JP2005171813A - Intake system for internal combustion engine - Google Patents

Intake system for internal combustion engine Download PDF

Info

Publication number
JP2005171813A
JP2005171813A JP2003410519A JP2003410519A JP2005171813A JP 2005171813 A JP2005171813 A JP 2005171813A JP 2003410519 A JP2003410519 A JP 2003410519A JP 2003410519 A JP2003410519 A JP 2003410519A JP 2005171813 A JP2005171813 A JP 2005171813A
Authority
JP
Japan
Prior art keywords
valve
valve shaft
intake
passage
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410519A
Other languages
Japanese (ja)
Inventor
Yuichi Iriya
祐一 入矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003410519A priority Critical patent/JP2005171813A/en
Publication of JP2005171813A publication Critical patent/JP2005171813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To ensure full-open performance while maintaining a driving force of an intake control valve small, in an intake system for strengthening an intake air flow by closing one of divided passages of an intake port by an intake control valve. <P>SOLUTION: A valve element 12A of the intake control valve 12 is rotatable around a valve shaft 12a which is disposed at the center of the valve element, and is journaled at an eccentric position of a crank plate to be rotatable around the valve shaft 12a. The valve shaft 12a is movable along a cross-section of a passage by rotation of the crank plate 22. A position closing a lower passage 4B of the intake port, and a position opening the valve element 12A by positioning the valve shaft 12a on an extension of the lower passage 4B, and a position opening the valve element 12A by positioning the valve shaft 12a on an extension of a dividing plate 10 are changed over depending on an operational status. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の吸気流動を制御する吸気装置に関する。   The present invention relates to an intake device that controls intake air flow of an internal combustion engine.

吸気ポートの通路断面を隔壁によって分割すると共に、分割された一方の通路に弁体中心部に弁軸を有した吸気制御弁を介装し、低負荷条件で前記吸気制御弁を閉じ他方の通路からのみ吸気を流通させて吸気流動を強化し、タンブル流動を生成するようにした内燃機関の吸気装置がある(特許文献1)。
特開平6−159203号公報
The passage cross section of the intake port is divided by a partition wall, and an intake control valve having a valve shaft at the center of the valve body is interposed in one of the divided passages, and the intake control valve is closed under a low load condition. There is an intake device for an internal combustion engine in which intake air is circulated only from the inside to enhance the intake flow and generate a tumble flow (Patent Document 1).
JP-A-6-159203

しかしながら、上記従来の吸気装置においては、全開運転条件で、前記吸気制御弁を開いたときでも分割された通路の延長上に位置する吸気制御弁の厚みが抵抗となって吸気充填効率を低下させ、全開性能が損なわれてしまう。
この点を考慮し、隔壁の下流端部近傍に弁軸を有し、該弁軸の片側のみに弁体を有した吸気制御弁とすれば、全開運転時には弁体が隔壁の延長上に位置し、吸気の抵抗となることを抑制できるので、全開性能を確保できる。しかし、この構造では、吸気制御弁により分割された一方の通路を閉じているときに、該閉側の通路から弁体に作用する吸気負圧によって弁軸周りに大きな閉方向のトルクを生じているので、この状態から負荷が増大して吸気制御弁を開こうとするときに開方向の大きな駆動トルクが要求され、大出力のアクチュエータを設ける必要があり、コスト高につき、レイアウトも難しくなる。
However, in the above-described conventional intake device, even when the intake control valve is opened under the fully-open operation condition, the thickness of the intake control valve located on the extension of the divided passage becomes a resistance to reduce the intake charging efficiency. , Fully open performance will be impaired.
Considering this point, if the intake control valve has a valve shaft in the vicinity of the downstream end of the partition wall and a valve body on only one side of the valve shaft, the valve body is positioned on the extension of the partition wall when fully opened. In addition, since it is possible to suppress the intake resistance, the fully open performance can be secured. However, in this structure, when one passage divided by the intake control valve is closed, a large closing torque is generated around the valve shaft by the intake negative pressure acting on the valve body from the closed passage. Therefore, when the load increases from this state to open the intake control valve, a large driving torque in the opening direction is required, and it is necessary to provide a high-power actuator, and the layout becomes difficult due to high cost.

本発明は、このような従来の課題に着目してなされたもので、吸気流動を制御する吸気制御弁の駆動トルクを軽減しつつ全開性能を確保できるようにした内燃機関の吸気装置を提供することを目的とする。   The present invention has been made paying attention to such a conventional problem, and provides an intake device for an internal combustion engine capable of ensuring fully open performance while reducing the drive torque of an intake control valve that controls intake flow. For the purpose.

このため本発明は、吸気ポートの通路断面を分割壁によって分割すると共に、吸気制御弁を、弁体中心部に設けた弁軸周り回動自由で、かつ、前記弁軸を前記通路断面方向に沿って移動自由に形成し、該吸気制御弁を弁駆動機構によって前記弁軸周りの回動及び弁軸の前記通路断面方向に沿った移動を制御しつつ開閉駆動する構成とした。   For this reason, the present invention divides the passage cross section of the intake port by the dividing wall, allows the intake control valve to freely rotate around the valve shaft provided at the center of the valve body, and moves the valve shaft in the passage cross section direction. The intake control valve is opened and closed while controlling the rotation around the valve shaft and the movement of the valve shaft along the passage cross-sectional direction by a valve drive mechanism.

このようにすれば、弁体中心軸に弁軸が設けられるので、弁軸を挟んで両側の弁体に吸気圧を受けて作用するトルクが逆向きに生じて相殺されるので、開弁時の駆動トルクを軽減できると共に、全開運転時などの高出力時には、弁体を分割壁の延長上に重ねるように弁軸を移動させて全開とすることにより吸気制御弁が抵抗とならず全開出力性能も確保できる。   In this way, since the valve shaft is provided on the central axis of the valve body, the torque acting on the valve body on both sides across the valve shaft due to the intake pressure is generated in the opposite direction and is canceled. The drive torque can be reduced, and at the time of high output such as during fully open operation, the valve stem is moved fully open so that the valve body overlaps the extension of the dividing wall, so that the intake control valve does not become resistance and fully open output Performance can be secured.

以下、図面に基づき、本発明の実施形態について説明する。
図1は、本発明に係る吸気装置を備えた内燃機関のシステム構成を示す。
内燃機関1は、気筒毎に2個ずつ吸気弁2と排気弁3を備え、これら吸気弁2と排気弁3にいたる2本ずつの吸気ポート4と排気ポート5を備える。燃焼室6頂壁の中心に点火栓7を備え、前記2本の吸気ポート4の間で下側に燃料噴射弁8を備え、ピストン9に形成されたキャビティ9aに向けて燃料を噴射し、点火栓7で点火して燃焼するようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a system configuration of an internal combustion engine provided with an intake device according to the present invention.
The internal combustion engine 1 includes two intake valves 2 and two exhaust valves 3 for each cylinder, and includes two intake ports 4 and two exhaust ports 5 extending to the intake valves 2 and the exhaust valves 3. A spark plug 7 is provided at the center of the top wall of the combustion chamber 6, a fuel injection valve 8 is provided below the two intake ports 4, and fuel is injected toward a cavity 9 a formed in the piston 9, The ignition plug 7 is ignited and burned.

前記吸気ポート4内に上下に仕切る分割プレート(分割壁)10を配設し、該分割プレート10により上側通路11Aと下側通路11Bとに分割する。前記分割プレート10の下流端部に、吸気制御弁12を配設する。該吸気制御弁12は、弁体12Aの中心部に弁軸12aを備え、該弁軸12a周りに回動して開閉するようになっている。前記吸気制御弁12を、その弁軸12aを吸気ポート4の通路断面に沿って移動させながら駆動する弁駆動機構13を配設する。該弁駆動機構13は、エンジンコントロールユニット(ECU)14からの信号によって制御される。   A dividing plate (dividing wall) 10 that is vertically divided is disposed in the intake port 4, and is divided into an upper passage 11 </ b> A and a lower passage 11 </ b> B by the dividing plate 10. An intake control valve 12 is disposed at the downstream end of the dividing plate 10. The intake control valve 12 includes a valve shaft 12a at the center of the valve body 12A, and rotates around the valve shaft 12a to open and close. A valve drive mechanism 13 for driving the intake control valve 12 while moving its valve shaft 12 a along the passage section of the intake port 4 is provided. The valve drive mechanism 13 is controlled by a signal from an engine control unit (ECU) 14.

図2は、前記弁駆動機構13の構成を示す。吸気ポート4の側壁両側に外側に突出する円筒状のフランジ部21を形成し、これらフランジ部21にそれぞれ円板状のクランク板(クランク軸部材)22を中心軸周り摺動回転自由に嵌合する。これらのクランク板22には、弁軸取付孔22aが開けられ、これら弁軸取付孔22aに前記吸気制御弁12の弁体12A中心部に設けられる弁軸12aの両端部を通し、該弁軸12aの中心軸周り摺動回転自由に取り付ける。前記弁軸12aの一方の端部は該クランク板22の外側に突出するように弁軸取付孔22aを貫通させる。   FIG. 2 shows the configuration of the valve drive mechanism 13. Cylindrical flange portions 21 projecting outward are formed on both side walls of the intake port 4, and disc-shaped crank plates (crankshaft members) 22 are respectively fitted to these flange portions 21 so as to freely slide and rotate around the central axis. To do. These crank plates 22 are provided with valve shaft mounting holes 22a, and both end portions of the valve shaft 12a provided at the center of the valve body 12A of the intake control valve 12 are passed through the valve shaft mounting holes 22a. Attached so as to be freely slidable and rotatable around the central axis of 12a. One end of the valve shaft 12a is inserted through the valve shaft mounting hole 22a so as to protrude to the outside of the crank plate 22.

前記弁軸12a端部が外側に突出する側に以下のリンク機構を連結する。フランジ部21側のクランク板22の外側壁には偏心した位置にストッパピン22bを植設し、該ストッパピン22bと、吸気ポート4の外側壁に植設したピン23とに両端を係止したリターンスプリング24を設ける。該リターンスプリング24の引っ張り力により、クランク板22を図で時計周り回転方向に付勢し、前記ストッパピン22bを吸気ポート4の外壁に設けたストッパ壁30に突き当てることにより、該回転方向の回転量を規制する。   The following link mechanism is connected to the side where the end of the valve shaft 12a protrudes outward. A stopper pin 22b is planted in an eccentric position on the outer wall of the crank plate 22 on the flange portion 21 side, and both ends are locked to the stopper pin 22b and a pin 23 planted on the outer wall of the intake port 4. A return spring 24 is provided. The crank plate 22 is urged clockwise in the drawing by the pulling force of the return spring 24, and the stopper pin 22b is abutted against the stopper wall 30 provided on the outer wall of the intake port 4, thereby Regulate the amount of rotation.

前記クランク板22の外側に突出する弁軸12a端部にはアーム25を連結し、該アーム25の一端部にはリンク26の上端部を揺動自由に軸支し、該リンク26の下端部に上下方向に直進動するラック27を揺動自由に軸支する。該ラック27の歯と噛み合わせたピニオン28を、吸気ポート4の底壁に固定したモータ29によって回転駆動する。
また、吸気ポート4の外側壁に、前記アーム25の下端部両側縁と当接自由な1対のストッパ壁4a,4bを設ける。そして、アーム25下端部の図示左側の側縁がストッパ壁4aに当接して図で時計回り方向の回転を規制される位置で、アーム25と弁軸12aを介して一体の弁体12Aが下側通路11Bを閉じる閉位置となり、アーム25下端部の図示右側の側縁がストッパ壁4bに当接して図で反時計回り方向の回転を規制される位置で、弁体12Aが下側通路11Bの軸方向と平行となって開位置となるように、各部材を連結する。これにより、上記閉位置から開位置までの回転角範囲を、アーム25及び弁体12Aが回転する。
An arm 25 is connected to the end of the valve shaft 12a protruding outside the crank plate 22, and the upper end of the link 26 is pivotally supported at one end of the arm 25 so that the lower end of the link 26 is supported. The rack 27 that moves straight in the vertical direction is pivotally supported freely. The pinion 28 meshed with the teeth of the rack 27 is rotationally driven by a motor 29 fixed to the bottom wall of the intake port 4.
Further, a pair of stopper walls 4 a and 4 b that are free to contact with both side edges of the lower end of the arm 25 are provided on the outer wall of the intake port 4. The left side edge of the lower end of the arm 25 is in contact with the stopper wall 4a so that rotation in the clockwise direction in the figure is restricted, and the integrated valve body 12A is lowered via the arm 25 and the valve shaft 12a. The valve body 12A is in the closed position where the side passage 11B is closed, and the right side edge of the lower end of the arm 25 is in contact with the stopper wall 4b and the rotation in the counterclockwise direction in the figure is restricted. The members are connected so as to be in the open position in parallel with the axial direction. Thereby, the arm 25 and the valve body 12A rotate within the rotation angle range from the closed position to the open position.

ここで、前記ストッパ壁4bは、後述するように該ストッパ壁4bにアーム25の下端部側縁を当接させた状態でアーム25の回転位置を維持したまま、該アーム25に連結されたクランク板22を図で反時計周りに回転させることを可能とするように、該クランク板22回転時の弁軸12a中心の回転軌跡に合わせた円弧状に形成されている。この回転を滑らかにするために、アーム25とリンク26との連結部に適度の遊びを持たせる。なお、アーム25を図で時計周り方向に付勢するリターンスプリングを設けてモータ29の停止時には、弁体12Aが閉位置に保持されるようにしてもよい。   Here, the stopper wall 4b is a crank connected to the arm 25 while maintaining the rotational position of the arm 25 in a state where the lower edge of the arm 25 is in contact with the stopper wall 4b as will be described later. In order to enable the plate 22 to rotate counterclockwise in the figure, it is formed in an arc shape that matches the rotation locus of the center of the valve shaft 12a when the crank plate 22 rotates. In order to make this rotation smooth, a moderate play is given to the connecting portion between the arm 25 and the link 26. Note that a return spring that urges the arm 25 clockwise in the drawing may be provided so that the valve body 12A is held in the closed position when the motor 29 is stopped.

また、上記アーム25と連結されたクランク板22を、該クランク板22の中心軸周りに回転させると、該クランク板22の弁軸取付孔22aを通る弁軸12aのクランク板22中心軸周りの回転(公転)が反対側のクランク板22に伝達され、該クランク板22も同一量回転する。
次に、上記弁駆動機構による吸気制御弁12の一連の動作を図3も参照して説明する。
Further, when the crank plate 22 connected to the arm 25 is rotated around the central axis of the crank plate 22, the valve shaft 12 a passing through the valve shaft mounting hole 22 a of the crank plate 22 around the central axis of the crank plate 22. The rotation (revolution) is transmitted to the opposite crank plate 22, and the crank plate 22 also rotates by the same amount.
Next, a series of operations of the intake control valve 12 by the valve drive mechanism will be described with reference to FIG.

前記モータ29が停止している状態では、前記リターンスプリング24の付勢力によりクランク板22は、前記ストッパピン22bがフランジ部21に設けたストッパ壁21aに突き当たる回転位置に保持され、弁軸12aは図で最も下側に位置し、下側通路11Bの延長上に位置する[図3(B)参照]。
この状態で、弁体12Aは上記のようにクランク板22の回転位置が保持された状態で弁軸12a周りに回転して下側通路11Bを開閉できる。
In a state where the motor 29 is stopped, the crank plate 22 is held at a rotational position where the stopper pin 22b abuts against a stopper wall 21a provided on the flange portion 21 by the urging force of the return spring 24, and the valve shaft 12a is It is located on the lowermost side in the figure and is located on the extension of the lower passage 11B [see FIG. 3 (B)].
In this state, the valve body 12A can rotate around the valve shaft 12a with the rotational position of the crank plate 22 held as described above to open and close the lower passage 11B.

そして、前記アーム25の下端部側縁が前記ストッパ壁4aに当接する回転位置つまり弁体12aが開位置にある状態から、モータ29を駆動してピニオン28を図2で反時計回りに回転させると、ラック27が同図で上方に動き、リンク26を介してアーム25、弁体12Aが一体に弁軸12a周りを図で反時計回りに回転し、アーム25の下端部側縁が前記ストッパ壁4bに当接する回転位置、つまり弁体12Aが下側通路11Bの軸と平行に位置し最大の開度となったところで、該アーム25の同一方向の回転が規制される[図3(C)参照]。   Then, the motor 29 is driven to rotate the pinion 28 counterclockwise in FIG. 2 from the rotational position where the lower edge of the arm 25 is in contact with the stopper wall 4a, that is, the valve body 12a is in the open position. Then, the rack 27 moves upward in the figure, and the arm 25 and the valve body 12A integrally rotate around the valve shaft 12a via the link 26 counterclockwise in the figure, and the lower end side edge of the arm 25 is the stopper. When the rotation position that contacts the wall 4b, that is, the valve body 12A is positioned parallel to the axis of the lower passage 11B and has the maximum opening, the rotation of the arm 25 in the same direction is restricted [FIG. )reference].

この状態で、モータ29を更に同一方向に回転駆動すると、アーム25の下端部側縁が円弧状のストッパ壁4bに摺動しつつ該アーム25の弁軸12a周りの回転位置を維持したまま、前記リターンスプリング24の付勢力に抗してクランク板22が図で反時計周りに回転し、同時に弁軸12aが図で上方に移動する。そして、図2に1点鎖線で示すように弁体12Aが分割プレート10の延長上に位置するまで、すなわち、吸気ポート4の開口面積が最大となる全開位置まで回転する。なお、この位置で同方向の回転を規制するストッパを設けてもよい[図3(D)参照]。   In this state, when the motor 29 is further rotationally driven in the same direction, the lower edge of the arm 25 slides on the arc-shaped stopper wall 4b while maintaining the rotational position of the arm 25 around the valve shaft 12a. The crank plate 22 rotates counterclockwise in the figure against the urging force of the return spring 24, and at the same time, the valve shaft 12a moves upward in the figure. Then, as shown by a one-dot chain line in FIG. 2, the valve body 12 </ b> A rotates until the valve plate 12 </ b> A is located on the extension of the divided plate 10, that is, the fully open position where the opening area of the intake port 4 is maximized. In addition, you may provide the stopper which controls the rotation of the same direction at this position [refer FIG.3 (D)].

上記全開位置からモータ29を逆方向(図で時計周り方向)に回転駆動させると、上記開弁動作時と同一の経過を辿りながら閉弁する。すなわち、リターンスプリング24の引張り付勢力により弁体12Aは通路軸と平行に最大開度を維持しながらクランク板22の図で時計周り方向の回転と共に下降し、前記ストッパピン22bがストッパ壁21aに当接するクランク板22の回転位置で、同方向の回転が規制され、以降は、アーム25及び弁体12Aが弁軸12a周りに回転し、アーム25の下端部側縁が前記ストッパ壁4aに当接する回転位置で弁体12Aが下側通路11Bを閉じる。   When the motor 29 is rotationally driven in the reverse direction (clockwise in the figure) from the fully opened position, the valve is closed while following the same course as the valve opening operation. That is, the pulling force of the return spring 24 causes the valve body 12A to move downward in the clockwise direction in the drawing of the crank plate 22 while maintaining the maximum opening in parallel with the passage shaft, and the stopper pin 22b is moved to the stopper wall 21a. The rotation in the same direction is restricted at the rotational position of the abutting crank plate 22, and thereafter, the arm 25 and the valve body 12A rotate around the valve shaft 12a, and the lower edge of the arm 25 contacts the stopper wall 4a. The valve body 12A closes the lower passage 11B at the contact rotational position.

次に、運転状態に応じた吸気制御弁12の制御(弁体12A位置の制御)について、図4,図5を参照して説明する。
低回転低負荷領域(図3のI)では、成層燃焼を行うが、吸入空気量が少なくガス流動が弱いのでガス流動の利用では良好な成層混合気を安定して得ることが難しい。
そこで、図5(A),(B)に示すように燃料噴射弁8から噴射される燃料噴霧の流動エネルギによって混合気を点火栓7周りに送り出し、安定した成層燃焼を得られるようにする。この場合、吸気制御弁12により下側通路11Bを閉じることによって吸気流に乱れを生じさせることは、燃焼のサイクルバラツキ等の影響を生じ、安定した成層燃焼を得られなくなるので好ましくない。すなわち、ガス流動のバラツキを極力無くすように、吸気制御弁12は開とするが、さらに、吸気流の乱れをより無くせるように、弁体12Aを下側通路11Bの延長上で通路軸と平行に位置して開となるように制御する。この位置に弁体12Aを制御すると、下側通路11Bに導入される吸気流が下側通路11Bの通路軸と平行に位置する弁体12Aによって流れの方向が案内付けられて整流化され、サイクルバラツキのない安定した吸気流が得られる。これにより、低回転低負荷領域Iで安定した成層燃焼運転を行うことができる。
Next, the control of the intake control valve 12 according to the operating state (control of the position of the valve body 12A) will be described with reference to FIGS.
In the low rotation and low load region (I in FIG. 3), stratified combustion is performed. However, since the intake air amount is small and the gas flow is weak, it is difficult to stably obtain a good stratified mixture by using the gas flow.
Therefore, as shown in FIGS. 5A and 5B, the air-fuel mixture is sent around the spark plug 7 by the flow energy of the fuel spray injected from the fuel injection valve 8 so that stable stratified combustion can be obtained. In this case, it is not preferable to cause disturbance in the intake air flow by closing the lower passage 11B by the intake control valve 12, because it causes an influence such as combustion cycle variation and stable stratified combustion cannot be obtained. That is, the intake control valve 12 is opened so as to eliminate the variation in gas flow as much as possible. Further, the valve body 12A is connected to the passage shaft on the extension of the lower passage 11B so as to further eliminate the disturbance of the intake flow. Control to open parallel and open. When the valve body 12A is controlled to this position, the flow direction of the intake air introduced into the lower passage 11B is guided and rectified by the valve body 12A positioned in parallel with the passage axis of the lower passage 11B. A stable intake flow without variation is obtained. Thereby, a stable stratified combustion operation can be performed in the low rotation low load region I.

一方、中高回転低負荷領域(図3のII)では、ガス流動が強くなるので、弁体12Aを閉じて下側通路11Bを閉じることにより、吸気を強制的に上側通路4Aのみに導入させる。これにより、図5(C),(D)に示すように、ガス流動が強化されて強いタンブル流動を得ることができ、該タンブル流動によって燃料噴霧を点火栓7周りに輸送しつつ均質な混合気を得て、良好な均質燃焼運転を行うことができる。なお、図でIIAの領域では、EGRを行ない、これより外側の回転、負荷が高い領域IIBでは、EGRを停止する。   On the other hand, in the middle / high rotation / low load region (II in FIG. 3), the gas flow becomes strong, so that the valve body 12A is closed and the lower passage 11B is closed to forcibly introduce the intake air into only the upper passage 4A. As a result, as shown in FIGS. 5C and 5D, the gas flow is strengthened and a strong tumble flow can be obtained, and the fuel spray is transported around the spark plug 7 by the tumble flow and homogeneous mixing is performed. It is possible to obtain a good and homogeneous combustion operation. Note that EGR is performed in the region IIA in the figure, and EGR is stopped in the region IIB where the rotation and load are higher outside this region.

さらに、全開及び全開に近い高回転高負荷領域(図3のIII)では、吸気制御弁12を弁軸12a及び弁体12Aが分割プレート10の延長上に位置する全開位置に制御する。これにより、弁軸12a及び弁体12Aの厚みが分割プレート10の厚みと重なるので、吸気ポート4の開口面積が最大となり、吸入空気量を最大限大きくして出力性能を確保できる。   Further, in the fully open and high rotation high load region close to full open (III in FIG. 3), the intake control valve 12 is controlled to the fully open position where the valve shaft 12 a and the valve body 12 A are positioned on the extension of the split plate 10. Thereby, since the thickness of the valve shaft 12a and the valve body 12A overlaps with the thickness of the dividing plate 10, the opening area of the intake port 4 is maximized, and the output performance can be secured by maximizing the intake air amount.

なお、高回転高負荷領域IIIの図中点線より下側に示される領域は、この領域より図で上側の領域と中高回転低負荷領域との間で吸気制御弁12の制御を切り換える場合に両領域の制御位置が切り換わる過渡領域となる。
次に、上記実施形態で示される本発明の効果を、前記特許文献1に記載されたもの及び弁軸の片側のみに弁体を有した吸気制御弁を供えたもの(以下、比較例という)と比較して説明する。
Note that the region shown below the dotted line in the drawing of the high rotation / high load region III is both when the control of the intake control valve 12 is switched between the region above the region and the middle / high rotation / low load region. This is a transitional region where the control position of the region is switched.
Next, the effect of the present invention shown in the above embodiment is the one described in Patent Document 1 and the one provided with an intake control valve having a valve body only on one side of the valve shaft (hereinafter referred to as a comparative example). And will be described.

既述したように、特許文献1では全開運転時に、弁軸位置が下側通路の延長上に固定されたまま最大開度として全開にするため、吸気ポートを分割する分割壁の厚みに加えて、下側通路の延長上に位置する吸気制御弁の厚みが、吸気ポートの通路断面積を減少させて抵抗を増大させることになる。
これに対し、本発明では、上記のように全開運転時には弁軸12a及び弁体12A吸気制御弁12の厚みによる通路抵抗を減らせる分、最大吸入空気量を増大して全開出力性能を向上できる。
As described above, in Patent Document 1, in the fully open operation, the valve shaft position remains fixed on the extension of the lower passage and is fully opened as the maximum opening. Therefore, in addition to the thickness of the dividing wall that divides the intake port, The thickness of the intake control valve located on the extension of the lower passage reduces the passage cross-sectional area of the intake port and increases the resistance.
On the other hand, in the present invention, as described above, during the fully open operation, the passage resistance due to the thickness of the valve shaft 12a and the valve body 12A intake control valve 12 can be reduced, so that the maximum intake air amount can be increased and the fully open output performance can be improved. .

また、比較例では、既述したように吸気制御弁が閉じて下側通路を閉じた状態から全開位置まで弁体を回転させるときに、吸気負圧による弁軸周りの大きな閉方向のトルクに抗して開弁させるため、大きな駆動トルクを要し、大型のアクチュエータが必要となってコスト高につき、レイアウトも難しくなる。
これに対し、本発明では、開弁時の駆動トルクを十分小さくすることができる。すなわち、弁体12Aの中心部に弁軸12aを設けたので、まず、閉位置から最大開度まで弁体12Aを弁軸12a回りに回動する際に、弁軸12aを挟んで両側の弁体部に吸気圧を受けて作用するトルクが逆向きに生じて相殺されるので、駆動トルクが十分小さくてすむ。また、全開位置に駆動する際に、上記のように先に弁軸位置を維持して弁体12Aを最大開度まで回転させた後、該最大開度を維持したまま分割プレート11の延長上まで平行移動する構成としたため、弁体12Aに加わる負圧抵抗を最小限に維持しつつ全開位置まで回動され、駆動トルクを十分小さくすることができる。因みに、閉位置から急加速を行って全開位置に切り換える場合に、先に最大開度にすることなく、連続的に開度が増大する(クランク板と弁体とが一体に回転する)ようにしたのでは、弁体12A全体に作用する吸気負圧による閉弁トルクに抗した開弁駆動トルクが要求され、比較例と変わりないことになってしまう。
Further, in the comparative example, as described above, when the valve body is rotated from the state where the intake control valve is closed and the lower passage is closed to the fully opened position, the torque in the closing direction around the valve shaft due to the intake negative pressure is increased. In order to open the valve against this, a large driving torque is required, a large actuator is required, and the layout is difficult due to high cost.
On the other hand, in the present invention, the driving torque when the valve is opened can be made sufficiently small. That is, since the valve shaft 12a is provided at the center of the valve body 12A, first, when the valve body 12A is rotated around the valve shaft 12a from the closed position to the maximum opening, the valve shafts 12a are sandwiched between the valve shafts 12a. Since the torque acting on the body part in response to the intake pressure is generated in the opposite direction and canceled out, the drive torque can be sufficiently small. Further, when driving to the fully open position, after maintaining the valve shaft position and rotating the valve body 12A to the maximum opening degree as described above, the division plate 11 is extended with the maximum opening degree maintained. Therefore, the negative torque resistance applied to the valve body 12A is kept to a minimum while the valve body 12A is rotated to the fully open position, and the driving torque can be sufficiently reduced. By the way, when sudden acceleration is performed from the closed position to switch to the fully opened position, the opening continuously increases (the crank plate and the valve body rotate integrally) without first setting the maximum opening. Therefore, the valve opening drive torque against the valve closing torque due to the intake negative pressure acting on the entire valve body 12A is required, which is the same as the comparative example.

このように、本発明では、全開運転時の吸気抵抗を小さく抑制して最大出力を向上しつつ開弁トルクを小さく維持して小型のアクチュエータを用いてコストを低減でき、レイアウトも容易である。
なお、実施形態では、吸気ポートを上下に分割して下側通路の閉時にタンブル流動を生成するものを示したが、該タンブル流動を生成するものに限らず、吸気制御弁によって上側の通路を閉じて逆向きのタンブル流動を生成したり、吸気ポートを左右に分割して一方の通路を閉じてスワールを生成するようなものにも適用できる。
As described above, according to the present invention, the intake resistance during the fully open operation is suppressed to be small, the maximum output is improved, the valve opening torque is kept small, the cost can be reduced by using a small actuator, and the layout is also easy.
In the embodiment, the intake port is divided into upper and lower parts to generate the tumble flow when the lower passage is closed, but the upper passage is not limited to the one that generates the tumble flow, and the intake control valve The present invention can also be applied to a case where the tumble flow is generated by closing and the tidal flow is reversed, or the swirl is generated by dividing the intake port into left and right and closing one of the passages.

本発明に係る吸気装置を備えた内燃機関のシステム構成図。The system block diagram of the internal combustion engine provided with the intake device which concerns on this invention. 同上吸気装置における吸気制御弁の弁駆動機構の機能を示す断面図。Sectional drawing which shows the function of the valve drive mechanism of the intake control valve in an intake device same as the above. 同上吸気制御弁の一連の動作と各制御位置を示す図。The figure which shows a series of operation | movement and each control position of an intake control valve same as the above. 同上吸気制御弁の機関運転領域毎の制御位置を示す図。The figure which shows the control position for every engine operation area | region of an intake control valve same as the above. 低回転低負荷領域での成層燃焼運転と、中高回転低負荷領域での成層燃焼運転との混合気生成方法の相違を示す図。The figure which shows the difference in the air-fuel | gaseous mixture production | generation method of the stratified combustion operation in a low rotation low load area | region, and the stratified combustion operation in a medium high rotation low load area | region.

符号の説明Explanation of symbols

1…内燃機関
4…吸気ポート
4A…上側通路
4B…下側通路
4a…ストッパ壁
4b…ストッパ壁
7…点火栓
8…燃料噴射弁
10…分割プレート
12…吸気制御弁
12A…弁体
12a…弁軸
13…弁駆動機構
14…エンジンコントロールユニット
22…クランク板
22b…ストッパピン
23…ピン
24…リターンスプリング
25…アーム
26…リンク
27…ラック
28…ピニオン
29…モータ
30…ストッパ壁
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 4 ... Intake port 4A ... Upper side passage 4B ... Lower side passage 4a ... Stopper wall 4b ... Stopper wall 7 ... Spark plug 8 ... Fuel injection valve 10 ... Split plate 12 ... Intake control valve 12A ... Valve body 12a ... Valve Shaft 13 ... Valve drive mechanism 14 ... Engine control unit 22 ... Crank plate 22b ... Stopper pin 23 ... Pin 24 ... Return spring 25 ... Arm 26 ... Link 27 ... Rack 28 ... Pinion 29 ... Motor 30 ... Stopper wall

Claims (7)

吸気ポートの通路断面を分割壁によって分割すると共に、弁体中心部に設けた弁軸周り回動自由で、かつ、前記弁軸を前記通路断面方向に沿って移動自由に形成された吸気制御弁と、前記弁軸周りの回動及び弁軸の前記通路断面方向に沿った移動を制御しつつ前記吸気制御弁を開閉駆動する弁駆動機構と、を設けたことを特徴とする内燃機関の吸気装置。   An intake control valve in which a passage cross section of the intake port is divided by a dividing wall, and is freely rotatable around a valve shaft provided in a central portion of the valve body, and the valve shaft is freely movable along the passage cross sectional direction. And a valve drive mechanism for opening and closing the intake control valve while controlling rotation around the valve shaft and movement of the valve shaft along the passage cross-sectional direction. apparatus. 前記弁駆動機構は、前記弁軸を前記分割壁の延長上の位置から前記分割壁で分割された通路の延長上の位置までの範囲を移動させながら吸気制御弁を駆動することを特徴とする請求項1に記載の内燃機関の吸気装置。   The valve drive mechanism drives the intake control valve while moving the valve shaft from a position on an extension of the dividing wall to a position on an extension of a passage divided by the dividing wall. The intake device for an internal combustion engine according to claim 1. 前記弁駆動機構は、機関の全開及び全開に近い高負荷運転時に前記分割壁の延長上に前記弁軸及び弁体を位置させることを特徴とする請求項2に記載の内燃機関の吸気装置。   3. The intake device for an internal combustion engine according to claim 2, wherein the valve driving mechanism positions the valve shaft and the valve body on an extension of the dividing wall during full opening of the engine and high load operation close to full opening. 前記弁駆動機構は、前記分割壁で分割された通路の閉時に該通路の延長上に前記弁軸を位置させて閉じるように駆動することを特徴とする請求項2または請求項3に記載の内燃機関の吸気装置。   4. The drive mechanism according to claim 2, wherein the valve drive mechanism drives the valve shaft so as to be closed on an extension of the passage when the passage divided by the dividing wall is closed. 5. An intake device for an internal combustion engine. 前記弁駆動機構は、所定の運転条件では前記分割壁で分割された通路の延長上に前記弁軸を位置させつつ、前記弁体を該通路の軸方向と平行に開いて位置させることを特徴とする請求項2〜請求項4のいずれか1つに記載の内燃機関の吸気装置。   The valve drive mechanism positions the valve body in parallel with the axial direction of the passage while positioning the valve shaft on an extension of the passage divided by the dividing wall under a predetermined operating condition. An intake device for an internal combustion engine according to any one of claims 2 to 4. 前記弁駆動機構は、前記吸気制御弁の弁体が前記分割された通路を閉じた状態からの開弁時に、前記弁体を前記分割された通路の軸と平行に開く位置まで弁軸周りに回動させた後、該弁軸の回動位置を維持したまま弁軸を分割壁の延長上に位置させるまで移動させて全開とし、該全開状態からの閉弁時には前記開弁時の動作と逆方向に動作するように構成されることを特徴とする請求項2〜請求項5のいずれか1つに記載の内燃機関の吸気装置。   When the valve body of the intake control valve is opened from a state where the divided passage is closed, the valve driving mechanism is arranged around the valve shaft to a position where the valve body is opened in parallel with the axis of the divided passage. After the rotation, the valve shaft is moved until it is positioned on the extension of the dividing wall while maintaining the rotation position of the valve shaft to be fully opened, and when the valve is closed from the fully opened state, The intake device for an internal combustion engine according to any one of claims 2 to 5, wherein the intake device is configured to operate in a reverse direction. 前記弁駆動機構は、吸気ポート壁にクランク軸部材を回動自由に支持し、該クランク軸部材の偏心した位置に前記弁軸を回動自由に軸支し、前記弁軸の回動範囲を規制するストッパ機構を設け、前記弁軸端部にリンク機構を連結し、該リンク機構を駆動することにより弁体を弁軸周りに前記ストッパ機構で規制される回動範囲だけ回動し、該回動を規制された前記弁軸を介して前記クランク軸部材を回動させて弁軸を移動するように構成したこと特徴とする請求項6に記載の内燃機関の吸気装置。
The valve drive mechanism supports the crankshaft member on the intake port wall so as to freely rotate, and pivotally supports the valve shaft at an eccentric position of the crankshaft member, thereby providing a rotation range of the valve shaft. A stopper mechanism for restricting is provided, a link mechanism is connected to the end of the valve shaft, and by driving the link mechanism, the valve body is rotated around the valve shaft by a rotation range restricted by the stopper mechanism, The intake device for an internal combustion engine according to claim 6, wherein the valve shaft is moved by rotating the crankshaft member through the valve shaft that is restricted from rotating.
JP2003410519A 2003-12-09 2003-12-09 Intake system for internal combustion engine Pending JP2005171813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410519A JP2005171813A (en) 2003-12-09 2003-12-09 Intake system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410519A JP2005171813A (en) 2003-12-09 2003-12-09 Intake system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005171813A true JP2005171813A (en) 2005-06-30

Family

ID=34731591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410519A Pending JP2005171813A (en) 2003-12-09 2003-12-09 Intake system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005171813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958863B2 (en) 2006-05-24 2011-06-14 Toyota Jidosha Kabushiki Kaisha Intake device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7958863B2 (en) 2006-05-24 2011-06-14 Toyota Jidosha Kabushiki Kaisha Intake device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100482059B1 (en) Air flux variable charge motion device of engine in vehicle
US8146564B2 (en) Engine intake air flow control assembly
EP2031209B1 (en) Air intake device for internal combustion engine
KR101338272B1 (en) An egr valve for a vechicle
US9784225B2 (en) Intake air control apparatus of engine
KR20080005119A (en) Exhaust-gas recirculation valve
KR20190027028A (en) Exhaust gas recirculation valve for vehicle
JP2010525205A (en) Internal combustion engine
JP4821588B2 (en) Premixed compression ignition engine
JP2004525306A (en) Apparatus for avoiding sticking of exhaust gas recirculation valve after internal combustion engine shut down
JP2005171813A (en) Intake system for internal combustion engine
KR100885903B1 (en) Apparatus for automatically adjusting the exhaust pressure of the engine
JP5449013B2 (en) Air cleaner for 2-cycle engines
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP2003278551A (en) Intake device for internal combustion engine
JP2006077648A (en) Intake device of internal combustion engine
KR100589139B1 (en) Variable swirl control apparatus and method thereof
KR101889040B1 (en) Intake Air Control Integrated EGR Valve For Vehicle
JPS59120706A (en) Opening and closing valve timing regulator
JP2684089B2 (en) Intake device for internal combustion engine
JPH0726966A (en) Intake control valve
JP2005171888A (en) Intake device for internal combustion engine
JPS62174513A (en) Intake pipe control valve
JPH10331647A (en) Intake controller for internal combustion engine
JPH05321673A (en) Exhaust device for two-cycle engine