JP2005172373A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2005172373A
JP2005172373A JP2003414721A JP2003414721A JP2005172373A JP 2005172373 A JP2005172373 A JP 2005172373A JP 2003414721 A JP2003414721 A JP 2003414721A JP 2003414721 A JP2003414721 A JP 2003414721A JP 2005172373 A JP2005172373 A JP 2005172373A
Authority
JP
Japan
Prior art keywords
tube
tank
phase refrigerant
tubes
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003414721A
Other languages
Japanese (ja)
Other versions
JP4233442B2 (en
Inventor
Shiro Ikuta
四郎 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003414721A priority Critical patent/JP4233442B2/en
Publication of JP2005172373A publication Critical patent/JP2005172373A/en
Application granted granted Critical
Publication of JP4233442B2 publication Critical patent/JP4233442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator capable of improving heat exchanging efficiency by uniformly distributing a two-phase refrigerant flowing in a tank to tubes. <P>SOLUTION: In this evaporator composed of the tubes 1 forming flow channels 4 for circulating the two-phase refrigerant 9, fins mounted among the tubes arranged at specific intervals, and the tank 3 to which both end parts of the tubes 1 are inserted, first introduction holes 7 for introducing a vapor-phase refrigerant 9b into the tubes 1 are mounted at the neighborhood parts of the bases to the tank 3, of the tubes 1 inserted into the tank 3, and second introduction holes 8 for introducing a liquid-phase refrigerant 9b into the tubes 1 are formed at lower ends of the tubes. By independently forming the holes for the liquid-phase refrigerant 9a and the holes for the vapor-phase refrigerant 9b, two-phase refrigerant 9 can be uniformly distributed into the tubes 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車用空調機として使用される蒸発器に関し、詳細には、気相冷媒と液相冷媒とに分離した二相冷媒のタンク内での分布量バラツキに左右されずに各チューブに均一に冷媒を導入させ得る技術に関する。   The present invention relates to an evaporator used as an air conditioner for automobiles, and more specifically, to each tube without being influenced by variation in the distribution amount of a two-phase refrigerant separated into a gas-phase refrigerant and a liquid-phase refrigerant in a tank. The present invention relates to a technique capable of uniformly introducing a refrigerant.

この種の蒸発器としては、例えば、互いに所定間隔を置いて配設された一対のタンクと、これらタンク間を連通連結する複数のチューブと、各チューブ間に設けられたフィンとから構成され、タンク内に流入した二相冷媒をそれぞれのチューブ下端に開口された孔部から当該チューブ内に導入させている。(例えば、特許文献1など参照)。
実開昭64−22171号公報(第8頁〜第10頁、第1図及び第4図)
As this type of evaporator, for example, it is composed of a pair of tanks arranged at a predetermined interval from each other, a plurality of tubes that communicate with each other, and fins provided between the tubes. The two-phase refrigerant that has flowed into the tank is introduced into the tubes from the holes opened at the lower ends of the tubes. (See, for example, Patent Document 1).
Japanese Utility Model Publication No. 64-22171 (pages 8 to 10, FIGS. 1 and 4)

図6は、タンク101内にチューブ102の先端を差し込み、二相冷媒103を各チューブ102へ分配させる一例を示す図である。タンク101内に液相冷媒103aと気相冷媒103bが混入すると、タンク101の入口に近いチューブ102には、気相冷媒(ガス相)103bが多く流れ、入口と離れた奥側のチューブ102には、液相冷媒(液相)103aが多く流れる。   FIG. 6 is a diagram illustrating an example in which the tip of the tube 102 is inserted into the tank 101 and the two-phase refrigerant 103 is distributed to each tube 102. When the liquid-phase refrigerant 103a and the gas-phase refrigerant 103b are mixed in the tank 101, a large amount of gas-phase refrigerant (gas phase) 103b flows in the tube 102 near the inlet of the tank 101, and enters the tube 102 on the far side away from the inlet. The liquid phase refrigerant (liquid phase) 103a flows a lot.

これにより、タンク101の入口に近いチューブ102は、気相冷媒103bが多く流れることによりガスリッチになり、タンク101の奥側のチューブ102は、液相冷媒103aが多く流れることにより液リッチになる。   Thereby, the tube 102 close to the inlet of the tank 101 becomes gas rich when a large amount of the gas-phase refrigerant 103b flows, and the tube 102 on the back side of the tank 101 becomes liquid-rich when a large amount of the liquid-phase refrigerant 103a flows.

そのため、気相冷媒103bの多いチューブ102付近の空気は冷却され難く、また、液相冷媒103aの多いチューブ102付近を流れる空気は冷却され易くなる。このように、各チューブ102に導入される液相冷媒103aと気相冷媒103bの量は、タンク101への取り付け位置によってばらつきが発生する。その結果、蒸発器によって熱交換した空気温度にばらつきが発生し、冷却効率の良い部分と冷却効率の悪い部分とが混在し、全体としての熱交換効率の向上が図れない。   Therefore, the air in the vicinity of the tube 102 having a large amount of the gas-phase refrigerant 103b is not easily cooled, and the air flowing in the vicinity of the tube 102 having a large amount of the liquid-phase refrigerant 103a is easily cooled. As described above, the amounts of the liquid-phase refrigerant 103 a and the gas-phase refrigerant 103 b introduced into each tube 102 vary depending on the attachment position to the tank 101. As a result, variation occurs in the temperature of the air heat exchanged by the evaporator, and a portion with good cooling efficiency and a portion with poor cooling efficiency coexist, making it impossible to improve the overall heat exchange efficiency.

そこで、本発明は、前記した課題を解決すべくなされたものであり、タンク内を流れる二相冷媒を各チューブに均等に分配して熱交換効率を向上させることのできる蒸発器を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problem, and provides an evaporator capable of improving heat exchange efficiency by evenly distributing two-phase refrigerant flowing in a tank to each tube. With the goal.

請求項1に記載の発明は、二相冷媒が流通する流路が形成されたチューブと、所定間隔で配置される各チューブ間に設けられたフィンと、各チューブの両端部をそれぞれ挿入させるタンクとからなる蒸発器において、タンク内に挿入された前記チューブのうち該タンクとの付け根近傍部に、気相冷媒をチューブ内に導入させる第1の導入孔を設けると共に、該チューブ下端部に液相冷媒をチューブ内に導入させる第2の導入孔を設けたことを特徴とする。   According to the first aspect of the present invention, a tube in which a flow path through which a two-phase refrigerant flows is formed, fins provided between the tubes arranged at predetermined intervals, and tanks into which both ends of each tube are inserted, respectively. In the evaporator comprising: a first introduction hole for introducing a gas-phase refrigerant into the tube in the vicinity of the base of the tube inserted into the tank, and a liquid at the lower end of the tube. A second introduction hole for introducing the phase refrigerant into the tube is provided.

請求項2に記載の発明は、請求項1に記載の蒸発器であって、前記第1の導入孔は、直径0.1mm〜0.5mmであることを特徴とする。   A second aspect of the present invention is the evaporator according to the first aspect, wherein the first introduction hole has a diameter of 0.1 mm to 0.5 mm.

請求項3に記載の発明は、請求項1又は請求項2に記載の蒸発器であって、前記チューブは、前記タンク内の底面近傍部まで突出していることを特徴とする
請求項4に記載の発明は、請求項3に記載の蒸発器であって、タンク内に突出するチューブの突出量は、該タンクの内側高さの80%以上であることを特徴とする。
Invention of Claim 3 is an evaporator of Claim 1 or Claim 2, Comprising: The said tube protrudes to the bottom face vicinity in the said tank, It is characterized by the above-mentioned. The invention according to claim 3 is the evaporator according to claim 3, wherein the protruding amount of the tube protruding into the tank is 80% or more of the inner height of the tank.

請求項5に記載の発明は、少なくとも請求項1から請求項4の何れか一つに記載の蒸発器であって、前記タンクの内側幅は、前記チューブの幅に対して1.2倍以上であることを特徴とする。   A fifth aspect of the present invention is the evaporator according to any one of the first to fourth aspects, wherein the inner width of the tank is 1.2 times or more the width of the tube. It is characterized by being.

請求項6に記載の発明は、少なくとも請求項1から請求項5の何れか一つに記載の蒸発器であって、前記タンク内に突出する前記チューブの下端部は、傾斜面とされていることを特徴とする。   Invention of Claim 6 is an evaporator as described in any one of Claim 1-5 at least, Comprising: The lower end part of the said tube which protrudes in the said tank is made into the inclined surface. It is characterized by that.

請求項1に記載の発明によれば、気相冷媒をチューブ内に導入させる第1の導入孔と、液相冷媒をチューブ内に導入させる第2の導入孔とを分けたので、タンク上部に滞留し易い比重の軽い気相冷媒はタンクとの付け根近傍部に形成された第1の導入孔から流入し、タンク下部に滞留し易い比重の大きな液相冷媒は下端部に形成された第2の導入孔から流入することになることから、二相冷媒を各チューブに均等に分配させることができる。   According to the first aspect of the present invention, the first introduction hole for introducing the gas-phase refrigerant into the tube and the second introduction hole for introducing the liquid-phase refrigerant into the tube are separated. A gas phase refrigerant with a low specific gravity that tends to stay flows in from a first introduction hole formed in the vicinity of the base of the tank, and a liquid phase refrigerant with a large specific gravity that tends to stay in the lower part of the tank is formed at the second end. Therefore, the two-phase refrigerant can be evenly distributed to each tube.

請求項2に記載の発明によれば、気相冷媒を導入させる第1の導入孔の直径を0.1mm〜0.5mmと小さくしたので、大きな孔のものと比べて流入抵抗が大きくなることから流入量が抑制され、各チューブの入口から均等に流入することになる。   According to the second aspect of the present invention, since the diameter of the first introduction hole for introducing the gas-phase refrigerant is reduced to 0.1 mm to 0.5 mm, the inflow resistance is increased as compared with that of the large hole. Therefore, the amount of inflow is suppressed, and the inflow is uniformly performed from the inlet of each tube.

請求項3に記載の発明によれば、チューブをタンク内の底面近傍部まで突出させたので、タンク底部に滞留した液相冷媒を複数の各チューブに分配させることができる。   According to the third aspect of the present invention, since the tube protrudes to the vicinity of the bottom surface in the tank, the liquid-phase refrigerant staying at the bottom of the tank can be distributed to the plurality of tubes.

請求項4に記載の発明によれば、タンク内に突出するチューブの突出量を、タンクの内側高さの80%以上としたので、タンク底部に滞留した液相冷媒を確実に各チューブに分配させることができる。   According to the invention described in claim 4, since the protruding amount of the tube protruding into the tank is 80% or more of the inner height of the tank, the liquid-phase refrigerant staying at the bottom of the tank is surely distributed to each tube. Can be made.

請求項5に記載の発明によれば、タンクの内側幅をチューブの幅に対して1.2倍以上としたので、タンクの入口部から最奥部まで二相冷媒の流入を容易なものとすることができる。   According to the fifth aspect of the present invention, since the inner width of the tank is 1.2 times or more the tube width, it is easy for the two-phase refrigerant to flow from the inlet to the innermost part of the tank. can do.

請求項6に記載の発明によれば、タンク内に突出するチューブの下端部を傾斜面としたので、タンク底部の液相冷媒及び気相冷媒を当該チューブの流路内に流入させ易くなる。   According to the sixth aspect of the present invention, since the lower end portion of the tube protruding into the tank is an inclined surface, the liquid-phase refrigerant and the gas-phase refrigerant at the bottom of the tank can easily flow into the flow path of the tube.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。本実施の形態は、自動車用空調機の蒸発器に本発明を適用したものである。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In the present embodiment, the present invention is applied to an evaporator of an automotive air conditioner.

「蒸発器の構成」
図1は蒸発器の要部分解斜視図、図2は蒸発器の断面図、図3はチューブのタンクへの取り付け部分を示す要部拡大図、図4は各チューブに二相冷媒が流入する様子を示す模式的な図である。
"Evaporator configuration"
1 is an exploded perspective view of a main part of the evaporator, FIG. 2 is a cross-sectional view of the evaporator, FIG. 3 is an enlarged view of a main part showing a portion where the tube is attached to the tank, and FIG. 4 is a two-phase refrigerant flowing into each tube. It is a schematic diagram which shows a mode.

本実施の形態の蒸発器は、図1及び図2に示すように、二相冷媒が流通する流路が形成されたチューブ1と、所定間隔で配置される各チューブ1間に設けられたフィン2と、各チューブ1の両端部をそれぞれ挿入させる一対のタンク3とから構成されている。   As shown in FIGS. 1 and 2, the evaporator according to the present embodiment includes fins provided between a tube 1 in which a flow path through which a two-phase refrigerant circulates is formed and the tubes 1 arranged at predetermined intervals. 2 and a pair of tanks 3 into which both ends of each tube 1 are inserted.

チューブ1は、例えばアルミニウムなどの長尺状をなす中空平板からなり、その中心部に二相冷媒を流通させる流路4を形成している。かかるチューブ1は、その長手方向を鉛直方向に向けて配置されると共に、所定間隔を置いて複数設けられている。なお、チューブ1は、押し出し成形によって形成されたものが使用される。   The tube 1 is formed of a long hollow plate such as aluminum, for example, and forms a flow path 4 through which a two-phase refrigerant flows at the center thereof. A plurality of such tubes 1 are provided with their longitudinal directions oriented in the vertical direction, and at a predetermined interval. In addition, the tube 1 used what was formed by extrusion molding.

フィン2は、例えばアルミニウム板を蛇腹形状に折り曲げることにより形成されている。かかるフィン2は、前記チューブ1間にそれぞれ配置され、それぞれの折返し部をチューブ1に接触させている。   The fin 2 is formed, for example, by bending an aluminum plate into a bellows shape. The fins 2 are respectively disposed between the tubes 1 so that the folded portions are in contact with the tubes 1.

タンク3は、チューブ1及びフィン2と同様、アルミニウムから形成されており、その中心部に二相冷媒を流通させる流通路5を形成している。また、このタンク3には、各チューブ1の両端部を当該タンク3内部に挿入させるためのチューブ挿入孔6が形成されている。このチューブ挿入孔6は、各チューブ1とそれぞれ相対向する位置に、該タンク3の長手方向に沿って複数形成されている。   The tank 3 is made of aluminum like the tubes 1 and the fins 2, and forms a flow passage 5 through which a two-phase refrigerant flows at the center thereof. The tank 3 is formed with tube insertion holes 6 for inserting both ends of each tube 1 into the tank 3. A plurality of tube insertion holes 6 are formed along the longitudinal direction of the tank 3 at positions opposite to the tubes 1.

これらチューブ1、フィン2及びタンク3は、それらを組み立てた後、ろう付けされて接合されることにより蒸発器を構成する。そして特に、本実施の形態の蒸発器では、図3に示すように、タンク3内に挿入されたチューブ1のうち該タンク3との付け根近傍部に、二相冷媒9のうち気相冷媒9bをチューブ1の流路4に導入(流入)させる第1の導入孔7を設けると共に、チューブ下端部に液相冷媒を前記流路4に導入させる第2の導入孔8を設ける。   These tubes 1, fins 2 and tank 3 are assembled together and then brazed to form an evaporator. In particular, in the evaporator of the present embodiment, as shown in FIG. 3, the gas phase refrigerant 9 b of the two-phase refrigerant 9 is disposed in the vicinity of the root of the tube 1 of the tube 1 inserted into the tank 3. Is provided in the flow path 4 of the tube 1, and a second introduction hole 8 is provided in the lower end of the tube for introducing the liquid refrigerant into the flow path 4.

第1の導入孔7は、チューブ挿入孔6からタンク3の内部に挿入された部分のうち当該タンク3との付け根近傍に、チューブ壁面に貫通する小さな円形孔として形成されている。この第1の導入孔7は、例えば直径0.1mm〜0.5mm程度の小さな円形小孔とされている。   The first introduction hole 7 is formed as a small circular hole penetrating the tube wall surface in the vicinity of the base with the tank 3 in the portion inserted into the tank 3 from the tube insertion hole 6. The first introduction hole 7 is a small small circular hole having a diameter of about 0.1 mm to 0.5 mm, for example.

第1の導入孔7の直径を0.1mm未満とした場合、気相冷媒9bをこの第1の導入孔7からチューブ1内に流入するとガスの流動抵抗が大きくなるので、熱交換器の冷媒側の抵抗が大きくなる。一方、第1の導入孔7の直径を0.5mm超とした場合、この第1の導入孔7から気相冷媒9bが多量に流入し、タンク3の入口側に近いチューブ1により多く気相冷媒9bが入り込んでしまい、奥側に配置されたチューブ1には気相冷媒9bの流入量が少なくなり、全体としてばらつきを生じる。   When the diameter of the first introduction hole 7 is less than 0.1 mm, if the gas-phase refrigerant 9b flows into the tube 1 from the first introduction hole 7, the flow resistance of the gas increases, so the refrigerant of the heat exchanger The resistance on the side increases. On the other hand, when the diameter of the first introduction hole 7 is more than 0.5 mm, a large amount of the gas-phase refrigerant 9b flows from the first introduction hole 7 and more gas phase is introduced into the tube 1 near the inlet side of the tank 3. The refrigerant 9b enters, and the amount of inflow of the gas-phase refrigerant 9b decreases in the tube 1 disposed on the back side, resulting in variations as a whole.

第2の導入孔8は、チューブ1の下端部に大きな開口として形成されている。この第2の導入孔8は、チューブ1の中央部にその長手方向に沿って形成された流路4と連通する。   The second introduction hole 8 is formed as a large opening at the lower end of the tube 1. The second introduction hole 8 communicates with the flow path 4 formed in the center portion of the tube 1 along the longitudinal direction.

本実施の形態では、前記チューブ1は、タンク3内に突出する下端部がタンク3の底面3a近傍部まで延長して設けられている。このように、チューブ下端部がタンク3の底面3a近傍部に設けられることで、当該タンク3の底部に滞留した液相冷媒9aを複数の各チューブ1に分配させることが可能となる。   In the present embodiment, the tube 1 is provided with a lower end portion protruding into the tank 3 extending to the vicinity of the bottom surface 3 a of the tank 3. As described above, the lower end portion of the tube is provided in the vicinity of the bottom surface 3 a of the tank 3, so that the liquid-phase refrigerant 9 a staying at the bottom portion of the tank 3 can be distributed to the plurality of tubes 1.

前記タンク3内に突出する前記チューブ1の突出量H1(突き出し長さ)は、タンク3の内側高さH2の80%以上とされている。この程度の突出量H1であれば、液相冷媒が多少振動により波打ったとしてもチューブ1の下端部は、常に液中にあることになる。このため、タンク3の底部に滞留する液相冷媒9aを、チューブ1の下端部より流路4内に流入させることができる。   The protruding amount H1 (projecting length) of the tube 1 protruding into the tank 3 is 80% or more of the inner height H2 of the tank 3. With such a protruding amount H1, the lower end portion of the tube 1 is always in the liquid even if the liquid refrigerant undulates due to some vibration. For this reason, the liquid-phase refrigerant 9 a staying at the bottom of the tank 3 can flow into the flow path 4 from the lower end of the tube 1.

また、本実施の形態では、前記タンク3の内側幅W1を、前記チューブ1の幅W2に対して1.2倍以上としている。このようにすることで、タンク3の入口部から最奥部まで二相冷媒9の流入を容易なものとすることができる。   Moreover, in this Embodiment, the inner side width W1 of the said tank 3 is 1.2 times or more with respect to the width W2 of the said tube 1. FIG. By doing in this way, inflow of the two-phase refrigerant | coolant 9 from the inlet part of the tank 3 to the innermost part can be made easy.

[作用・効果]
以上のように構成された蒸発器においては、図4に示すように、タンク3の下部に滞留した比重の大きな液相冷媒9aは、チューブ1の下端部に形成された第2の導入孔8から当該チューブ1内に流入する。一方、タンク3の上部に滞留した比重の軽い気相冷媒9bは、タンク3との付け根近傍部に形成された第1の導入孔7からチューブ1内に流入する。これら各チューブ1に流入する液相冷媒9a及び気相冷媒9bの流入量は、タンク3の入口側から奥側に至るまでほぼ均等になる。
[Action / Effect]
In the evaporator configured as described above, as shown in FIG. 4, the liquid phase refrigerant 9 a having a large specific gravity staying in the lower portion of the tank 3 is formed in the second introduction hole 8 formed in the lower end portion of the tube 1. Flows into the tube 1. On the other hand, the gas phase refrigerant 9 b having a low specific gravity staying in the upper part of the tank 3 flows into the tube 1 from the first introduction hole 7 formed in the vicinity of the base with the tank 3. The inflow amounts of the liquid-phase refrigerant 9a and the gas-phase refrigerant 9b flowing into the tubes 1 are almost equal from the inlet side to the back side of the tank 3.

但し、第1の導入孔7を大きな孔としてしまうと、タンク3の入口近傍部に配置されたチューブ1には気相冷媒9bがより多く流入し、奥側に配置されたチューブ1には気相冷媒9bの流入量が減り、ばらつきを生じる。しかしながら、前記した大きさ(直径0.1mm〜0.5mm程度)の比較的小さな孔とすることで、流入抵抗が高くなって流入量が抑制されるため、各チューブ1には均等に気相冷媒9bが流入することになる。   However, if the first introduction hole 7 is a large hole, a larger amount of the gas-phase refrigerant 9b flows into the tube 1 disposed in the vicinity of the inlet of the tank 3, and the tube 1 disposed on the back side has a gas flow. The amount of inflow of the phase refrigerant 9b is reduced, causing variations. However, since the inflow resistance is increased and the amount of inflow is suppressed by using a relatively small hole having the above-described size (diameter of about 0.1 mm to about 0.5 mm), each tube 1 is uniformly in the gas phase. The refrigerant 9b flows in.

したがって、本実施の形態の蒸発器によれば、タンク3内を流れる二相冷媒9を各チューブ1に均等に分配することができ、熱交換効率を大幅に向上させることが可能となる。   Therefore, according to the evaporator of the present embodiment, the two-phase refrigerant 9 flowing in the tank 3 can be evenly distributed to each tube 1 and the heat exchange efficiency can be greatly improved.

「その他の実施の形態」
以上、本発明を適用した具体的な実施の形態について説明したが、本発明は、上述の実施の形態に制限されることなく種々の変更が可能である。
"Other embodiments"
Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.

上述の実施の形態では、タンク3の内部に挿入されたチューブ1の下端部の形状をストレート形状としたが、図5に示すように、斜めに傾斜させたテーパ形状である傾斜面1aとしてもよい。このように形成した蒸発器では、やはり前述した実施の形態と同様の効果が奏される。   In the above-described embodiment, the shape of the lower end portion of the tube 1 inserted into the tank 3 is a straight shape. However, as shown in FIG. 5, an inclined surface 1a having a tapered shape inclined obliquely may be used. Good. In the evaporator formed in this way, the same effect as that of the above-described embodiment can be obtained.

本実施の形態の蒸発器の要部分解斜視図である。It is a principal part disassembled perspective view of the evaporator of this Embodiment. 本実施の形態の蒸発器の断面図である。It is sectional drawing of the evaporator of this Embodiment. チューブのタンクへの取り付け部分を示す要部拡大図である。It is a principal part enlarged view which shows the attachment part to the tank of a tube. 各チューブに二相冷媒が流入する様子を示す模式的な図である。It is a schematic diagram which shows a mode that a two-phase refrigerant | coolant flows in into each tube. 本実施の形態の他の例を示し、チューブのタンクへの取り付け部分を示す要部拡大図である。It is the principal part enlarged view which shows the other example of this Embodiment and shows the attachment part to the tank of a tube. 従来の蒸発器における各チューブに二相冷媒が流入する様子を示す模式的な図である。It is a schematic diagram which shows a mode that a two-phase refrigerant | coolant flows in into each tube in the conventional evaporator.

符号の説明Explanation of symbols

1…チューブ
2…フィン
3…タンク
4…流路
5…流通路
7…第1の導入孔
8…第2の導入孔
9…二相冷媒
9a…液相冷媒
9b…気相冷媒
DESCRIPTION OF SYMBOLS 1 ... Tube 2 ... Fin 3 ... Tank 4 ... Flow path 5 ... Flow path 7 ... 1st introduction hole 8 ... 2nd introduction hole 9 ... Two-phase refrigerant 9a ... Liquid phase refrigerant 9b ... Gas-phase refrigerant

Claims (6)

二相冷媒(9)が流通する流路(4)が形成されたチューブ(1)と、所定間隔で配置される各チューブ(1)間に設けられたフィン(2)と、各チューブ(1)の両端部をそれぞれ挿入させるタンク(3)とからなる蒸発器において、
前記タンク(3)内に挿入された前記チューブ(1)のうち該タンク(3)との付け根近傍部に、気相冷媒(9b)をチューブ(1)内に導入させる第1の導入孔(7)を設けると共に、該チューブ下端部に液相冷媒(9a)をチューブ(1)内に導入させる第2の導入孔(8)を設けた
ことを特徴とする蒸発器。
The tube (1) in which the flow path (4) through which the two-phase refrigerant (9) flows is formed, the fin (2) provided between the tubes (1) arranged at a predetermined interval, and the tubes (1) ) In the evaporator comprising the tanks (3) into which both ends of each are inserted,
Of the tube (1) inserted into the tank (3), a first inlet hole (9b) for introducing a gas-phase refrigerant (9b) into the tube (1) near the base of the tank (3). 7) and an evaporator having a second introduction hole (8) for introducing the liquid refrigerant (9a) into the tube (1) at the lower end of the tube.
請求項1に記載の蒸発器であって、
前記第1の導入孔(7)は、直径0.1mm〜0.5mmである
ことを特徴とする蒸発器。
The evaporator according to claim 1, comprising:
The first introduction hole (7) has a diameter of 0.1 mm to 0.5 mm.
請求項1又は請求項2に記載の蒸発器であって、
前記チューブ(1)は、前記タンク(3)内の底面(3a)近傍部まで突出している
ことを特徴とする蒸発器。
An evaporator according to claim 1 or claim 2, wherein
The said tube (1) protrudes to the bottom face (3a) vicinity part in the said tank (3). The evaporator characterized by the above-mentioned.
請求項3に記載の蒸発器であって、
前記タンク(3)内に突出する前記チューブ(1)の突出量(H1)は、該タンク(3)の内側高さ(H2)の80%以上である
ことを特徴とする蒸発器。
The evaporator according to claim 3, wherein
The protrusion amount (H1) of the tube (1) protruding into the tank (3) is 80% or more of the inner height (H2) of the tank (3).
少なくとも請求項1から請求項4の何れか一つに記載の蒸発器であって、
前記タンク(3)の内側幅(W1)は、前記チューブ(1)の幅(W2)に対して1.2倍以上である
ことを特徴とする蒸発器。
An evaporator according to any one of claims 1 to 4, comprising:
The evaporator characterized in that the inner width (W1) of the tank (3) is 1.2 times or more the width (W2) of the tube (1).
少なくとも請求項1から請求項5の何れか一つに記載の蒸発器であって、
前記タンク(3)内に突出する前記チューブ(1)の下端部は、傾斜面(1a)とされている
ことを特徴とする蒸発器。
An evaporator according to any one of claims 1 to 5, comprising:
The evaporator, wherein the lower end of the tube (1) protruding into the tank (3) is an inclined surface (1a).
JP2003414721A 2003-12-12 2003-12-12 Evaporator Expired - Fee Related JP4233442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414721A JP4233442B2 (en) 2003-12-12 2003-12-12 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414721A JP4233442B2 (en) 2003-12-12 2003-12-12 Evaporator

Publications (2)

Publication Number Publication Date
JP2005172373A true JP2005172373A (en) 2005-06-30
JP4233442B2 JP4233442B2 (en) 2009-03-04

Family

ID=34734440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414721A Expired - Fee Related JP4233442B2 (en) 2003-12-12 2003-12-12 Evaporator

Country Status (1)

Country Link
JP (1) JP4233442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208558A1 (en) * 2016-06-02 2017-12-07 株式会社日立製作所 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208558A1 (en) * 2016-06-02 2017-12-07 株式会社日立製作所 Heat exchanger
JPWO2017208558A1 (en) * 2016-06-02 2019-02-21 株式会社日立製作所 Heat exchanger

Also Published As

Publication number Publication date
JP4233442B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP2005326135A (en) Heat exchanger
JP2010002093A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JPH06159983A (en) Heat exchanger
JP2007322007A (en) Heat exchange pipe and evaporator
JP2006105581A (en) Laminated heat exchanger
JP4945397B2 (en) Heat exchanger and manufacturing method thereof
JP2003185374A (en) Tube for heat exchanger with optimized plate
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
JP2008267610A (en) Heat exchanger and its manufacturing method
JP5884484B2 (en) Heat exchanger
JP4233442B2 (en) Evaporator
JP2005180714A (en) Heat exchanger and inner fin used by it
JPH0961081A (en) Fin for integral type heat exchanger
JP2020076535A (en) Heat exchanger and method of manufacturing the same
JPH11325784A (en) Heat exchanger
JP2010255864A (en) Flat tube and heat exchanger
JP2008039304A (en) Heat exchanger
JPH06129734A (en) Heat exchanger
JP2006349275A (en) Heat exchanger
JP2005069670A (en) Heat exchanger and evaporator
JP2016080236A (en) Heat exchanger
JP2010032128A (en) Tube for heat exchanger
JP2007327654A (en) Heat exchanger and its manufacturing method
JP2007205630A (en) Header tank for heat exchanger
JP2007187435A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees