価することができる。   In order to evaluate the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 using the test specimen 16 provided with the specimen main body 16b and the stress application function member 46 of the fourth embodiment, Similarly, the reactor pressure vessel 1 is operated for a certain period, and after the operation is stopped, the monitoring test piece 16 and the load jig 18 are taken out from the irradiation test piece capsule 15. Then, the test piece main body 16b is separated from the stress applying function member 46 and the load jig 18, and, similar to the one shown in FIG. 6, two places on both ends of the lower surface on the cutout portion 24 side of the test piece main body 16b. Install it on the jig of the testing machine (not shown) while supporting it as a supporting point. In this state, if the test machine is used to measure the fracture toughness by applying a load in the direction of the notch 24 with the central portion of the upper surface opposite to the notch 24 of the test piece body 16b as a load point. As in the second embodiment, the amount of embrittlement caused by neutron irradiation of the reactor pressure vessel 1 can be evaluated through the monitoring test piece 16.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び変更を加え得るものである。
例えば、図7及び図8で示す第3及び第4実施形態に係る監視試験片16では3点曲げ試験片である試験片本体16bを適用したが、シャルピー衝撃試験片である試験片本体16cを適用しても良い。この変形例に係る試験片本体16cの場合も、図6に示すものと同様、試験片本体16cの切欠き部24側である下面の両端の2箇所を支持点として支持した状態で図外の試験機の治具に設置し、振子形のハンマーなどによって試験片本体16cの切欠き部24と反対側である上面の中央の1箇所を負荷点として、切欠き部24の方向に打撃を加えてシャルピー衝撃値を測定すれば、上記第3及び第4実施形態と同様、原子炉圧力容器1の中性子照射による脆化量が監視試験片16を通じて評価することが可能となる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the scope of the present invention. is there.
For example, in the monitoring test piece 16 according to the third and fourth embodiments shown in FIGS. 7 and 8, the test piece main body 16b that is a three-point bending test piece is applied, but the test piece main body 16c that is a Charpy impact test piece is used. It may be applied. Also in the case of the test piece main body 16c according to this modification, as shown in FIG. 6, the test piece main body 16c is not shown in the state of supporting the two points on both ends of the lower surface on the cutout portion 24 side as support points. Installed in the jig of the testing machine, and with a pendulum-shaped hammer etc., hitting the center of the upper surface opposite the notch 24 of the test piece body 16c as a load point in the direction of the notch 24 If the Charpy impact value is measured, the amount of embrittlement due to neutron irradiation of the reactor pressure vessel 1 can be evaluated through the monitoring specimen 16 as in the third and fourth embodiments.

本発明の第1実施形態に係る監視試験片が配置される原子炉圧力容器を概略的に示す断面図である。It is sectional drawing which shows roughly the reactor pressure vessel by which the monitoring test piece which concerns on 1st Embodiment of this invention is arrange | positioned. 図1の原子炉圧力容器内に照射試験片カプセルを設置した状態を示す要部断面図である。It is principal part sectional drawing which shows the state which installed the irradiation test piece capsule in the reactor pressure vessel of FIG. 図2の照射試験片カプセルを示す斜視図である。It is a perspective view which shows the irradiation test piece capsule of FIG. 本発明の第1実施形態に係る監視試験片のコンパクトテンション試験片を示すものであって、(a)はその室温状態の概略平面図、(b)はその昇温時状態の概略平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The compact tension test piece of the monitoring test piece which concerns on 1st Embodiment of this invention is shown, Comprising: (a) is a schematic plan view of the room temperature state, (b) is a schematic plan view of the state at the time of temperature rising. is there. 本実施形態の監視試験片の試験片本体に応力を付与する応力付加機能部材の使用材料の相違に基づく温度模式図である。It is a temperature schematic diagram based on the difference in the material used of the stress addition functional member which gives stress to the test piece main body of the monitoring test piece of this embodiment. 本発明の第2実施形態に係る監視試験片の3点曲げ試験片の昇温時状態を示す概略平面図である。It is a schematic plan view which shows the state at the time of temperature rising of the 3-point bending test piece of the monitoring test piece which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る監視試験片の3点曲げ試験片(又はシャルピー衝撃試験片)の昇温時状態を示す概略平面図である。It is a schematic plan view which shows the state at the time of temperature rising of the 3 point | piece bending test piece (or Charpy impact test piece) of the monitoring test piece which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る監視試験片の3点曲げ試験片(又はシャルピー衝撃試験片)の昇温時状態を示す概略平面図である。It is a schematic plan view which shows the state at the time of temperature rising of the 3 point | piece bending test piece (or Charpy impact test piece) of the monitoring test piece which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 原子炉圧力容器
2 容器本体
6 炉心槽
15 照射試験片カプセル
16 監視試験片
16a,16b,16c 試験片本体
17,18 負荷用治具
23 凹部
24 切欠き部
25 クラック
26,36,46 応力付加機能部材
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Vessel main body 6 Reactor core tank 15 Irradiation test piece capsule 16 Monitoring test piece 16a, 16b, 16c Test piece main body 17, 18 Load jig 23 Recess 24 Notch 25 Crack 26, 36, 46 Stress application Functional members

Claims (9)

試験片本体の片側に凹部を設け、該凹部の底面に切欠き部を連続して設けると共に、前記凹部内に応力付加機能部材を挿入し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしたことを特徴とする原子炉圧力容器の監視試験片。 A concave portion is provided on one side of the test piece main body, and a notch portion is continuously provided on the bottom surface of the concave portion, and a stress applying function member is inserted into the concave portion, and in this state, the test piece main body and the stress applying function are provided. By placing the members in the furnace, a load was applied to the test piece body during the temperature rise in the furnace, and the deterioration state of the material used for the reactor pressure vessel was monitored over time. Characteristic reactor pressure vessel monitoring specimen. 試験片本体の片側に切欠き部を設け、前記試験片本体を間において応力付加機能部材を前記切欠き部と交差する方向へそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の両端を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしたことを特徴とする原子炉圧力容器の監視試験片。 A notch portion is provided on one side of the test piece main body, and the stress applying functional member is arranged in a direction intersecting the notch portion between the test piece main body and both ends of the test piece main body and the stress applying functional member. In this state, the test piece main body and the stress applying functional member are arranged in the furnace, so that a load acts on the test piece main body when the temperature rises in the furnace, and the reactor pressure A reactor test specimen for a reactor pressure vessel, characterized in that the deterioration state of the material used for the vessel is monitored over time. 試験片本体の片側に切欠き部を設け、前記試験片本体の2箇所の支持点及び1箇所の負荷点に応力付加機能部材をそれぞれ配置すると共に、前記試験片本体及び前記応力付加機能部材の周囲を治具で固定し、この状態で、前記試験片本体及び前記応力付加機能部材を炉内に配置することにより、炉内の昇温時において前記試験片本体に負荷が作用し、原子炉圧力容器に使用される材料の劣化状態を経年的に監視するようにしたことを特徴とする原子炉圧力容器の監視試験片。 A notch is provided on one side of the test piece main body, stress applying functional members are arranged at two support points and one load point of the test piece main body, and the test piece main body and the stress adding functional member The periphery is fixed with a jig, and in this state, the test piece main body and the stress applying functional member are arranged in the furnace, so that a load acts on the test piece main body when the temperature rises in the furnace, and the nuclear reactor A reactor test specimen for a reactor pressure vessel, characterized in that a deterioration state of a material used for the pressure vessel is monitored over time. 前記応力付加機能部材として、室温から炉内運転温度の範囲内に熱弾性型マルテンサイト変態を有する材料が用いられていることを特徴とする請求項1〜3のいずれかに記載の原子炉圧力容器の監視試験片。 The reactor pressure according to any one of claims 1 to 3, wherein a material having a thermoelastic martensitic transformation within a range of room temperature to an operating temperature in the reactor is used as the stress application function member. Container test specimen. 前記応力付加機能部材として、前記試験片本体の材料よりも線膨張係数の大きい材料が用いられていることを特徴とする請求項1〜3のいずれかに記載の原子炉圧力容器の監視試験片。 The reactor pressure vessel monitoring test piece according to any one of claims 1 to 3, wherein a material having a larger linear expansion coefficient than the material of the test piece main body is used as the stress application function member. . 前記試験片本体がコンパクトテンション試験片であることを特徴とする請求項1、4および5のいずれかに記載の原子炉圧力容器の監視試験片。 6. The reactor pressure vessel monitoring test piece according to claim 1, wherein the test piece body is a compact tension test piece. 前記試験片本体が3点曲げ試験片であることを特徴とする請求項1〜5のいずれかに記載の原子炉圧力容器の監視試験片。 6. The reactor pressure vessel monitoring test piece according to claim 1, wherein the test piece body is a three-point bending test piece. 前記試験片本体がシャルピー衝撃試験片であることを特徴とする請求項2〜5のいずれかに記載の原子炉圧力容器の監視試験片。 6. The reactor pressure vessel monitoring test piece according to claim 2, wherein the test piece main body is a Charpy impact test piece. 請求項1〜8のいずれかに記載の監視試験片を原子炉圧力容器内に設置し、定期点検時に取り出し、破壊靭性試験あるいは衝撃試験を実施することで前記原子炉圧力容器の劣化状態を監視・評価する方法。 The monitoring test piece according to any one of claims 1 to 8 is installed in a reactor pressure vessel, taken out during periodic inspection, and a deterioration state of the reactor pressure vessel is monitored by performing a fracture toughness test or an impact test. • How to evaluate.
JP2003414025A 2003-12-12 2003-12-12 Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status Withdrawn JP2005172641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414025A JP2005172641A (en) 2003-12-12 2003-12-12 Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414025A JP2005172641A (en) 2003-12-12 2003-12-12 Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status

Publications (1)

Publication Number Publication Date
JP2005172641A true JP2005172641A (en) 2005-06-30

Family

ID=34733948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414025A Withdrawn JP2005172641A (en) 2003-12-12 2003-12-12 Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status

Country Status (1)

Country Link
JP (1) JP2005172641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176705A (en) * 2015-03-18 2016-10-06 三菱重工業株式会社 Test capsule and method for reloading test piece
CN106290000A (en) * 2016-08-26 2017-01-04 中航动力股份有限公司 A kind of sample for measuring high temperature fracture toughness and preparation method thereof
JP2019132653A (en) * 2018-01-30 2019-08-08 株式会社東芝 Evaluation method for irradiation embrittlement and evaluation device for irradiation embrittlement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176705A (en) * 2015-03-18 2016-10-06 三菱重工業株式会社 Test capsule and method for reloading test piece
CN106290000A (en) * 2016-08-26 2017-01-04 中航动力股份有限公司 A kind of sample for measuring high temperature fracture toughness and preparation method thereof
JP2019132653A (en) * 2018-01-30 2019-08-08 株式会社東芝 Evaluation method for irradiation embrittlement and evaluation device for irradiation embrittlement

Similar Documents

Publication Publication Date Title
Stuckert et al. QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0
KR20030016472A (en) Instrumented Capsule for Materials Irradiation Tests in Research Reactor
JP2005172641A (en) Monitoring test piece of reactor pressure vessel and method for monitoring/evaluating degradation status
JP2006234594A (en) Material strength testing device and method
Saini et al. Preliminary studies on thermal cycling of reactor pressure vessel steel
KR20210108120A (en) Testing apparatus of measuring starting time of stress corrosion cracking and thereof method
Sagawa et al. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure
Bogdan et al. Applications of Probabilistic Fracture Mechanics for Pressure Tubes
Schuler et al. Investigation of the Fatigue Behavior of Austenitic Stainless Steels and Their Welds for Reactor Internals Under Combined Low Cycle (LCF), High Cycle (HCF) and Very High Cycle (VHCF) Operational Loading Conditions
Ge´ rard et al. Situation of the baffle-former bolts in Belgian units
Cho et al. Probabilistic Assessment of CANDU Reactor Core for Risk of Pressure Tube Failure due to Presence of In-Service Flaws
KR100579399B1 (en) Method of making laboratory degraded heat transfer tubes for steam generator
Métais et al. European contributions to environmental fatigue issues experimental research in France, Germany and Finland
Karlsen Achievements and further plans for the OECD Halden reactor project materials programme
Blat-Yrieix et al. Feedback from Stainless Steels Corrosion related Issues during Maintenance Operation in Sodium Fast Reactor: SCC in caustic solution and Intergranular Corrosion by Acid Solution
Sarkar INVESTIGATION OF STRUCTURAL INTEGRITY OF FUEL CLADDING UNDER NORMAL & EXTREME LOADING CONDITIONS
De Smet et al. Overview of the Doel 3 and Tihange 2 Reactor Pressure Vessel Safety Cases
Grandjean A State-of-the-Art Review of past programs devoted to fuel behavior under LOCA conditions
Quecedo et al. Results of thermal creep test on highly irradiated ZIRLO
Kozsda-Barsy et al. Secondary hydriding experiments and simulation on ZR-1% Nb claddings
Alter et al. Stress corrosion cracking of pressurizer instrumentation nozzles in the French 1300 MWe units
Bhandari et al. Analysis of the cracking behavior of Alloy 600 RVH penetrations. Part 1: Stress analysis and K computation
Price et al. Cracking of carbon steel components due to repeated thermal shock
Vadlamani et al. Choking flow of subcooled liquid in steam generator tube wall cracks
Lee et al. Assessment of creep-fatigue crack growth for a high temperature component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306