JP2005171324A - Method for producing stainless steel restraining development of two-phase structure formation - Google Patents

Method for producing stainless steel restraining development of two-phase structure formation Download PDF

Info

Publication number
JP2005171324A
JP2005171324A JP2003413554A JP2003413554A JP2005171324A JP 2005171324 A JP2005171324 A JP 2005171324A JP 2003413554 A JP2003413554 A JP 2003413554A JP 2003413554 A JP2003413554 A JP 2003413554A JP 2005171324 A JP2005171324 A JP 2005171324A
Authority
JP
Japan
Prior art keywords
stainless steel
ray diffraction
diffraction profile
temperature
phase structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413554A
Other languages
Japanese (ja)
Inventor
Naoto Hiramatsu
直人 平松
Takashi Igawa
孝 井川
Akira Hironaka
明 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003413554A priority Critical patent/JP2005171324A/en
Publication of JP2005171324A publication Critical patent/JP2005171324A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a stainless steel strip excellent in the workability in soft quality by setting annealing temperature as higher as possible while preventing two-phase structure formation. <P>SOLUTION: When the stainless steel forming ferrite+austenite two-phase structure at the high temperature range exceeding Ac<SB>1</SB>transformation point, is continuously annealed, to the annealed stainless steel, an X-ray diffraction is applied and the X-ray diffraction profile is obtained and thus, the transformation from the austenite to the martensite is judged from the spreading of width in the X-ray diffraction profile. When the transformation from the austenite to the martensite is decided, the temperature-rising condition is relaxed with the lowering of the temperature in the furnace, the transportation speed of the steel strip, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温域で二相組織を呈するステンレス鋼の焼鈍に際し、過焼鈍による二相組織の生成を防止して材料特性の良好なステンレス鋼を製造する方法に関する。   The present invention relates to a method for producing a stainless steel with good material properties by preventing the formation of a two-phase structure due to over-annealing when annealing a stainless steel exhibiting a two-phase structure in a high temperature range.

ステンレス鋼は,優れた耐食性を活用し、厨房機器,製造装置,車両用構造材や機器,建材等、広範な分野で使用されている。深絞り,張出し加工,伸びフランジ成形,曲げ加工,冷間鍛造等で用途に応じた目標形状にステンレス鋼帯又はステンレス鋼板(以下、ステンレス鋼帯で総称する)が成形されるが、デザインや嗜好の多様化に伴って高度の加工性が要求される場合が多くなってきている。   Stainless steel is used in a wide range of fields, including kitchen equipment, manufacturing equipment, vehicle structural materials and equipment, and building materials, utilizing its excellent corrosion resistance. Stainless steel strips or stainless steel plates (hereinafter collectively referred to as stainless steel strips) are formed into target shapes according to applications by deep drawing, overhanging, stretch flange forming, bending, cold forging, etc. With the diversification of products, there is an increasing demand for high workability.

加工の高度化に対応するため、加工性に優れた材料の開発が進められている。加工性を左右する重要な因子の一つに延性があるが、延性は製造時の条件に著しく影響される。そのため、材料自体で優れた延性を呈する鋼種が開発されても、製造条件が適正でないと本来の性能が十分に発現しない。製造条件のなかでも、再結晶焼鈍は材料特性に大きな影響を及ぼし、高延性を呈する適正金属組織に仕上げることが再結晶焼鈍の狙いである。この場合の適正金属組織とは内部に結晶歪みの残存がない金属組織であり、適正金属組織が得られるように十分な温度又は時間加熱する焼鈍条件が採用される。   In order to cope with the sophistication of processing, materials with excellent processability are being developed. Ductility is one of the important factors that affect workability, but ductility is significantly affected by manufacturing conditions. For this reason, even if a steel type exhibiting excellent ductility in the material itself is developed, the original performance is not sufficiently exhibited unless the manufacturing conditions are appropriate. Among the manufacturing conditions, recrystallization annealing has a great influence on the material properties, and the aim of recrystallization annealing is to finish the metal structure with a high ductility. The proper metal structure in this case is a metal structure in which no crystal distortion remains inside, and an annealing condition for heating at a sufficient temperature or time is adopted so that an appropriate metal structure is obtained.

生産性の観点から連続ラインでステンレス鋼帯が製造されていることを考慮すると、適正金属組織を得るために焼鈍時間を長く設定するとライン速度が遅くなり、生産性が阻害される。そのため、焼鈍炉の温度を高く設定し、高速通板されているステンレス鋼帯に十分な温度を与える方式が選択される。
しかし、SUS430等のフェライト系ステンレス鋼やSUS410,SUS420J2等のマルテンサイト系ステンレス鋼は、昇温時に逆変態を開始する温度であるAc1変態点を超えて高温加熱されると、フェライト+オーステナイトの二相組織を呈する。二相組織は、ステンレス鋼帯が室温まで冷却される過程でオーステナイト相が硬質のマルテンサイト相に変態するため、フェライト+マルテンサイトの二相組織になる。その結果、得られたステンレス鋼帯は、硬くて延性に乏しい材質となる。
Considering that the stainless steel strip is manufactured in a continuous line from the viewpoint of productivity, if the annealing time is set to be long in order to obtain an appropriate metal structure, the line speed becomes slow and the productivity is hindered. Therefore, a method is selected in which the temperature of the annealing furnace is set high, and a sufficient temperature is applied to the stainless steel strip that is being passed through at high speed.
However, when ferritic stainless steel such as SUS430 and martensitic stainless steel such as SUS410 and SUS420J2 are heated at a high temperature beyond the Ac 1 transformation point, which is the temperature at which reverse transformation starts when the temperature rises, ferrite + austenite Presents a two-phase structure. Since the austenite phase is transformed into a hard martensite phase in the process of cooling the stainless steel strip to room temperature, the dual phase structure becomes a ferrite + martensite dual phase structure. As a result, the obtained stainless steel strip is a hard material with poor ductility.

フェライト+オーステナイトの二相組織になった熱延材は硬質なため、製品形状への加工や冷間圧延に先立って軟質化される。軟質化では、箱型焼鈍炉に熱延材を装入し、Ac1変態点以下の長時間加熱によりマルテンサイト相をフェライト相と炭化物に分解している。また、冷間圧延されたステンレス鋼帯は、加工硬化しているので、中間焼鈍や仕上げ焼鈍で軟質化される。しかし、軟質化処理の際に炉況変動等に起因してAc1変態点を超える温度にステンレス鋼帯が加熱されると、再び延性の低いフェライト+マルテンサイト二相組織となる。
延性が低下したステンレス鋼帯は外見上で判別できず、最終工程に至った段階で製品の伸びや硬さの機械試験によって異常が発覚することがある。最終段階で異常が発覚したステンレス鋼帯は屑処理され、或いは再度の熱処理を施す必要があるため、製造コストが著しく上昇する。
Since the hot-rolled material having a two-phase structure of ferrite and austenite is hard, it is softened prior to processing into a product shape or cold rolling. In softening, a hot rolled material is charged into a box-type annealing furnace, and the martensite phase is decomposed into a ferrite phase and a carbide by heating for a long time below the Ac 1 transformation point. Moreover, since the cold-rolled stainless steel strip is work-hardened, it is softened by intermediate annealing or finish annealing. However, when the stainless steel strip is heated to a temperature exceeding the Ac 1 transformation point due to fluctuations in furnace conditions during the softening treatment, a ferrite + martensite two-phase structure with low ductility is obtained again.
Stainless steel strips with reduced ductility cannot be discerned in appearance, and abnormalities may be detected by mechanical tests of product elongation and hardness at the final stage. Since the stainless steel strip in which an abnormality is detected at the final stage needs to be scrapped or subjected to a second heat treatment, the manufacturing cost increases significantly.

フェライト+マルテンサイト二相組織の生成に起因した材質異常を防止するために、熱処理されているステンレス鋼帯の組織をインラインで測定し、高温域でフェライト+オーステナイト二相組織が生じないように焼鈍条件を制御することが考えられる。焼鈍後にAc1変態点を超えてフェライト+オーステナイト二相組織となった状態を検出する手段として、磁歪を使用した再結晶センサーが開発されている。しかし、軟質のフェライト相及び硬質のマルテンサイト相共に強磁性体であるため、再結晶センサーの検出精度が低く、十分に信頼性のある測定結果が得られていない。フェライト+オーステナイト二相組織をインラインで測定する実用的な手段は、その他に報告されていない。
そのため、実操業では、低い炉温でステンレス鋼帯を通板することにより過焼鈍を回避しており、再結晶焼鈍が生産性向上のネックになっている。
In order to prevent material abnormalities due to the formation of ferrite + martensite two-phase structure, the structure of the heat-treated stainless steel strip is measured in-line and annealed to prevent the formation of ferrite + austenite two-phase structure at high temperatures. It is conceivable to control the conditions. A recrystallized sensor using magnetostriction has been developed as a means for detecting the state in which the Ac 1 transformation point is exceeded and a ferrite + austenite two-phase structure is formed after annealing. However, since both the soft ferrite phase and the hard martensite phase are ferromagnetic materials, the detection accuracy of the recrystallization sensor is low, and a sufficiently reliable measurement result cannot be obtained. No other practical means for measuring the ferrite + austenite two-phase structure in-line has been reported.
Therefore, in actual operation, over-annealing is avoided by passing a stainless steel strip at a low furnace temperature, and recrystallization annealing is a bottleneck for improving productivity.

本発明は、このような問題を解消すべく案出されたものであり、焼鈍後にステンレス鋼帯を観察して二相組織の有無を判定できるX線回折を採用することにより、高速通板のために鋼帯温度を可能な限りAc1変態点に近づけた温度条件下で焼鈍してもフェライト+オーステナイト二相組織の発生がなく、延性に優れた適正金属組織をもつステンレス鋼帯を高生産性で製造することを目的とする。 The present invention has been devised to solve such a problem. By adopting X-ray diffraction that can determine the presence or absence of a two-phase structure by observing a stainless steel strip after annealing, For this reason, even if annealing is performed under conditions where the steel strip temperature is as close to the Ac 1 transformation point as possible, there is no generation of a ferrite + austenite two-phase structure, and a stainless steel strip having an appropriate metal structure with excellent ductility is produced at high production. It aims at manufacturing with the property.

本発明は、その目的を達成するため、Ac1変態点を超える高温域でフェライト+オーステナイト二相組織となるステンレス鋼を連続焼鈍する際、焼鈍されたステンレス鋼をX線回折してX線回折プロフィールを求め、X線回折プロフィールの幅広りからオーステナイト→マルテンサイト変態を判定し、オーステナイト→マルテンサイト変態が判定されたときステンレス鋼の昇温条件を緩和することを特徴とする。
昇温条件の緩和には、炉温の低下,通板速度の上昇等のアクションが採用される。
In order to achieve the object, the present invention performs X-ray diffraction by subjecting the annealed stainless steel to X-ray diffraction when continuously annealing a stainless steel having a ferrite + austenite two-phase structure in a high temperature range exceeding the Ac 1 transformation point. A profile is obtained, and the austenite → martensite transformation is determined from the width of the X-ray diffraction profile, and when the austenite → martensite transformation is determined, the temperature rise condition of the stainless steel is relaxed.
Actions such as a decrease in the furnace temperature and an increase in the sheet feeding speed are adopted to ease the temperature rise conditions.

本発明では、焼鈍されたステンレス鋼帯の表面を連続的にX線回折することにより、フェライト+オーステナイト二相組織の発生有無を判定する。フェライト+オーステナイト二相組織が検出され始めると、炉温低下や通板速度の上昇等のアクションによって鋼帯温度をAc1変態点以下に下げ、フェライト+オーステナイト二相組織の生成・成長を抑制する。X線回折を組織観察に応用すること自体はすでに知られている技術(非特許文献1)であるが、本発明は、これを二相組織発生の判定に利用し、延性に富む適正金属組織をもつステンレス鋼帯の製造を可能にしたものである。
社団法人日本材料学会X線材料強度部門委員会「第23回 X線材料強度に関する討論会講演論文集)第20〜26頁
In the present invention, the presence or absence of the ferrite + austenite two-phase structure is determined by continuously X-ray diffracting the surface of the annealed stainless steel strip. When the ferrite + austenite two-phase structure begins to be detected, the steel strip temperature is lowered below the Ac 1 transformation point by actions such as lowering the furnace temperature and increasing the sheeting speed, thereby suppressing the formation and growth of the ferrite + austenite two-phase structure. . Application of X-ray diffraction to tissue observation is a known technique (Non-Patent Document 1), but the present invention uses this for the determination of the occurrence of a two-phase structure, and an appropriate metal structure rich in ductility. This makes it possible to produce stainless steel strips with
The Japan Society of Materials Science X-ray Material Strength Committee “The 23rd X-ray Material Strength Discussion Papers” pp. 20-26

ステンレス鋼帯がAc1変態点を超える温度域に加熱されると、逆変態によってオーステナイト相が生成し、オーステナイト相が冷却後に硬質のマルテンサイト相に変態する。マルテンサイト相変態によってステンレス鋼帯に生じた変態歪みは、X線回折プロフィールの幅変化で検出される。すなわち、X線回折プロフィールの幅変化から、ステンレス鋼帯の二相組織化が判定される。
ステンレス鋼帯の表面にある結晶が無歪みの状態では、ブラッグの式nλ=2dsinθを満足する条件下でX線回折プロフィールが得られる(図1a)。すなわち、結晶格子間隔dと回折に使用した特性X線の波長λで回折条件を満足する2θの位置にX線回折プロフィールが出現する。X線回折プロフィールは、特性X線の波長λの広がりや測定光学系の散乱因子のため、理論的な2θ位置を中心に幅をもった分布で測定される。
When the stainless steel strip is heated to a temperature range exceeding the Ac 1 transformation point, an austenite phase is generated by reverse transformation, and the austenite phase is transformed into a hard martensite phase after cooling. Transformation strain generated in the stainless steel strip due to martensitic phase transformation is detected by a change in the width of the X-ray diffraction profile. That is, the two-phase organization of the stainless steel strip is determined from the change in the width of the X-ray diffraction profile.
In the unstrained state of the crystals on the surface of the stainless steel strip, an X-ray diffraction profile is obtained under conditions that satisfy the Bragg equation nλ = 2dsinθ (FIG. 1a). That is, an X-ray diffraction profile appears at a position of 2θ that satisfies the diffraction condition with the crystal lattice spacing d and the wavelength λ of the characteristic X-ray used for diffraction. The X-ray diffraction profile is measured with a distribution having a width around a theoretical 2θ position due to the spread of the wavelength λ of characteristic X-rays and the scattering factor of the measurement optical system.

弾性域内の引張り応力が作用して結晶に均一歪みが発生すると、歪み変化d−Δdに応じて、ブラッグの式を満足するように無歪み状態のプロフィールがθ+Δθの位置に移動する(図1b)。この場合、X線回折プロフィールの幅は変化せず、回折角度θの移動のみとなる。
ランダムな応力が作用して不均一歪みが結晶に発生すると、種々の歪み変化d±Δdに応じてブラッグの式を満足するように、θ±Δθの範囲に分散した分布で回折X線が検出される(図1c)。したがって、X線回折プロフィールは、幅広りになる。
When the tensile stress in the elastic region acts and a uniform strain occurs in the crystal, the unstrained profile moves to the position θ + Δθ so as to satisfy the Bragg equation according to the strain change d−Δd (FIG. 1b). . In this case, the width of the X-ray diffraction profile is not changed, and only the diffraction angle θ is moved.
When random stress acts and non-uniform strain occurs in the crystal, diffracted X-rays are detected with a distribution dispersed in the range of θ ± Δθ so that the Bragg equation is satisfied according to various strain changes d ± Δd. (FIG. 1c). Therefore, the X-ray diffraction profile becomes wider.

オーステナイト相がマルテンサイト相に変態したステンレス鋼帯をX線回折すると、結晶内に発生した剪断歪みによって幅広がりになったX線回折プロフィールが得られる。すなわち、焼鈍されたステンレス鋼帯の表面をX線回折し、X線回折プロフィールの幅変化を測定することによって、過焼鈍に起因した二相組織化の有無が判定される。判定結果に応じて高温域でフェライト+オーステナイト二相組織とならないように焼鈍条件を調整するとき、オーステナイト→マルテンサイト変態がなく、軟質で高延性のステンレス鋼帯が得られる。   When a stainless steel strip in which the austenite phase is transformed into the martensite phase is X-ray diffracted, an X-ray diffraction profile broadened by shear strain generated in the crystal is obtained. That is, the surface of the annealed stainless steel strip is X-ray diffracted and the change in the width of the X-ray diffraction profile is measured to determine the presence or absence of a two-phase structure due to over-annealing. When the annealing conditions are adjusted so as not to have a ferrite + austenite two-phase structure in a high temperature range according to the determination result, there is no austenite → martensite transformation, and a soft and highly ductile stainless steel strip is obtained.

分解能の高い集中ビームを用いた光学系でステンレス鋼帯の表面をX線回折するとき、精度のよいX線回折プロフィールが得られる。しかし、集中ビーム法では光学系の幾何学的条件、具体的には鋼帯表面とX線源や回折X線の収斂部との距離変化に影響を受け、光学系起因の誤差要因がX線回折プロフィールに取り込まれやすい。この点、製造ライン現場では、光学系の幾何学的条件の影響を受けにくい平行X線を使用する平行X線法が適している。
平行X線を用いた歪み測定に関し、方向性電磁鋼板の歪みを測定する方法(特許文献1)では、Si等の単結晶でX線源を回折して発散角を100秒以下にする平行X線化が必要であり、平行X線化によってX線強度が低下する。そのため、工業的に高速の連続測定が必要な二相組織化の判定には使用できない。
特開平8-297104号公報
When the surface of the stainless steel strip is X-ray diffracted by an optical system using a concentrated beam with high resolution, an accurate X-ray diffraction profile can be obtained. However, the concentrated beam method is affected by the geometrical conditions of the optical system, specifically the distance between the steel strip surface and the X-ray source and the convergent part of the diffracted X-rays. Easy to be incorporated into diffraction profiles. In this respect, the parallel X-ray method using parallel X-rays that are not easily affected by the geometric conditions of the optical system is suitable at the production line site.
Regarding strain measurement using parallel X-rays, a method of measuring strain of grain-oriented electrical steel sheets (Patent Document 1) diffracts an X-ray source with a single crystal such as Si to reduce the divergence angle to 100 seconds or less. Linearization is necessary, and X-ray intensity is reduced by parallel X-ray conversion. Therefore, it cannot be used for determination of two-phase organization that requires industrially high-speed continuous measurement.
JP-A-8-297104

また、回折された反射X線の検出にシンチレーションカウンタ等の比例計数管が多用されているが、この方法では回折線が出現する2θ範囲を走査する必要があり、測定に時間がかかる。そこで、走査の必要なく短時間でX線回折プロフィールが得られる位置敏感型比例計数管の使用が好ましい。
具体的には、X線管球1から出射されたX線をコリメータ2に通し、入射X線Linとして測定試料Sを照射し、測定試料Sからの回折X線Lrefを位置敏感型比例計数管3で検出する。位置敏感型比例計数管3は、線状のX線取込み口に沿って線状の芯線を配設し、芯線の両端に生じる時間差を検出することにより芯線方向(一次元方向)の位置分解能をもたせたX線検出器である。また、電荷結合素子(CCD)をX線受光面に直線配置したCCD-X線検出器によっても、測定試料Sからの回折X線Lrefを検出できる。
In addition, although a proportional counter such as a scintillation counter is frequently used to detect the diffracted reflected X-ray, this method requires scanning the 2θ range where the diffraction line appears, and takes a long time for measurement. Therefore, it is preferable to use a position sensitive proportional counter that can obtain an X-ray diffraction profile in a short time without the need for scanning.
Specifically, the X-ray emitted from the X-ray tube 1 is passed through the collimator 2, the measurement sample S is irradiated as the incident X-ray Lin, and the diffracted X-ray Lref from the measurement sample S is converted into a position sensitive proportional counter. 3 to detect. The position sensitive proportional counter 3 is provided with a linear core wire along the linear X-ray inlet, and detects the time difference occurring at both ends of the core wire, thereby reducing the position resolution in the core direction (one-dimensional direction). It is a leaning X-ray detector. The diffraction X-ray Lref from the measurement sample S can also be detected by a CCD-X-ray detector in which a charge coupled device (CCD) is linearly arranged on the X-ray light receiving surface.

表1の組成をもつ各種ステンレス鋼帯をX線回折用の測定試料Sとして使用した。試料No.1〜3はAc1変態点が異なるSUS430,試料No.4〜6はマルテンサイト系ステンレス鋼でC含有量が異なるSUS410,SUS410S,SUS420J2である。 Various stainless steel strips having the compositions shown in Table 1 were used as measurement samples S for X-ray diffraction. Sample Nos. 1 to 3 are SUS430 having different Ac 1 transformation points, and sample Nos. 4 to 6 are martensitic stainless steels having different C contents, such as SUS410, SUS410S, and SUS420J2.


Figure 2005171324

Figure 2005171324

各試料は、何れも板厚1mmで、50mm角に剪断して試験片とした後、試験片の中央部に熱電対を溶接で取り付けた。エレマ電気炉に試験片を装入し、目標材料温度に昇温した後,空冷する熱処理を試験片に施した。
熱処理された試験片を酸洗して表面硬さを測定すると共に、硬さ測定位置を外れた近傍で試験片表面をX線回折することによりX線回折プロフィールを得た。なお、熱処理中に輻射熱照射で試験片が昇温し、X線回折で得られる情報が試験片の極表層部10μm以下の回折情報であることから、極表層部の組織変化情報が得られるように荷重1kgで表面硬さを測定した。
Each sample had a plate thickness of 1 mm and was sheared to a 50 mm square to form a test piece, and a thermocouple was attached to the center of the test piece by welding. The test piece was placed in the Elema Electric Furnace, heated to the target material temperature, and then subjected to heat treatment for air cooling.
The heat-treated test piece was pickled to measure the surface hardness, and an X-ray diffraction profile was obtained by X-ray diffracting the surface of the test piece near the hardness measurement position. In addition, since the temperature of the test piece is increased by radiant heat irradiation during the heat treatment, and the information obtained by X-ray diffraction is the diffraction information of the extreme surface layer portion of the test piece of 10 μm or less, the structure change information of the extreme surface layer portion is obtained The surface hardness was measured at a load of 1 kg.

X線回折ではCr対陰極の密閉管をX線管球1に使用し、40kV−30mAを負荷した。このときの焦点サイズは直径が約0.5mmであった。X線管球1からのX線を長さ90mmのシングル又はダブルピンホールコリメータ2に送り、入射X線Linを平行ビームに近づけた。コリメータ2のピンホール径は、発散角の影響を検討するため0.1〜4mmの範囲で変化させた。X線回折面はα(211)で、2θは約155度であった。   In the X-ray diffraction, a sealed cathode of Cr counter-cathode was used for the X-ray tube 1 and 40 kV-30 mA was loaded. At this time, the focal spot size had a diameter of about 0.5 mm. X-rays from the X-ray tube 1 were sent to a 90 mm long single or double pinhole collimator 2 to make the incident X-ray Lin close to a parallel beam. The pinhole diameter of the collimator 2 was changed in the range of 0.1 to 4 mm in order to examine the influence of the divergence angle. The X-ray diffraction plane was α (211) and 2θ was about 155 degrees.

ピンホール径4mmのシングルコリメータ2を用いたものについて、発散角を0.137度(0.0024rad)とし、発散角が測定結果に及ぼす影響を調査した。ピンホール径の変更によって発散角を変えてもX線強度が同じであれば、発散角を小さくして分解能を改善しても精度がほとんど変わらず、却って回折強度の低下に起因する測定時間の長期化が顕在化することを意味する。また、ピンホール径を小さくして発散角を狭めるとX線照射面積が狭くなり、X線回折に寄与する結晶粒の個数が減少し、X線回折プロフィールの連続性が低下する。   About the thing using the single collimator 2 with a pinhole diameter of 4 mm, the divergence angle was set to 0.137 degree (0.0024 rad), and the influence which the divergence angle had on the measurement result was investigated. If the X-ray intensity is the same even if the divergence angle is changed by changing the pinhole diameter, the accuracy will hardly change even if the divergence angle is reduced and the resolution is improved. It means that the prolongation becomes obvious. Further, when the pinhole diameter is reduced and the divergence angle is reduced, the X-ray irradiation area is reduced, the number of crystal grains contributing to X-ray diffraction is reduced, and the continuity of the X-ray diffraction profile is lowered.

ピンホール径4mmのシングルコリメータ2を使用した場合でも、結晶粒度が大きな場合にはX線回折プロフィールの連続性が低下する。そこで、測定試料Sをストローク20mmで往復運動させることによって、X線回折に寄与する結晶粒の個数を増加させた。測定試料Sの往復運動は、製造ライン中を移動するステンレス鋼帯を連続して測定する操作に相当する。なお、測定時間は30秒に設定した。
試料No.1〜3についてX線回折プロフィールを測定し、X線回折プロフィールの幅と熱処理温度との関係を調査したところ、両者の間に図3の関係が成立していた。無歪み状態ではKα1とKα2の回折線が十分分離し、歪みの増加に応じてKα1とKα2の回折線が重複し且つ形状変化するため、X線回折プロフィールの幅としては、最高高さの1/3までの範囲にあるX線回折プロフィールの幅を読み取った。図3から明らかなように、焼鈍温度が高くなるに従ってX線回折プロフィールの幅が増加し始める温度(1)〜(3)があり、温度(1)〜(3)はそれぞれ試料No.1〜3のAc1変態点に相当していた。
Even when the single collimator 2 having a pinhole diameter of 4 mm is used, the continuity of the X-ray diffraction profile is lowered when the crystal grain size is large. Therefore, the number of crystal grains contributing to X-ray diffraction was increased by reciprocating the measurement sample S with a stroke of 20 mm. The reciprocating motion of the measurement sample S corresponds to an operation for continuously measuring the stainless steel strip moving in the production line. The measurement time was set to 30 seconds.
When the X-ray diffraction profile was measured for Sample Nos. 1 to 3 and the relationship between the width of the X-ray diffraction profile and the heat treatment temperature was investigated, the relationship of FIG. 3 was established between the two. In the unstrained state, the diffraction lines of Kα1 and Kα2 are sufficiently separated, and the diffraction lines of Kα1 and Kα2 overlap and change in shape as the strain increases, so that the width of the X-ray diffraction profile is the highest of 1 The width of the X-ray diffraction profile in the range up to / 3 was read. As apparent from FIG. 3, there are temperatures (1) to (3) where the width of the X-ray diffraction profile begins to increase as the annealing temperature increases, and the temperatures (1) to (3) are the sample Nos. 1 to 3, respectively. It corresponded to an Ac 1 transformation point of 3.

同様に試料No.1〜3について表面硬さとX線回折プロフィールの幅との関係を求めたところ、両者の間に図4の関係が成立していた。Ac1変態点に達しない温度で焼鈍した試験片では、表面硬さが165HV近傍にあり、X線回折プロフィールの幅は1.2度近傍に集中していた。他方、Ac1変態点を超えた温度で焼鈍された試験片では、表面硬さが上昇し、X線回折プロフィールの幅も拡大しており、表面硬さの上昇及びX線回折プロフィールの幅拡大はリニアな関係にあった。
図4の結果は、異なった材料間でも過焼鈍によりマルテンサイト相が生成して二相組織化していると、硬質なマルテンサイト相の増加と共に表面硬さ及びX線回折プロフィールの幅が広がることを意味する。換言すると、硬さ上昇や延性低下を招く二相組織化の有無は、本測定条件下ではX線回折プロフィールの1/3幅が1.3度に収まっているか否かによって判定できる。
Similarly, when the relationship between the surface hardness and the width of the X-ray diffraction profile was obtained for sample Nos. 1 to 3, the relationship of FIG. 4 was established between the two. In the test piece annealed at a temperature not reaching the Ac 1 transformation point, the surface hardness was in the vicinity of 165 HV, and the width of the X-ray diffraction profile was concentrated in the vicinity of 1.2 degrees. On the other hand, in the specimen annealed at a temperature exceeding the Ac 1 transformation point, the surface hardness is increased and the width of the X-ray diffraction profile is increased, and the increase of the surface hardness and the width of the X-ray diffraction profile is increased. Was in a linear relationship.
The result of FIG. 4 shows that when the martensite phase is generated by over-annealing between two different materials to form a two-phase structure, the surface hardness and the width of the X-ray diffraction profile increase as the hard martensite phase increases. Means. In other words, the presence or absence of a two-phase structure that causes an increase in hardness or a decrease in ductility can be determined by whether or not the 1/3 width of the X-ray diffraction profile is within 1.3 degrees under the present measurement conditions.

試料No.4〜6について、種々の熱処理温度で焼鈍し、焼鈍後のステンレス鋼帯をX線回折し、X線回折プロフィールの1/3幅と熱処理温度との関係を調査した。図5の調査結果にみられるように、X線回折プロフィールの1/3幅はそれぞれ温度(4)〜(6)を境として広がっており、温度(4)〜(6)は試料No.4〜6それぞれのAc1変態点に相当していた。
焼鈍された試料No.4〜6の表面硬さを測定し、焼鈍温度との関係を求めたところ、図6に示すようにAc1変態点に達しない温度で焼鈍した試験片はほぼ一定の表面硬さを示したが、Ac1変態点を超えて焼鈍された試験片では表面硬さが急激に上昇した。ただし、試料No.6では、Ac1変態点以下での硬さレベルが他の試験片の硬さレベルより高くなっている。これは、試料No.6が0.294質量%と比較的多量のCを含むSUS420J2鋼であり、仕上げ焼鈍前の熱処理(箱型焼鈍)状態で発生している多量の硬質炭化物が仕上げ焼鈍後にも残存したことが原因である。
Samples Nos. 4 to 6 were annealed at various heat treatment temperatures, and the annealed stainless steel strip was X-ray diffracted to investigate the relationship between the 1/3 width of the X-ray diffraction profile and the heat treatment temperature. As can be seen from the investigation results in FIG. 5, the 1/3 width of the X-ray diffraction profile spreads around the temperature (4) to (6), respectively, and the temperature (4) to (6) is the sample No. 4 It corresponded to each Ac 1 transformation point.
The surface hardness of the annealed samples Nos. 4 to 6 was measured and the relationship with the annealing temperature was determined. As shown in FIG. 6, the specimens annealed at a temperature that did not reach the Ac 1 transformation point were almost constant. Although the surface hardness was shown, the surface hardness of the test piece annealed beyond the Ac 1 transformation point increased rapidly. However, in sample No. 6, the hardness level below the Ac 1 transformation point is higher than the hardness level of the other test pieces. This is a SUS420J2 steel sample No. 6 containing 0.294% by mass and a relatively large amount of C, and a large amount of hard carbide generated in the heat treatment state before box annealing (box type annealing) is after finish annealing. This is also due to the remaining.

硬さ上昇をもたらす二相組織化は、中間焼鈍や仕上げ焼鈍時にステンレス鋼帯がAc1変態点を超える温度に加熱されることによって生じる。そこで、Ac1変態点を超える温度での加熱で二相組織化することにより上昇した硬さとAc1変態前の硬さとの差ΔHVをX線回折プロフィールの1/3幅で整理したところ、図7に示す関係が得られた。
硬度差ΔHVの増加はマルテンサイト相の生成に起因するものであるから、マルテンサイト相の生成に見合った塑性歪みが発生し、X線回折プロフィールの幅が広がったことになる。硬度差ΔHV及びX線回折プロフィールの1/3幅は、C量が異なる材料間でも同様なリニア関係にある。したがって、硬さ上昇や延性低下を招く二相組織化の有無は、本測定条件下ではX線回折プロフィールの1/3幅が1.3度以内に収まっているか否かによって判定できる。
The two-phase structure that brings about an increase in hardness occurs when the stainless steel strip is heated to a temperature exceeding the Ac 1 transformation point during intermediate annealing or finish annealing. Therefore, when the difference ΔHV between the hardness increased by forming a two-phase structure by heating at a temperature exceeding the Ac 1 transformation point and the hardness before the Ac 1 transformation is arranged by 1/3 width of the X-ray diffraction profile, The relationship shown in FIG. 7 was obtained.
Since the increase in the hardness difference ΔHV is caused by the formation of the martensite phase, a plastic strain corresponding to the formation of the martensite phase is generated, and the width of the X-ray diffraction profile is widened. The hardness difference ΔHV and the 1/3 width of the X-ray diffraction profile have a similar linear relationship between materials having different C contents. Therefore, the presence or absence of a two-phase structure that causes an increase in hardness or a decrease in ductility can be determined by whether or not the 1/3 width of the X-ray diffraction profile is within 1.3 degrees under the present measurement conditions.

X線回折プロフィールからマルテンサイト変態を判定する方法は、高温域でフェライト+オーステナイト二相組織を呈するステンレス鋼に限らず、Ac1変態点をもち、高温域で生じたオーステナイト相がマルテンサイト変態して格子歪みが発生する鋼材に対して同様に適用できる。また、X線を照射する測定面は、酸化スケールが付着した状態や酸洗状態,光輝焼鈍された状態等であってもX線回折プロフィールの幅がほとんど変化しないため、何れの表面状態でもX線回折できる。 The method for determining the martensitic transformation from the X-ray diffraction profile is not limited to stainless steel exhibiting a ferrite + austenite two-phase structure at high temperatures, but has an Ac 1 transformation point, and the austenitic phase generated at high temperatures undergoes martensitic transformation. Thus, the present invention can be similarly applied to a steel material in which lattice distortion occurs. In addition, the measurement surface for irradiating X-rays has almost no change in the width of the X-ray diffraction profile even when the oxide scale is attached, pickled or brightly annealed. Line diffraction is possible.

板厚0.25〜2.5mm,板幅1200mmのSUS430,SUS420J2焼鈍酸洗材を実ラインで合計20コイル製造し、各焼鈍酸洗材の幅方向両端及び幅方向中央部について表面硬さ及びX線回折プロフィールを測定した。なお、20コイルのうち、3コイルでは意図的に炉温を高くし、Ac1変態点を若干鋼帯温度が超える条件下で通板し、二相組織化を進行させた。
実ライン再取材の表面硬さとX線回折プロフィールの測定結果を図8に示す。通常条件で通板したステンレス鋼帯は、表面硬さが150〜170HVの範囲にあり、X線回折プロフィールの1/3幅も1.2〜1.37度の範囲にあった。これらステンレス鋼帯から切り出された試験片を機械試験に供したところ、通常の耐力及び引張強さを示したが、伸びは30%以上の高い値であった。
A total of 20 coils of SUS430 and SUS420J2 annealed pickling materials with a plate thickness of 0.25 to 2.5 mm and a plate width of 1200 mm are manufactured on the actual line, and the surface hardness and X-ray diffraction profile was measured. Of the 20 coils, 3 coils were intentionally raised in furnace temperature, passed through a condition where the steel strip temperature slightly exceeded the Ac 1 transformation point, and the two-phase structure was advanced.
FIG. 8 shows the measurement results of the surface hardness and X-ray diffraction profile of the actual line reclamation material. The stainless steel strip passed through under normal conditions had a surface hardness in the range of 150 to 170 HV, and a 1/3 width of the X-ray diffraction profile was also in the range of 1.2 to 1.37 degrees. When specimens cut from these stainless steel strips were subjected to a mechanical test, they showed normal proof stress and tensile strength, but the elongation was a high value of 30% or more.

他方、鋼帯温度がAc1変態点を超える条件で通板したコイルのうち、Aコイルを過焼鈍で二相組織化したものでは、表面硬さが180HV以上でX線回折プロフィールの1/3幅も1.4度以上に広がっていた。Aコイルの硬さ測定点近傍から試験片を切り出し、機械試験に供したところ、伸びが22%に低下し、耐力及び引張強さも高くなっていた。
Bコイルは、コイル中央部の表面硬さが165HVと正常な硬さであったが、コイル両端部では180HV以上の硬さであった。このことから、コイル両端部が過焼鈍により二相組織化したことが窺われる。二相組織化は、X線回折プロフィールの1/3幅が1.4度以上に広がっていることからも首肯される。
On the other hand, among the coils that passed through under conditions where the steel strip temperature exceeded the Ac 1 transformation point, those in which the A coil was two-phase textured by over-annealing had a surface hardness of 180 HV or more and 1/3 of the X-ray diffraction profile. The width also spread over 1.4 degrees. When a specimen was cut out from the vicinity of the hardness measurement point of the A coil and subjected to a mechanical test, the elongation was reduced to 22%, and the proof stress and tensile strength were also increased.
The coil B had a normal surface hardness of 165 HV at the center of the coil, but 180 HV or higher at both ends of the coil. From this, it can be seen that both end portions of the coil are two-phase textured by over-annealing. Two-phase organization is also confirmed by the fact that the 1/3 width of the X-ray diffraction profile extends to 1.4 degrees or more.

Cコイルでは、ワークスタンドWS側の表面硬さが172HVと他の部分に比較して高く、X線回折プロフィールの1/3幅が1.42度と広がっていることから、ワークスタンドWS側が過焼鈍によって二相組織化したことが窺われる。Cコイルの硬さ測定点近傍から切り出した試験片を機械試験したところ、中央部及びドライブサイドDS側では通常の耐力及び引張強さを示し、伸びも32%と高い値を示した。他方、ワークサイドWS側では、伸びが29%と低く、耐力が若干低下し、引張強さは通常値であった。ワークサイドWS側の引張試験結果は、極一部にマルテンサイト変態が生じて二相組織化した場合の特徴的な傾向であり、マルテンサイト変態の結果が降伏点の消滅及び伸びの低下として現れている。   In the C coil, the surface hardness on the work stand WS side is 172 HV, which is higher than that of other parts, and the 1/3 width of the X-ray diffraction profile is widened to 1.42 degrees. It seems that two-phase structure was formed by annealing. When the test piece cut out from the vicinity of the hardness measurement point of the C coil was mechanically tested, the center part and the drive side DS side showed normal proof stress and tensile strength, and the elongation was as high as 32%. On the other hand, on the work side WS side, the elongation was as low as 29%, the yield strength was slightly reduced, and the tensile strength was a normal value. The tensile test result on the work side WS side is a characteristic tendency when a martensitic transformation occurs in a very small part and a two-phase structure is formed. The result of the martensitic transformation appears as the disappearance of the yield point and the decrease in elongation. ing.

なお、実施例1と実施例2では、二相組織化境界におけるX線回折プロフィールの1/3幅の値が異なっている。この相違は、実施例1では実験室的に試料作製したことから試料内にほとんど歪みが導入されておらず、実施例2では実ライン通板時に駆動ゴムロールによる接触で僅かな歪みが試料に導入されたことに由来する。   In Example 1 and Example 2, the value of the 1/3 width of the X-ray diffraction profile at the two-phase organization boundary is different. This difference is that in Example 1, since the sample was prepared in the laboratory, almost no distortion was introduced into the sample. In Example 2, a slight distortion was introduced into the sample by contact with the driving rubber roll when the actual line was passed. It is derived from that.

連続焼鈍酸洗設備の炉温を950℃及び1050℃に保持した実ラインに板厚1mmのSUS430冷間圧延材を実ラインに通板し、通板速度を20m/分から徐々に上昇させた。実施例1と同じX線回折装置のX線回折プロフィール測定部を酸洗設備の出側に取り付け、X線回折プロフィールの1/3幅を測定した。また、通板後のステンレス鋼帯から試験片を切り出し、表面硬さを測定した。   A SUS430 cold-rolled material having a thickness of 1 mm was passed through the actual line where the furnace temperature of the continuous annealing pickling equipment was maintained at 950 ° C. and 1050 ° C., and the sheet passing speed was gradually increased from 20 m / min. The X-ray diffraction profile measurement part of the same X-ray diffractometer as in Example 1 was attached to the exit side of the pickling equipment, and the 1/3 width of the X-ray diffraction profile was measured. Moreover, the test piece was cut out from the stainless steel strip after passing, and the surface hardness was measured.

図9に示す測定結果から、表面硬さとX線回折プロフィールの1/3幅との間に高い一致性があることが確認された。950℃の炉温では、通板速度が35m/分に達しない場合に材料温度が上昇しすぎ二相組織化したことがわかる。また、通板速度が速くなるとステンレス鋼帯が十分に昇温しないため、軟質化不足がみられた。通板速度が65m/分のとき、表面硬さが170HVでX線回折プロフィールの1/3幅が約1.4度であった。この部分の伸びは約27%であり、35〜50m/分で通板したときの伸び32%に比較して低い値であった。低い伸び値は、通板速度が速くなると板厚中心部の温度上昇が遅れることによる焼鈍腐食が原因である。実際、板厚中心部の硬さは185HVと高い値であった。   From the measurement results shown in FIG. 9, it was confirmed that there was high consistency between the surface hardness and the 1/3 width of the X-ray diffraction profile. It can be seen that at a furnace temperature of 950 ° C., the material temperature rose too much and the two-phase structure was formed when the plate passing speed did not reach 35 m / min. Moreover, since the stainless steel strip was not sufficiently heated when the plate passing speed was increased, insufficient softening was observed. When the plate passing speed was 65 m / min, the surface hardness was 170 HV and the 1/3 width of the X-ray diffraction profile was about 1.4 degrees. The elongation of this portion was about 27%, which was a lower value compared to the elongation of 32% when passed through at 35 to 50 m / min. The low elongation value is caused by annealing corrosion due to a delay in temperature rise at the center of the plate thickness when the plate passing speed is increased. Actually, the hardness at the center of the plate thickness was as high as 185 HV.

1050℃の炉温では、通板速度が65m/分に達しないと材料温度が過度に上昇し二相組織化していた。また,通板速度が速くなると、ステンレス鋼帯が十分に昇温せず軟質化が不足した。通板速度95m/分では、表面固さが約170HVでX線回折プロフィールの1/3幅が約1.4度になっていた。この部分の伸びも約26%で、65〜75m/分で通板したときの伸び32%に比較して低い値であった。また、板厚中心部の硬さが190HVと高く、焼鈍不足の状態であった。
このように実ライン材においてもX線回折プロフィールの幅を測定することにより、過焼鈍に起因した二相組織化を検出でき、焼鈍後の延性低下を精度良く判別できる。
At a furnace temperature of 1050 ° C., the material temperature increased excessively and a two-phase structure was formed unless the plate passing speed reached 65 m / min. In addition, when the plate passing speed was increased, the stainless steel strip was not sufficiently heated and softening was insufficient. At a plate passing speed of 95 m / min, the surface hardness was about 170 HV and the 1/3 width of the X-ray diffraction profile was about 1.4 degrees. The elongation of this portion was also about 26%, which was a lower value than the elongation of 32% when the sheet was passed at 65 to 75 m / min. Further, the hardness at the center of the plate thickness was as high as 190 HV, and it was in a state of insufficient annealing.
Thus, by measuring the width of the X-ray diffraction profile in the actual line material as well, it is possible to detect the two-phase structure caused by over-annealing and to accurately determine the ductility reduction after annealing.

以上に説明したように、本発明においては、高温域でのフェライト+オーステナイト二相組織のオーステナイト相が冷却過程でマルテンサイト相に変態する際に生じる結晶格子の乱れをX線回折プロフィールで判定している。判定結果に応じて異常組織が生じない焼鈍条件に調整することにより、マルテンサイト相生成に起因した硬度上昇や延性低下を回避し、軟質で加工性に優れたステンレス鋼が製造される。しかも、焼鈍温度を可能な限り高くした条件下での高速運転が可能となるので、生産性も向上する。   As described above, in the present invention, the disorder of the crystal lattice that occurs when the austenite phase of the ferrite + austenite two-phase structure in the high temperature region transforms into the martensite phase during the cooling process is determined by the X-ray diffraction profile. ing. By adjusting to an annealing condition that does not cause an abnormal structure in accordance with the determination result, an increase in hardness and a decrease in ductility due to the formation of martensite phase are avoided, and a soft stainless steel having excellent workability is manufactured. In addition, high-speed operation is possible under conditions where the annealing temperature is as high as possible, so that productivity is also improved.

結晶状態とX線回折プロフィールとの関係を示す模式図Schematic diagram showing the relationship between crystal state and X-ray diffraction profile X線回折プロフィールを測定する光学装置の概略図Schematic diagram of an optical device for measuring X-ray diffraction profiles 焼鈍温度とX線回折プロフィールの1/3幅との関係を示すグラフGraph showing relationship between annealing temperature and 1/3 width of X-ray diffraction profile 表面硬さとX線回折プロフィールの1/3幅との関係を示すグラフGraph showing the relationship between surface hardness and 1/3 width of X-ray diffraction profile 焼鈍温度とX線回折プロフィールの1/3幅との関係を示すグラフGraph showing relationship between annealing temperature and 1/3 width of X-ray diffraction profile 焼鈍温度と表面硬さとの関係を示すグラフGraph showing the relationship between annealing temperature and surface hardness 表面硬さの変化量とX線回折プロフィールの1/3幅との関係を示すグラフGraph showing the relationship between the change in surface hardness and the 1/3 width of the X-ray diffraction profile 実ライン生産材の測定位置,表面硬さ及びX線回折プロフィールの1/3幅の関係を示すグラフGraph showing the relationship between measurement position, surface hardness, and 1/3 width of X-ray diffraction profile of actual line production materials 実ラインに通板したステンレス鋼帯の通板速度,硬さ及びX線回折プロフィールの1/3幅の関係を示すグラフA graph showing the relationship between the plate feed speed, hardness and 1/3 width of the X-ray diffraction profile of a stainless steel strip passed through a real line

Claims (2)

Ac1変態点を超える高温域でフェライト+オーステナイト二相組織となるステンレス鋼を連続焼鈍する際、焼鈍されたステンレス鋼をX線回折してX線回折プロフィールを求め、X線回折プロフィールの幅広りからオーステナイト→マルテンサイト変態を判定し、オーステナイト→マルテンサイト変態が判定されたときステンレス鋼の昇温条件を緩和することを特徴とする二相組織化を抑制したステンレス鋼の製造方法。 When continuously annealing a stainless steel with a ferrite + austenite two-phase structure in a high temperature range exceeding the Ac 1 transformation point, the annealed stainless steel is X-ray diffracted to obtain an X-ray diffraction profile, and the X-ray diffraction profile is widened. A method for producing a stainless steel with suppressed two-phase structure, characterized in that the austenite → martensite transformation is determined and the temperature rise condition of the stainless steel is relaxed when the austenite → martensite transformation is determined. 炉温の低下及び/又は通板速度の上昇によりステンレス鋼の昇温条件を緩和する請求項1記載の製造方法。   The manufacturing method of Claim 1 which relieves the temperature rising condition of stainless steel by the fall of a furnace temperature, and / or the raise of a plate passing speed.
JP2003413554A 2003-12-11 2003-12-11 Method for producing stainless steel restraining development of two-phase structure formation Pending JP2005171324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413554A JP2005171324A (en) 2003-12-11 2003-12-11 Method for producing stainless steel restraining development of two-phase structure formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413554A JP2005171324A (en) 2003-12-11 2003-12-11 Method for producing stainless steel restraining development of two-phase structure formation

Publications (1)

Publication Number Publication Date
JP2005171324A true JP2005171324A (en) 2005-06-30

Family

ID=34733662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413554A Pending JP2005171324A (en) 2003-12-11 2003-12-11 Method for producing stainless steel restraining development of two-phase structure formation

Country Status (1)

Country Link
JP (1) JP2005171324A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157692A1 (en) 2016-03-14 2017-09-21 Sms Group Gmbh Method for rolling and/or heat treating a metal strip
CN110487826A (en) * 2019-08-06 2019-11-22 燕山大学 The test method of deformation inductdion ε martensite transfor mation content

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157692A1 (en) 2016-03-14 2017-09-21 Sms Group Gmbh Method for rolling and/or heat treating a metal strip
DE102016222644A1 (en) 2016-03-14 2017-09-28 Sms Group Gmbh Process for rolling and / or heat treating a metallic product
CN110487826A (en) * 2019-08-06 2019-11-22 燕山大学 The test method of deformation inductdion ε martensite transfor mation content
CN110487826B (en) * 2019-08-06 2020-06-12 燕山大学 Method for testing transformation content of deformation induced epsilon martensite

Similar Documents

Publication Publication Date Title
Kim et al. On the tensile behavior of high-manganese twinning-induced plasticity steel
Vourna et al. A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels
RU2493287C2 (en) Steel material with high resistance to initiation of ductile cracks from zone subjected to welding heat impact, and basic material, and their production method
Hell et al. Microstructure–properties relationships in carbide-free bainitic steels
Xu et al. Austenite transformation and deformation behavior of a cold-rolled medium-Mn steel under different annealing temperatures
TW200413117A (en) Method for process control or process regulation of a facility for deforming, cooling and thermal treatment of metal
Papula et al. Effect of residual stress and strain-induced α′-martensite on delayed cracking of metastable austenitic stainless steels
JP2007009293A (en) Thin steel sheet having excellent workability, and method for producing the same
KR20210050548A (en) High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe
KR20190028770A (en) After-treatment steel sheet and its manufacturing method
Frómeta et al. Evaluation of edge formability in high strength sheets through a fracture mechanics approach
JP2016000855A (en) Thick steel plate
Dehghan et al. Effects of a novel severe plastic deformation approach on microstructural and mechanical characteristics of a medium manganese advanced high strength steel
JP2005171324A (en) Method for producing stainless steel restraining development of two-phase structure formation
Lavanya et al. Acoustic emission during press-brake bending of ss 304L sheets and its correlation with residual stress distribution after bending
Hofer et al. Bending Behavior of Zinc‐Coated Hot Stamping Steels
BR102012017451A2 (en) Cold rolled steel sheet having excellent bending capacity and production method
Kim et al. Quantitative study on yield point phenomenon of low carbon steels processed by compact endless casting and rolling
JP3817812B2 (en) Calibration method for annealing furnace radiation thermometer
Behnken et al. Micro-residual stresses caused by deformation, heat, or their combination during friction welding
BR102012020437A2 (en) Cold rolled steel sheet having excellent aging resistance and method for producing it
JPS6259256B2 (en)
BR102012019146A2 (en) Cold rolled steel sheet having excellent forming capacity and method for producing it
Acar et al. Determination of plasticity following deformation and welding of austenitic stainless steel
Järvenpää et al. Passive laser assisted bending of ultra-high strength steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

RD03 Notification of appointment of power of attorney

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A02