JP2005171372A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2005171372A
JP2005171372A JP2003417158A JP2003417158A JP2005171372A JP 2005171372 A JP2005171372 A JP 2005171372A JP 2003417158 A JP2003417158 A JP 2003417158A JP 2003417158 A JP2003417158 A JP 2003417158A JP 2005171372 A JP2005171372 A JP 2005171372A
Authority
JP
Japan
Prior art keywords
seawater
dissolved oxygen
added
cooling system
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003417158A
Other languages
Japanese (ja)
Inventor
Kazutaka Akai
一隆 赤井
Masanori Akiyama
正則 秋山
Hideaki Otani
英明 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003417158A priority Critical patent/JP2005171372A/en
Publication of JP2005171372A publication Critical patent/JP2005171372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for preventing or reducing the corrosion of such a part in a cooling apparatus as to contact with sea water of a coolant. <P>SOLUTION: The cooling system comprises employing seawater for the coolant in the cooling apparatus and adding a material acting as a catalyst and SO<SB>3</SB><SP>2-</SP>to the seawater of the coolant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は冷却システムに関し、より詳細には、海水を冷却装置の冷却水として用いる冷却システムに関する。   The present invention relates to a cooling system, and more particularly to a cooling system that uses seawater as cooling water for a cooling device.

大型石油プラントのガスや大量のCOGガス等の冷却システムは、一般に冷媒として海水が使用されている。この冷却システムは、冷却効率を高めるため一般に冷却チューブを採用した冷却器が用いられているこの冷却チューブは腐食低減対策としてアルマー加工を施して、腐食による穴開きの寿命を延ばす対策を取っている。しかしながら、約10〜15年程度で腐食により穴が開き漏れが発生している。このためクーラーを停止開放し冷却チューブの取り替えを行う必要があり多大な材修費がかかっている状況である。   In a cooling system for large oil plant gas and a large amount of COG gas, seawater is generally used as a refrigerant. This cooling system generally uses a cooler that employs a cooling tube to increase the cooling efficiency. This cooling tube is subjected to almer processing as a measure to reduce corrosion, and measures are taken to extend the service life of holes due to corrosion. . However, in about 10 to 15 years, holes are opened due to corrosion and leakage occurs. For this reason, it is necessary to stop and open the cooler and replace the cooling tube, which requires a large amount of material repair costs.

また、防食の手法としては電気防食が一般に知られている(コロージョン・エンジニアリング入門編:社団法人 腐食防食協会発行)が、電気防食の防食効果範囲には限度があり、一般的な熱交チューフ゛及び配管全域に防食効果を期待することはほぼ不可能であった。
コロージョン・エンジニアリング入門編:社団法人 腐食防食協会発行 P223〜241
In addition, as an anticorrosion technique, electrocorrosion is generally known (Introduction to Corrosion Engineering: published by the Corrosion and Corrosion Association). It was almost impossible to expect an anticorrosive effect throughout the piping.
Corrosion Engineering Introduction: Issued by the Corrosion and Corrosion Association P223-241

本発明の課題は、冷却装置の冷却水としての海水が接する部分の腐食を防止又は低減できる手段を提供することにある。   The subject of this invention is providing the means which can prevent or reduce the corrosion of the part which the seawater as cooling water of a cooling device contacts.

本発明者等は、上記課題を解決すべく鋭意検討した結果、海水中の溶存酸素により腐食が進行している事を見出し、その溶存酸素を低減するには、溶存酸素と脱酸素剤としてのSO 2−の反応の反応触媒としての作用を有する物質とSO 2−を共存させることが有効であることを見出し、本発名を完成するに至った。即ち本発明の要旨は、海水を冷却装置の冷却水として用いる冷却システムであって、冷却水としての海水に、反応触媒としての作用を有する物質とSO 2−を添加することを特徴とする冷却システムに存する。 As a result of intensive investigations to solve the above problems, the present inventors have found that corrosion is progressing due to dissolved oxygen in seawater, and in order to reduce the dissolved oxygen, dissolved oxygen and oxygen scavengers are used. found that the coexistence material and SO 3 2-a having an action as a reaction catalyst of SO 3 2-reactions are effective, and have completed the present onset name. That is, the gist of the present invention is a cooling system that uses seawater as cooling water for a cooling device, and is characterized in that a substance having an action as a reaction catalyst and SO 3 2− are added to seawater as cooling water. Lies in the cooling system.

本発明により、冷却装置の冷却水としての海水が接する部分の腐食を防止又は低減できる手段を提供することができる。   ADVANTAGE OF THE INVENTION By this invention, the means which can prevent or reduce the corrosion of the part which the seawater as cooling water of a cooling device contacts is provided.

本発明の冷却システムは、海水を冷却装置の冷却水として用いる冷却システムであって、冷却水としての海水に、反応触媒としての作用を有する物質と、SO 2−を添加することを特徴とする。本発明においては、冷却水としての海水に反応触媒としての作用を有する物質とSO 2−を添加すればよく、本発明における「SO 2−の添加」は、SO 2−の形態での添加だけでなく、MSO(Mは金属を表す)、(NH42SO3、(
CH32SO3等の形態での添加も含む。MSO(Mは金属を表す:具体的にはAg等
の重金属、Na、K等のアルカリ金属、Mg、Ca、Ba等のアルカリ土類等が挙げられる。)は、海水中で遊離するものであればよい。
The cooling system of the present invention is a cooling system that uses seawater as cooling water for a cooling device, and is characterized by adding a substance having an action as a reaction catalyst and SO 3 2- to seawater as cooling water. To do. In the present invention, a substance having an action as a reaction catalyst and SO 3 2− may be added to seawater as cooling water, and “addition of SO 3 2− ” in the present invention is in the form of SO 3 2− . As well as MSO 3 (M represents a metal), (NH 4 ) 2 SO 3 , (
Including addition in the form of CH 3 ) 2 SO 3 and the like. MSO 3 (M represents a metal: specifically, a heavy metal such as Ag, an alkali metal such as Na and K, and an alkaline earth such as Mg, Ca and Ba) is liberated in seawater If it is.

本発明において、「反応触媒としての作用を有する物質」とは溶存酸素と脱酸素剤とし
てのSO 2−の反応の反応触媒として作用する物質であればよく、具体的にはCoCl、FeSO等が挙げられ、コスト的にはFeSOが有利である。反応触媒として作用を有する物質であるか否かは、例えば下記の方法で確認すればよい。
(イ)ビーカーに海水200mlを採取してスターラーで、ゆっくり撹拌しながら溶存酸素計で溶存酸素(O2)濃度を測定し、測定した溶存酸素濃度を「溶存酸素濃度A」と
する。
In the present invention, the “substance having an action as a reaction catalyst” may be any substance that acts as a reaction catalyst for the reaction of dissolved oxygen and SO 3 2− as an oxygen scavenger. Specifically, CoCl 2 , FeSO 4 and the like, and FeSO 4 is advantageous in terms of cost. Whether or not a substance has an action as a reaction catalyst may be confirmed by, for example, the following method.
(A) Collect 200 ml of seawater in a beaker and measure the dissolved oxygen (O 2 ) concentration with a stirrer while slowly stirring with a dissolved oxygen meter. The measured dissolved oxygen concentration is defined as “dissolved oxygen concentration A”.

(ロ)次に対象物質(反応触媒として作用するか否かを確認する物質)を対海水量に対し0.5ppmとなるように(0.1mg)添加し、
(ハ)続いて、上記(イ)で測定した溶存酸素濃度から溶存酸素(O2)のモル数を計
算し、該モル数の1/2のモル数となるようにSO 2−を添加する。
なおこの場合、溶存酸素濃度から溶存酸素のモル数の計算は、下記式にて行えばよい
(B) Next, add the target substance (substance that confirms whether or not it acts as a reaction catalyst) to 0.5 ppm with respect to the amount of seawater (0.1 mg),
(C) Subsequently, the number of moles of dissolved oxygen (O 2 ) is calculated from the dissolved oxygen concentration measured in (a) above, and SO 3 2− is added so that the number of moles is ½ of the number of moles. To do.
In this case, the calculation of the number of moles of dissolved oxygen from the dissolved oxygen concentration may be performed by the following formula.

Figure 2005171372
Figure 2005171372

(ニ)上記(ハ)の添加後3分間静置した後、溶存酸素計で海水中の溶存酸素(O2
濃度を測定し、測定した溶存酸素濃度を「溶存酸素濃度B」とする。
(ホ)溶存酸素濃度Bが溶存酸素濃度Aの3/4以下(溶存酸素濃度Bが溶存酸素濃度Aの3/4以下であるということは、SO 2−による溶存酸素の低減効果が50%以上発現しているということ)であれば、対象物質は反応触媒として作用を有すると判定する。
(D) After standing for 3 minutes after the addition of (C) above, dissolved oxygen (O 2 ) in seawater with a dissolved oxygen meter
The concentration is measured, and the measured dissolved oxygen concentration is defined as “dissolved oxygen concentration B”.
(E) The dissolved oxygen concentration B is 3/4 or less of the dissolved oxygen concentration A (the dissolved oxygen concentration B is 3/4 or less of the dissolved oxygen concentration A means that the effect of reducing dissolved oxygen by SO 3 2- is 50. %), It is determined that the target substance has an action as a reaction catalyst.

上記(ホ)において、反応触媒の使用量の観点から、溶存酸素濃度Bは好ましくは溶存酸素濃度Aの13/20以下(SO 2−による溶存酸素の低減効果が70%以上発現しているということ)、好ましくは11/20以下(SO 2−による溶存酸素の低減効果が90%以上発現しているということ)である。
本発明において、冷却水としての海水に反応触媒としての作用を有する物質とSO 2−を添加する方法としては、
(i)海水に反応触媒としての作用を有する物質を添加した後、SO 2−を添加する方法
(ii)海水に、反応触媒としての作用を有する物質とSO 2−を同時に添加する方法
(iii)海水にSO 2−を添加した後に反応触媒としての作用を有する物質を添加する方法
が挙げられるが、反応時間の短縮という観点から、上記(i)又は(ii)の方法が好ましい。
In the above (e), from the viewpoint of the amount of reaction catalyst used, the dissolved oxygen concentration B is preferably 13/20 or less of the dissolved oxygen concentration A (the effect of reducing dissolved oxygen by SO 3 2− is 70% or more. That is, it is preferably 11/20 or less (the effect of reducing dissolved oxygen by SO 3 2− is 90% or more).
In the present invention, as a method of adding a substance having an action as a reaction catalyst and SO 3 2− to seawater as cooling water,
(I) Method of adding SO 3 2− after adding a substance having an action as a reaction catalyst to seawater (ii) Method of simultaneously adding a substance having an action as a reaction catalyst and SO 3 2− to seawater (Iii) A method of adding a substance having an action as a reaction catalyst after adding SO 3 2− to seawater is mentioned, but from the viewpoint of shortening the reaction time, the method (i) or (ii) is preferable. .

反応触媒としての作用を有する物質の添加方法としては、反応触媒としての作用を有する物質を粉末のまま添加してもよいし、水溶液等、溶液に溶解してから添加してもよい。
また本発明において、冷却水としての海水にSO 2−を添加する方法の一例としては、
(1)MSOの粉末を海水に添加する方法
(2)MSOの粉末を水等に溶解した後、海水に添加する方法
(3)SO 2−を含有する溶液を、海水に添加する方法
等が挙げられる。
As a method for adding a substance having a function as a reaction catalyst, a substance having a function as a reaction catalyst may be added as a powder, or may be added after being dissolved in a solution such as an aqueous solution.
In the present invention, as an example of a method of adding SO 3 2-seawater as cooling water,
(1) After MSO 3 powder to the powder method (2) MSO 3 to be added to seawater and dissolved in water, the solution containing the method (3) SO 3 2-added to the sea water, is added to the sea water Methods and the like.

MSOの粉末又はSO 2−含有溶液の添加は、例えば冷却システムの前に海水配管に注入すればよい。
本発明におけるMSO(Mは金属を表す)は、具体的にはNaSO、NaHSO、MgS0、KSO、CaSO、AgSO、BaSO3等が挙げられ、水
質汚濁や溶解度の観点からNaSO、KSO等が好ましい。
The addition of the MSO 3 powder or the SO 3 2- containing solution may be injected into the seawater piping before the cooling system, for example.
Specific examples of MSO 3 (M represents a metal) in the present invention include Na 2 SO 3 , NaHSO 3 , MgS 0 3 , K 2 SO 3 , CaSO 3 , Ag 2 SO 3 , BaSO 3, and the like. Na 2 SO 3 , K 2 SO 3 and the like are preferable from the viewpoint of pollution and solubility.

なお、硫黄回収設備又は硫酸回収設備の排水には、SO 2−が含まれているので、硫黄回収設備又は硫酸回収設備の排水を海水に配合することによりSO 2−
を冷却水としての海水に添加してもよい。硫黄回収設備又は硫酸回収設備の排水に含まれるSO 2−の具体例としては、一般的にはNaSO由来のSO 2−等が挙げられる。
Note that the effluent sulfur recovery plant or sulfuric acid recovery facility, because it contains SO 3 2-, SO 3 by blending effluent sulfur recovery plant or sulfuric acid recovery facility in seawater 2-
May be added to seawater as cooling water. Specific examples of SO 3 2− contained in the waste water of the sulfur recovery facility or sulfuric acid recovery facility generally include SO 3 2− derived from Na 2 SO 3 .

SO 2−の添加量(モル数)は、海水中の溶存酸素(O2)のモル数に対し1〜2倍
が好ましく、通常0.5倍以上、より好ましくは1.0倍以上、特に好ましくは1.5倍以上であり、通中3倍以下、より好ましくは2.5倍以下である。MSO(Mは金属を表す)又はSO 2−の添加量が多すぎると環境負荷が大きくなってしまい、バブリング等の後処理が必要となる。なお、少なすぎると防食効果が得られず、好ましくはモル数で海水中の溶存酸素のモル数の1〜2倍である。
The addition amount (number of moles) of SO 3 2− is preferably 1 to 2 times the number of moles of dissolved oxygen (O 2 ) in seawater, usually 0.5 times or more, more preferably 1.0 times or more, Especially preferably, it is 1.5 times or more, 3 times or less, and more preferably 2.5 times or less. If the amount of MSO 3 (M represents a metal) or SO 3 2− is too large, the environmental load increases, and post-treatment such as bubbling is required. If the amount is too small, the anticorrosive effect cannot be obtained, and preferably 1 to 2 times the number of moles of dissolved oxygen in seawater.

海水中の溶存酸素の量は、例えば溶存酸素計により測定することができる。実際には、例えば冷却装置の冷却水入口部の海水の溶存酸素濃度を測定すればよい。
硫黄回収設備又は硫酸回収設備の排水を海水に配合することによりSO 2−を冷却水としての海水に添加する場合、排水の量と濃度が少ない場合は全量添加し、不足分は購入して添加すればよい。例えば、冷却システム入口部の海水の溶存酸素濃度が目標値以下になるようにSO 2−量を決定すればよい。具体的には、冷却システム入口部の海水の溶存酸素濃度を溶存酸素計で測定し、溶存酸素濃度が目標値以上であればSO 2−の添加量を増やせばよい。SO 2−の添加量を増やしても溶存酸素量が低下しない場合は、「反応触媒としての作用を有する物質」の量が不足しているということであり、この添加量を増加させればよい。
The amount of dissolved oxygen in sea water can be measured by, for example, a dissolved oxygen meter. In practice, for example, the dissolved oxygen concentration of seawater at the cooling water inlet of the cooling device may be measured.
When adding SO 3 2-by drainage sulfur recovery plant or sulfuric acid recovery facility incorporated into seawater seawater as cooling water, if the amount and concentration of the waste water is low added total amount of the shortfall buy What is necessary is just to add. For example, the amount of SO 3 2− may be determined so that the dissolved oxygen concentration of seawater at the inlet of the cooling system is below the target value. Specifically, the dissolved oxygen concentration of seawater at the inlet of the cooling system is measured with a dissolved oxygen meter, and if the dissolved oxygen concentration is equal to or higher than the target value, the amount of SO 3 2− added may be increased. If the amount of dissolved oxygen does not decrease even if the amount of SO 3 2- added is increased, it means that the amount of “substance having an action as a reaction catalyst” is insufficient, and if this amount added is increased. Good.

なお、上記における「目標値」は腐食を防止または低減する程度により異なるが、例えば4mg/L以下、好ましくは2mg/L以下である。
本発明における冷却システムは、冷媒として海水を用い伝熱で冷却する冷却装置であり、例えば、大量の発生ガスを冷媒として海水を使用して冷却する方式、蒸留塔から流出するオイル等を冷媒として海水を使用して冷却する方式であり、具体的にはガスクーラーやオイルクーラ−等が挙げられる。
The “target value” in the above varies depending on the degree of preventing or reducing corrosion, but is, for example, 4 mg / L or less, preferably 2 mg / L or less.
The cooling system in the present invention is a cooling device that cools by heat transfer using seawater as a refrigerant. For example, a cooling system that uses seawater as a refrigerant for a large amount of generated gas, oil that flows out of a distillation tower, or the like as a refrigerant. This is a method of cooling using seawater, and specifically includes a gas cooler, an oil cooler, and the like.

冷却システムで冷却される対象物は、その対象プラントにより異なるが、例えばエチレンガス、COG、分解ガス、オイル、熱水等が挙げられる。
冷却システムでの冷却は、例えば冷却される対象物がコークス炉から発生したコークス炉ガスであれば、コークス炉から発生したコークス炉ガス約80℃をクーラーで精製処理が行える温度約30℃まで冷却する。
The target object cooled by the cooling system varies depending on the target plant, and examples thereof include ethylene gas, COG, cracked gas, oil, and hot water.
For example, if the object to be cooled is coke oven gas generated from a coke oven, the cooling system cools the coke oven gas generated from the coke oven to about 30 ° C. at which the refining treatment can be performed with a cooler. To do.

本発明において使用するSO 2−としては、一般にコークス炉ガスや石油精製ガス等に含まれる硫化水素を、溶融硫黄や硫酸として回収する装置を保有する場合に、反応炉で未回収分のSO2をNaOH等で吸収し回収する時に得られるものを使用することができ
る。
冷却システムがコークス炉ガスの精製プロセスにおける冷却システムである場合は、経
済的観点から、コークス炉ガスの精製プロセスにおける硫黄回収設備又は硫酸回収設備の排水を海水に配合することによりSO 2−を冷却水としての海水に添加することが好ましい。
また、冷却システムが石油精製プロセスにおける冷却システムである場合は、経済的観点から、石油精製のプロセスにおける硫黄回収設備又は硫酸回収設備の排水を海水に配合することによりSO 2−を冷却水としての海水に添加することが好ましい。
As SO 3 2- used in the present invention, generally, when a device for recovering hydrogen sulfide contained in coke oven gas, petroleum refinery gas, or the like as molten sulfur or sulfuric acid is held, unrecovered SO in the reactor. What is obtained when 2 is absorbed and recovered with NaOH or the like can be used.
When the cooling system is a cooling system in a coke oven gas refining process, from an economic viewpoint, SO 3 2− is obtained by blending the waste water from the sulfur recovery facility or sulfuric acid recovery facility in the coke oven gas refining process with seawater. It is preferable to add to seawater as cooling water.
Moreover, when a cooling system is a cooling system in an oil refining process, SO 3 2- is used as cooling water by mix | blending the waste_water | drain of the sulfur recovery equipment or sulfuric acid recovery equipment in an oil refining process with seawater from an economical viewpoint. It is preferable to add to seawater.

なお、本発明においては、更に冷却水としての海水に反応触媒としての作用を有する物質を添加することを必須とする。反応触媒としての作用を有する物質は、海水中の溶存酸素と脱酸素剤としてのSO 2−の反応の反応触媒として作用し、該反応時間を短縮する。
反応触媒としての作用を有する物質の添加量は通常0.01ppm以上、好ましくは0.05ppm以上であり、通常1ppm以下好ましくは0.8ppm以下である。添加量が少なすぎると反応時間が遅くなり効果が得られない。多すぎても防食の観点からは特に問題はないが、環境負荷が大きくなってしまう。実際には物質によって効果が異なり、より具体的に説明すると、反応触媒としての作用を有する物質が塩化コバルトである場合は、添加量は(CoCl換算で)通常0.03ppm以上、好ましくは0.05ppm以上であり、通常0.2ppm以下、好ましくは0.1ppm以下である。また、反応触媒としての作用を有する物質が硫酸第一鉄である場合は、通常(FeSO換算で)0.1ppm以上、好ましくは0.5ppm以上であり、通常1ppm以下、好ましくは0.8ppm以下である。
In the present invention, it is essential to add a substance having an action as a reaction catalyst to seawater as cooling water. The substance having an action as a reaction catalyst acts as a reaction catalyst for the reaction between dissolved oxygen in seawater and SO 3 2− as an oxygen scavenger, and shortens the reaction time.
The amount of the substance having an action as a reaction catalyst is usually 0.01 ppm or more, preferably 0.05 ppm or more, and usually 1 ppm or less, preferably 0.8 ppm or less. If the amount added is too small, the reaction time is delayed and the effect cannot be obtained. Even if it is too much, there is no particular problem from the viewpoint of anticorrosion, but the environmental load increases. Actually, the effect varies depending on the substance. More specifically, when the substance having a function as a reaction catalyst is cobalt chloride, the addition amount is usually 0.03 ppm or more (in terms of CoCl 2 ), preferably 0. 0.05 ppm or more, usually 0.2 ppm or less, preferably 0.1 ppm or less. Further, when the substance having an action as a reaction catalyst is ferrous sulfate, it is usually 0.1 ppm or more (in terms of FeSO 4 ), preferably 0.5 ppm or more, usually 1 ppm or less, preferably 0.8 ppm. It is as follows.

実施例1
図1に示す装置を用い、25℃の恒温槽にセットした反応容器(10ml)に海水を10ml入れ、溶存酸素計(YSI社製5300型)を反応容器にセット(密閉して空気との接触を防止した)し撹拌した。溶存酸素の値が安定した(安定時の溶存酸素(O2)濃
度は5.7ppm(0.178mmol/L))を確認後、反応触媒として塩化コバルトをCoCl2 として0.05ppm添加し、続いてコークス炉ガスの精製プロセスにおける硫黄回収設備の排水(SO 2−を5000ppm(62.5mmol/L)含む)をピペッターで50μl(SO 2−の添加量(モル数)は溶存酸素のモル数に対し1.7
6倍である)添加した。その後、経時的に溶存酸素(O2)濃度を測定した。結果を図2
に示す。
Example 1
Using the apparatus shown in FIG. 1, 10 ml of seawater is placed in a reaction vessel (10 ml) set in a constant temperature bath at 25 ° C., and a dissolved oxygen meter (YSI 5300 type) is set in the reaction vessel (sealed and contacted with air) The mixture was stirred. After confirming that the dissolved oxygen value was stable (the dissolved oxygen (O 2 ) concentration was 5.7 ppm (0.178 mmol / L) at the time of stabilization), 0.05 ppm of cobalt chloride as CoCl 2 was added as a reaction catalyst, In a coke oven gas refining process, the sulfur recovery equipment wastewater (containing SO 3 2- at 5000 ppm (62.5 mmol / L)) is pipetted to 50 μl (the amount of SO 3 2- added (in moles) is the mol of dissolved oxygen) 1.7 against the number
6 times). Thereafter, the dissolved oxygen (O 2 ) concentration was measured over time. The result is shown in FIG.
Shown in

実施例2
塩化コバルトを0.05ppm添加するかわりに硫酸第一鉄をFeSO4として0.5ppm添加した以外は実施例1と同様にして、経時的に溶存酸素(O2)濃度を測定した。
結果を図2に示す。
比較例1
塩化コバルトや硫酸第1鉄等の脱酸素触媒物質を添加しなかった以外は実施例1と同様にして経時的に溶存酸素(O2)濃度を測定した。結果を図2に示す。
Example 2
The dissolved oxygen (O 2 ) concentration was measured over time in the same manner as in Example 1 except that 0.05 ppm of ferrous sulfate was added as FeSO 4 instead of adding 0.05 ppm of cobalt chloride.
The results are shown in FIG.
Comparative Example 1
The dissolved oxygen (O 2 ) concentration was measured over time in the same manner as in Example 1 except that a deoxygenation catalyst substance such as cobalt chloride or ferrous sulfate was not added. The results are shown in FIG.

図2から、海水にSO 2−のみを添加した場合の反応は非常に遅く1時間以上 と予想されるが、反応触媒としての作用を有する物質(CoCl2やFeSO4)を添加すると
反応速度は1〜2分と顕著に短縮されることがわかる。
実施例3
1000mlガラス製容器に海水を500ml入れ、テストピースとして炭素鋼(SS400)を浸積し、オンライン腐食モニター(特開平9−297117号公報に記載の電気化学ノイズ法)を用いて室温で静止状態の海水を脱酸素処理して溶存酸素濃度をゼロにした場合と脱酸素しない場合のケースについて腐食率の比較を調べた。脱酸素処理は反応
触媒として硫酸第一鉄を海水に対し1ppm添加し、その後Na2SO3 41mg(0.65mmol/L)を海水に添加して溶存酸素計(堀場製作所 形式OM−14)で溶存酸素濃度が0ppmになるようにした。脱酸素処理前後の腐食速度を図3に示す。
From Fig. 2, the reaction when only SO 3 2- is added to seawater is expected to be very slow and more than 1 hour, but the reaction rate when a substance that acts as a reaction catalyst (CoCl 2 or FeSO 4 ) is added. It can be seen that is significantly shortened to 1 to 2 minutes.
Example 3
500 ml of seawater is put in a 1000 ml glass container, carbon steel (SS400) is immersed as a test piece, and stationary at room temperature using an online corrosion monitor (electrochemical noise method described in JP-A-9-297117) A comparison of corrosion rates was investigated for cases where the seawater was deoxygenated and the dissolved oxygen concentration was zero, and when it was not deoxygenated. In the deoxygenation treatment, 1 ppm of ferrous sulfate as a reaction catalyst is added to seawater, and then 41 mg (0.65 mmol / L) of Na 2 SO 3 is added to the sea water and dissolved oxygen meter (Horiba Seisakusho OM-14) is used. The dissolved oxygen concentration was adjusted to 0 ppm. The corrosion rate before and after the deoxygenation treatment is shown in FIG.

脱酸素低減処理前の溶存酸素6.87ppm(0.215mmol/L)の時の腐食速度は0.26(mm/y)であったが、Na2SO3と硫酸第一鉄を海水に添加して溶存酸素を0ppmにした場合の腐食率は0.05(mm/y)と低下した。このことより海水の溶存酸素を低減すれば腐食速度は低減できることが確認できた。
実施例4
図4に示すベンチ試験装置を用いて、脱酸素剤と脱酸素触媒を添加して海水の溶存酸素(O2)の低下を40日間確認した。海水(溶存酸素濃度は6.3ppm(0.216m
mol/L):溶存酸素濃度はテスト期間の平均値)をポンプでベンチ試験装置に1.9
/hr送液し、脱酸素触媒として硫酸第1鉄を先に対海水量に対し定量ポンプでFe
SOとして1ppm(1.9g/hr)添加した。次いで脱酸素剤としてNa2SO3を海水量に対しSO3 2−として8.4ppm:0.105何mmol/L)添加し、3分間の滞留時間の位置でサンプリングし、海水の溶存酸素をハンデータイプの溶存酸素計(堀場製作所 形式OM−14)で測定した(海水は脱酸素剤を添加する前の位置(装置入口)で採取し溶存酸素を測定し、脱酸素剤添加後3分経過した位置で海水をサンプリングして測定し、脱酸素効果を確認した)。サンプリングした海水中の溶存酸素は4ppm(0.125mmol/L)に低下していることが確認できた。
The corrosion rate when dissolved oxygen was 6.87 ppm (0.215 mmol / L) before deoxygenation reduction treatment was 0.26 (mm / y), but Na 2 SO 3 and ferrous sulfate were added to seawater Thus, the corrosion rate when the dissolved oxygen was 0 ppm decreased to 0.05 (mm / y). From this, it was confirmed that the corrosion rate could be reduced if the dissolved oxygen in the seawater was reduced.
Example 4
Using the bench test apparatus shown in FIG. 4, a deoxidant and a deoxygenation catalyst were added, and a decrease in dissolved oxygen (O 2 ) in seawater was confirmed for 40 days. Seawater (Dissolved oxygen concentration is 6.3 ppm (0.216 m
mol / L): Dissolved oxygen concentration is the average value during the test period).
m 3 / hr, and ferrous sulfate as a deoxygenation catalyst was first fed by a metering pump to the amount of seawater.
1 ppm (1.9 g / hr) was added as SO 4 . Next, Na 2 SO 3 as an oxygen scavenger was added as 8.4 ppm: 0.105 mmol / L) as SO 3 2− with respect to the amount of seawater, and sampled at the position of a residence time of 3 minutes. Measured with a handy-type dissolved oxygen meter (Horiba Seisakusho OM-14) (seawater was collected at a position before the addition of oxygen absorber (device inlet) and dissolved oxygen was measured, and 3 minutes passed after oxygen absorber was added. The seawater was sampled and measured at the measured position to confirm the deoxygenation effect). It was confirmed that the dissolved oxygen in the sampled seawater was reduced to 4 ppm (0.125 mmol / L).

なお、テストピース(材質:SS400、形状:20mm幅×50mm長さ×厚み3mm)を3分後の滞留時間の位置の直後に設置した。   A test piece (material: SS400, shape: 20 mm width × 50 mm length × thickness 3 mm) was placed immediately after the position of the residence time after 3 minutes.

海水の溶存酸素を測定する装置の概略図である。It is the schematic of the apparatus which measures the dissolved oxygen of seawater. 海水の溶存酸素低下の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen fall of seawater. 海水の溶存酸素有無での腐食率の経時変化を示す図である。It is a figure which shows the time-dependent change of the corrosion rate by the presence or absence of dissolved oxygen of seawater. 海水の溶存酸素を低下させ腐食の低減効果を調べるベンチテスト装置の概略図である。It is the schematic of the bench test apparatus which reduces the dissolved oxygen of seawater and investigates the reduction effect of corrosion.

符号の説明Explanation of symbols

図1において
1 海水
2 反応容器
3 回転子
4 撹拌スタ−ラ
5 恒温槽
6 溶存酸素計
7 蓋
8 薬剤注入口
図4において
1 海水ピット
2 海水ポンプ
3 硫酸鉄タンク
4 硫酸鉄ポンプ
5 NaSOタンク
6 NaSOポンプ
7 流量計
8 サンプリング位置
9 テストピース
10 排水
In FIG. 1 1 Seawater 2 Reaction vessel 3 Rotor 4 Stirring stirrer 5 Constant temperature bath 6 Dissolved oxygen meter 7 Lid 8 Drug inlet In FIG. 4 1 Seawater pit 2 Seawater pump 3 Iron sulfate tank 4 Iron sulfate pump 5 Na 2 SO 3 tanks
6 Na 2 SO 3 pump 7 Flow meter 8 Sampling position 9 Test piece 10 Drainage

Claims (4)

海水を冷却装置の冷却水として用いる冷却システムであって、冷却水としての海水に、反応触媒としての作用を有する物質と、SO 2−を添加することを特徴とする冷却システム。 A cooling system using seawater as cooling water for a cooling device, wherein a substance having an action as a reaction catalyst and SO 3 2− are added to seawater as cooling water. 反応触媒としての作用を有する物質が、CoCl又はFeSOである請求項1に記載の冷却システム。 The cooling system according to claim 1, wherein the substance having a function as a reaction catalyst is CoCl 2 or FeSO 4 . SO 2−の添加量(モル数)が、海水中の溶存酸素のモル数に対し0.5〜3倍である請求項1又は2に記載の冷却システム。 The cooling system according to claim 1 or 2, wherein the amount of SO 3 2- added (in moles) is 0.5 to 3 times the number of moles of dissolved oxygen in seawater. SO 2−の添加が、硫黄回収設備又は硫酸回収設備の排水を海水に配合することにより行われる請求項1〜3のいずれかに記載の冷却システム。 The cooling system according to any one of claims 1 to 3, wherein the addition of SO 3 2- is performed by blending the waste water of the sulfur recovery facility or the sulfuric acid recovery facility into seawater.
JP2003417158A 2003-12-15 2003-12-15 Cooling system Pending JP2005171372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417158A JP2005171372A (en) 2003-12-15 2003-12-15 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417158A JP2005171372A (en) 2003-12-15 2003-12-15 Cooling system

Publications (1)

Publication Number Publication Date
JP2005171372A true JP2005171372A (en) 2005-06-30

Family

ID=34736151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417158A Pending JP2005171372A (en) 2003-12-15 2003-12-15 Cooling system

Country Status (1)

Country Link
JP (1) JP2005171372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193434A (en) * 2011-03-17 2012-10-11 Kurita Water Ind Ltd Water treatment method of steam generation device
CN110749148A (en) * 2019-10-28 2020-02-04 云南摩尔农庄生物科技开发有限公司 Natural high-efficiency cooling water device
CN111156776A (en) * 2019-12-31 2020-05-15 安徽康佳同创电器有限公司 Oxygen-reducing fresh-keeping structure, refrigerator, oxygen-reducing fresh-keeping method and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193434A (en) * 2011-03-17 2012-10-11 Kurita Water Ind Ltd Water treatment method of steam generation device
CN110749148A (en) * 2019-10-28 2020-02-04 云南摩尔农庄生物科技开发有限公司 Natural high-efficiency cooling water device
CN110749148B (en) * 2019-10-28 2022-03-18 云南摩尔农庄生物科技开发有限公司 Natural high-efficiency cooling water device
CN111156776A (en) * 2019-12-31 2020-05-15 安徽康佳同创电器有限公司 Oxygen-reducing fresh-keeping structure, refrigerator, oxygen-reducing fresh-keeping method and storage medium

Similar Documents

Publication Publication Date Title
EP0039819B1 (en) Process for treating a liquid waste composition containing copper ions and an organic complexing agent
JP5434663B2 (en) Cyanide-containing wastewater treatment method and treatment equipment
US5015298A (en) Composition and method for removing iron containing deposits from equipment constructed of dissimilar metals
CA2413888A1 (en) Corrosion control utilizing a hydrogen peroxide donor
JPS6070189A (en) Oxygen capturing agent and use
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
Wang et al. Corrosion behavior and electrochemical property of Q235A steel in treated water containing halide ions (F−, Cl−) from nonferrous industry
JP2005171372A (en) Cooling system
MXPA06000273A (en) Method for prevention of corrosion by naphthenic acids in refineries.
CN106348415A (en) QCL-T complexing breaking agent and preparation method thereof
US9605234B2 (en) Pyrophoric iron sulfide treatment using sodium nitrite
KR20120101391A (en) Method for handling aqueous methanesulfonic acid solutions
JPWO2005007588A1 (en) Method and apparatus for anaerobic treatment of wastewater containing sulfur compounds
JP2005281733A (en) Nickel smelting process
RU2735372C1 (en) Method of determining content of sulphides in deposits in oil-field equipment
Van der Merwe et al. Corrosion characteristics of mild steel storage tanks in fluorine-containing acid
Kish et al. Corrosion control of type 316L stainless steel in sulfamic acid cleaning solutions
CN107922225B (en) Water treatment agent composition for cyanide-containing wastewater
JP7454096B1 (en) Wastewater treatment method
Tan et al. Chemical oxidation methods for the treatment of thiosalt-containing mill effluents
AU2013237053A1 (en) Treatment of acid mine drainage
KR101083171B1 (en) Heat exchanger chemical cleaning method using level control
GB1589932A (en) Corrosion inhibiting compositions for use in gas scrubbing solutions
EP0157793A1 (en) Method for removing insoluble sulfide pads at oil/water interfaces
CN111088502A (en) Application method of cyclic regeneration type spraying agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210