JP2005171283A - Cermet, coated cermet and methods for manufacturing them - Google Patents

Cermet, coated cermet and methods for manufacturing them Download PDF

Info

Publication number
JP2005171283A
JP2005171283A JP2003409700A JP2003409700A JP2005171283A JP 2005171283 A JP2005171283 A JP 2005171283A JP 2003409700 A JP2003409700 A JP 2003409700A JP 2003409700 A JP2003409700 A JP 2003409700A JP 2005171283 A JP2005171283 A JP 2005171283A
Authority
JP
Japan
Prior art keywords
cermet
binder phase
phase
layer
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003409700A
Other languages
Japanese (ja)
Inventor
Takashi Umemura
崇 梅村
Nobuo Hojo
伸夫 北條
Satoshi Kinoshita
聡 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2003409700A priority Critical patent/JP2005171283A/en
Publication of JP2005171283A publication Critical patent/JP2005171283A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cermet excellent in wear resistance and fracture resistance and minimal in finished surface roughness of a workpiece, a coated cermet and methods for manufacturing them. <P>SOLUTION: The cermet consists of 70 to 97wt.% of hard phase composed mainly of titanium carbonitride and comprising at least one kind selected from the carbides, nitrides and carbonitrides of the group IVa, Va and VIa metals of the periodic table and solid solutions thereof and the balance binder phase composed mainly of iron-group metal. The cermet has: a binder-phase layer of 0.3 to 2 μm average thickness composed of the binder phase, in a direction from a case surface toward the inner part; and a binder-phase-decreased layer of 30 to 120μm average thickness in which the amount of the binder phase is decreased as compared with the inner part of the cermet, in a direction from the interface between the binder-phase layer and the binder-phase-decreased layer toward the inner part. Further, the average grain size of the hard phase contained in the binder-phase-decreased layer is 1.0 to 1.2 times the average grain size of the hard phase in the inner part of the cermet. This cermet is reduced in the finished surface roughness of a workpiece, as compared with the conventional cermet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼、鋳鉄、耐熱合金、非鉄合金などの各種被削材の切削加工に最適なサーメットおよび被覆サーメット並びにそれらの製造方法に関するものである。 The present invention relates to cermets and coated cermets that are optimal for cutting various work materials such as steel, cast iron, heat-resistant alloys, and non-ferrous alloys, and methods for producing the same.

耐摩耗性が高く被削材仕上げ面粗さの小さいサーメット製切削工具は金属材料などの仕上げ加工に多く使用されている。サーメットの従来技術として、サーメットの表層部における硬質相粒子の平均結晶粒径が内部の平均結晶粒径よりも大きいことを特徴としたサーメットがある(例えば、特許文献1参照。)。このサーメットはおもに耐摩耗性の向上を目指したものであるが耐欠損性が低下するという問題とともに、表面部の硬質相粒子が粗粒であるためサーメットの表面粗さが大きくなり被削材の仕上げ面粗さが低下するという問題がある。 Cermet cutting tools with high wear resistance and low work surface finish are often used for finishing metal materials. As a conventional cermet, there is a cermet characterized in that the average crystal grain size of the hard phase particles in the surface part of the cermet is larger than the average crystal grain size inside (for example, see Patent Document 1). This cermet is mainly aimed at improving wear resistance, but with the problem of reduced fracture resistance, the hard phase particles on the surface are coarse, so the surface roughness of the cermet increases and the work material There is a problem that the finished surface roughness decreases.

被削材仕上げ面粗さを小さくする方法の一つとしてサーメット製切削工具の表面を研削または研磨により平滑にする方法が挙げられる。しかし研削または研磨はコスト高であるためサーメットの焼き肌面の状態のまま用いられる場合がある。焼き肌面における硬質相の平均粒径に注目した表面調質焼結合金としては、焼結合金の焼肌面から0.05mm内部までの表面層における硬質相の平均粒度が表面層を除いた焼結合金の内部における硬質相の平均粒度の0.8〜1.2倍であることを特徴とする表面調質焼結合金がある(例えば、特許文献2参照。)。この表面調質焼結合金は強度および耐塑性変形性の問題を解決したものであるが、近年の被削材仕上げ面粗さ向上の要求には応えられなくなってきた。 One method for reducing the surface roughness of the work material is to smooth the surface of a cermet cutting tool by grinding or polishing. However, since grinding or polishing is expensive, it may be used with the surface of the cermet being burned. As the surface tempered sintered alloy focusing on the average particle size of the hard phase on the surface of the sintered surface, the average particle size of the hard phase in the surface layer from the sintered surface of the sintered alloy to the inside of 0.05 mm excludes the surface layer. There is a surface tempered sintered alloy characterized in that the average particle size of the hard phase in the sintered alloy is 0.8 to 1.2 times (see, for example, Patent Document 2). Although this surface tempered sintered alloy solves the problems of strength and plastic deformation resistance, it has been unable to meet the recent demand for improvement of the finished surface roughness of the work material.

特開平05−140691号公報JP 05-140691 A 特開平1−287246号公報JP-A-1-287246

近年、高精度な機械部品を高能率に加工する要求が増加している。そのためサーメット製切削工具は従来以上に耐摩耗性、耐欠損性および被削材仕上げ面品位を向上させる必要があった。本発明はこのような要求に対してなされたものであり、耐摩耗性および耐欠損性に優れるとともに被削材仕上げ面粗さの小さいサーメットおよび被覆サーメット並びにそれらの製造方法の提供を目的とする。 In recent years, there has been an increasing demand for processing highly accurate machine parts with high efficiency. Therefore, the cermet cutting tool needs to improve the wear resistance, fracture resistance and work material finished surface quality more than before. The present invention has been made for such a demand, and an object of the present invention is to provide a cermet and a coated cermet having excellent wear resistance and fracture resistance and having a small surface roughness of the work material, and a method for producing them. .

本発明者らは仕上げ加工用工具に最適なサーメットを得ることを目的に研究したところ、焼き肌面に適量の結合相を層状に析出させると焼き肌面が平滑になり仕上げ面粗さが小さくなりサーメット焼き肌面に析出させた結合相層の内部側にサーメットの内部よりも結合相を減少させた結合相減少層を形成させると耐摩耗性に優れる、という知見を得て本発明を完成するに至ったものである。 The present inventors have studied for the purpose of obtaining an optimum cermet for a finishing tool, and when an appropriate amount of binder phase is deposited in a layered manner on the surface of the burned surface, the surface of the burned surface becomes smooth and the finished surface roughness is small. The present invention was completed by obtaining the knowledge that forming a binder phase-reduced layer with a reduced binder phase on the inner side of the binder phase layer deposited on the cermet baked skin surface provides superior wear resistance. It has come to be.

すなわち本発明サーメットは、炭窒化チタンを主成分とする周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる硬質相:70〜97重量%と、鉄族金属の中から選ばれた少なくとも1種を主成分とする結合相:残部とからなる焼き肌面を有するサーメットであって、該焼き肌面から内部に向かって結合相からなる平均厚さ0.3〜2μmの結合相層と、該結合相層と結合相減少層との界面から内部に向かって該サーメットの内部に比較して結合相量が減少した平均厚さ30〜120μmの結合相減少層とを備え、該結合相減少層に含まれる硬質相の平均粒径は、該サーメットの内部における硬質相の平均粒径の1.0〜1.2倍であることを特徴とする。 That is, the cermet of the present invention is a hard phase composed of at least one selected from carbides, nitrides, carbonitrides and their solid solutions of the periodic table 4a, 5a, 6a group metals mainly composed of titanium carbonitride. A cermet having a burnt skin surface consisting of 70 to 97% by weight and a binder phase comprising at least one selected from iron group metals as a main component: the balance, and facing from the burnt skin surface to the inside. The amount of the binder phase decreased from the interface between the binder phase layer and the binder phase-decreasing layer and the inside of the cermet from the interface between the binder phase layer and the binder phase-decreasing layer. A binder phase-reducing layer having an average thickness of 30 to 120 μm, and the average particle size of the hard phase contained in the binder phase-reducing layer is 1.0 to 1.2 of the average particle size of the hard phase inside the cermet. It is characterized by being double.

本発明サーメットは、Tiの炭窒化物を主成分とし周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる硬質相:70〜97重量%と、鉄族金属の中から選ばれた少なくとも1種を主成分とする結合相:残部とからなる。 The cermet of the present invention is a hard phase composed mainly of Ti carbonitride and comprising at least one selected from carbides, nitrides, carbonitrides and their solid solutions of periodic table 4a, 5a, and 6a metals. : 70 to 97% by weight and a binder phase comprising at least one selected from iron group metals as a main component: the balance.

本発明サーメットの硬質相は、炭窒化チタンからなる芯部と、チタン以外の周期律表4a,5a,6a族金属の中から選ばれた少なくとも1種とチタンとの複合炭窒化物固溶体からなる周辺部とで構成される。硬質相の形態としては、芯部を周辺部が取り囲む有芯構造、芯部のみからなる芯部単一相、周辺部のみからなる周辺部単一相などがある。芯部を形成する炭窒化チタンとして具体的には、Ti(C,N)を挙げることができる。周辺部を形成するチタン以外の周期律表4a,5a,6a族金属の中から選ばれた少なくとも1種とチタンとの複合炭窒化物固溶体として具体的には、(Ti,Mo)(C,N)、(Ti,Mo,W)(C,N)、(Ti,Ta,W,Mo)(C,N)などを挙げることができる。硬質相量が70重量%未満であると耐摩耗性が低下し、硬質相量が97重量%を超えると相対的に残部の結合相量が減少するため、耐欠損性が低下すると共に焼結性が低下する。そこで硬質相:70〜97重量%、結合相:残部とした。 The hard phase of the cermet of the present invention comprises a composite carbonitride solid solution of titanium and a core portion made of titanium carbonitride and at least one selected from the periodic table 4a, 5a, and 6a metals other than titanium. It consists of a peripheral part. As the form of the hard phase, there are a cored structure in which the periphery surrounds the core, a core single phase consisting of only the core, a peripheral single phase consisting of only the periphery, and the like. Specific examples of titanium carbonitride forming the core include Ti (C, N). Specifically, as a composite carbonitride solid solution of at least one selected from the group 4a, 5a and 6a metals other than titanium forming the peripheral portion and titanium, (Ti, Mo) (C, N), (Ti, Mo, W) (C, N), (Ti, Ta, W, Mo) (C, N), and the like. When the amount of hard phase is less than 70% by weight, the wear resistance is lowered, and when the amount of hard phase exceeds 97% by weight, the remaining binder phase is relatively reduced, so that the fracture resistance is lowered and sintering is performed. Sex is reduced. Therefore, the hard phase was 70 to 97% by weight, and the binder phase was the balance.

本発明サーメットの結合相は鉄族金属の中から選ばれた少なくとも1種を主成分とする金属相である。ここで鉄族金属とはコバルト、鉄、ニッケルをいう。結合相を構成する鉄族金属には硬質相成分が固溶することがある。本発明において鉄族金属を主成分とする結合相とは鉄族金属または周期律表4a、5a、6a族金属、炭素、窒素の中の少なくとも1種を0.1〜25重量%固溶した鉄族金属を示す。 The binder phase of the cermet of the present invention is a metal phase mainly composed of at least one selected from iron group metals. Here, the iron group metal means cobalt, iron, or nickel. The hard phase component may be dissolved in the iron group metal constituting the binder phase. In the present invention, the binder phase containing iron group metal as a main component is a solid solution of at least one of iron group metal or periodic table 4a, 5a, 6a metal, carbon, and nitrogen in an amount of 0.1 to 25% by weight. Indicates an iron group metal.

本発明サーメットにおける焼き肌面とは、焼結後の表面状態、または焼結後に水や有機溶剤で洗浄及び乾燥した後の表面状態、もしくは焼結後にサンドブラスト処理、ウエットブラスト処理などで焼き肌面の付着物を取り除いた表面状態を代表的な面として挙げることができる。 The burnt surface in the cermet of the present invention is a surface state after sintering, or a surface state after washing and drying with water or an organic solvent after sintering, or a burned skin surface by sand blasting, wet blasting or the like after sintering. The surface state from which the deposits are removed can be cited as a representative surface.

本発明サーメットは、焼き肌面に焼き肌面から内部に向かって平均厚さ0.3〜2μmの結合相からなる結合相層を形成させることによって焼き肌面を平滑にさせた。ここで結合相層の平均厚さを0.3μm未満とすると結合相が焼き肌面を覆うように連続的に分布しにくくなり切削加工後の被削材の仕上げ面粗さを均一にすることができず、逆に2.0μmを超えると結合相層に隣接した結合相減少層の結合相量が著しく減少するため耐欠損性が低下するとともに軟質な結合相層が厚いため耐摩耗性が低下する。そこで結合相層の平均厚さを0.3〜2.0μmと定めた。その中でも1.0〜2.0μmがさらに好ましい。結合相層の平均厚さは断面研磨組織を走査型電子顕微鏡にて5000倍で観察し10箇所以上測定して得ることができる。 In the cermet of the present invention, the burnt skin surface was smoothed by forming a binder phase layer composed of a binder phase having an average thickness of 0.3 to 2 μm from the grilled skin surface to the inside. Here, when the average thickness of the binder phase layer is less than 0.3 μm, the binder phase is difficult to be continuously distributed so as to cover the burnt surface, and the finished surface roughness of the work material after cutting is made uniform. On the contrary, if the thickness exceeds 2.0 μm, the amount of the binder phase in the binder phase reducing layer adjacent to the binder phase layer is remarkably reduced, so that the fracture resistance is lowered and the soft binder phase layer is thick, so that the wear resistance is reduced. descend. Therefore, the average thickness of the binder phase layer was set to 0.3 to 2.0 μm. Among these, 1.0 to 2.0 μm is more preferable. The average thickness of the binder phase layer can be obtained by observing the cross-sectional polished structure with a scanning electron microscope at a magnification of 5000 and measuring 10 or more locations.

本発明サーメットの焼き肌面において結合相層に隣接してサーメットの内部と比較して結合相量が減少した結合相減少層を形成させた。結合相減少層における硬質相の平均粒径を、結合相層と結合相減少層を除いたサーメットの内部における硬質相の平均粒径の1.0〜1.2倍とした。これは結合相減少層における硬質相の平均粒径が1.0倍未満であると表面近傍の硬さが低くなって耐摩耗性が低下し、1.2倍を超えるとサーメットの表面粗さが大きくなって被削材の仕上げ面粗さが増加するためであるが、その中でも1.1〜1.2倍が好ましい。 A bonded phase-reduced layer having a reduced amount of bonded phase compared to the inside of the cermet was formed adjacent to the bonded phase layer on the burned surface of the cermet of the present invention. The average particle diameter of the hard phase in the binder phase-decreasing layer was 1.0 to 1.2 times the average particle diameter of the hard phase in the cermet excluding the binder phase layer and the binder phase-decreasing layer. This is because when the average particle size of the hard phase in the binder phase-reducing layer is less than 1.0 times, the hardness in the vicinity of the surface is lowered and the wear resistance is lowered, and when it exceeds 1.2 times, the surface roughness of the cermet is exceeded. This is because the finished surface roughness of the work material is increased by increasing the thickness of the work material, and among these, 1.1 to 1.2 times is preferable.

本発明サーメットの内部と結合相減少層において硬質相の平均粒径がほぼ均一であるため、結合相量が減少した結合相減少層は硬さが高く耐摩耗性が高い。ここで結合相減少層の平均厚さが30μm未満では耐摩耗性が減少し、120μmを超えると硬さが高い結合相減少層が厚くなるため強度が低下し耐欠損性が低下する。そのため結合相減少層の平均厚さを30〜120μmと定めた。その中でも70〜120μmが好ましい。結合相減少層の平均厚さは断面研磨組織について結合相層との界面から内部に向かって5μmづつEPMAによる定量分析して求めることができる。 Since the average particle size of the hard phase is almost uniform in the cermet of the present invention and in the binder phase-reduced layer, the binder phase-reduced layer having a reduced amount of the binder phase has high hardness and high wear resistance. Here, if the average thickness of the binder phase-decreasing layer is less than 30 μm, the wear resistance decreases, and if it exceeds 120 μm, the binder phase-decreasing layer having a high hardness becomes thick, so that the strength decreases and the fracture resistance decreases. Therefore, the average thickness of the binder phase reducing layer is set to 30 to 120 μm. Among these, 70-120 micrometers is preferable. The average thickness of the binder phase-decreasing layer can be obtained by quantitatively analyzing the cross-sectional polished structure by EPMA every 5 μm from the interface with the binder phase layer toward the inside.

本発明サーメットにおいて結合相減少層は、サーメットの内部から表面に向かって結合相量が漸減するとともに結合相層との界面から20μm内部までの結合相減少層に含まれる結合相量がサーメットの内部に含まれる結合相量の0.50〜0.99倍であると好ましい。結合相減少層の結合相量が内部の結合相量の0.99倍以下になると耐摩耗性が向上するが、0.50倍未満になると結合相減少層の靭性の低下が著しくサーメットの耐欠損性が低下する傾向を示すため、0.50〜0.99倍が好ましい。その中でも0.50〜0.60倍がさらに好ましい。結合相層との界面から20μm内部までの結合相減少層に含まれる結合相量は、断面研磨組織をEPMAで定量分析して得ることができる。 In the cermet of the present invention, the binder phase-decreasing layer gradually decreases in amount from the inside of the cermet toward the surface, and the amount of binder phase contained in the binder phase-decreasing layer from the interface with the binder phase layer to the inside of 20 μm is the inside of the cermet. It is preferable that it is 0.50 to 0.99 times the amount of the binder phase contained in. When the amount of the binder phase in the binder phase-reduced layer is 0.99 times or less of the amount of the internal binder phase, the wear resistance is improved, but when it is less than 0.50 times, the toughness of the binder phase-reduced layer is markedly reduced. Since it shows the tendency for deficiency to fall, 0.50-0.99 time is preferable. Among these, 0.50 to 0.60 times is more preferable. The amount of the binder phase contained in the binder phase decreasing layer from the interface with the binder phase layer to the inside of 20 μm can be obtained by quantitatively analyzing the cross-sectional polished structure with EPMA.

本発明サーメットの内部における硬質相の平均粒径を0.5〜5μmとすると好ましい。これは、硬質相の平均粒径が5μm以下であると耐摩耗性が向上する傾向を示すためである。しかし、硬質相の平均粒径が0.5μm未満であると強度が低下する傾向を示す。硬質相の平均粒径は断面研磨組織を走査型電子顕微鏡にて5000倍で10視野観察したのち画像解析ソフトを用いて算出することができる。 The average particle size of the hard phase in the cermet of the present invention is preferably 0.5 to 5 μm. This is because the wear resistance tends to be improved when the average particle size of the hard phase is 5 μm or less. However, when the average particle size of the hard phase is less than 0.5 μm, the strength tends to decrease. The average particle diameter of the hard phase can be calculated using image analysis software after observing the cross-sectional polished structure with a scanning electron microscope at a magnification of 5000 and 10 fields of view.

本発明サーメットの内部における硬さをHV1500〜2200とすると耐摩耗性が向上するため好ましい。サーメットの内部における硬さがHV1500以上であると耐摩耗性が向上するがHV2200を超えると耐欠損性が低下する傾向を示す。 It is preferable to set the hardness inside the cermet of the present invention to HV 1500 to 2200 because the wear resistance is improved. When the hardness inside the cermet is HV1500 or more, the wear resistance is improved, but when it exceeds HV2200, the fracture resistance tends to be lowered.

本発明サーメットの焼き肌面の算術平均粗さRaを2μm以下とすると被削材の仕上げ面粗さが向上するため好ましい。その中でも焼き肌面の算術平均粗さRaを0.7μm以下にするとさらに好ましい。 The arithmetic average roughness Ra of the baked skin surface of the cermet of the present invention is preferably 2 μm or less because the finished surface roughness of the work material is improved. Among them, it is more preferable that the arithmetic average roughness Ra of the grilled skin surface is 0.7 μm or less.

本発明サーメットにおける結合相層と結合相減少層との界面から20μm内部までの結合相減少層における硬さは、サーメットの内部における硬さの1.01〜1.10倍であると好ましい。結合相層の平均厚さが厚いほど結合相層界面から20μm内部までの結合相減少層の硬さは内部よりも高くなる。結合相層界面から20μm内部までの結合相減少層の硬さが内部の硬さの1.01倍以上であると耐摩耗性が向上する。逆に1.10倍を超えると、結合相層の平均厚さが厚くなり結合相層に隣接した結合相減少層の結合相量が著しく減少するため耐欠損性が低下する傾向を示す。 The hardness of the binder phase reduced layer from the interface between the binder phase layer and the binder phase reduced layer in the cermet of the present invention to the inside of 20 μm is preferably 1.01 to 1.10 times the hardness inside the cermet. The thicker the average thickness of the binder phase layer, the higher the hardness of the binder phase reducing layer from the interface of the binder phase layer to the inside of 20 μm. When the hardness of the binder phase reducing layer from the binder phase layer interface to the inside of 20 μm is 1.01 or more times the internal hardness, the wear resistance is improved. On the other hand, if it exceeds 1.10 times, the average thickness of the binder phase layer is increased, and the amount of the binder phase in the binder phase reducing layer adjacent to the binder phase layer is remarkably reduced, so that the defect resistance tends to be lowered.

本発明被覆サーメットは、本発明サーメットの表面に硬質膜を被覆したものであり、本発明における硬質膜は、周期律表4a,5a,6a族金属、アルミニウム、シリコンの炭化物、窒化物、酸化物、ホウ化物およびこれらの固溶体並びに立方晶窒化ホウ素、ダイヤモンド、DLCの中から選ばれた少なくとも1種からなり、具体的にはTiN、TiC、Ti(C,N)、(Ti,Al)N、Al23などを挙げることができる。これらの硬質膜は従来から行われている物理蒸着法や化学蒸着法によって被覆することができる。本発明サーメットの表面に硬質膜を被覆すると耐摩耗性を向上させるため好ましい。 The coated cermet of the present invention is obtained by coating the surface of the cermet of the present invention with a hard film, and the hard film in the present invention is a periodic table 4a, 5a, 6a metal, aluminum, silicon carbide, nitride, oxide , Borides and their solid solutions, and cubic boron nitride, diamond, and DLC, specifically TiN, TiC, Ti (C, N), (Ti, Al) N, Al 2 O 3 and the like can be mentioned. These hard films can be coated by a conventional physical vapor deposition method or chemical vapor deposition method. It is preferable to coat the surface of the cermet of the present invention with a hard film in order to improve wear resistance.

本発明サーメットおよび本発明被覆サーメットは耐摩耗性および耐欠損性が高いことを生かして切削工具として用いられると好ましく、その中でも鋼加工用切削工具として用いられるとさらに好ましい。 The cermet of the present invention and the coated cermet of the present invention are preferably used as a cutting tool by taking advantage of high wear resistance and fracture resistance, and more preferably used as a cutting tool for steel processing.

本発明サーメットの製造方法は、(A)炭窒化チタン粉末50〜75重量%、周期律表4a,5a,6a族金属の化合物の中の少なくとも1種の粉末20〜40重量%、鉄族金属の中の少なくとも1種の粉末3〜20重量%からなり合計で100重量%となる混合物を準備する混合工程と、(B)得られた該混合物を真空中にて1300〜1440℃の範囲の所定の温度まで昇温する第1昇温工程と、(C)次いで該混合物を133〜13300Paの窒素雰囲気にて1300〜1440℃の範囲の所定の温度から1450〜1550℃の範囲の焼結温度まで昇温する第2昇温工程と、(D)次いで該混合物を133〜13300Paの窒素雰囲気にて1450〜1550℃の範囲の焼結温度で所定の時間保持して焼結する焼結工程と、(E)焼結後の該混合物を不活性雰囲気にて1450〜1550℃の範囲の焼結温度から1200〜1330℃の範囲の所定の温度まで毎分20℃以上で冷却する第1冷却工程と、(F)次いで該混合物を該第1冷却工程より低い圧力の不活性ガス雰囲気または真空中にて1200〜1330℃の範囲の所定の温度で所定の時間保持する保持工程と、(G)次いで該混合物を1200〜1330℃の範囲の所定の温度から常温に冷却する第2冷却工程と、を含むことを特徴とするサーメットの製造方法である。 The production method of the cermet of the present invention is as follows. (A) Titanium carbonitride powder 50 to 75% by weight, periodic table 4a, 5a, at least one of the 6a group metal compounds 20 to 40% by weight, iron group metal A mixing step of preparing a mixture consisting of 3 to 20% by weight of at least one of the powders in a total amount of 100% by weight, and (B) the obtained mixture in a vacuum in the range of 1300 to 1440 ° C. A first temperature raising step for raising the temperature to a predetermined temperature; and (C) the mixture is then sintered in a nitrogen atmosphere of 133 to 13300 Pa from a predetermined temperature in the range of 1300 to 1440 ° C. to a sintering temperature in the range of 1450 to 1550 ° C. A second temperature raising step for raising the temperature to (D), and then a sintering step for sintering the mixture at a sintering temperature in the range of 1450 to 1550 ° C. for a predetermined time in a nitrogen atmosphere of 133 to 13300 Pa. , (E A first cooling step of cooling the mixture after sintering at a temperature of 20 ° C. or more per minute from a sintering temperature in the range of 1450 to 1550 ° C. to a predetermined temperature in the range of 1200 to 1330 ° C. in an inert atmosphere; And then holding the mixture for a predetermined time at a predetermined temperature in the range of 1200 to 1330 ° C. in an inert gas atmosphere or vacuum at a lower pressure than in the first cooling step, and (G) then holding the mixture And a second cooling step of cooling from a predetermined temperature in the range of 1200 to 1330 ° C. to room temperature, and a method for producing a cermet.

本発明サーメットの製造方法の各工程は以下の効果を奏する。工程(A)では所定の配合組成の混合粉末を均一に混合させる。工程(B)では混合物を67Pa以下の真空中で昇温することで液相出現前および液相出現直後での脱ガスを促進させ焼結性を向上させる。工程(C)および工程(D)では窒素雰囲気によりサーメット表面からの脱窒を防ぎ、脱窒に伴う焼き肌面の平滑性の低下および表面付近のTi(C,N)などの硬質相の減少を抑制する。工程(E)では焼結温度から急激に液相の凝固点近辺まで冷却することで、硬質相粒子の移動および粒成長を抑制し平滑なサーメット表面を保持する。工程(F)では不活性ガス雰囲気の炉内圧力を工程(E)よりも下げて所定の時間保持することでサーメット表面の結合相厚さを均一化させる。 Each process of the manufacturing method of this invention cermet has the following effects. In the step (A), a mixed powder having a predetermined composition is mixed uniformly. In the step (B), the mixture is heated in a vacuum of 67 Pa or less to promote degassing before and immediately after the appearance of the liquid phase, thereby improving the sinterability. In step (C) and step (D), denitrification from the cermet surface is prevented by a nitrogen atmosphere, the smoothness of the burnt surface accompanying denitrification is reduced, and the hard phase such as Ti (C, N) near the surface is reduced. Suppress. In the step (E), by rapidly cooling from the sintering temperature to the vicinity of the solidification point of the liquid phase, the movement and grain growth of the hard phase particles are suppressed and a smooth cermet surface is maintained. In the step (F), the pressure inside the furnace in the inert gas atmosphere is lowered from that in the step (E) and maintained for a predetermined time, thereby uniformizing the binder phase thickness on the cermet surface.

具体的には、炭窒化チタン粉末を50〜75重量%、周期律表4a,5a,6a族金属の炭化物、窒化物、炭窒化物およびこれらの固溶体の中から選ばれた少なくとも1種の化合物の粉末を20〜40重量%、ニッケルおよび/またはコバルトの粉末を3〜20重量%からなり合計で100重量%となる混合粉末を得る混合工程と、混合粉末を室温から1300〜1440℃までを67Pa以下の真空中で昇温する第1昇温工程、1300〜1440℃の範囲の所定温度から1450〜1550℃の範囲の所定温度までの昇温をサーメットからの脱窒を抑えるべく適正な圧力133〜13300Paの窒素雰囲気で行う第2昇温工程、1450〜1550℃の範囲の焼結温度でサーメットからの脱窒を抑えるべく圧力133〜13300Paの窒素雰囲気で0.5〜2時間保持して焼結する焼結工程、1450〜1550℃の範囲の所定温度から1200〜1330℃の範囲の所定温度まで毎分20℃以上の冷却速度で圧力133〜300000PaのHe,Ne,Arなどの不活性ガス雰囲気で冷却する第1冷却工程、1200〜1330℃の範囲の所定温度で圧力13.3〜1330Paの不活性ガス雰囲気または1〜130Paの真空中で5〜30分保持する保持工程、その後常温まで冷却する第2冷却工程、を経て本発明サーメットを作製すると好ましい。 Specifically, at least one compound selected from the group consisting of 50 to 75% by weight of titanium carbonitride powder, carbides, nitrides, carbonitrides and their solid solutions of the periodic table 4a, 5a and 6a metals A mixing step for obtaining a mixed powder comprising 20 to 40% by weight of the powder and 3 to 20% by weight of the nickel and / or cobalt powder, and a total of 100% by weight, and the mixed powder from room temperature to 1300 to 1440 ° C. First temperature raising step for raising the temperature in a vacuum of 67 Pa or less, an appropriate pressure to suppress denitrification from the cermet by raising the temperature from a predetermined temperature in the range of 1300 to 1440 ° C. to a predetermined temperature in the range of 1450 to 1550 ° C. A second temperature raising step performed in a nitrogen atmosphere of 133 to 13300 Pa, a pressure of 133 to 13300 Pa to suppress denitrification from the cermet at a sintering temperature in the range of 1450 to 1550 ° C. Sintering process for 0.5 to 2 hours in a nitrogen atmosphere and sintering, pressure 133 at a cooling rate of 20 ° C. or more per minute from a predetermined temperature in the range of 1450 to 1550 ° C. to a predetermined temperature in the range of 1200 to 1330 ° C. A first cooling step of cooling in an inert gas atmosphere such as He, Ne, Ar or the like of ˜300000 Pa, an inert gas atmosphere of a pressure 13.3 to 1330 Pa at a predetermined temperature in the range of 1200 to 1330 ° C., or a vacuum of 1 to 130 Pa It is preferable to produce the cermet of the present invention through a holding step of holding for 5 to 30 minutes, and then a second cooling step of cooling to room temperature.

本発明サーメットの製造方法で得られたサーメットの表面に従来からある物理蒸着法または化学蒸着法により硬質膜を被覆すると耐摩耗性に優れた被覆サーメットを得ることができる。 When a hard film is coated on the surface of the cermet obtained by the cermet production method of the present invention by a conventional physical vapor deposition method or chemical vapor deposition method, a coated cermet having excellent wear resistance can be obtained.

本発明サーメットは従来サーメットと比較して被削材の仕上げ面粗さに優れ、同等以上の耐摩耗性および耐欠損性を有する。硬質膜を被覆した被覆サーメットはさらに高い耐摩耗性を示す。本発明サーメットの製造方法および本発明被覆サーメットの製造方法により本発明サーメットおよび本発明被覆サーメットを製造することができる。 The cermet of the present invention is excellent in the finished surface roughness of the work material as compared with the conventional cermet and has wear resistance and fracture resistance equal to or higher than those. A coated cermet coated with a hard film exhibits higher wear resistance. The cermet of the present invention and the coated cermet of the present invention can be produced by the method for producing the cermet of the present invention and the method for producing the coated cermet of the present invention.

市販の平均粒径0.8〜4.0μmのTi(C,N)粉末(重量比でTiC/TiN=50/50)、WC、NbC、Mo2C、Ni、Coの各粉末を表1の割合になるように秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に装入し、混合および強粉砕を行った。得られた混合粉末をJIS−B4120に記載のSPMN120308形状用金型でもって、圧力196MPaでプレス成形し、成形体を作製した。 Table 1 shows commercially available Ti (C, N) powder (weight ratio TiC / TiN = 50/50), WC, NbC, Mo 2 C, Ni, and Co having an average particle diameter of 0.8 to 4.0 μm. The mixture was weighed so that the ratio was 5%, and placed in a stainless steel pot together with an acetone solvent and a cemented carbide ball, and mixed and strongly ground. The obtained mixed powder was press-molded at a pressure of 196 MPa using a SPMN120308 shape mold described in JIS-B4120 to produce a molded body.

成形体を焼結炉内に装入した後、室温から1350℃までを表2(b)に記載の圧力(Pa)の真空中にて昇温し、1350℃から1500℃まで昇温を表2(c)に記載の圧力(Pa)の窒素雰囲気で行い、1500℃で表2(d)に記載の圧力(Pa)の窒素雰囲気で1時間保持をして焼結し、1500℃から1300℃の温度まで13300PaのAr雰囲気で表2(e)に記載の冷却速度で冷却し、1300℃で表2(f)に記載の圧力(Pa)の真空中で30分保持し、その後、窒素雰囲気中で室温まで冷却を行い、発明品1〜5および比較品1〜6を作製した。 After charging the compact into the sintering furnace, the temperature was raised from room temperature to 1350 ° C. in a vacuum (Pa) described in Table 2 (b), and the temperature was raised from 1350 ° C. to 1500 ° C. It is performed in a nitrogen atmosphere at a pressure (Pa) described in 2 (c), and held at 1500 ° C. for 1 hour in a nitrogen atmosphere at a pressure (Pa) described in Table 2 (d) to sinter, and 1500 to 1300 Cooled to a temperature of 13 ° C. in an Ar atmosphere of 13300 Pa at the cooling rate described in Table 2 (e) and held at 1300 ° C. in a vacuum (Pa) described in Table 2 (f) for 30 minutes. It cooled to room temperature in atmosphere, and produced the inventive products 1-5 and the comparative products 1-6.

Figure 2005171283
Figure 2005171283

Figure 2005171283
Figure 2005171283

こうして得られた発明品1〜5および比較品1〜6の焼き肌面における算術平均粗さRa(μm)をレーザー式非接触表面粗さ計で測定した。焼き肌面における結合相層の平均厚さd3(μm)は断面研磨組織を走査型電子顕微鏡にて5000倍で10視野観察して求めた。断面研磨組織において結合相層と結合相減少層との界面から内部に向かって5μmづつEPMAによる定量分析を行って結合相減少層の平均厚さd2(μm)を求めた。サーメットの内部の硬質相の平均粒径s1(μm)と結合相減少層に含まれる硬質相の平均粒径s2(μm)は、それぞれ断面研磨組織を走査型電子顕微鏡で5000倍にて10視野観察し画像解析ソフトを用いて算出した。得られたs1、s2から硬質相粒径比s2/s1を求めた。結合相層界面から20μm内部までの結合相減少層に含まれる結合相量a2(重量%)とサーメットの内部の結合相量a1(重量%)は断面研磨組織をEPMAによる定量分析を行って測定し、結合相量比a2/a1を求めた。サーメットの内部のビッカース硬さH1と結合相層界面から20μm内部までの結合相減少層のビッカース硬さH2を測定し、硬さの比H2/H1を求めた。これらの結果は表3に記載した。 The arithmetic average roughness Ra (μm) on the surface of the burned skin of Invention Products 1 to 5 and Comparative Products 1 to 6 thus obtained was measured with a laser-type non-contact surface roughness meter. The average thickness d3 (μm) of the binder phase layer on the surface of the burnt skin was obtained by observing the cross-sectional polished structure with a scanning electron microscope at a magnification of 5000 and 10 visual fields. In the cross-sectional polished structure, quantitative analysis by EPMA was performed every 5 μm from the interface between the binder phase layer and the binder phase reduced layer to determine the average thickness d2 (μm) of the binder phase reduced layer. The average particle size s1 (μm) of the hard phase inside the cermet and the average particle size s2 (μm) of the hard phase contained in the binder phase-reduced layer are 10 views of the cross-sectional polished structure at 5000 times with a scanning electron microscope, respectively. Observed and calculated using image analysis software. The hard phase particle size ratio s2 / s1 was determined from the obtained s1 and s2. The amount of binder phase a2 (% by weight) contained in the binder phase-decreasing layer from the interface of the binder phase layer to the inside of 20 μm and the amount of binder phase a1 (% by weight) inside the cermet were measured by conducting quantitative analysis of the cross-sectional polished structure with EPMA Then, the binder phase ratio a2 / a1 was determined. The Vickers hardness H1 inside the cermet and the Vickers hardness H2 of the binder phase-decreasing layer from the interface between the binder phase layer and the inside of 20 μm were measured to determine the hardness ratio H2 / H1. These results are listed in Table 3.

Figure 2005171283
Figure 2005171283

得られた発明品1〜5および比較品1〜6について#230のダイヤモンド砥石にてSPMN120308形状のすくい面側を研削加工し、さらに逃げ面切れ刃稜線部に0.15mm×30°のチャンファーホーニング処理を施して切削試験用試料を作製した。さらに発明品1の切削試験用試料の表面に物理蒸着法により平均厚さ3μmのTiAlN膜を被覆し発明品6を得た。発明品1〜6および比較品1〜6の切削試験用試料を用いて下記の切削試験1、2を行って逃げ面摩耗量、被削材の仕上げ面粗さ、欠損回数を測定した。その結果を表4に示す。 The obtained invention products 1 to 5 and comparative products 1 to 6 were ground on the rake face side of the SPMN120308 shape with a # 230 diamond grindstone, and further a chamfer of 0.15 mm × 30 ° at the flank cutting edge ridge line portion. A honing treatment was performed to prepare a cutting test sample. Further, the surface of the sample for cutting test of Invention 1 was coated with a TiAlN film having an average thickness of 3 μm by physical vapor deposition to obtain Invention 6. The following cutting tests 1 and 2 were carried out using the samples for cutting tests of invention products 1 to 6 and comparative products 1 to 6 to measure the flank wear amount, the finished surface roughness of the work material, and the number of defects. The results are shown in Table 4.

切削試験1(耐摩耗性試験)
被削材:S45C
切削速度:200m/min
切り込み:0.2mm
送り:0.2mm/rev
切削油:WET
切削時間:50min
切削中10分ごとに被削材の仕上げ面の算術平均粗さRaを測定し、その平均値を表4に併記した。
Cutting test 1 (Abrasion resistance test)
Material: S45C
Cutting speed: 200m / min
Cutting depth: 0.2mm
Feed: 0.2mm / rev
Cutting oil: WET
Cutting time: 50min
The arithmetic average roughness Ra of the finished surface of the work material was measured every 10 minutes during cutting, and the average value is also shown in Table 4.

切削試験2(耐欠損性試験)
被削材:S45C
切削速度:220mm/rev
切り込み:0.5mm
送り:0.2mm/rev
切削油:WET
5秒切削と5秒休止の繰り返し。繰り返し数100回で試験終了。
試験回数は各サンプル5回
Cutting test 2 (Fracture resistance test)
Material: S45C
Cutting speed: 220mm / rev
Cutting depth: 0.5mm
Feed: 0.2mm / rev
Cutting oil: WET
Repeated 5 seconds cutting and 5 seconds pause. The test is completed after 100 repetitions.
The number of tests is 5 times for each sample.

Figure 2005171283
Figure 2005171283

以上の通り、発明品は比較品に比べて耐摩耗性および耐欠損性は同等以上であり、被削材の仕上げ面粗さが小さいことが分かる。発明品1〜5は、結合相層の平均厚さd3が1.0〜2.0μmの範囲であり、結合相減少層の平均厚さd2が70〜115μmの範囲にある。そして、内部の硬質相の平均粒径に対する結合相減少層の硬質相の平均粒径の比s2/s1が1.1〜1.2である。このため逃げ面摩耗量が0.19mm以下の優れた耐摩耗性と、欠損回数が1回以下の優れた耐欠損性を有し、被削材の仕上げ面粗さRaが1.0μm以下の優れた被削材仕上げ面品位が得られる。さらに発明品1に硬質膜を被覆した発明品6は逃げ面摩耗量が0.13μmと耐摩耗性が向上する。
As described above, it can be seen that the inventive product has equivalent or higher wear resistance and fracture resistance than the comparative product, and the finished surface roughness of the work material is small. Inventive products 1 to 5 have an average thickness d3 of the binder phase layer in the range of 1.0 to 2.0 μm and an average thickness d2 of the binder phase reduction layer in the range of 70 to 115 μm. And ratio s2 / s1 of the average particle diameter of the hard phase of a binder phase reduction layer with respect to the average particle diameter of an internal hard phase is 1.1-1.2. For this reason, it has excellent wear resistance with a flank wear amount of 0.19 mm or less and excellent chipping resistance with a number of defects of 1 or less, and the finished surface roughness Ra of the work material is 1.0 μm or less. Excellent work material finish surface quality. Inventive product 6 in which hard product is coated on inventive product 1 has a flank wear amount of 0.13 μm and improved wear resistance.

Claims (9)

炭窒化チタンを主成分とする周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物およびこれらの固溶体の中から選ばれた少なくとも1種からなる硬質相:70〜97重量%と、鉄族金属の中から選ばれた少なくとも1種を主成分とする結合相:残部とからなる焼き肌面を有するサーメットであって、該焼き肌面から内部に向かって結合相からなる平均厚さ0.3〜2μmの結合相層と、該結合相層と結合相減少層との界面から内部に向かって該サーメットの内部との間に該サーメットの内部に比較して結合相量が減少した平均厚さ30〜120μmの結合相減少層とを備え、該結合相減少層に含まれる硬質相の平均粒径は、該サーメットの内部における硬質相の平均粒径の1.0〜1.2倍であるサーメット。 A hard phase composed of at least one selected from carbides, nitrides, carbonitrides and solid solutions of the periodic table 4a, 5a, 6a group metals having titanium carbonitride as a main component: 70 to 97% by weight And a binder phase mainly composed of at least one selected from iron group metals: a cermet having a burnt skin surface composed of the balance, and an average consisting of a binder phase from the burnt skin surface toward the inside. Compared to the inside of the cermet, the amount of the binder phase is between the binder phase layer having a thickness of 0.3 to 2 μm and the inside of the cermet from the interface between the binder phase layer and the binder phase reducing layer toward the inside. A binder phase reducing layer having a reduced average thickness of 30 to 120 μm, and an average particle size of the hard phase contained in the binder phase reducing layer is 1.0 to 1 of an average particle size of the hard phase inside the cermet. Cermet that is 2 times. 前記結合相減少層は前記サーメットの内部から前記結合相層に向かって結合相量が漸減するとともに、前記結合相層と該結合相減少層との界面から20μm内部までの該結合相減少層に含まれる結合相量が、該サーメットの内部における結合相量の0.50〜0.99倍である請求項1に記載のサーメット。 The binder phase decreasing layer gradually decreases in the amount of the binder phase from the inside of the cermet toward the binder phase layer, and the binder phase reducing layer extends from the interface between the binder phase layer and the binder phase reducing layer to the inside of the binder phase by 20 μm. The cermet according to claim 1, wherein the amount of the binder phase contained is 0.50 to 0.99 times the amount of the binder phase inside the cermet. 前記結合相層と前記結合相減少層との界面から20μm内部までの該結合相減少層における硬さはサーメットの内部における硬さの1.01〜1.10倍である請求項1または2に記載のサーメット。 3. The hardness of the binder phase-decreasing layer from the interface between the binder phase layer and the binder phase-decreasing layer to the inside of 20 μm is 1.01 to 1.10 times the hardness inside the cermet. The stated cermet. 前記サーメットの内部における硬質相の平均粒径は0.5〜5μmである請求項1〜3のいずれか1項に記載のサーメット。 The cermet according to any one of claims 1 to 3, wherein an average particle diameter of the hard phase in the cermet is 0.5 to 5 µm. 前記サーメットの内部における硬さはHV1500〜2200である請求項1〜4のいずれか1項に記載のサーメット。 The hardness in the inside of the said cermet is HV1500-2200, The cermet of any one of Claims 1-4. 前記焼き肌面の算術平均粗さRaが2μm以下である請求項1〜5のいずれか1項に記載のサーメット。 The cermet according to any one of claims 1 to 5, wherein an arithmetic average roughness Ra of the grilled skin surface is 2 µm or less. 前記サーメットの表面に硬質膜を被覆した請求項1〜6のいずれか1項に記載の被覆サーメット。 The coated cermet according to any one of claims 1 to 6, wherein a hard film is coated on a surface of the cermet. サーメットの製造方法において、(A)炭窒化チタン粉末50〜75重量%、周期律表4a,5a,6a族金属の化合物の中の少なくとも1種の粉末20〜40重量%、鉄族金属の中の少なくとも1種の粉末3〜20重量%からなり合計で100重量%となる混合物を準備する混合工程と、(B)得られた該混合物を真空中にて1300〜1440℃の範囲の所定の温度まで昇温する第1昇温工程と、(C)次いで該混合物を133〜13300Paの窒素雰囲気にて1300〜1440℃の範囲の所定の温度から1450〜1550℃の範囲の焼結温度まで昇温する第2昇温工程と、(D)次いで該混合物を133〜13300Paの窒素雰囲気にて1450〜1550℃の範囲の焼結温度で所定の時間保持して焼結する焼結工程と、(E)焼結後の該混合物を不活性雰囲気にて1450〜1550℃の範囲の焼結温度から1200〜1330℃の範囲の所定の温度まで毎分20℃以上で冷却する第1冷却工程と、(F)次いで該混合物を該第1冷却工程より低い圧力の不活性ガス雰囲気または真空中にて1200〜1330℃の範囲の所定の温度で所定の時間保持する保持工程と、(G)次いで該混合物を1200〜1330℃の範囲の所定の温度から常温に冷却する第2冷却工程と、を含むことを特徴とするサーメットの製造方法。 In the method for producing cermet, (A) titanium carbonitride powder 50 to 75% by weight, periodic table 4a, 5a, at least one of the group 6a metal compounds 20 to 40% by weight, and iron group metal A mixing step of preparing a mixture consisting of 3 to 20% by weight of at least one powder and a total of 100% by weight, and (B) the obtained mixture in vacuum within a predetermined range of 1300 to 1440 ° C. (C) Then, the mixture is raised from a predetermined temperature in the range of 1300 to 1440 ° C. to a sintering temperature in the range of 1450 to 1550 ° C. in a nitrogen atmosphere of 133 to 13300 Pa. A second temperature raising step for heating, and (D) a sintering step in which the mixture is then sintered for a predetermined time at a sintering temperature in the range of 1450 to 1550 ° C. in a nitrogen atmosphere of 133 to 13300 Pa. E A first cooling step of cooling the mixture after sintering at a temperature of 20 ° C. or more per minute from a sintering temperature in the range of 1450 to 1550 ° C. to a predetermined temperature in the range of 1200 to 1330 ° C. in an inert atmosphere; And then holding the mixture for a predetermined time at a predetermined temperature in the range of 1200 to 1330 ° C. in an inert gas atmosphere or vacuum at a lower pressure than in the first cooling step, and (G) then holding the mixture A second cooling step of cooling from a predetermined temperature in the range of 1200 to 1330 ° C. to room temperature, and a method for producing a cermet. 請求項10に記載の方法で得られたサーメットの表面に硬質膜を被覆する被覆サーメットの製造方法。 The manufacturing method of the covering cermet which coat | covers a hard film | membrane on the surface of the cermet obtained by the method of Claim 10.
JP2003409700A 2003-12-09 2003-12-09 Cermet, coated cermet and methods for manufacturing them Withdrawn JP2005171283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409700A JP2005171283A (en) 2003-12-09 2003-12-09 Cermet, coated cermet and methods for manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409700A JP2005171283A (en) 2003-12-09 2003-12-09 Cermet, coated cermet and methods for manufacturing them

Publications (1)

Publication Number Publication Date
JP2005171283A true JP2005171283A (en) 2005-06-30

Family

ID=34730966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409700A Withdrawn JP2005171283A (en) 2003-12-09 2003-12-09 Cermet, coated cermet and methods for manufacturing them

Country Status (1)

Country Link
JP (1) JP2005171283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124559A1 (en) 2011-03-15 2012-09-20 住友電工ハードメタル株式会社 Cutting edge-replaceable cutting tool
US8679207B2 (en) * 2006-03-30 2014-03-25 Komatsu Ltd. Wear resisting particle and wear resisting structure member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679207B2 (en) * 2006-03-30 2014-03-25 Komatsu Ltd. Wear resisting particle and wear resisting structure member
WO2012124559A1 (en) 2011-03-15 2012-09-20 住友電工ハードメタル株式会社 Cutting edge-replaceable cutting tool

Similar Documents

Publication Publication Date Title
JP6703757B2 (en) Cermet and cutting tool
CN114196940B (en) Composite coating cutter and preparation method and application thereof
JP2005177981A (en) Cemented carbide tool and manufacturing method thereof
WO2015156005A1 (en) Cermet and cutting tool
JP5004145B2 (en) Cermet and coated cermet and methods for producing them
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP4313587B2 (en) Cemented carbide and coated cemented carbide members and methods for producing them
JP2005194573A (en) Cermet, coated cermet, and method for manufacturing them
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
US20080224344A1 (en) Method of making a cemented carbide body
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
JP2005171283A (en) Cermet, coated cermet and methods for manufacturing them
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
KR101807629B1 (en) Cermet tool
JP2001179507A (en) Cutting tool
KR20220115559A (en) Gradient cemented carbide with alternative binders
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP4845490B2 (en) Surface coated cutting tool
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JP4280525B2 (en) cermet
JP5900638B2 (en) Cermet tool
JP2005272878A (en) SURFACE-COATED Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
JP2022136020A (en) Cemented carbide cutter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306