JP2005168420A - Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg - Google Patents

Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg Download PDF

Info

Publication number
JP2005168420A
JP2005168420A JP2003414496A JP2003414496A JP2005168420A JP 2005168420 A JP2005168420 A JP 2005168420A JP 2003414496 A JP2003414496 A JP 2003414496A JP 2003414496 A JP2003414496 A JP 2003414496A JP 2005168420 A JP2005168420 A JP 2005168420A
Authority
JP
Japan
Prior art keywords
egg
nuclear
transplanted
nuclear transfer
sperm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414496A
Other languages
Japanese (ja)
Inventor
Junichi Matsuda
純一 松田
Kazuyoshi Kaminaka
一義 上仲
Hiroaki Maeda
浩明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP2003414496A priority Critical patent/JP2005168420A/en
Publication of JP2005168420A publication Critical patent/JP2005168420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for activating a new nucleus-transplanted unfertilized egg for creating recombinant animals. <P>SOLUTION: A method for activating the new nucleus-transplanted unfertilized egg comprising starting maturation division of the nucleus-transplanted unfertilized egg by fertilizing an egg with a sperm in the activation method of nucleus-transplanted unfertilized egg. Also a nucleus-transplanted fertilized egg obtained by the activation method and a method for creating the recombinant animal comprising using the nucleus-transplanted fertilized egg. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、遺伝子導入動物を得る効率的な方法に関するものである。詳細には、核移植された未受精卵を受精により核移植未受精卵の成熟分裂を開始させることを特徴とする核移植未受精卵の活性化方法、当該活性化方法により得られる核移植受精卵、さらに当該核移植受精卵を用いることを特徴とする遺伝子組換え動物の作出方法に関する。   The present invention relates to an efficient method for obtaining a transgenic animal. More specifically, a method for activating a nuclear-implanted unfertilized egg characterized by initiating mature division of a nuclear-implanted unfertilized egg by fertilization of a nuclear-implanted unfertilized egg, and a nuclear-transplanted fertilization obtained by the activation method The present invention relates to a method for producing a genetically modified animal characterized by using an egg, and further, the nuclear transfer fertilized egg.

近年、遺伝子組換え動物は、生物学的な研究のみならず医薬品等の有用タンパク質生産や再生医療への応用が進められている。遺伝子組換え動物の作出は、1980年にGordonらによってマウスでその成功が報告され、その後、他の動物でも相次いで成功が報告された(例えば、非特許文献1参照)。Gordonらの方法は、外来DNAを受精卵の前核内に直接注入する方法で、最も一般的に遺伝子組換え動物の作出方法として利用されている。しかしこの方法では、遺伝子相同組換えなどの高度な遺伝子組換えを行うことは難しい。マウスでは、遺伝子相同組換えを実施するための培養も可能でかつ個体への分化能をもつ胚性幹細胞が確立されているが(例えば、非特許文献2参照)、その他の動物では、このような細胞は確立されていない。   In recent years, transgenic animals have been applied not only to biological research but also to production of useful proteins such as pharmaceuticals and regenerative medicine. Production of transgenic animals was reported in Gordon et al. In 1980 in mice, and subsequently in other animals in succession (see, for example, Non-Patent Document 1). The method of Gordon et al. Is a method of injecting foreign DNA directly into the pronucleus of a fertilized egg, and is most commonly used as a method for producing a transgenic animal. However, with this method, it is difficult to perform advanced gene recombination such as gene homologous recombination. In mice, embryonic stem cells that can be cultured for gene homologous recombination and have the ability to differentiate into individuals have been established (for example, see Non-patent Document 2). Cells have not been established.

このような背景の中、近年、体細胞を用いた核移植によりクローン動物が得られることが報告された(例えば、非特許文献3参照)。この技術は体細胞核移植と呼ばれ、胚性幹細胞と同様に培養可能な体細胞で遺伝子組換え操作が行えることから遺伝子相同組換え等の高度な操作を行った遺伝子組換え動物の作出も可能とした(例えば、非特許文献4参照)。しかしながら、この技術は十分に確立されておらず、その手技や効率はマウスにおけるES細胞を使った遺伝子組換え動物の作製技術のレベルまで達しておらず、技術確立および効率アップのための更なる改良が切望されている。
Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. & Ruddle, F.H. : Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Science of U.S.A., 77: 7380-7384, 1980 Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. & Melton, D.W. : Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell, 56: 313-321, 1989 Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. : Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810-813, 1997 Polejaeva, I.A. & Campbell, K.H. : New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology, 53: 117-126, 2000
Against this background, it has recently been reported that cloned animals can be obtained by nuclear transfer using somatic cells (see, for example, Non-Patent Document 3). This technology is called somatic cell nuclear transfer, and genetically modified operations can be performed on somatic cells that can be cultured in the same way as embryonic stem cells, so it is possible to produce transgenic animals that have undergone advanced operations such as gene homologous recombination. (For example, refer nonpatent literature 4). However, this technology has not been well established, and its techniques and efficiency have not reached the level of technology for producing transgenic animals using ES cells in mice. Improvement is eagerly desired.
Gordon, JW, Scangos, GA, Plotkin, DJ, Barbosa, JA & Ruddle, FH: Genetic transformation of mouse embryos by microinjection of purified DNA.Proceedings of the National Academy of Science of USA, 77: 7380-7384, 1980 Thompson, S., Clarke, AR, Pow, AM, Hooper, ML & Melton, DW: Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells.Cell, 56: 313-321, 1989 Wilmut, I., Schnieke, AE, McWhir, J., Kind, AJ & Campbell, KH: Viable offspring derived from fetal and adult mammalian cells.Nature, 385: 810-813, 1997 Polejaeva, IA & Campbell, KH: New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology, 53: 117-126, 2000

胚由来細胞核移植および体細胞核移植技術は、大きく分けると未受精卵の核を目的の細胞の核と入れ換える工程(この工程を「初期化」と呼ぶ)、そして作製した核移植卵(または核移植胚)を個体形成のために成熟分裂(個体発生)させる工程(この工程を「活性化」と呼ぶ)からなる。一般には胚由来細胞核移植と体細胞核移植は、移植に用いる細胞の種類によって厳密には区別されているが、本発明においては、特に細胞の種類は関係なく、胚性の細胞、生殖系の細胞および体細胞のいずれであってもよいので、以下、胚由来細胞核移植及び体細胞核移植を総括して「核移植」と呼ぶ。   The embryo-derived cell nuclear transfer and somatic cell nuclear transfer techniques are roughly divided into a process of replacing the nucleus of an unfertilized egg with the nucleus of a target cell (this process is called “initialization”), and a nuclear transfer egg (or nuclear transfer) produced. It consists of a step (embryogenesis) of an embryo) for the formation of an individual (this step is called “activation”). In general, embryo-derived cell nuclear transfer and somatic cell nuclear transfer are strictly distinguished by the type of cell used for transfer, but in the present invention, the cell type is not particularly concerned, and embryonic cells and germline cells are not particularly concerned. In the following, embryo-derived cell nuclear transfer and somatic cell nuclear transfer are collectively referred to as “nuclear transfer”.

核移植技術の前半の工程では、移植した核を未分化の状態に戻し、個体発生可能な状態にすることが重要なポイントとなる。この移植核を未分化の状態に戻す因子は「初期化因子」と呼ばれ、未受精卵子の細胞質に存在することが知られているが、その本体は未だ同定されていない。   In the first half of the nuclear transplantation technique, it is important to return the transplanted nucleus to an undifferentiated state so that it can be ontogenized. The factor that returns the transplanted nucleus to an undifferentiated state is called “reprogramming factor” and is known to be present in the cytoplasm of the unfertilized egg, but its body has not yet been identified.

核移植技術の後半の工程である「活性化」は、核移植によって再構築した卵子(胚)の成熟分裂を開始させる刺激を与える工程であり、一般には人工的に単為発生を誘起する手法で行われている。こちらもまた、成熟分裂開始のメカニズムは未解明な部分が多く、既知の知識をもとに人工的な単為発生処理を実施している。   “Activation”, which is the latter half of the nuclear transfer technology, is a process that gives a stimulus to initiate the maturation of an egg (embryo) reconstructed by nuclear transfer, and is generally a technique that artificially induces parthenogenesis It is done in Here too, the mechanism of the initiation of maturation division has many unexplained parts, and artificial parthenogenesis is performed based on known knowledge.

このように核移植技術は、移植核の「初期化」および再構築卵の「活性化」によって成り立っているが、そのメカニズムの詳細について解明されていないことが、上述の如くこの技術が未確立で未だ十分な作製効率が得られない理由である。   As described above, the nuclear transfer technology consists of “initialization” of the transplanted nucleus and “activation” of the reconstructed egg. However, as described above, this technology has not been established yet. This is the reason why sufficient production efficiency cannot be obtained.

更に動物種ごと、または系統、核移植に用いる細胞によって手法、条件および作製効率が異なることが本手法の課題の一つでもある。   Furthermore, one of the problems of this method is that the method, conditions, and production efficiency differ depending on the animal species, strain, and cells used for nuclear transfer.

本発明は核移植技術の改良方法であるが、特には後者の工程である「活性化」を改善する方法に関するものである。   The present invention relates to a method for improving nuclear transfer technology, and more particularly to a method for improving the latter step of “activation”.

我々は核移植技術によって作出した再構築卵を用いて、未受精卵子と同様に精子を受精させるシステムを開発し、遺伝子相同組換え等の高度な操作を行った遺伝子組換え動物を作出する新たなシステムを完成するに至った。   We have developed a system for fertilizing sperm in the same way as unfertilized eggs using reconstructed eggs produced by nuclear transfer technology, and creating new genetically modified animals that have undergone advanced operations such as gene homologous recombination. Led to a complete system.

本発明は、医薬品等の有用物質を遺伝子組換え動物より生産させる場合に、遺伝子相同組換え等の高度な遺伝子組換えを必要とする場合の作出方法として提供される。また、物質生産に限らず、従来の前核内注入法では得られない遺伝子組換え動物の作出方法としても有用である。   The present invention is provided as a production method when a high-level genetic recombination such as gene homologous recombination is required when a useful substance such as a pharmaceutical product is produced from a genetically modified animal. Moreover, it is useful not only for substance production but also for producing transgenic animals that cannot be obtained by the conventional pronuclear injection method.

本発明は、第2減数分裂中期未受精卵の除核、遺伝子組換え細胞由来核の移植、核移植卵子への受精、核移植卵由来受精卵の胚発生操作の工程により構成される。   The present invention comprises the steps of enucleation of a second meiotic metaphase unfertilized egg, transplantation of a nucleus derived from a genetically modified cell, fertilization to a nuclear transplanted egg, and an embryo development operation of a fertilized egg derived from a nuclear transplanted egg.

本発明は、核移植の技術を用いて作出した再構築卵に精子を受精させるシステムを用いて遺伝子組換え動物を作出に関するものである。一般の核移植技術は移植した細胞のクローン動物を得ることを目的とするが、本発明では遺伝子組換えよって得られた遺伝的特性を保持した動物を得ることを目的とし、その他の形質に関するクローン性については特に問題としない。つまり本発明は、受精による遺伝形質の混入、欠如は問題としないことが、これまでのクローン作製と大きく異なる点である。   The present invention relates to production of a transgenic animal using a system for fertilizing a sperm into a reconstructed egg produced using a nuclear transfer technique. The general nuclear transfer technique aims at obtaining a cloned animal of the transplanted cells, but in the present invention, the purpose is to obtain an animal having genetic characteristics obtained by genetic recombination. There is no particular problem with sex. In other words, the present invention is greatly different from conventional clone production in that contamination and lack of genetic traits due to fertilization are not a problem.

一般の核移植の手法では、再構築卵の活性化は人工的な単為発生の方法によって行われている。なお、現時点での受精機構は以下のように理解されている。排卵未受精卵子は、卵細胞質中に含まれる分裂中期促進因子(MPF)と細胞分裂抑制因子(CSF)の作用により受精が行われるまで第2減数分裂中期の状態で停止している。これらは除核卵子および核移植卵子においても同様である。成熟分裂は、受精の刺激により、卵細胞質内の小胞体から一過性にカルシウムイオンが反復して放出され、その結果MPFが変性し、CSFが破壊されることによって開始される。すなわち、人工的な単為発生の方法はこれらの現象を物理的、化学的に模倣することによって行われており、薬剤処理による方法(アルコール、イオノマイシン、イノシトール酸リン酸、DMAPなどの薬剤)、電気刺激による方法などが広く用いられている。   In a general nuclear transfer technique, the reconstructed egg is activated by an artificial parthenogenetic method. The current fertilization mechanism is understood as follows. The ovulatory unfertilized egg is stopped in the second meiotic metaphase state until fertilization is performed by the action of the metaphase promoting factor (MPF) and the cell division inhibitory factor (CSF) contained in the egg cytoplasm. The same applies to enucleated eggs and nuclear transplanted eggs. Maturation division is initiated by the repeated release of calcium ions from the endoplasmic reticulum in the egg cytoplasm by repeated fertilization, resulting in degeneration of MPF and destruction of CSF. In other words, artificial parthenogenesis methods are carried out by physically and chemically imitating these phenomena, and drug treatment methods (drugs such as alcohol, ionomycin, inositol phosphate, DMAP), Methods using electrical stimulation are widely used.

本発明者らは活性化の方法として一般的に実施されている単為発生の方法によるものではなく、精子を受精させることによる核移植卵を活性化する方法を開発した。さらに活性化効率が向上する場合は、精子の受精に単為発生による方法を組み合わせることも可能である。   The present inventors have developed a method for activating a nuclear transfer egg by fertilizing a sperm, not by a parthenogenetic method commonly practiced as an activation method. If the activation efficiency is further improved, it is possible to combine a parthenogenetic method with sperm fertilization.

本方法に用いられる核移植卵の移植細胞はいずれでもよいが、核相を2nまたは1nの細胞に限定する。本発明においては、例えば核相が4nに相当するM期の細胞は核移植卵作製のための移植細胞として用いることはできない。核移植卵の作製方法は一般に行われている方法でよい。   The transplanted cells of the nuclear transfer egg used in this method may be any, but the nuclear phase is limited to 2n or 1n cells. In the present invention, for example, M-phase cells having a nuclear phase of 4n cannot be used as transplanted cells for the production of nuclear transplanted eggs. The method for producing the nuclear transfer egg may be a generally used method.

精子を受精させることによる核移植卵の活性化のタイミングは、核移植後いずれの時期でもよいが、少なくとも移植した核が染色体として凝集したのちが好ましく、厳密には核移植後から8時間の間が好ましい。   The timing of activation of the nuclear transplanted egg by fertilizing sperm may be any time after the nuclear transfer, but it is preferable that at least the transplanted nucleus aggregates as a chromosome, strictly speaking, for 8 hours after the nuclear transfer. Is preferred.

受精の方法は、核移植胚を、レシピエント動物に移植し、体内で受精させる方法(交配によって受精させる方法、経膣または経卵管による人工授精などを含む)、体外受精による方法、顕微授精による方法のいずれかの方法に用って実施する。受精すなわち活性化のタイミングを調整するには、体外受精および顕微授精による方法が好ましく、更に多受精を防止するためには顕微授精による方法が好ましい。   Fertilization methods include transplanting a nuclear transfer embryo into a recipient animal and fertilizing in the body (including fertilization by mating, artificial insemination by vaginal or oviduct, etc.), in vitro fertilization, microinsemination The method according to any one of the above is carried out. In order to adjust the timing of fertilization, ie, activation, in vitro fertilization and microinsemination are preferred, and in order to prevent multiple fertilization, microinsemination is preferred.

人工授精に用いる精子は、新鮮精子、凍結精子または凍結乾燥精子のいずれでもよい。また精原細胞、精母細胞でも実施可能である。ただし本発明において精子(又はそれに匹敵する細胞)は核相が1nの細胞しかもちいることはできず、好ましくは新鮮または凍結精子かつ成熟精子が好ましい。精子の採取方法は、動物種ごとに適切な方法で実施すれば、特に限定はない。   Sperm used for artificial insemination may be either fresh sperm, frozen sperm or lyophilized sperm. It can also be performed with spermatogonia and spermatocytes. However, in the present invention, the sperm (or comparable cell) can only be a cell having a nuclear phase of 1n, preferably fresh or frozen sperm and mature sperm. The method for collecting sperm is not particularly limited as long as it is carried out by an appropriate method for each animal species.

本発明の第1のポイントは、前述の如く精子を用いることでより自然に近い成熟分裂を行わせることである。そして本発明の第2のポイントは、核相を調整することにある。すなわち従来の核移植の手法が一般に核移植時の染色体数を維持させるのに対して、本手法は核相が2nの核移植卵子を作製し、受精によって移植細胞由来の染色体の核相を1nにすることが重要なポイントであり、本発明においてはじめてこれらが実施可能なことが明らかにされた。すなわち核移植卵子は、通常の卵子と同様に受精によって、第2極体を放出することで卵子の核相は1nとなり、前核(雌性前核)を形成し、精子由来の前核(雄性前核)と融合し核相2nの融合核を形成し、成熟分裂を開始する(図1参照)。   The first point of the present invention is to perform maturation division closer to nature by using sperm as described above. The second point of the present invention is to adjust the nuclear phase. In other words, while the conventional nuclear transfer technique generally maintains the number of chromosomes at the time of nuclear transfer, this technique creates a nuclear transfer egg having a nuclear phase of 2n, and fertilizes the nuclear phase of the chromosome derived from the transplanted cell by 1n. It is clarified that this is an important point and can be implemented only in the present invention. That is, a nuclear transplanted egg releases the second polar body by fertilization in the same manner as a normal ovum, so that the nuclear phase of the egg becomes 1n, forming a pronucleus (female pronucleus), and a pronucleus derived from sperm (male male) To form a fusion nucleus of nuclear phase 2n and initiate maturation (see FIG. 1).

本発明においては、核移植に用いる細胞は基本的に雌雄どちらでもよいが、どちらかというと雌由来が好ましい。雌由来の細胞を用いることで核移植卵の個体発生の異常や発生停止の一因として考えられている「遺伝子の刷り込み」の影響を回避できる可能性が期待される。「遺伝子の刷り込み」とは、雄由来、雌由来の遺伝子の発現に偏りがある現象のことで、哺乳類の単為発生卵子が個体まで発生できない一因として挙げられる。本発明においては、雌細胞由来の核移植卵子を用いることで、雌雄の遺伝子が揃うことになる。従って本発明を利用することで“遺伝子の刷り込み“に起因した障害を回避可能となる。   In the present invention, cells used for nuclear transfer may basically be either male or female, but are preferably female. The use of female-derived cells is expected to be able to avoid the influence of “imprinting of genes”, which is considered to be a cause of abnormalities in the oncogenesis of nuclear-transplanted eggs and developmental cessation. “Gene imprinting” is a phenomenon in which the expression of genes derived from males and females is biased, and can be cited as one factor that prevents parthenogenesis of mammals from occurring to individuals. In the present invention, the male and female genes are aligned by using the nuclear transplanted ovum derived from female cells. Therefore, the use of the present invention makes it possible to avoid a failure caused by “gene imprinting”.

本発明においては、核移植に用いる細胞が遺伝子組換え細胞である場合、得られた核移植受精卵子を代理妊娠ウサギに胚移植することで遺伝子組換えウサギ個体を得ることができる。   In the present invention, when a cell used for nuclear transfer is a recombinant cell, a transgenic rabbit individual can be obtained by embryo transfer of the obtained nuclear transfer fertilized egg to a surrogate pregnant rabbit.

以下、実施例にそって本発明をさらに詳細に説明するが、これら実施例は本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail according to an Example, these Examples do not limit the scope of the present invention.

《実施例1.核移植卵由来受精卵の作製》
核移植胚作製の動物種は、日本白色種ウサギを用いた。核移植胚の作製は松田ら(Cloning Stem Cells, 4:9-19,2002)の方法に従って実施した。
(1)未受精卵の採卵
未受精卵は日本白色種メスウサギに採卵3日前よりFSHを0.5単位/1匹で皮下に12時間間隔で6回投与し、採卵前日の夕方にhCGを100単位/1匹で静脈内投与することで過排卵させ、hCG投与後15〜16時間目に採卵した。採卵後、ヒアルロニダーゼ処理及びピペッティングにより卵丘細胞を卵子より除去した。卵子は核移植の操作中は、M2液(シグマ社)内で保持した。
(2)除核
上記(1)で採卵した未受精卵子をサイトカラシンDが最終濃度10μg/ml入ったM2液に15分さらした後、マイクロマニュピレータにセットし、ピペットにより極体直下の細胞質を吸引除去した。操作後、吸引した細胞質をアクリジンオレンジ(5μg/ml)にて染色し、除核の確認を行った。
(3)遺伝子組換え細胞の除核未受精卵子囲卵腔内への注入
遺伝子組換え細胞は、GFP(緑色蛍光蛋白質)遺伝子を導入したウサギ胎児由来線維芽細胞を用いた。遺伝子組換え細胞は数世代培養後、血清飢餓(0.5%ウシ胎児血清含有D-MEM)または、コンフルエントの状態で長期培養にて細胞周期をG1/G0期に同調した。0.1%トリプシン液にて細胞を分散し集め、マイクロマニュピレータ下で、上記(2)の除核未受精卵の囲卵腔内にドナー細胞を注入した。
(4)融合
除核未受精卵と遺伝子組換え細胞の融合は、0.3M マンニトール, 0.05mM 塩化カルシウム, 0.01mM 塩化マグネシウム(FM液)中で1mm間隔のチャンバーを用いて、300V(3kV/cm)、100μsのパルスを1回(LF101,BEX)与えることによって行った。
(5)精子の採取
人工膣を用いて、精子を採取した。膠様物を除去後、生理食塩水で2倍から5倍に希釈し、800rpm、室温で5分間遠心、上清を捨てる操作を2回繰り返すことで精漿を除き、生理食塩水中に再浮遊(約5×10個/mlの濃度)させ、体外受精に用いた。
(6)体外受精
体外受精はピエゾマニュピレーター(PMAS-CT150,プライムテック社)を用い、卵細胞質内精子注入(ICSI)法により実施した。12%PVP(Polyvinylpyrrolidone,Irvine Scientific社)中に浮遊させた精子を内径約20μmのピペットで吸引し、卵子の細胞質内に注入した。
なお、媒精のタイミングは融合後30分から3時間の間に実施した。
(7)培養
体外受精を行った卵子は、10% KNOCKOUT Serum Replacement(Gibco BRL)を添加したCELGROSSER-H(住友製薬)中で、38.5度、5%炭酸ガス培養器内で培養した。
以上のようにして、核移植卵由来受精卵を作製した。
Example 1 Preparation of fertilized eggs derived from nuclear transplanted eggs >>
A Japanese white rabbit was used as the animal species for producing the nuclear transfer embryo. Nuclear transfer embryos were prepared according to the method of Matsuda et al. (Cloning Stem Cells, 4: 9-19, 2002).
(1) Egg collection of unfertilized eggs Unfertilized eggs were administered to Japanese white female rabbits at a dose of 0.5 units / unit subcutaneously from 6 days before egg collection 6 times at 12-hour intervals, and hCG was administered at 100 units / day in the evening before egg collection. One animal was superovulated by intravenous administration, and eggs were collected 15-16 hours after hCG administration. After egg collection, cumulus cells were removed from the egg by hyaluronidase treatment and pipetting. The eggs were kept in M2 solution (Sigma) during the nuclear transfer operation.
(2) Enucleation The unfertilized egg collected in (1) above is exposed to M2 solution containing cytochalasin D at a final concentration of 10 μg / ml for 15 minutes, then placed in a micromanipulator, and the cytoplasm immediately below the polar body is removed with a pipette. Removed by suction. After the operation, the aspirated cytoplasm was stained with acridine orange (5 μg / ml) to confirm enucleation.
(3) Injection of genetically modified cells into enucleated unfertilized ovum follicles As the genetically modified cells, rabbit embryo-derived fibroblasts into which a GFP (green fluorescent protein) gene was introduced were used. The recombinant cells were cultured for several generations, and then the cell cycle was synchronized with the G1 / G0 phase by serum starvation (D-MEM containing 0.5% fetal bovine serum) or by long-term culture in a confluent state. Cells were dispersed and collected with 0.1% trypsin solution, and donor cells were injected into the surrounding space of the enucleated unfertilized egg of (2) above under a micromanipulator.
(4) Fusion Fusion of an enucleated unfertilized egg and a recombinant cell is performed at 300 V (3 kV / cm) using a chamber of 1 mm interval in 0.3 M mannitol, 0.05 mM calcium chloride, 0.01 mM magnesium chloride (FM solution). ), By applying a pulse of 100 μs once (LF101, BEX).
(5) Collection of sperm Sperm was collected using an artificial vagina. After removing the glue, dilute 2 to 5 times with physiological saline, centrifuge at 800 rpm for 5 minutes at room temperature, and discard the supernatant twice to remove seminal plasma and resuspend in physiological saline. (Concentration of about 5 × 10 6 cells / ml) and used for in vitro fertilization.
(6) In vitro fertilization In vitro fertilization was performed by the intracytoplasmic sperm injection (ICSI) method using a piezoelectric manipulator (PMAS-CT150, Prime Tech). Sperm suspended in 12% PVP (Polyvinylpyrrolidone, Irvine Scientific) was sucked with a pipette having an inner diameter of about 20 μm and injected into the cytoplasm of the ovum.
In addition, the timing of the spermatozoon was performed between 30 minutes and 3 hours after the fusion.
(7) Culture Oocytes subjected to in vitro fertilization were cultured in CELGROSSER-H (Sumitomo Pharmaceutical Co., Ltd.) supplemented with 10% KNOCKOUT Serum Replacement (Gibco BRL) in a 38.5 degree, 5% carbon dioxide incubator.
As described above, a fertilized egg derived from a nuclear transfer egg was prepared.

《試験例1.体外受精卵の作製》
前記実施例1(1)「未受精卵の採取」、(5)「精子の採取」、(6)「体外受精」、及び(7)「培養」記載の方法に従い、体外受精卵を作製した。
<< Test Example 1 Preparation of in vitro fertilized eggs >>
In vitro fertilized eggs were prepared according to the methods described in Example 1 (1) “Collecting unfertilized eggs”, (5) “Collecting sperm”, (6) “In vitro fertilization”, and (7) “Culture”. .

《実施例2:体外受精卵及び核移植卵由来受精卵の初期発生》
ウサギの体外受精卵は約92%が前核を形成し、さらに2細胞期へ92%の成熟分裂が観察された。また除核未受精卵子にGFP遺伝子導入ウサギ胎児由来線維芽細胞を融合後、受精させることで作製した核移植卵由来受精卵では、約83%が前核を形成し、さらに2細胞期へ83%の成熟分裂が観察された(表1参照)。
<< Example 2: Early development of fertilized eggs derived from in vitro fertilized eggs and nuclear transplanted eggs >>
About 92% of rabbit in vitro fertilized eggs formed a pronucleus, and a further 92% mature division was observed in the 2-cell stage. In addition, about 83% of fertilized eggs derived from nuclear transplanted eggs prepared by fertilizing a GFP gene-introduced rabbit fetal fibroblast into an enucleated unfertilized ovum, about 83% form a pronucleus and further enter the 2-cell stage. % Maturation was observed (see Table 1).

Figure 2005168420
Figure 2005168420

さらに、本発明の核移植卵由来受精卵は授精後約4時間目に第2極体の放出と雌雄前核形成が認められた(図2−a参照)。また授精後約1日目で2から4細胞期への成熟分裂が観察され(図2−b参照)、さらに核移植卵の移植細胞に起因するGFPの蛍光が認められた(図2−c参照)。   Furthermore, in the fertilized egg derived from the nuclear transplanted egg of the present invention, the release of the second polar body and the formation of male and female pronuclei were observed about 4 hours after insemination (see FIG. 2-a). Further, about 1 day after insemination, mature division from the 2 to 4 cell stage was observed (see FIG. 2-b), and GFP fluorescence due to the transplanted cells of the nuclear transplanted egg was observed (FIG. 2-c). reference).

このように我々は鋭意努力の結果、核移植卵へ精子が受精可能なことを初めて証明し、その方法を確立したことで発明の完成に至った。これは従来の方法にはない新たな核移植細胞由来の遺伝子組換え動物を作製する方法であり、遺伝子組換え動物作製技術の進歩にも貢献するものと期待される。   In this way, as a result of diligent efforts, we have demonstrated for the first time that sperm can be fertilized into a nuclear-transplanted egg, and have completed the invention by establishing that method. This is a method for producing a genetically modified animal derived from a new nuclear transfer cell, which is not found in the conventional method, and is expected to contribute to the advancement of the technology for producing a transgenic animal.

核移植移植卵由来受精卵を用いた遺伝子組換え動物作製方法の概略図。Schematic of a method for producing a transgenic animal using a fertilized egg derived from a nuclear transplanted egg. 核移植移植卵由来受精卵の初期発生を示す図面代用写真。a:授精後4時間目の卵子(矢印:第2極体,*:雌雄前核,**:融合直前の雌雄前核)、b:2細胞期(授精後約1日目)、c:4細胞期(授精後約1日目,左図:明視野観察、右図:GFPの蛍光観察)A drawing-substituting photograph showing the initial development of a fertilized egg derived from a nuclear transfer embryo. a: Egg at 4 hours after insemination (arrow: second polar body, *: male and female pronucleus, **: male and female pronucleus immediately before fusion), b: 2-cell stage (about 1 day after insemination), c: 4 cell stage (about 1 day after insemination, left figure: bright field observation, right figure: GFP fluorescence observation)

Claims (8)

核移植された未受精卵の活性化方法において、受精により核移植未受精卵の成熟分裂を開始させることを特徴とする核移植未受精卵の活性化方法。 A method for activating a nuclear-implanted non-fertilized egg, comprising activating maturation of a nuclear-implanted non-fertilized egg by fertilization in a method for activating a nuclear-implanted un-fertilized egg. 核移植未受精卵が、未受精卵から除核後、所望とする遺伝子組換え操作が行われた細胞由来の核が当該除核部位に移入されることにより得られるものである請求項1に記載の活性化方法。 The nuclear transfer unfertilized egg is obtained by transferring a nucleus derived from a cell subjected to a desired genetic recombination operation after enucleation from the unfertilized egg to the enucleated site. The activation method as described. 受精が精子、精原細胞または精母細胞のいずれか一つを用いることにより行われることを特徴とする請求項1または2に記載の活性化方法。 3. The activation method according to claim 1 or 2, wherein fertilization is performed by using any one of sperm, spermatogonia or spermatocytes. 受精が精子を用いることにより行われることを特徴とする請求項1から3のいずれかに記載の活性化方法。 Fertilization is performed by using a sperm, The activation method in any one of Claim 1 to 3 characterized by the above-mentioned. 受精が、精子、精原細胞または精母細胞のいずれか一つに、人工的な単為発生処理を組み合わせて行うことを特徴とする請求項1から4のいずれかに記載の活性化方法。 The activation method according to any one of claims 1 to 4, wherein fertilization is performed by combining artificial parthenogenesis with any one of sperm, spermatogonia, or spermatocytes. 人工的な単為発生処理が薬剤処理または電気刺激により行われる請求項5に記載の活性化方法。 The activation method according to claim 5, wherein the artificial parthenogenesis is performed by chemical treatment or electrical stimulation. 請求項1から6のいずれかに記載の活性化方法により活性化されることを特徴とする核移植受精卵。 A nuclear transfer fertilized egg which is activated by the activation method according to any one of claims 1 to 6. 請求項7に記載の核移植受精卵を用いることを特徴とする遺伝子組換え動物の作出方法。 A method for producing a transgenic animal, comprising using the nuclear transfer fertilized egg according to claim 7.
JP2003414496A 2003-12-12 2003-12-12 Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg Pending JP2005168420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414496A JP2005168420A (en) 2003-12-12 2003-12-12 Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414496A JP2005168420A (en) 2003-12-12 2003-12-12 Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg

Publications (1)

Publication Number Publication Date
JP2005168420A true JP2005168420A (en) 2005-06-30

Family

ID=34734276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414496A Pending JP2005168420A (en) 2003-12-12 2003-12-12 Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg

Country Status (1)

Country Link
JP (1) JP2005168420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075542A (en) * 2021-11-02 2022-02-22 上海交通大学医学院附属第九人民医院 Culture solution for cytoplasm mechanical separation and use method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075542A (en) * 2021-11-02 2022-02-22 上海交通大学医学院附属第九人民医院 Culture solution for cytoplasm mechanical separation and use method thereof
CN114075542B (en) * 2021-11-02 2024-02-20 上海交通大学医学院附属第九人民医院 Culture solution for cytoplasmatic mechanical separation and application method thereof

Similar Documents

Publication Publication Date Title
Li et al. Cloned ferrets produced by somatic cell nuclear transfer
JP6423386B2 (en) A highly efficient method for the reprogramming of differentiated cells and the generation of animal and embryonic stem cells from the reprogrammed cells
CA2317494A1 (en) Cloning using donor nuclei from differentiated fetal and adult cells
US20090126032A1 (en) Method to produce cloned embryos and adults from cultured cells
JP2002500864A (en) Animal term growth from enucleated oocytes reconstituted adult somatic nuclei
US7371922B2 (en) Nuclear transfer with porcine embryonic stem cells
EP1198169B1 (en) A process of cell reprogramming through production of a heterokaryon
Park et al. Assisted reproductive techniques and genetic manipulation in the common marmoset
Campbell et al. Nuclear transfer in practice
EP1779724A1 (en) Construction of chimera using es cells
AU784371B2 (en) Nuclear transfer with selected donor cells
Eyestone et al. Nuclear transfer from somatic cells: applications in farm animal species
Ogura et al. Microinsemination, nuclear transfer, and cytoplasmic transfer: the application of new reproductive engineering techniques to mouse genetics.
KR20070101266A (en) Methods for correcting mitotic spindle defects and optimizing preimplantation embryonic developmental rates associated with somatic cell nuclear transfer in animals
Sasaki Creating genetically modified marmosets
JP2005168420A (en) Method for preparing recombinant animal by using fertilized egg derived from new nucleus-transplanted egg
JP2002511234A (en) Swine nuclear transfer
US7411111B2 (en) Method for cloning of the rat by nuclear transfer
KR20040070353A (en) Somatic cell derived embryonic stem cells and its differentiated cells
JP2006522609A (en) A method for correcting spindle defects associated with somatic cell nuclear transfer in animals
AU771102B2 (en) Cell reprogramming
JPH0614945A (en) Breeding method for pig
MXPA02010075A (en) Pluripotent cells comprising allogenic nucleus and mitochondria.
JP4696235B2 (en) Method for producing fish embryo
Ogura et al. Microinsemination using spermatogenic cells in mammals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117