JP2005169916A - Manufacturing method of foam roller - Google Patents

Manufacturing method of foam roller Download PDF

Info

Publication number
JP2005169916A
JP2005169916A JP2003414708A JP2003414708A JP2005169916A JP 2005169916 A JP2005169916 A JP 2005169916A JP 2003414708 A JP2003414708 A JP 2003414708A JP 2003414708 A JP2003414708 A JP 2003414708A JP 2005169916 A JP2005169916 A JP 2005169916A
Authority
JP
Japan
Prior art keywords
foam
mold
roller
cylindrical
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003414708A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishimura
芳明 西村
Atsushi Murata
淳 村田
Masataka Kodama
真隆 児玉
Hiroshi Ikeda
寛 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003414708A priority Critical patent/JP2005169916A/en
Publication of JP2005169916A publication Critical patent/JP2005169916A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a foam roller having a dense foam diameter, reduced in the irregularity of the foam diameter/foam wall thickness, having no hardness irregularity, easy to demold and producing no parting line, and a manufacturing method of the foam roller having uniform quality using the foam manufactured by the foam manufacturing method. <P>SOLUTION: A molded article containing a foaming agent before vulcanization and foaming is molded into a columnar shape so as to be incorporated in the cavity of a mold and the columnar molded object is arranged in the cavity of the mold and foamed by heating the mold. Thereafter, a lid body is detached to form a through-hole to the almost center of the inner paripheral surface of a mold main body before taking the cylindrical foam out of the mold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、円筒状の内周面を有した成形型を用いて加硫発泡処理して発泡体を製造する方法に関し、より具体的には、複写機、レーザビームプリンター、LEDプリンターなどの電子写真や電子写真製版システムなどにおいて使用される発泡体ローラ、例えば、導電性発泡体ローラの製造に用いる円筒形状の発泡体の作製に利用可能な発泡体の製造方法に関し、さらには、かかる方法で作製される円筒形状の発泡体を用いて、導電性発泡体ローラなどの発泡体ローラを製造する方法にも関する。   The present invention relates to a method for producing a foam by vulcanizing and foaming using a mold having a cylindrical inner peripheral surface, and more specifically, an electronic device such as a copying machine, a laser beam printer, or an LED printer. The present invention relates to a foam production method that can be used to produce a foam roller used in a photographic or electrophotographic plate making system, for example, a cylindrical foam used to produce a conductive foam roller. The present invention also relates to a method of manufacturing a foam roller such as a conductive foam roller using the produced cylindrical foam.

従来、複写機、レーザビームプリンター、LEDプリンターなどの電子写真装置や電子写真製版システムの装置内では、帯電ローラ、現像ローラ、転写ローラ等の用途に、それぞれその用途に適する形態の弾性体ローラが使用されている。これら電子写真装置内で利用される弾性体ローラは、図4に示すように、弾性体ローラ本体51と、その中心に芯金52とを持ち、円筒形状ローラ本体部の筒孔を貫通した芯金52の一部が両端に突出した形態とされている。弾性体ローラ本体51は、例えば、帯電ローラのように像担持体などに対して、ローラ表面を均一に圧接させるため、ゴム、エラストマー等の発泡体で構成された弾性体より構成されている。加えて、帯電ローラ、転写ローラ等では、バイアス電圧を印加して、圧接させる被帯電体を帯電させて、使用するために、弾性体に用いる発泡体には導電性が付与され、導電性発泡体ローラとされている。加えて、この導電性発泡体表面上に、さらに導電性の塗料を塗工することによって、ローラ抵抗の調節を図っている、二層構造の導電性ローラの形状としたものを利用することもある。   Conventionally, in electrophotographic apparatuses such as copying machines, laser beam printers, and LED printers, and electrophotographic plate making system apparatuses, there are elastic rollers in a form suitable for each application, such as a charging roller, a developing roller, and a transfer roller. in use. As shown in FIG. 4, the elastic roller used in these electrophotographic apparatuses has an elastic roller main body 51 and a cored bar 52 at the center thereof, and a core penetrating the cylindrical hole of the cylindrical roller main body. A part of the gold 52 protrudes from both ends. The elastic roller main body 51 is composed of an elastic body made of a foamed material such as rubber or elastomer in order to uniformly press the roller surface against an image carrier or the like like a charging roller. In addition, in a charging roller, a transfer roller, and the like, a charged object is charged by applying a bias voltage to be used for charging, so that the foam used for the elastic body is given conductivity, and the conductive foam is used. It is a body roller. In addition, it is also possible to use a conductive roller having a shape of a two-layer structure in which the roller resistance is adjusted by applying a conductive paint on the surface of the conductive foam. is there.

図5に、種々の弾性体ローラが利用されている電子写真装置の装置構成を模式的に示す。この図5に模式的に示す装置構成を参照しつつ、電子写真装置における画像形成プロセスについて概説する。ドラム型の電子写真プロセスに用いる感光体53は、被帯電体としての像担持体であり、例えば、アルミニウムを用いた導電性の基体層とその外周面に形成した光導電層の二層からなっている。この感光体53に接し、感光体面を所定の電位に一様に帯電させる帯電部材54は、図3に示す装置構成においては、導電性ローラ形状の帯電ローラが使用されている。例えば、この帯電ローラ54には、中心部の芯金52と、その外周に設ける導電性発泡体層に加えて、導電性発泡体層の外周面に、樹脂などに導電性粒子を充填した表層を被覆形成した、二層構成のローラ部とから構造とすることができる。   FIG. 5 schematically shows an apparatus configuration of an electrophotographic apparatus in which various elastic rollers are used. The image forming process in the electrophotographic apparatus will be outlined with reference to the apparatus configuration schematically shown in FIG. The photosensitive member 53 used in the drum-type electrophotographic process is an image carrier as a member to be charged. For example, the photosensitive member 53 includes a conductive base layer using aluminum and a photoconductive layer formed on the outer peripheral surface thereof. ing. In the apparatus configuration shown in FIG. 3, a charging roller in the shape of a conductive roller is used as the charging member 54 that contacts the photosensitive member 53 and uniformly charges the surface of the photosensitive member to a predetermined potential. For example, in the charging roller 54, in addition to the cored bar 52 at the center and the conductive foam layer provided on the outer periphery thereof, the outer surface of the conductive foam layer is filled with conductive particles such as resin. It is possible to make a structure from a two-layered roller portion that is coated.

この帯電ローラ54は、バネ等の圧接手段によって、ドラム型の感光体53に所定の圧接力をもって圧接されており、例えば、感光体53の回転に伴って、従動回転させることもできる。その芯金部52に直流+交流(あるいは、直流のみ)バイアスを印加することで、感光体53表面を所定の電位に接触帯電させる。従って、良好なコピー画像を得る上で必要となる感光体53表面の均一な帯電電位を達成するためには、この帯電ローラ54には、均一な接触状態と、導電性が必要となる。次いで、帯電ローラ54により所定の電位に帯電された感光体53表面を、レーザー、LED等の露光手段55を用いて露光することで、目的とする画像情報に対応する静電潜像を形成する。   The charging roller 54 is pressed against the drum-type photosensitive member 53 with a predetermined pressing force by a pressing means such as a spring. For example, the charging roller 54 can be driven to rotate as the photosensitive member 53 rotates. By applying a direct current + alternating current (or direct current only) bias to the cored bar portion 52, the surface of the photoreceptor 53 is contact-charged to a predetermined potential. Therefore, in order to achieve a uniform charging potential on the surface of the photoreceptor 53 necessary for obtaining a good copy image, the charging roller 54 needs to have a uniform contact state and conductivity. Next, the surface of the photosensitive member 53 charged to a predetermined potential by the charging roller 54 is exposed using an exposure unit 55 such as a laser or LED, thereby forming an electrostatic latent image corresponding to target image information. .

その後、形成された静電潜像に対して、現像手段として、感光体53に圧接されている現像ローラ56を利用し、トナーを塗布することで、トナー像に現像し、可視像化する。このトナー画像は、次いで、不示図の給紙手段部から感光体53の回転と同期した適正なタイミングで転写部へ搬送された転写材58面に対して、この転写部、すなわち、感光体53と転写手段57との隙間において、感光体53表面から転写材58面へと順次転写される。図5に示す構成例では、転写手段57として、導電性発泡体ローラからなる転写ローラ7を使用している。一定回転している転写ローラ57にバイアス電圧印加して、転写材58の裏面からトナー59と逆極性の帯電を行うことで、感光体53表面のトナー画像が転写材58表面に転写される。   Thereafter, a toner image is applied to the formed electrostatic latent image by using a developing roller 56 that is in pressure contact with the photosensitive member 53 as a developing unit, thereby developing the toner image into a visible image. . This toner image is then transferred to the transfer portion 58, that is, the photosensitive member, with respect to the surface of the transfer material 58 conveyed to the transfer portion at an appropriate timing synchronized with the rotation of the photosensitive member 53 from a paper supply unit (not shown). In the gap between the transfer unit 57 and the transfer unit 57, the image is sequentially transferred from the surface of the photoreceptor 53 to the transfer material 58 surface. In the configuration example shown in FIG. 5, a transfer roller 7 made of a conductive foam roller is used as the transfer means 57. A bias voltage is applied to the transfer roller 57 that rotates at a constant speed, and charging is performed with a polarity opposite to that of the toner 59 from the back surface of the transfer material 58, whereby the toner image on the surface of the photoreceptor 53 is transferred to the surface of the transfer material 58.

トナー画像が転写された転写材58は、感光体53から分離され、定着部材60において、加熱、加圧して、転写材58表面に固着することで、定着がなされる。一方、像転写後、感光体53は、クリーニング手段61により、転写後に表面に残っている残留トナー等の付着物を除去して、清浄面化され、繰り返し画像形成に供される。   The transfer material 58 to which the toner image has been transferred is separated from the photoconductor 53 and is fixed by being heated and pressurized by the fixing member 60 and fixed to the surface of the transfer material 58. On the other hand, after the image transfer, the photosensitive member 53 is cleaned by the cleaning unit 61 to remove the remaining toner and the like remaining on the surface after the transfer, and is repeatedly used for image formation.

また、近年、従来から利用されている直流+交流バイアスに代えて、帯電ローラ54に直流電圧のみを印加して感光体53と周速差を設け、直接電荷を注入して感光体53を帯電させる方式が検討されている。この目的で、帯電ローラ54を発泡体で構成し、その表面を研摩して気泡径を露出させて、さらに、この研磨を施した帯電ローラの表面に、接触帯電性を向上させるために導電性粒子をコートする発泡体ローラとしている。前記導電性粒子をコートする帯電ローラには、感光体53との密着摺動時における導電性粒子の高い保持性と、多量の導電性粒子を均一分布させることが求められる。加えて、感光体53との密着幅を広くするため、発泡体の気泡壁が薄くて、その気泡径が適度に小さく均一分布して、かつ低硬度なものが好適である。   Also, in recent years, instead of the conventionally used DC + AC bias, only a DC voltage is applied to the charging roller 54 to provide a peripheral speed difference from the photoconductor 53, and a charge is directly injected to charge the photoconductor 53. A method of making it happen is being studied. For this purpose, the charging roller 54 is made of a foam, the surface thereof is polished to expose the bubble diameter, and the surface of the polished charging roller is electrically conductive to improve contact chargeability. The foam roller is coated with particles. The charging roller that coats the conductive particles is required to have a high retention property of the conductive particles during close contact sliding with the photosensitive member 53 and to uniformly distribute a large amount of the conductive particles. In addition, in order to widen the contact width with the photosensitive member 53, it is preferable that the bubble wall of the foam is thin, the bubble diameter is appropriately small and uniformly distributed, and has low hardness.

また、上述した画像形成プロセスに対して、近年、ますます画像形成速度の高速化と、画像自体の高精細化が進められている。高速で、高画質の画像を得るためには、例えば、導電性発泡体ローラを使用する転写ローラ57では、高速で回転させる際に、感光体53と転写材58とを均一に接触させ、かつ正確に転写材(紙)58の搬送を行える性能が求められる。そのためには、転写ローラ57として、低硬度で硬度ばらつきの少ない発泡体ローラが望まれる。   Further, in recent years, with respect to the above-described image forming process, an increase in image forming speed and a higher definition of the image itself have been promoted. In order to obtain a high-quality image at high speed, for example, in the transfer roller 57 using a conductive foam roller, when rotating at high speed, the photosensitive member 53 and the transfer material 58 are uniformly contacted, and The ability to accurately convey the transfer material (paper) 58 is required. For this purpose, a foam roller with low hardness and little hardness variation is desired as the transfer roller 57.

また、転写ローラ57には、トナー59の静電気力による転写材(紙)58表面への引き寄せを良好に行うために、適正な電圧を印加するが、非通紙時において、像担持体(感光体53)への過度の電流や電流リークなどによる印加電圧のブレークダウンを防止する目的で、転写ローラ57の抵抗値は、印加電圧1000Vで1×10〜1×1010〜Ωの半導電領域に選択されている。また、高速化、高精細化に伴い、転写ローラ57から転写材(紙)58に対して、短時間に電荷を移動する必要があり、つまり、電流が増すにつれ、画質の均一性を支配する電流密度の均一性は、ローラ表面の抵抗率分布の影響を受け易くなり、例えば、転写ローラ57を構成する発泡体中に含まれる気泡径のバラツキ等の影響を受け易くなる。従って、高速で、高画質の画像を得るためには、転写ローラ57を構成する発泡体は、平均抵抗率の制御に加えて、発泡体中に含まれる気泡は、むらのない緻密な気泡径であることも必要となる。 An appropriate voltage is applied to the transfer roller 57 in order to satisfactorily attract the toner 59 to the surface of the transfer material (paper) 58 by the electrostatic force. The resistance value of the transfer roller 57 is 1 × 10 6 to 1 × 10 10 to Ω semiconductive at an applied voltage of 1000 V for the purpose of preventing breakdown of the applied voltage due to excessive current or current leakage to the body 53). Selected in the area. In addition, with the increase in speed and definition, it is necessary to move the charge from the transfer roller 57 to the transfer material (paper) 58 in a short time, that is, as the current increases, the uniformity of image quality is governed. The uniformity of the current density is easily affected by the resistivity distribution on the roller surface, and is easily affected by, for example, variations in the diameter of bubbles contained in the foam constituting the transfer roller 57. Therefore, in order to obtain a high-quality image at a high speed, the foam constituting the transfer roller 57 is not limited to controlling the average resistivity. It is also necessary to be.

従来、微細でむらのない緻密な気泡径をもち低硬度な発泡体を得るには成形型を用いた方法、直接蒸気、熱風、マイクロ波などで加硫発泡して成形型を用いない方法があった。   Conventionally, in order to obtain a foam having a fine and uniform fine cell diameter and low hardness, there is a method using a mold, or a method in which a mold is not vulcanized and foamed by direct steam, hot air, microwave, etc. there were.

円筒状の発泡体を得るのに成形型を用いない方法は加硫発泡前に円筒状にした成形体の内外径を規制してないため、加硫発泡後の外径を整える研摩代が比較的多いまた内外径の偏芯精度を高めることが難しいので、外径を制御できかつ微細な気泡径をもち低硬度な発泡体を得ることが容易な成形型を用いた方法が用いられてきている。従来、円筒状の発泡体を成形するために成形型を用いた方法として、図6に示すような円周面のキャビティ面を有する円筒状の成形型をもちいる方法が知られている。これらは発泡剤を含有する混練りした原料組成物を押し出し機などで接着剤101が塗られた芯金102上に未加硫未発泡の円筒状の成形体103を形成し、両端に芯金を吐出した未加硫未発泡の円筒状の成形体を円筒状の内周面を有した成形型本体104内に挿通させ、芯金102の両端に勘合してかつ成形型本体104の円筒状の内周面と芯金102を略同心に保持させる蓋体105により成形型内に保持させ成形型を加熱することにより、発泡体ローラの形状にする方法が知られている。   The method that does not use a mold to obtain a cylindrical foam does not regulate the inner and outer diameters of the molded body that has been cylindrical before vulcanization foaming, so the polishing allowance to adjust the outer diameter after vulcanization foaming is compared Since it is difficult to increase the accuracy of eccentricity of the inner and outer diameters, a method using a mold that can control the outer diameter and easily obtain a low hardness foam with a fine bubble diameter has been used. Yes. Conventionally, as a method using a mold for molding a cylindrical foam, a method using a cylindrical mold having a circumferential cavity surface as shown in FIG. 6 is known. In these, a kneaded raw material composition containing a foaming agent is formed on an unvulcanized unfoamed cylindrical molded body 103 on a core metal 102 coated with an adhesive 101 with an extruder or the like, and the core metal is formed at both ends. The unvulcanized and unfoamed cylindrical molded body that is discharged is inserted into the molding die body 104 having a cylindrical inner peripheral surface, fitted into both ends of the core metal 102, and the cylindrical shape of the molding die body 104 There is known a method of forming a foam roller shape by holding the inner peripheral surface of the metal core 102 and the cored bar 102 in a molding die by a lid 105 that holds the core metal 102 substantially concentrically and heating the molding die.

また、特開2001-191349で割り金型をもちいて割り金型の合わせ面の仕上げ精度が25μm以下(十点平均あらさ)である方法が提案されている。   Japanese Patent Laid-Open No. 2001-191349 proposes a method that uses a split mold and that the finishing accuracy of the mating surface of the split mold is 25 μm or less (10-point average roughness).

しかしながら従来の方法では、発泡倍率が高い場合には発泡体を成形型から取り出す時に脱型しずらいなど問題があった。また脱型には問題がない割り金型をもちいる方法では、初期は問題がなくても繰り返し使用時において割り金型の合わせ面の仕上げ精度が磨耗して悪くなり、割り金型の合わせ面に相当する部分にパーティングラインが発生するおそれがあった。また割り金型を用いて加硫圧力を一方方向からかけると芯金が変形して発泡体がバナナ形状になるおそれがあった。   However, the conventional method has a problem that, when the expansion ratio is high, it is difficult to remove the foam from the mold. In addition, in the method using a split mold that does not cause any problems in mold removal, even if there is no problem at the beginning, the finishing accuracy of the split mold mating surface wears down during repeated use, and the split mold mating surface There was a risk that a parting line would occur in the portion corresponding to. Further, when a vulcanizing pressure is applied from one direction using a split mold, the core metal may be deformed, and the foam may have a banana shape.

本発明は前記の課題を解決するもので、本発明の目的は、緻密な気泡径を持ち、かつ気泡径・気泡壁の厚みのバラツキが少なく、硬度むらもなく精度が良い発泡体を高い再現性で製造する方法を提供することにある。より具体的には、本発明の目的は、緻密な気泡径を持ち、気泡径・気泡壁の厚みのバラツキが少なく、硬度むらもなく脱型が容易でパーティングラインが発生しない発泡体の製造方法、ならびに、かかる方法で製造される発泡体を用いて、高い品質均一さを持つ発泡体ローラを製造する方法を提供することにある。   The present invention solves the above-mentioned problems, and the object of the present invention is to reproduce a highly accurate foam having a fine bubble diameter, less variation in the bubble diameter and bubble wall thickness, and no unevenness in hardness. It is in providing the method of manufacturing by sex. More specifically, the object of the present invention is to produce a foam having a dense bubble diameter, little variation in bubble diameter and bubble wall thickness, no hardness unevenness, and easy demolding and no parting line. It is an object of the present invention to provide a method and a method for producing a foam roller having high quality uniformity using the foam produced by such a method.

パーティングライン発生および芯金の変形の起因となる割り金型を用いずに、成形型本体が円筒状の内周面を有しかつ成形型本体とでキャビティを形成する蓋体を成形型本体の両端に有する成形型を用い、発泡剤を含有した加硫発泡前の成形物を該成形型のキャビティ内に組み込めるように円柱状に成形し、該円柱状の成形体を該成形型のキャビティ内に配置し、該成形型を加熱して成形物を発泡させた後に蓋体を取り外して成形型本体の円筒状である内周面の略中心に貫通孔を施して、その後円筒状の発泡体を成形型から取り出すことを特徴とする発泡体の製造法である。   A mold body having a cylindrical inner peripheral surface and forming a cavity with the mold body without using a split mold that causes parting line generation and core metal deformation. Using a mold having both ends of the mold, a molded product containing a foaming agent before vulcanization and foaming is molded into a cylindrical shape so as to be incorporated into the cavity of the mold, and the cylindrical molded body is formed into a cavity of the mold. After placing the mold inside and heating the mold to foam the molded product, the lid is removed and a through hole is made at the approximate center of the cylindrical inner peripheral surface of the mold body, and then the cylindrical foam is formed. A method for producing a foam characterized in that a body is taken out of a mold.

本発明により作製される発泡体は、緻密な気泡径を持ち、気泡径・気泡壁の厚みのバラツキが少なく、硬度むらも無い発泡体とできる。また発泡体を円筒状の型本体から容易に取り出すことができ、パーティングラインのない発泡体を作製できる。   The foam produced according to the present invention can be a foam having a dense cell diameter, little variation in cell diameter and cell wall thickness, and no hardness unevenness. Further, the foam can be easily taken out from the cylindrical mold body, and a foam without a parting line can be produced.

かかる本発明の方法で作製される発泡体を用いて、製造される発泡体ローラ、例えば、導電性発泡体ローラは、その周方向において、気泡径・気泡壁の厚みのバラツキが少なく、硬度むらも無く、それに付随して、抵抗値むらの少ないものとできる利点がある。   A foam roller manufactured by using the foam produced by the method of the present invention, for example, a conductive foam roller, has little variation in bubble diameter and bubble wall thickness in the circumferential direction, and uneven hardness. In addition, there is an advantage that the resistance value can be reduced.

以下に、本発明、特には、本発明にかかる発泡体の製造方法を、より詳細に説明する。   Below, the manufacturing method of the foam concerning this invention, especially this invention is demonstrated in detail.

本発明で作製される発泡体に利用可能なポリマー原料として、例えば、EPDM(エチレン−プロピレン−ジエン共重合体)、ポリブタジエン、天然ゴム、ポリイソプレン、SBR(スチレン−ブタジエンゴム)、CR(クロロプレン)、NBR(アクリルニトリル−ブタジエンゴム)、シリコンゴム、ウレタンゴム、エピクロロヒドリンゴム等のゴム材料;RB(ブタジェン樹脂)、SBS(スチレン−ブタジェン−スチレンエラストマー)等のポリスチレン系高分子材料;ポリオレフィン系高分子材料;ポリエステル系高分子材料;ポリウレタン系高分子材料;RVC等の熱可塑性エラストマーやポリウレタン、ポリスチレン、PE、PP、PVC、アクリル系樹脂、スチレン−酢酸ビニル共重合体、ブタジェン−アクリロニトリル共重合体等の高分子材料;さらには、これらゴム、エラストマー、樹脂材料の混合物を挙げることができる。これら例示するポリマー原料から、例えば、作製される発泡体を利用して製造する発泡体ローラの用途に応じて、適宜、その最終用途に適するポリマー原料を選択することが望ましい。   Examples of polymer raw materials that can be used in the foam produced in the present invention include EPDM (ethylene-propylene-diene copolymer), polybutadiene, natural rubber, polyisoprene, SBR (styrene-butadiene rubber), and CR (chloroprene). , Rubber materials such as NBR (acrylonitrile-butadiene rubber), silicon rubber, urethane rubber, epichlorohydrin rubber; polystyrene polymer materials such as RB (butadiene resin) and SBS (styrene-butadiene-styrene elastomer); polyolefin-based materials Polymer material; Polyester polymer material; Polyurethane polymer material; Thermoplastic elastomer such as RVC, polyurethane, polystyrene, PE, PP, PVC, acrylic resin, styrene-vinyl acetate copolymer, butadiene-acrylonitrile copolymer Polymeric materials such as body; may further include these rubbers, elastomers, mixtures of a resin material. From these exemplified polymer raw materials, for example, it is desirable to appropriately select a polymer raw material suitable for the end use according to the use of the foam roller produced using the produced foam.

また、作製する発泡体を導電性発泡体とする際には、前記ポリマ−原料に導電性物質を添加して、所望の導電性を付与する。利用される導電性物質は、特に限定されるものではなく、導電粒子として、導電性カーボンブラック、TiO、SnO、ZnO、SnOとSbOの固溶体などの金属酸化物、Cu、Agなどの金属粉などが挙げられ、また、イオン導電剤として、LiClO、NaSCNなどが挙げられる。前記ポリマー原料に、目的とする抵抗率に応じ、また、目標とする発泡倍率をも考慮して、導電性物質の添加比率を適宜選択することができる。その他、場合によっては、利用するポリマ−原料自体に対して、そのポリマー主鎖中あるいは側鎖に、極性を有する基、原子団など有する分子を修飾・付加して、導入することにより、ポリマー原料自体の導電化を図ることもできる。 Moreover, when making the foam to produce into a conductive foam, a conductive substance is added to the said polymer raw material, and desired electroconductivity is provided. The conductive material used is not particularly limited, and conductive particles such as conductive carbon black, TiO 2 , SnO 2 , ZnO, a metal oxide such as a solid solution of SnO 2 and SbO 3 , Cu, Ag, etc. It is like the metal powder, and as an ion conductive agent, LiClO 4, NaSCN, and the like. The addition ratio of the conductive material can be appropriately selected for the polymer raw material in accordance with the target resistivity and also taking into account the target expansion ratio. In addition, in some cases, the polymer raw material itself may be introduced by modifying and adding molecules having a polar group or atomic group in the polymer main chain or in the side chain of the polymer raw material itself. It is also possible to make itself conductive.

また、導電性粒子をコートする帯電ローラは弾性を持たせ十分な接触状態を得ると同時に、移動する被帯電体を充電するに十分低い抵抗を有する必要がある。しかし、一方では被帯電体にピンホールなどの欠陥部位が存在した場合に電圧のリークを防止する必要がある。よって、被帯電体として電子写真用感光体を用いた場合、十分な帯電性と耐リーク性を得るには印加電圧が100Vで1×104〜1×107Ωの抵抗を有することが望ましい。 In addition, the charging roller that coats the conductive particles needs to have elasticity and obtain a sufficient contact state, and at the same time have a sufficiently low resistance to charge the moving charged object. However, on the other hand, it is necessary to prevent voltage leakage in the case where a defect site such as a pinhole exists in the member to be charged. Therefore, when an electrophotographic photosensitive member is used as the member to be charged, it is desirable that the applied voltage has a resistance of 1 × 10 4 to 1 × 10 7 Ω at 100 V in order to obtain sufficient chargeability and leakage resistance. .

本発明においては、発泡体に含まれる気泡を緻密とすることのため、利用する発泡剤は、ポリマー原料中に均一に混合・分散を行うことが必要となり、その目的から、有機発泡剤がより適している。利用可能な有機発泡剤として、例えば、A.D.C.A(アゾジカルボンアミド)系、D.P.T(ジニトロソペンタメチレンテトラアミン)系、T.S.H(p−トルエンスルホニルヒドラジド)系、O.B.S.H(オキシビスベンゼンスルフェニルヒドラジド)系などが挙げられ、単独で、あるいは複数種を混合して使用することもできる。   In the present invention, in order to make the bubbles contained in the foam dense, the foaming agent to be used needs to be uniformly mixed and dispersed in the polymer raw material. Are suitable. Examples of usable organic blowing agents include A.I. D. C. A (azodicarbonamide) system, D.I. P. T (dinitrosopentamethylenetetraamine) type, T.I. S. H (p-toluenesulfonyl hydrazide) system, O.D. B. S. H (oxybisbenzene sulfenyl hydrazide) system etc. are mentioned, It can also use individually or in mixture of multiple types.

前記有機発泡剤に対して、発泡助剤として、尿素系化合物、酸化亜鉛、酸化鉛などの金属酸化物、ならびに、サリチル酸、ステアリン酸などを主成分とする化合物などを用いることができ、添加する発泡剤の種類に応じて、それに対応する発泡助剤を選択し、適量添加することができる。   For the organic foaming agent, urea compounds, metal oxides such as zinc oxide and lead oxide, and compounds mainly composed of salicylic acid, stearic acid, and the like can be used as foaming aids. Depending on the type of foaming agent, a corresponding foaming aid can be selected and added in an appropriate amount.

一方、加硫剤として、硫黄、金属酸化物などが挙げられ、加硫促進剤として、チアゾール系、スルフェンアミド系、チウラム系、カルバメート系などが挙げられる。利用する加硫剤の種類に応じて、それに対応する加硫促進剤を適宜選択することが好ましい。   On the other hand, examples of the vulcanizing agent include sulfur and metal oxides, and examples of the vulcanization accelerator include thiazole-based, sulfenamide-based, thiuram-based, carbamate-based, and the like. It is preferable to select a vulcanization accelerator corresponding to the type of vulcanizing agent to be used as appropriate.

上記の加硫・発泡に利用される成分に加えて、公知の加硫促進助剤を必要に応じて適宜添加することもできる。さらに、得られる発泡体に求められる弾性、硬度などの特性に応じて、公知の軟化剤、補強剤、無機充填剤などを必要に応じて適宜添加することもできる。   In addition to the above-mentioned components used for vulcanization / foaming, known vulcanization accelerators may be added as necessary. Furthermore, known softeners, reinforcing agents, inorganic fillers, and the like can be appropriately added as necessary according to properties such as elasticity and hardness required for the obtained foam.

本発明の発泡体の製造方法においては、緻密な気泡の発生と、その気泡径を均一化するため、加硫反応の進行速度と、発泡剤の熱分解反応速度とを調和させることが必要であり、従って、発泡剤の熱分解が生じ始める温度をも制御する。そのため、発泡剤の熱分解が生じ始める温度を低下する必要がある際には、尿素樹脂や酸化亜鉛などの発泡助剤などを加え、また、その添加比率を調整することで、かかる熱分解温度の低下範囲を制御することが好ましい。   In the foam production method of the present invention, it is necessary to harmonize the progress of the vulcanization reaction with the thermal decomposition reaction rate of the foaming agent in order to uniformize the generation of dense bubbles and the bubble diameter. Yes, thus also controlling the temperature at which thermal decomposition of the blowing agent begins to occur. Therefore, when it is necessary to lower the temperature at which the thermal decomposition of the foaming agent starts to occur, the thermal decomposition temperature can be increased by adding a foaming aid such as urea resin or zinc oxide and adjusting the addition ratio. It is preferable to control the lowering range of.

そして導電性粒子をコートする帯電ローラは気泡径による導電粒子の保持力と効率的で均一な注入帯電の点から、発泡体の比重としては0.2〜0.5の範囲が好適である。   In the charging roller for coating the conductive particles, the specific gravity of the foam is preferably in the range of 0.2 to 0.5 from the viewpoint of holding power of the conductive particles due to the bubble diameter and efficient and uniform injection charging.

また、発泡倍率を大きくすることによって、ローラの硬度が下がり、帯電ローラが被帯電体(感光体)を帯電するに必要なニップ幅を確保することができるため、帯電効率を上げることができる。一方、発泡倍率を上げすぎると帯電ローラとして強度が不十分なため変形を起こしやすく、帯電性能が悪化してしまうため、発泡倍率は2〜5倍であることが好ましい。   Further, by increasing the expansion ratio, the hardness of the roller is lowered, and the nip width necessary for the charging roller to charge the member to be charged (photosensitive member) can be secured, so that the charging efficiency can be increased. On the other hand, if the expansion ratio is increased too much, the charging roller is insufficient in strength and thus easily deforms and the charging performance deteriorates. Therefore, the expansion ratio is preferably 2 to 5 times.

発泡倍率は以下に示す様に発泡前と発泡後の比重(g/cm3 )を用いた式によって算出した。 The expansion ratio was calculated by an equation using specific gravity (g / cm 3 ) before and after foaming as shown below.

発泡倍率=(加硫発泡前の比重)/(加硫発泡後の比重)
さらに硬度は、硬度が低すぎると形状安定しないために接触性が悪くなり、高すぎると帯電ニップを確保できないだけでなく、感光体表面へのミクロな接触性が悪くなるので、アスカーC硬度で15〜40度が好ましい範囲である。
Foaming ratio = (specific gravity before vulcanization foaming) / (specific gravity after vulcanization foaming)
Furthermore, if the hardness is too low, the shape will not be stable, resulting in poor contact. If it is too high, not only will the charging nip be secured, but the micro contact to the surface of the photoreceptor will be poor. 15 to 40 degrees is a preferable range.

つぎに本発明でもちいる成形型を図1で説明する。   Next, a mold used in the present invention will be described with reference to FIG.

11は成形型本体で発泡体の外径を形成するために円筒状の内周面をもち、外周面も同様に円筒状に形成し内周面と外周面の同芯度は0.05mm以下になっている。成形型本体11の内周面の長さは得ようとする発泡体長と発泡倍率より決める。   11 is a mold body having a cylindrical inner peripheral surface for forming the outer diameter of the foam, and the outer peripheral surface is also formed in a cylindrical shape, and the concentricity of the inner peripheral surface and the outer peripheral surface is 0.05 mm or less. It has become. The length of the inner peripheral surface of the mold body 11 is determined by the foam length to be obtained and the expansion ratio.

また成形型本体の内周面をフッ素樹脂、シリコン樹脂、離型性樹脂と金属の混合物など耐熱性、離型性に優れる表面処理を施した構成にしても良い。成形体の表面のくつき防止処理として成形体に打ち粉をほどこしても良い。打ち粉としてはタルク、クレー、炭酸マグネシウム、炭酸カルシウム、カーボンなどの微粉末が好ましくスラリーにして塗布しても良い。成形体の表面のくつき防止処理と成形型本体の内周面の表面を離型性が良く表面エネルギーの低い材質で構成するなど両方を用いても良い。   Further, the inner peripheral surface of the mold main body may be configured to have a surface treatment excellent in heat resistance and releasability, such as fluororesin, silicon resin, and a mixture of releasable resin and metal. As a process for preventing sticking of the surface of the molded body, dust may be applied to the molded body. As the dusting powder, fine powders such as talc, clay, magnesium carbonate, calcium carbonate, and carbon are preferably applied as a slurry. It is also possible to use both, for example, an anti-sticking treatment on the surface of the molded body and a surface of the inner peripheral surface of the mold body made of a material having good releasability and low surface energy.

成形型本体の両端部は発泡する分解ガスをキャビティ12内より逃がさないための蓋体13a、13bと勘合する形状を有し、蓋体13aはストレート部で勘合し蓋体13bはテーパ部で勘合する。   Both ends of the mold body have a shape that fits with the lids 13a and 13b so that the cracked decomposition gas does not escape from inside the cavity 12. The lid 13a is fitted with the straight part and the lid 13b is fitted with the tapered part. To do.

さらに発泡体ローラの製造方法の詳細を図2の工程フロー図および図3の成形型の加熱方法で説明する。   Further details of the method of manufacturing the foam roller will be described with reference to the process flow diagram of FIG. 2 and the heating method of the mold of FIG.

ポリマー原料に上記の添加成分を混合して、原料組成物に混練する手段としては、公知のバンバリー・ミキサー、ニーダー等の混練り機が利用できる。均一に混練りした後、未加硫の原料組成物をロールでシーティングする。   A kneading machine such as a known Banbury mixer or kneader can be used as a means for mixing the above-mentioned additive components with the polymer raw material and kneading the raw material composition. After uniformly kneading, the unvulcanized raw material composition is sheeted with a roll.

本発明にかかる発泡体ローラの製造方法では、
(a)加硫・発泡処理を施す未加硫未発泡体である成形物は、前記未加硫の原料組成物を円柱状に成形したものを用いる。その円柱状成形体14の外径は、作製される円筒状の発泡体の目標外径に応じて、目標とする発泡倍率を考慮して、適宜選択することができる。未加硫の原料組成物を円柱状に成形する手段として、押し出し成形機を用い、円柱形状に押し出し成形に利用する口金(ダイ)の大きさを、前記する予め選択する外径応じて選択して、未加硫の原料組成物を円柱状に成形する。次いで、作製する発泡体ローラのローラ長に応じて、目標とする発泡倍率を考慮して、切断機により所定の長さに切断して、円柱状の未加硫未発泡の成形体14とする。次いで、型本体に円柱状の成形体を組み込む。
In the method for producing a foam roller according to the present invention,
(A) As the molded product which is an unvulcanized unfoamed product subjected to vulcanization / foaming treatment, a product obtained by molding the unvulcanized raw material composition into a cylindrical shape is used. The outer diameter of the columnar molded body 14 can be appropriately selected in consideration of the target foaming ratio in accordance with the target outer diameter of the cylindrical foam to be produced. As a means for forming an unvulcanized raw material composition into a cylindrical shape, an extrusion molding machine is used, and the size of a die (die) used for extrusion molding into a cylindrical shape is selected according to the previously selected outer diameter. Then, an unvulcanized raw material composition is formed into a cylindrical shape. Next, in accordance with the roller length of the foam roller to be manufactured, the target foaming ratio is taken into consideration, and the product is cut into a predetermined length by a cutting machine to obtain a cylindrical unvulcanized unfoamed molded body 14. . Next, a cylindrical shaped body is incorporated into the mold body.

(b)円柱状の成形体14を組み込んだ型本体の両端開口部に蓋体13a、13bを勘合させて成形型のキャビティを形成する。密閉された成形型は発泡する分解ガスを容易にキャビティ内に閉じ込めることができる。キャビティ内容積に対して円柱状の未加硫未発泡の成形体14の体積を70〜95%にすると良い。70%以下であると発泡体の硬度にばらつきが生じ、95%以上だと小さ過ぎる気泡径が形成されるからである。   (B) The lids 13a and 13b are fitted into the opening portions at both ends of the mold body in which the columnar molded body 14 is incorporated to form a mold cavity. The hermetically sealed mold can easily confine foaming decomposition gas in the cavity. The volume of the cylindrical unvulcanized unfoamed molded body 14 may be 70 to 95% with respect to the volume in the cavity. This is because if it is 70% or less, the hardness of the foam varies, and if it is 95% or more, a bubble diameter that is too small is formed.

(c)は密閉された成形型を示すものである。   (C) shows a closed mold.

次いで、 密閉された成形型の加熱方法を図3で説明する。
21aは上熱盤で21bは下熱盤である。成形型を加熱するために図示されてないヒータが上熱盤21aと下熱盤21bに埋め込まれている。また上熱盤21aと下熱盤21bは密閉された成形型の外周面に密着して熱盤の熱を伝えるため、上熱盤と下熱盤の間に成形型を挟んだときに成形型の外周面に密着するように成形型の外周面と逆の形状になっている。
Next, a method of heating the sealed mold will be described with reference to FIG.
21a is an upper heating board and 21b is a lower heating board. In order to heat the mold, a heater (not shown) is embedded in the upper heating plate 21a and the lower heating plate 21b. In addition, the upper heating platen 21a and the lower heating platen 21b are in close contact with the outer peripheral surface of the sealed mold, and transmit the heat of the heating plate. The shape is opposite to the outer peripheral surface of the mold so as to be in close contact with the outer peripheral surface.

加熱体である上熱盤と下熱盤の熱源としては電熱、蒸気などを熱源としてもちいて加熱体を加熱すれば良く所望の温度になるものであればこれらに限るものでない。   The heat sources of the upper and lower heating plates, which are the heating elements, are not limited to these as long as the heating element can be heated using electric heat, steam or the like as the heat source and the desired temperature is obtained.

加熱温度は120〜200℃、時間5〜60分加熱し、好ましくは加熱温度としては130〜180℃、時間10〜30分で行われる。この後必要に応じて2次加硫することもできる。2次加硫の加熱温度は通常130〜220℃、時間20〜240分で行われる。   The heating temperature is 120 to 200 ° C., and the time is 5 to 60 minutes. Preferably, the heating temperature is 130 to 180 ° C. and the time is 10 to 30 minutes. Thereafter, secondary vulcanization may be performed as necessary. The heating temperature for secondary vulcanization is usually 130 to 220 ° C. and 20 to 240 minutes.

成形型が加熱されると密閉された成形型内のキャビティに設置した円柱状成形体が発泡膨張しまた発泡する分解ガスが多量に発生するが発泡する分解ガスをキャビティ12内より逃がさないためキャビティ内に内圧で押されている発泡体が形成する。   When the mold is heated, the cylindrical molded body placed in the cavity in the sealed mold expands and expands, and a large amount of cracked decomposition gas is generated. A foam is formed which is pressed inside by internal pressure.

(d)は円柱状成形体を加熱して加硫発泡後に蓋体13a、13bを型本体11から着脱する。   (D) attaches and detaches the lid bodies 13a and 13b from the mold body 11 after heating the cylindrical shaped body and vulcanizing and foaming.

蓋体13a、13bを型本体11から着脱すると内圧が解除されて発泡体15の両端部が型本体11から吐出する。   When the lids 13a and 13b are detached from the mold body 11, the internal pressure is released and both ends of the foam 15 are discharged from the mold body 11.

(e)次いで、蓋体13a側に吐出した円柱状の発泡体15の吐出部を公知のカッターで切断する。   (E) Next, the discharge part of the cylindrical foam 15 discharged to the lid 13a side is cut with a known cutter.

(f)円筒状の型本体11の内周面に圧接した円柱状の発泡体を円筒状の型本体11の外周面を基準にして切削加工または研削加工を施すことによって円柱状の発泡体の内径を形成する。   (F) A columnar foam that is in pressure contact with the inner peripheral surface of the cylindrical mold body 11 is subjected to cutting or grinding with reference to the outer peripheral surface of the cylindrical mold body 11 to thereby obtain a columnar foam. Form the inner diameter.

16はガンドリルであって型本体11の内周面の略中心軸の位置でガンドリル16を回転しながら円筒状の型本体11のスラスト方向に円柱状の発泡体の内径を切削し円筒状の発泡体とする。   Reference numeral 16 denotes a gun drill. While rotating the gun drill 16 at the position of the substantially central axis of the inner peripheral surface of the mold body 11, the cylindrical foam body is cut by cutting the inner diameter of the cylindrical foam body in the thrust direction. Let it be the body.

切削加工としてはガンドリル工法、研削加工としては所望の内径より小径の円柱状の砥石をもちいる方法など周知の深穴加工をもちいることができる。
円筒状の発泡体の内径精度および偏芯精度はガンドリル16の回転中心軸と円筒状の型本体の中心軸を合致させることにより向上することができる。またガンドリル16は回転させずに型本体11を回転してガンドリル16を型本体11のスラスト方向に送っても良い。
A well-known deep hole process such as a method using a gun drill method as a cutting process and a method using a cylindrical grindstone having a diameter smaller than a desired inner diameter can be used as a grinding process.
The inner diameter accuracy and eccentricity accuracy of the cylindrical foam can be improved by matching the central axis of rotation of the gun drill 16 with the central axis of the cylindrical mold body. Alternatively, the gun drill 16 may be rotated in the thrust direction of the mold body 11 by rotating the mold body 11 without rotating the gun drill 16.

(g)次いで、蓋体13b側に吐出した円筒状に形成した発泡体16の吐出部を型本体11から引っ張って取り出す。型本体11から引っ張って取り出すことにより発泡体16は外径が細くなりまた 円筒状であるためより変形しやすくなり、高発泡して型本体の内周面に圧接した発泡体16を容易に取り出すことが可能である。   (G) Next, the discharge part of the cylindrically formed foam 16 discharged to the lid 13b side is pulled out of the mold body 11 and taken out. By pulling out from the mold body 11, the foam 16 has a thin outer diameter and is more easily deformed because it is cylindrical, and the foam 16 that is highly foamed and press-contacted to the inner peripheral surface of the mold body can be easily removed. It is possible.

(h)円筒状の発泡体を型本体11から完全に取り出す。   (H) The cylindrical foam is completely removed from the mold body 11.

次いで、本発明にかかる発泡体ローラの製造方法では、上述した予め円筒状の発泡体を作製した後、内径を加工した発泡体にホットメルト系接着剤を塗布した芯金2を圧入してホットメルトを溶かす温度をかけて芯金52と発泡体16の内周面とを接着して発泡体ローラを得る。   Next, in the method for manufacturing a foam roller according to the present invention, after the above-described cylindrical foam is produced in advance, the core metal 2 in which a hot melt adhesive is applied to the foam whose inner diameter has been processed is press-fitted. A foam roller is obtained by applying a temperature at which the melt is melted to adhere the cored bar 52 and the inner peripheral surface of the foam 16.

以下、実施例を挙げて、本発明をより具体的に説明する。なお、これら実施例は、本発明における最良の実施形態の一例であるものの、本発明は、かかる実施例により限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. These examples are examples of the best mode of the present invention, but the present invention is not limited to such examples.

(実施例1、2、ならびに比較例1、2)
未加硫の原料組成物は、ポリマー原料としてEPDM100質量部、発泡剤としてADCA(アゾジカルボンアミド)系発泡剤8質量部、発泡助剤として尿素樹脂8質量部、加硫剤として硫黄1.5質量部、加硫促進剤としてメルカプトベンゾチアゾール(2−スルファニルベンゾチアゾール)1質量部、テトラエチルチウラムジスルフィド2質量部、導電剤としてカーボンブラック60質量部、充填剤として炭酸カルシウム10質量部、加硫促進助剤として亜鉛華(酸化亜鉛)5質量部、ステアリン酸2質量部、軟化剤としてパラフィン系プロセスオイル50部を含み、これらを慣用の混練方法であるニーダーを用いて均一に練り込み、ロールでシーティングした。
(Examples 1 and 2 and Comparative Examples 1 and 2)
The unvulcanized raw material composition comprises 100 parts by mass of EPDM as a polymer raw material, 8 parts by mass of an ADCA (azodicarbonamide) -based foaming agent as a foaming agent, 8 parts by mass of urea resin as a foaming aid, and 1.5% of sulfur as a vulcanizing agent. 1 part by mass, 1 part by mass of mercaptobenzothiazole (2-sulfanylbenzothiazole) as a vulcanization accelerator, 2 parts by mass of tetraethylthiuram disulfide, 60 parts by mass of carbon black as a conductive agent, 10 parts by mass of calcium carbonate as a filler, acceleration of vulcanization It contains 5 parts by weight of zinc white (zinc oxide) as an auxiliary agent, 2 parts by weight of stearic acid, and 50 parts of paraffinic process oil as a softening agent, and these are kneaded uniformly using a kneader that is a conventional kneading method. Seated.

次いで実施例1、2を説明すると、この混練りされた原料組成物を、押出し成形機により円柱状の(未加硫の)成形体とし、その後、切断機により切断して全長寸法を出した。   Next, Examples 1 and 2 will be described. The kneaded raw material composition is formed into a cylindrical (unvulcanized) molded body by an extrusion molding machine, and then cut by a cutting machine to obtain a full length dimension. .

調製される円柱状の未加硫成形体の寸法は、外径φ11.5mm、長さ197mmとした。この円柱状の未加硫成形体を、実施例1および2の加硫・発泡処理に供する未加硫成形体として用いた。   The dimensions of the prepared cylindrical unvulcanized molded body were an outer diameter of 11.5 mm and a length of 197 mm. This cylindrical unvulcanized molded body was used as an unvulcanized molded body to be subjected to the vulcanization / foaming treatment of Examples 1 and 2.

図1で示す構成において成形型のキャビティ寸法は、実施例1では内径φ12.7mm、長さ200mmとしキャビティ内の仕込み率を81%とした。また円筒状の型本体は内周面にフッ素樹脂をコーティングより表面処理した構成とした。
実施例2では成形型のキャビティ寸法を内径φ11.8mm、長さ200mmとしキャビティ内の仕込み率を94%とした。円筒状の型本体は実施例1と同様に内周面にフッ素樹脂をコーティングより表面処理した構成とした。
In the configuration shown in FIG. 1, the cavity size of the mold in Example 1 was set to an inner diameter of 12.7 mm and a length of 200 mm, and the charging rate in the cavity was 81%. The cylindrical mold body has a configuration in which the inner peripheral surface is surface-treated by coating with a fluororesin.
In Example 2, the cavity size of the mold was 11.8 mm inside diameter and 200 mm long, and the charging rate in the cavity was 94%. The cylindrical mold body was structured such that the inner peripheral surface was surface-treated with a coating of fluororesin as in Example 1.

加熱条件は実施例1、2とも図3に示す加熱盤をもちい150℃、15分で1次加硫を行った。   As for the heating conditions, primary vulcanization was carried out at 150 ° C. for 15 minutes using the heating plate shown in FIG.

次いで実施例1、2を説明すると図2に示す工程フローをもちいて円筒状の発泡体とした。   Next, Examples 1 and 2 will be described. A cylindrical foam was obtained using the process flow shown in FIG.

尚、成形型本体の内周面に圧接する発泡体に内径を加工するのにガンドリルをもちいた。実施例1では外径φ3.8mm、長さ250mmのガンドリルで成形型本体の外径を基準にガンドリルのセンターを同芯度0.02mmに設定して回転数2500rpm、送りスピード200mm/分で成形型本体の内周面に圧接する発泡体に貫通孔を施した。 円筒状の型本体端部にテーパが施されている蓋体13-b側から円筒状になった発泡体の吐出部を引っ張ると容易に取り出すことができた。   A gun drill was used to process the inner diameter of the foam that was in pressure contact with the inner peripheral surface of the mold body. In Example 1, a gun drill having an outer diameter of 3.8 mm and a length of 250 mm is set with a gun drill center set to a concentricity of 0.02 mm based on the outer diameter of the mold body, and at a rotational speed of 2500 rpm and a feed speed of 200 mm / min. A through-hole was provided in the foam that was in pressure contact with the inner peripheral surface of the main body. The cylindrical foam body end could be easily removed by pulling the cylindrical foam discharge part from the lid 13-b side.

実施例2ではガンドリルの寸法を外径φ3.3mm、長さ250mmに替えて実施例1と同様な条件で発泡体に貫通孔を施した。実施例1と同様に円筒状になった発泡体を円筒状の型本体から容易に取り出すことができた。   In Example 2, the dimensions of the gun drill were changed to an outer diameter of 3.3 mm and a length of 250 mm, and through holes were made in the foam under the same conditions as in Example 1. As in Example 1, the cylindrical foam was easily removed from the cylindrical mold body.

実施例1、2は成形型から取り出した円筒状の発泡体にさらに180℃、30分で熱風炉をもちいて2次加硫を行った。   In Examples 1 and 2, secondary vulcanization was performed on a cylindrical foam taken out from the mold using a hot air oven at 180 ° C. for 30 minutes.

その後成形型本体から取り出した円筒状の発泡体の密度を測定したら、実施例1では0.37で実施例2では0.31であった。発泡体の断面を5箇所切断してその切断面を100倍で光学顕微鏡をもちいて観察したら、長径と短径を平均した気泡径は実施例1では平均120μmでばらつきは15μmであった。実施例1と同様に気泡径を評価すると実施例2では平均80μmでばらつきは10μmであった。   Then, when the density of the cylindrical foam taken out from the mold body was measured, it was 0.37 in Example 1 and 0.31 in Example 2. When the cross section of the foam was cut at five places and the cut surface was observed with an optical microscope at a magnification of 100, the average diameter of the major axis and minor axis was 120 μm in Example 1, and the variation was 15 μm. When the bubble diameter was evaluated in the same manner as in Example 1, in Example 2, the average was 80 μm and the variation was 10 μm.

さらに、実施例1、2では得られた円筒状発泡体の筒孔に、その表面に導電性の接着剤を塗布した、外径がΦ6.0mmで長さ245mmの芯金を圧入した。この芯金を圧入した円筒状発泡体を、170℃、10分の加熱条件下で熱風炉を用いて加熱し、ホットメルト系導電性接着剤による加熱接着を行った。次いで、芯金の圧入・接着を行った後、スキン層が付いた発泡体ローラの外径を円筒研削機で研摩をし、また、発泡体の両端部を突切りして、外径Φ16.5mm、長さ225mmの帯電ローラ用の導電性発泡体ローラに調製した。   Further, in Examples 1 and 2, a cored bar having an outer diameter of Φ6.0 mm and a length of 245 mm was press-fitted into the cylindrical hole of the obtained cylindrical foamed body. The cylindrical foam into which the metal core was press-fitted was heated using a hot air oven at 170 ° C. for 10 minutes, and heat-bonded with a hot-melt conductive adhesive. Next, after the core metal is press-fitted and bonded, the outer diameter of the foam roller with the skin layer is polished with a cylindrical grinder, and both ends of the foam are cut off to obtain an outer diameter of Φ16. A conductive foam roller for a charging roller having a length of 5 mm and a length of 225 mm was prepared.

次いで得られた帯電ローラ用の導電性発泡体ローラの硬度、抵抗を次のように評価した。   Next, the hardness and resistance of the obtained conductive foam roller for the charging roller were evaluated as follows.

アスカーCの硬度計を用いて荷重500grで発泡体ローラの硬度を測定したところ実施例1では1本内の硬度むらが1.6度(N数50本の平均)と良好であった。実施例2では1本内の硬度むらが1.8度(N数50本の平均)と良好であった。   When the hardness of the foam roller was measured with a load of 500 gr using a hardness meter of Asker C, in Example 1, the hardness unevenness in one was as good as 1.6 degrees (average of N number of 50). In Example 2, the hardness unevenness in one was as good as 1.8 degrees (average of N number of 50).

さらに図7のように発泡体ローラ121に両端500grの荷重をかけて円筒状のΦ30mm金属ドラム122に当接させ、金属ドラムを回転させて発泡体ローラに従動回転を与えた状態で発泡体ローラの芯金部と金属ドラムの間に直流100Vの電圧123を印加して金属ドラム122のアース側に内部抵抗1KΩを配置させて内部抵抗124にかかる電圧を測定して抵抗に換算した。発泡体ローラの抵抗値を測定すると抵抗値が3.0〜5.0E+05Ωであり抵抗値のラジアル方向の最小と最大の比を抵抗むらとした。実施例1では抵抗むらは1.67で実施例2では1.6であった。   Further, as shown in FIG. 7, the foam roller 121 is subjected to a load of 500 gr at both ends and brought into contact with the cylindrical φ30 mm metal drum 122, and the metal drum is rotated to be driven and rotated by the foam roller. A voltage 123 of 100 V DC was applied between the metal core part and the metal drum, an internal resistance of 1 KΩ was arranged on the ground side of the metal drum 122, and the voltage applied to the internal resistance 124 was measured and converted into a resistance. When the resistance value of the foam roller was measured, the resistance value was 3.0 to 5.0E + 05Ω, and the ratio of the minimum and maximum resistance values in the radial direction was defined as uneven resistance. In Example 1, the resistance unevenness was 1.67, and in Example 2, it was 1.6.

つぎに比較例1、2を説明する。   Next, Comparative Examples 1 and 2 will be described.

前述した混練りされた原料組成物を、クロス押出し成形機により接着が塗られた芯金の表面に円筒状の(未加硫の)成形体を形成し、その後、切断機により切断して全長寸法を出した。   The above-mentioned kneaded raw material composition is formed into a cylindrical (unvulcanized) molded body on the surface of the core metal to which the adhesion has been applied by a cross extrusion molding machine, and then cut by a cutting machine. Dimensioned out.

比較例1、2の円筒状の未加硫成形体の寸法は、外径φ12.5mm、長さ232mmとし、芯金の寸法は、外径φ6.0、長さ245mmとした。   The dimensions of the cylindrical unvulcanized molded bodies of Comparative Examples 1 and 2 were an outer diameter of 12.5 mm and a length of 232 mm, and the dimensions of the cored bar were an outer diameter of φ6.0 and a length of 245 mm.

この円筒状の未加硫成形体を、比較例1および比較例2の加硫・発泡処理に供する未加硫成形体として用いた。   This cylindrical unvulcanized molded body was used as an unvulcanized molded body subjected to the vulcanization / foaming treatment of Comparative Example 1 and Comparative Example 2.

比較例1、2では成形型を図6に示す構成のものをもちいた。また円筒状の型本体は実施例1、2と同様に内周面にフッ素樹脂をコーティングより表面処理した構成とした。   In Comparative Examples 1 and 2, a mold having the configuration shown in FIG. 6 was used. In addition, the cylindrical mold body was structured such that the inner peripheral surface was surface-treated with a coating of fluororesin as in Examples 1 and 2.

比較例1では成形型のキャビティ寸法を内径φ12.8mm、長さ235mmとしキャビティ内の仕込み率を93%とした。比較例2では成形型のキャビティ寸法を内径φ13.5mm、長さ235mmとしキャビティ内の仕込み率を81%とした。   In Comparative Example 1, the cavity size of the mold was 12.8 mm in inner diameter and 235 mm in length, and the charging rate in the cavity was 93%. In Comparative Example 2, the cavity size of the mold was 13.5 mm inside diameter and 235 mm long, and the charging rate in the cavity was 81%.

加熱条件は実施例1、2と同様に比較例1、2とも図3に示す加熱盤をもちい150℃、15分で1次加硫を行った。   The heating conditions were the same as in Examples 1 and 2, and both Comparative Examples 1 and 2 were subjected to primary vulcanization at 150 ° C. for 15 minutes using the heating plate shown in FIG.

前述した加熱条件で加硫発泡後成形型を50℃まで冷却して蓋体105を取り外して発泡体ローラを型本体からの取り出しを行なったが比較例1ではシリンダーで脱型できたが比較例2では脱型できなかった。   The mold was cooled to 50 ° C. after vulcanization and foaming under the heating conditions described above, the lid 105 was removed, and the foam roller was removed from the mold body. 2 could not be removed.

その後比較例1で作製した円筒状の発泡体の密度を実施例1、2と同様に測定したら、0.38であった。発泡体の断面を5箇所切断してその切断面を100倍で光学顕微鏡をもちいて観察したら、長径と短径を平均した気泡径は平均125μmでばらつきは25μmであった。   Then, when the density of the cylindrical foam produced in Comparative Example 1 was measured in the same manner as in Examples 1 and 2, it was 0.38. When the cross section of the foam was cut at five places and the cut surface was observed with an optical microscope at a magnification of 100, the average diameter of the major axis and the minor axis was 125 μm and the variation was 25 μm.

さらに実施例1、2と同様にアスカーCの硬度計を用いて荷重500grで比較例1の発泡体ローラの硬度を測定したところ1本内の硬度むらが3.5度(N数50本の平均)と実施例1、2に比較してむらが大きくなった。
比較例1の発泡体ローラの抵抗値を測定すると抵抗値が3.0〜9.0E+05Ωであり抵抗むらは3.0であった。
Further, when the hardness of the foam roller of Comparative Example 1 was measured with a load of 500 gr using an Asker C hardness meter in the same manner as in Examples 1 and 2, the hardness unevenness in one was 3.5 degrees (N number of 50). As compared with Examples 1 and 2, the unevenness became larger.
When the resistance value of the foam roller of Comparative Example 1 was measured, the resistance value was 3.0 to 9.0E + 05Ω, and the resistance unevenness was 3.0.

硬度むらおよび抵抗むらの部分を破壊して目視で観察したところ芯金部との接着が剥がれていた。   When the hardness unevenness and resistance unevenness portions were broken and visually observed, the adhesion with the core metal portion was peeled off.

本発明の実施例1、2に適用される成形型の断面を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining a cross section of a mold applied to Examples 1 and 2 of the present invention. 本発明にかかる発泡体の製造方法における、円筒状の発泡体を作製する工程を模式的に説明する工程フロー図である。It is a process flow figure explaining typically a process of producing a cylindrical foam in a manufacturing method of a foam concerning the present invention. 本発明にかかる発泡体の製造方法における、加硫・発泡処理工程に用いる成形型の加熱方法を模式的に説明する図である。It is a figure which illustrates typically the heating method of the shaping | molding die used for a vulcanization | cure and foaming process process in the manufacturing method of the foam concerning this invention. 導電性発泡体ローラの構成を模式的に示す図である。It is a figure which shows typically the structure of a conductive foam roller. 電子写真装置の構成を概説する側面図である。It is a side view which outlines the structure of an electrophotographic apparatus. 比較例1、2に適用される従来の成形型の断面を説明する図である。It is a figure explaining the cross section of the conventional shaping | molding die applied to the comparative examples 1 and 2. FIG. 導電性発泡体ローラの抵抗を測定する構成を概説する側面図である。It is a side view which outlines the structure which measures the resistance of a conductive foam roller.

符号の説明Explanation of symbols

11 円筒状の型本体
12 キャビティ
13-a,13-b 蓋体
14 円柱状成形体
15 円柱状の発泡体
16 円筒状の発泡体
21a 上熱盤
21b 下熱盤
51 ローラ本体
52、102 芯金
53 感光体
54 帯電ローラ
55 露光光
56 現像ローラ
57 転写ローラ
58 転写材(紙)
59 トナー
60 定着ローラ
61 クリーニングブレード
103 円筒状成形体
104 円筒状の型本体
105 蓋体
121 発泡体ローラ
122 金属ドラム
11 Cylindrical mold body
12 Cavity 13-a, 13-b Lid 14 Cylindrical molded body 15 Cylindrical foam 16 Cylindrical foam 21a Upper heating plate 21b Lower heating plate 51 Roller body 52, 102 Core metal 53 Photoconductor 54 Charging roller 55 Exposure light 56 Developing roller 57 Transfer roller 58 Transfer material (paper)
59 Toner 60 Fixing roller 61 Cleaning blade 103 Cylindrical molded body 104 Cylindrical mold body 105 Lid body 121 Foam roller 122 Metal drum

Claims (3)

加硫発泡により発泡体を製造する方法であって、未加硫未発泡体である成形物に加硫発泡処理を施して、発泡体とする工程を含み、成形型本体が円筒状の内周面を有しかつ成形型本体とでキャビテイを形成する蓋体を成形型本体の両端に有する成形型を用い、発泡剤を含有した加硫発泡前の成形物を該成形型のキャビティ内に組み込めるように円柱状に成形し、該円柱状の成形体を該成形型のキャビティ内に配置し、該成形型を加熱して成形物を発泡させた後に蓋体を取り外して成形型本体の円筒状である内周面の略中心に貫通孔を施してその後円筒状の発泡体を成形型から取り出すことを特徴とする発泡体の製造方法。   A method for producing a foam by vulcanization foaming, comprising a step of subjecting a molded product which is an unvulcanized unfoamed product to vulcanization foaming to form a foam, and the molding body has a cylindrical inner periphery A mold having a surface and forming a cavity with the mold body at both ends of the mold body can be used to incorporate a molded product containing a foaming agent before vulcanization and foaming into the cavity of the mold. The columnar molded body is placed in the cavity of the mold, the mold is heated to foam the molded product, and then the lid is removed to form the cylindrical shape of the mold body. A method for producing a foam, characterized in that a through-hole is provided at substantially the center of the inner peripheral surface and the cylindrical foam is then removed from the mold. 請求項1に記載の発泡体の製造方法で作製される発泡体ローラのローラ部用円筒形状の発泡体を用い、かかる円筒形状の発泡体の筒孔に芯金を圧入して、発泡体ローラを形成することを特徴とする発泡体ローラの製造方法。   A foam roller using a cylindrical foam for a roller portion of a foam roller produced by the foam manufacturing method according to claim 1 and press-fitting a cored bar into a cylindrical hole of the cylindrical foam. Forming a foam roller. 発泡体ローラが導電性発泡体ローラであることを特徴とする請求項2に記載の発泡体ローラの製造方法。   The method for producing a foam roller according to claim 2, wherein the foam roller is a conductive foam roller.
JP2003414708A 2003-12-12 2003-12-12 Manufacturing method of foam roller Withdrawn JP2005169916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414708A JP2005169916A (en) 2003-12-12 2003-12-12 Manufacturing method of foam roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414708A JP2005169916A (en) 2003-12-12 2003-12-12 Manufacturing method of foam roller

Publications (1)

Publication Number Publication Date
JP2005169916A true JP2005169916A (en) 2005-06-30

Family

ID=34734432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414708A Withdrawn JP2005169916A (en) 2003-12-12 2003-12-12 Manufacturing method of foam roller

Country Status (1)

Country Link
JP (1) JP2005169916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112622138A (en) * 2020-12-11 2021-04-09 义乌市大胜橡塑制品有限公司 Polyethylene yoga column one-time compression molding process
US11576837B2 (en) 2019-10-03 2023-02-14 Jfxd Trx Acq Llc Multi-zonal roller and method of use thereof
JP7320153B1 (en) * 2023-03-29 2023-08-02 住友理工株式会社 Internal bubble estimation device and cross-linking reaction simulation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576837B2 (en) 2019-10-03 2023-02-14 Jfxd Trx Acq Llc Multi-zonal roller and method of use thereof
CN112622138A (en) * 2020-12-11 2021-04-09 义乌市大胜橡塑制品有限公司 Polyethylene yoga column one-time compression molding process
CN112622138B (en) * 2020-12-11 2023-09-22 义乌市大胜橡塑制品有限公司 One-step compression molding process for polyethylene yoga column
JP7320153B1 (en) * 2023-03-29 2023-08-02 住友理工株式会社 Internal bubble estimation device and cross-linking reaction simulation device

Similar Documents

Publication Publication Date Title
KR100739695B1 (en) Tubular developing roller, method of preparing the same, and electrophotographic imaging apparatus comprising the same
KR20180013735A (en) Developing apparatus, process cartridge and electrophotographic image forming apparatus
KR102033823B1 (en) Developing apparatus, process cartridge and electrophotographic image forming apparatus
JP2006227500A (en) Conductive roller, manufacturing method for the conductive roller, and transfer roller
JP3539550B2 (en) Conductive member and method of manufacturing the same
JP2005169916A (en) Manufacturing method of foam roller
JP2007322729A (en) Electroconductive rubber roller, its manufacturing method and electrophotographic image forming apparatus
JP2008064864A (en) Conductive roller, manufacturing method of conductive roller and image forming apparatus
JP2002113735A (en) Method for manufacturing foamed roller
JP2002347056A (en) Manufacturing method of foamed roller
JP2006058538A (en) Manufacturing method of conductive rubber roller, conductive rubber roller and transfer roller
JP2008176027A (en) Method for manufacturing conductive rubber roller and roller for electrophotographic apparatus
JP2005254667A (en) Method for surface treatment of rubber roller
JP2005178027A (en) Manufacturing method for rubber roller
JP3950591B2 (en) Rubber roller and manufacturing method thereof
JP2002115714A (en) Manufacturing method for conductive foam body roller and image formation device
JP4109750B2 (en) Method for producing elastic roller
JP2006119451A (en) Conductive roller and method for manufacturing the same
JP3693883B2 (en) Transfer apparatus, image forming apparatus, and transfer voltage setting method
JPH11114978A (en) Manufacture of electrically conductive foam roller
JP2006258933A (en) Conductive roller and method for manufacturing same
JP2005090627A (en) Foam roller and method of manufacturing the foam roller
JP2001221224A (en) Rubber roller for image forming device
JP3078345B2 (en) Developing device
JP2001042605A (en) Electrifying member, electrifying device and image forming device utilizing the member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306