JP2005168260A - Device for calculating vehicular item variations of electric vehicle - Google Patents

Device for calculating vehicular item variations of electric vehicle Download PDF

Info

Publication number
JP2005168260A
JP2005168260A JP2003407285A JP2003407285A JP2005168260A JP 2005168260 A JP2005168260 A JP 2005168260A JP 2003407285 A JP2003407285 A JP 2003407285A JP 2003407285 A JP2003407285 A JP 2003407285A JP 2005168260 A JP2005168260 A JP 2005168260A
Authority
JP
Japan
Prior art keywords
vehicle
change amount
vertical vibration
specification change
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407285A
Other languages
Japanese (ja)
Inventor
Masahiro Miura
雅博 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003407285A priority Critical patent/JP2005168260A/en
Publication of JP2005168260A publication Critical patent/JP2005168260A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high precision behavior control at a low cost by obtaining the variations of vehicular items used for controlling the behavior of an electric vehicle, without providing a plurality of sensors. <P>SOLUTION: By driving front wheels and rear wheels of the electric vehicle in a stop state at the same phase in a reverse direction to each other, up and down vibrations are caused to occur to a car body via the elasticity of suspension devices and the vibration frequency is made to change within a range from 1 Hz to dozens of Hz to obtain a peak gain frequency f1 from its transmission characteristics (frequency characteristics) A, when the gain of the up and down vibrations of the car body peaks. While a peak gain frequency f0 is obtained in advance from the transmission characteristics (frequency characteristics) B, which is caused to occur in the similar manner as above under a reference vehicle weight (the vehicle weight when only a driver is on board), a vehicle weight variation Δm is obtained by the operation of Δm=äk/(2π)<SP>2</SP>}ä(1/fl<SP>2</SP>)-(1/f0<SP>2</SP>)} from the difference between f0 and f1, using the spring constant k of the suspension devices. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気自動車のヨーレート制御などの挙動制御に際し、電気自動車の目標挙動を求めるのに必要な車両諸元変化量、特に、車両重量や前後重量配分のように走行条件に応じて変化する電気自動車の車両諸元変化量を演算するための装置に関するものである。   The present invention, when performing behavior control such as yaw rate control of an electric vehicle, changes according to the vehicle condition change amount required for obtaining the target behavior of the electric vehicle, in particular, the vehicle weight and the front and rear weight distribution. The present invention relates to a device for calculating a vehicle specification change amount of an electric vehicle.

車両重量や前後重量配分のように走行条件に応じて変化する車両諸元を推定し、これらに基づき車両のヨーレートを制御するものとしては従来、例えば特許文献1に記載のごときものがある。
このヨーレート制御装置は、車両の目標ヨーレートを多くの様々な条件のもとで、また、多くの外乱を十分に考慮して、これら条件や外乱のもとでも精度よく最適化可能にし、これにより高精度なヨーレート制御を実現することを狙ったものである。
Conventionally, for example, as disclosed in Japanese Patent Application Laid-Open No. 2004-133826, vehicle specifications that change according to traveling conditions such as vehicle weight and front / rear weight distribution and control the yaw rate of the vehicle based on these are known.
This yaw rate control device can optimize the vehicle's target yaw rate under many different conditions and with sufficient consideration of many disturbances so that it can be accurately optimized under these conditions and disturbances. The aim is to achieve highly accurate yaw rate control.

近年車両に搭載される後差動制限制御装置や駆動力配分制御装置などのさまざまな車両挙動制御装置において行われているが、その制御量を、車両の運動状態(運動方程式)に基づき所定通りに設定した目標ヨーレートが実現されるよう決定する時、現実的には路面摩擦係数の検出(推定)に係わる応答性や精度が十分でないという問題があり、また、検出(推定)可能な走行条件、たとえば路面摩擦係数変化や、素早いステアリングホイール操作(操舵)に対する車両挙動の応答性や、車両挙動の非線形性、ステアリングホイールを大きく操作した場合の車両挙動の非線形性や、車両の積載状況などで変化する車両重量および前後重量配分の検出(推定)精度および応答性が十分でないという問題がある。   In recent years, various vehicle behavior control devices such as a post-differential limiting control device and a driving force distribution control device mounted on a vehicle have been used. The amount of control is determined according to the motion state (motion equation) of the vehicle. When determining to achieve the target yaw rate set in, there is a problem that the response and accuracy related to the detection (estimation) of the road surface friction coefficient are not sufficient, and the driving conditions that can be detected (estimated) For example, changes in road surface friction coefficient, vehicle response to quick steering wheel operation (steering), vehicle behavior non-linearity, vehicle behavior non-linearity when the steering wheel is operated greatly, vehicle loading conditions, etc. There is a problem that the detection (estimation) accuracy and responsiveness of the changing vehicle weight and the front and rear weight distribution are not sufficient.

これらの問題に関する制約のため上記の目標ヨーレートを最適化することが難しいとして特許文献1に記載のヨーレート制御技術は、車両の運動状態を推定し、これに基づき目標ヨーレートを演算するに際し、
右操舵と左操舵の際における車両挙動特性の違いと、推定した現在走行中の車両重量、および、推定した現在の車両前後重量配分の少なくとも一つに基づきスタビリティファクタを演算し、この演算したスタビリティファクタに基づき目標ヨーレートを演算するというものである。
Since it is difficult to optimize the target yaw rate due to restrictions related to these problems, the yaw rate control technique described in Patent Document 1 estimates the motion state of the vehicle and calculates the target yaw rate based on this,
The stability factor is calculated based on at least one of the difference in vehicle behavior characteristics between right steering and left steering, the estimated current vehicle weight, and the estimated current vehicle front-rear weight distribution. The target yaw rate is calculated based on the stability factor.

具体的には、車両重量と、前後重量配分比と、前後軸重量と、前後軸−重心間距離と、前後輪の等価コーナリングパワーと、実際の前輪舵角とを考慮して目標ヨーレートを演算し、また、左右の転舵方向で別々の定常ヨーレートゲインを設定して目標ヨーレートを演算する。
さらに、車両の動特性を考慮して基準ヨーレートを算出するにあたり、操舵に対するヨーレート応答の遅れ時定数を路面摩擦係数の推定値に基づいて変更し、基準ヨーレートを算出する。
また、車両がスピン状態である場合は、目標ヨーレート補正係数による基準ヨーレートに対する補正の補正速度を、実ヨーレートに追従する一次遅れカットオフ周波数で設定して低下、あるいは禁止し、目標ヨーレートが過大になるのを防止する、というものである。
特開平 2002-316546 号公報
Specifically, the target yaw rate is calculated in consideration of the vehicle weight, front / rear weight distribution ratio, front / rear axle weight, front / rear axis-center of gravity distance, front / rear wheel equivalent cornering power, and actual front wheel steering angle. In addition, the target yaw rate is calculated by setting different steady yaw rate gains for the left and right steering directions.
Further, when calculating the reference yaw rate in consideration of the vehicle dynamic characteristics, the delay time constant of the yaw rate response to the steering is changed based on the estimated value of the road surface friction coefficient to calculate the reference yaw rate.
In addition, when the vehicle is in a spin state, the correction speed of the correction with respect to the reference yaw rate by the target yaw rate correction coefficient is set at a first-order lag cutoff frequency that follows the actual yaw rate, and is reduced or prohibited, and the target yaw rate becomes excessive. It is to prevent becoming.
Japanese Patent Laid-Open No. 2002-316546

しかし、駆動力配分により車両のヨーレート制御を精度よく行うためには外乱を十分に考慮する必要であり、外乱の中でも車両の重量変化や前後重量配分はヨーレート制御を行う際に大きな外乱要因となる。
そして本発明が対象とする電気自動車では特に、各車輪を個々のモータにより独立に駆動制御することができ、この各輪独立駆動制御により応答性の良い車両のヨーレート制御を行い得ることが大きな利点であるため、如何に外乱を車両モデルに考慮できるかが大きな課題となる。
However, in order to accurately control the yaw rate of the vehicle by distributing the driving force, it is necessary to fully consider the disturbance. Among the disturbances, the change in the weight of the vehicle and the distribution of the weight in the front / rear direction are significant disturbance factors when performing the yaw rate control. .
Particularly in the electric vehicle targeted by the present invention, each wheel can be independently driven and controlled by an individual motor, and the yaw rate control of a vehicle with good responsiveness can be performed by this wheel independent driving control. Therefore, how to consider the disturbance in the vehicle model is a big issue.

ところで、車両の重量変化や前後重量配分変化などの外乱をヨーレート制御に考慮しようとする場合、これらの変化を検出したり推定するために、前後加速度センサやブレーキ液圧センサなど複数のセンサが必要になり、コストアップの要因になるという問題を生ずる。   By the way, when trying to take into account disturbances such as vehicle weight changes and front and rear weight distribution changes in yaw rate control, multiple sensors such as front and rear acceleration sensors and brake fluid pressure sensors are required to detect and estimate these changes. This causes a problem of increasing costs.

本発明は、電気自動車の場合、少なくとも前輪と後輪とを独立にモータ駆動し得て、前後輪の駆動態様によってはサスペンション装置による車輪の弾支構造を介し車体を上下振動させることができ、しかも、車両の挙動制御に際して精度上の前記要求を満足させるため求める必要のある車重変化や前後重量配分変化などの車両諸元の変化が、当該上下振動の変化となって現れるとの事実認識にもとづき、
この上下振動変化から車両諸元変化量を演算して車両挙動制御に提供し得るようにし、これにより、上下振動を検出するための加速度センサの設置のみで、複数のセンサを用いることなく、従って上記コスト上の問題を生ずることなく車両挙動制御の高精度化を実現し得るようにした電気自動車の車両諸元変化量演算装置を提案しようとするものである。
In the case of an electric vehicle, at least the front wheels and the rear wheels can be motor-driven independently, and depending on the driving mode of the front and rear wheels, the vehicle body can be vibrated up and down via the elastic support structure of the wheels by the suspension device, In addition, it is recognized that changes in vehicle specifications such as changes in vehicle weight and changes in weight distribution in the front and rear that need to be obtained in order to satisfy the above requirements for accuracy in vehicle behavior control appear as changes in the vertical vibration. Based on
It is possible to calculate the vehicle specification change amount from the vertical vibration change and provide it to the vehicle behavior control, so that only the installation of the acceleration sensor for detecting the vertical vibration can be performed without using a plurality of sensors. It is an object of the present invention to propose a vehicle specification change amount calculation device for an electric vehicle that can realize high accuracy of vehicle behavior control without causing the above-mentioned cost problem.

この目的のため、本発明による電気自動車の車両挙動変化量演算装置は、請求項1に記載のごとくに構成する。
先ず、前提となる車両は、車体にサスペンション装置を介して懸架した前輪と後輪とを独立にモータ駆動する電気自動車とし、この電気自動車に対し、
前輪および後輪の少なくとも一方を、他方の車輪の接地点を反力受けとして前後駆動させることにより、車体に上下振動を発生させるための上下振動発生用モータ駆動制御手段と、
この手段により発生させた車体の上下振動を検出するための上下振動検出手段と、
この手段により検出した車体上下振動から、車体上下振動の出方に影響を及ぼす車両諸元の変化量を演算するための車両諸元変化量演算手段とを設ける。
For this purpose, the vehicle behavior change calculating device for an electric vehicle according to the present invention is constructed as described in claim 1.
First, the vehicle as a premise is an electric vehicle in which the front wheels and the rear wheels suspended from the vehicle body via a suspension device are independently motor-driven.
Motor drive control means for generating vertical vibrations for generating vertical vibrations in the vehicle body by driving at least one of the front wheels and rear wheels back and forth with the contact point of the other wheel as a reaction force;
Vertical vibration detection means for detecting vertical vibration of the vehicle body generated by the means;
Vehicle specification change amount calculating means is provided for calculating the amount of change in the vehicle specification that affects the appearance of the vehicle body vertical vibration from the vehicle body vertical vibration detected by this means.

かかる本発明の車両諸元変化量演算装置によれば、上下振動発生用モータ駆動制御手段が前輪および後輪の少なくとも一方を、他方の車輪の接地点を反力受けとして前後駆動させることで、車体に上下振動を発生させ、この車体上下振動を上下振動検出手段により検出し、車両諸元変化量演算手段が、この検出した車体上下振動から、車体上下振動の出方に影響を及ぼす車両諸元の変化量を演算するため、
上記車体上下振動変化から車両諸元変化量を演算して車両挙動制御に提供し得ることとなり、このため、センサとしては車体上下振動を検出する加速度センサ(上下振動検出手段)の設置のみで、複数のセンサを用いることなく、従って前記コスト上の問題を生ずることなく車両挙動制御の高精度化を実現することができる。
According to the vehicle specification change amount calculating device of the present invention, the motor drive control means for generating vertical vibrations drives at least one of the front wheels and the rear wheels back and forth with the ground contact point of the other wheel as a reaction force receiver, A vertical vibration is generated in the vehicle body, this vertical vibration is detected by the vertical vibration detection means, and the vehicle specification change calculation means is used to detect various vehicle effects that affect the output of the vertical vibration from the detected vehicle vertical vibration. To calculate the original amount of change,
The vehicle specification change amount can be calculated from the vehicle body vertical vibration change and provided to the vehicle behavior control. For this reason, as a sensor, only an acceleration sensor (vertical vibration detection means) for detecting the vehicle vertical vibration is installed. High accuracy of vehicle behavior control can be realized without using a plurality of sensors, and thus without causing the cost problem.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は、本発明の一実施例になる車両諸元変化量演算装置を具えた電気自動車の線図的側面図である。
電気自動車は、その車体1にサスペンション装置2F,2Rを介して懸架した前輪3Fおよび後輪3Rを具え、これら前輪3Fおよび後輪3Rに対し個々にモータ4F,4Rを駆動結合して前輪3Fおよび後輪3Rを個別に駆動し得るようになす。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is a diagrammatic side view of an electric vehicle including a vehicle specification change amount calculating device according to an embodiment of the present invention.
The electric vehicle includes a front wheel 3F and a rear wheel 3R suspended on the vehicle body 1 via suspension devices 2F and 2R, and motors 4F and 4R are individually coupled to the front wheel 3F and the rear wheel 3R by driving and coupling the front wheels 3F and 3R. The rear wheels 3R can be driven individually.

なお、モータ4Fは左右前輪3Fに共通なものでもよいし、左右前輪3Fに個別に設けてもよく、また、モータ4Rは、左右後輪3Rに共通なものでもよいし、左右後輪3Rに個別に設けてもよい。   The motor 4F may be common to the left and right front wheels 3F, or may be provided individually to the left and right front wheels 3F.The motor 4R may be common to the left and right rear wheels 3R, and the left and right rear wheels 3R. It may be provided individually.

モータ4F,4Rに駆動エネルギーを供給する共通なエネルギー供給装置5を車載し、これをバッテリ5aおよびインバータ5bにより構成する。
モータ4F,4Rへの駆動エネルギー供給は、コントローラ6がインバータ5bによる制御下でバッテリ5aからの電力をモータ4F,4Rに供給してこれを行い、かかるエネルギー供給を受けてモータ4F,4Rが対応する車輪を駆動することにより電気自動車を、運転者がアクセルペダル操作により要求した駆動力で走行させるものとする。
A common energy supply device 5 for supplying drive energy to the motors 4F and 4R is mounted on the vehicle, and this is composed of a battery 5a and an inverter 5b.
The drive energy supply to the motors 4F and 4R is performed by the controller 6 supplying the electric power from the battery 5a to the motors 4F and 4R under the control of the inverter 5b, and the motors 4F and 4R respond to such energy supply. The electric vehicle is driven with the driving force requested by the driver by operating the accelerator pedal by driving the wheels.

ところでコントローラ6は、上記した車両の走行駆動制御のほかに、本発明が目的とする車両諸元変化量の演算処理をも行うもので、図示せざる上下振動発生用モータ駆動制御手段および車両諸元変化量演算手段を内蔵する。
前者の上下振動発生用モータ駆動制御手段は、停車状態で例えば、図1に矢αおよびβで示すように前輪3Fおよび後輪3Rを同位相で相互逆向きに前後駆動するようインバータ5bを介してモータ4F,4Rへバッテリ5aの電力を供給することにより、サスペンション装置2F,2Rの弾力を介し車体1に上下振動γを発生させると共に、その振動周波数を順次1Hz 〜数十Hz程度の範囲内で変化させるようにする。
なお、モータ4Fが左右前輪3Fに個別に設けてあったり、モータ4Rが左右後輪3Rに個別に設けてある場合は、左右前輪3Fに係わる両モータ4Fを同期して同方向に駆動し、左右後輪3Rに係わる両モータ4Rを同期して同方向に駆動するのは言うまでもない。
Incidentally, the controller 6 performs not only the vehicle driving control described above but also the calculation processing of the vehicle specification change amount which is the object of the present invention. Built-in original variation calculation means.
The former motor drive control means for generating the vertical vibration is, for example, via the inverter 5b so as to drive the front wheel 3F and the rear wheel 3R back and forth in the same phase and in opposite directions as indicated by arrows α and β in FIG. By supplying the electric power of the battery 5a to the motors 4F and 4R, the vertical vibration γ is generated in the vehicle body 1 through the elasticity of the suspension devices 2F and 2R, and the vibration frequency is sequentially within a range of about 1 Hz to several tens of Hz. To change.
If the motor 4F is provided separately for the left and right front wheels 3F, or if the motor 4R is provided separately for the left and right rear wheels 3R, the motors 4F related to the left and right front wheels 3F are driven in the same direction synchronously, It goes without saying that both motors 4R related to the left and right rear wheels 3R are driven in the same direction in synchronization.

この車体上下振動γを車体1の重心Gにおいて検出するための、加速度センサを可とする上下振動検出手段7を設ける。
コントローラ6内における前記した車両諸元変化量演算手段(図示せず)は、手段7により検出した、図2にAで例示するように振動ゲイン(振動の大きさ)が周波数に対して変化する車体上下振動の検出結果を入力され、これを基に上下振動γの伝達特性(周波数特性)Aから車両諸元の1つである車両重量の変化量(車重変化量)を演算する。
In order to detect the vehicle body vertical vibration γ at the center of gravity G of the vehicle body 1, a vertical vibration detection means 7 that enables an acceleration sensor is provided.
The vehicle specification change amount calculation means (not shown) in the controller 6 changes the vibration gain (the magnitude of vibration) with respect to the frequency detected by the means 7 as illustrated by A in FIG. Based on the detection result of the vertical vibration of the vehicle body, a change amount (vehicle weight change amount) of the vehicle weight, which is one of the vehicle specifications, is calculated from the transfer characteristic (frequency characteristic) A of the vertical vibration γ based on this detection result.

この車重変化量の演算に当たっては、基準車両重量(例えば運転者のみが乗車している時の車両重量)のもと前記したと同様の要領で発生させた車体上下振動の図2に示す伝達特性(周波数特性)Bから、車体上下振動のゲインがピークになる時のピークゲイン周波数f0を予め求めておく。
そして、今回検出した車体上下振動γの図2に示す伝達特性(周波数特性)Aから、車体上下振動のゲインがピークになった時のピークゲイン周波数f1を求め、基準となるピークゲイン周波数f0と、今回検出した固有のピークゲイン周波数f1との差から、サスペンション装置2F,2Rのバネ定数kを用いて車重変化量Δmを以下の演算により求める。
Δm={k/(2π)2}{(1/f12)-(1/f02)}
In calculating the amount of change in vehicle weight, the transmission shown in FIG. 2 of the vertical vibration of the vehicle body generated in the same manner as described above based on the reference vehicle weight (for example, the vehicle weight when only the driver is on board). From the characteristic (frequency characteristic) B, the peak gain frequency f0 when the vehicle body vertical vibration gain reaches its peak is obtained in advance.
Then, from the transmission characteristic (frequency characteristic) A shown in FIG. 2 of the vehicle vertical vibration γ detected this time, a peak gain frequency f1 when the vehicle vertical vibration gain reaches its peak is obtained, and a reference peak gain frequency f0 is obtained. From the difference from the inherent peak gain frequency f1 detected this time, the vehicle weight change amount Δm is obtained by the following calculation using the spring constant k of the suspension devices 2F and 2R.
Δm = {k / (2π) 2 } {(1 / f1 2 )-(1 / f0 2 )}

コントローラ6は、上記のようにして演算した車重変化量Δmを基に、車重変化に応じた新たな現在の車両ヨー慣性モーメントを算出し、この車重変化に応じ修正したヨー慣性モーメントを車両ヨーレート制御のための車両モデル(車両運動方程式)に反映させて目標ヨーレートを求め、コントローラ6は前記の走行制御中に当該目標ヨーレートが達成されるようエネルギー供給装置5から各モータ4F,4Rへの電力を制御して所定のヨーレート制御を行う。   The controller 6 calculates a new current vehicle yaw inertia moment according to the vehicle weight change based on the vehicle weight change amount Δm calculated as described above, and calculates the corrected yaw inertia moment according to the vehicle weight change. A target yaw rate is obtained by reflecting it in a vehicle model (vehicle motion equation) for vehicle yaw rate control, and the controller 6 sends the target yaw rate to each motor 4F, 4R from the energy supply device 5 so that the target yaw rate is achieved during the travel control. A predetermined yaw rate control is performed by controlling the electric power.

上記ではコントローラ6が、車両諸元変化量として車両ヨー慣性モーメントに関与する車重変化量Δmを求め、これをヨーレート制御に資する場合につき述べたが、更なるヨーレート制御精度の向上を目的とし、車両諸元変化量として車両ヨー慣性半径に関与する車体前後重量配分変化量をも求め、これをもヨーレート制御に資するようにした構成を以下に説明する。   In the above description, the controller 6 calculates the vehicle weight change amount Δm related to the vehicle yaw moment of inertia as the vehicle specification change amount, and this is used for the yaw rate control. For the purpose of further improving the yaw rate control accuracy, A configuration in which the vehicle front-rear weight distribution change amount related to the vehicle yaw inertia radius is also obtained as the vehicle specification change amount, and this is also used for the yaw rate control will be described below.

この場合、コントローラ6内における前記した上下振動発生用モータ駆動制御手段(図示せず)は、停車状態で、前輪3Fを制動した状態で、または、後輪3Rを制動した状態で、他方の車輪3Rまたは3Fを前後駆動することで車体1に前後方向のモーメントを作用させ、この前後モーメントによりサスペンション装置2F,2Rの弾力を介して車体1に上下振動を発生させる。
この車体上下振動を上下振動検出手段7により検出する。
In this case, the above-described motor drive control means (not shown) for generating vertical vibrations in the controller 6 is in a stopped state, with the front wheel 3F braked, or with the rear wheel 3R braked on the other wheel. A longitudinal moment is applied to the vehicle body 1 by driving the 3R or 3F back and forth, and the longitudinal vibration is generated in the vehicle body 1 by the elasticity of the suspension devices 2F and 2R due to the longitudinal moment.
This vertical vibration of the vehicle body is detected by the vertical vibration detection means 7.

コントローラ6内における前記した車両諸元変化量演算手段(図示せず)は、手段7で検出した車体上下振動の大きさ(伝達特性)から現在の車両前後重量配分を推定し、
基準前後重量配分(運転者のみが乗車している時の前後重量配分)のもと上記と同様の要領で発生させて予め求めておいた車体上下振動の大きさと、手段7で検出した車体上下振動の大きさとの比率から車両前後重量配分の変化量を演算し、以下のごとく車両のヨーレート制御に資する。
The vehicle specification change amount calculation means (not shown) in the controller 6 estimates the current vehicle front-rear weight distribution from the magnitude (transmission characteristics) of the vehicle body vertical vibration detected by the means 7,
The size of the vehicle vertical vibration generated in the same manner as described above based on the reference longitudinal weight distribution (front and rear weight distribution when only the driver is on board) and the vehicle vertical motion detected by the means 7 The amount of change in the vehicle front-rear weight distribution is calculated from the ratio to the magnitude of vibration, and contributes to the vehicle yaw rate control as follows.

つまりコントローラ6は、前記車重変化量Δmに応じ修正した後の車両ヨー慣性モーメントを、上記車体上下振動の大きさの比率から求めた車両ヨー慣性半径の変化量(基準前後重量配分でのヨー慣性半径からのずれ量)に応じて更に修正し、この再修正したヨー慣性モーメントを車両ヨーレート制御のための車両モデル(車両運動方程式)に反映させて目標ヨーレートを求め、コントローラ6は前記の走行制御中に当該目標ヨーレートが達成されるようエネルギー供給装置5から各モータ4F,4Rへの電力を制御して所定のヨーレート制御を行う。
これにより、ヨーレート制御を行うときの外乱となる、車重変化および前後重量配分変化の双方による影響を排除することができ、ヨーレート制御精度の更なる向上を実現することができる。
That is, the controller 6 changes the vehicle yaw inertia moment after correction according to the vehicle weight change amount Δm from the vehicle yaw inertia radius change amount obtained from the ratio of the vehicle body vertical vibration magnitude (the yaw at the reference front-rear weight distribution). The amount of deviation from the inertia radius is further corrected, and the re-corrected yaw inertia moment is reflected in a vehicle model (vehicle motion equation) for vehicle yaw rate control to obtain a target yaw rate. Predetermined yaw rate control is performed by controlling the power from the energy supply device 5 to the motors 4F and 4R so that the target yaw rate is achieved during the control.
As a result, it is possible to eliminate the influence of both the change in the vehicle weight and the change in the front / rear weight distribution, which is a disturbance when performing the yaw rate control, and it is possible to further improve the yaw rate control accuracy.

上記した車両諸元変化量の演算、および、これに基づくヨー慣性モーメントの修正は、車体1が水平状態に安定していることを前提とするものであるが、実際は、サスペンション装置2F,2Rなどのフリクションの差により車体1が傾斜している可能性があり、この場合は上記の作用効果が半減する。
これを回避するため、上記した車両諸元変化量の演算、および、これに基づくヨー慣性モーメントの修正を行う前に、コントローラ6が、サスペンション装置2F,2Rの不均一なストロークに起因した車体1の傾斜が解消されるよう前輪3Fおよび後輪3Rを同位相で相互逆向きに前後駆動して、車体1の姿勢を安定させておくようにするのが好ましい。
The calculation of the vehicle specification change amount and the correction of the yaw moment of inertia based on the calculation are based on the assumption that the vehicle body 1 is stable in a horizontal state, but in reality, the suspension devices 2F, 2R, etc. There is a possibility that the vehicle body 1 is inclined due to the difference in friction. In this case, the above-described effect is halved.
In order to avoid this, before the calculation of the vehicle specification change amount and the correction of the yaw inertia moment based on the above-mentioned calculation, the controller 6 causes the vehicle body 1 due to the non-uniform strokes of the suspension devices 2F and 2R. It is preferable to drive the front wheel 3F and the rear wheel 3R back and forth in the same phase in opposite directions so that the inclination of the vehicle body 1 is eliminated so that the posture of the vehicle body 1 is stabilized.

なお図1では、上下振動検出手段7として、車体1の重心Gにおける上下振動を検出する1個の加速度センサを設けたが、サスペンション装置2F,2Rにそのストローク量を検出するストロークセンサが既に設けられている場合は、これらストロークセンサの検出値から車体上下振動を演算しても良い。   In FIG. 1, one acceleration sensor for detecting the vertical vibration at the center of gravity G of the vehicle body 1 is provided as the vertical vibration detecting means 7, but a stroke sensor for detecting the stroke amount is already provided in the suspension devices 2F and 2R. If it is, the vertical vibration of the vehicle body may be calculated from the detection values of these stroke sensors.

何れにしても本実施例の構成によれば、前輪および後輪の少なくとも一方を、他方の車輪の接地点を反力受けとして前後駆動させることにより、車体に上下振動を発生させ、この車体上下振動の変化から車両諸元の変化量を演算して車両ヨーレート制御の高精度化に資することから、
センサとしては、加速度センサを可とする上下振動検出手段7を1個設けるだけで、複数のセンサを用いることなく、若しくは、上記のように既存のサスペンションストロークセンサを利用してセンサの設置なしに、車両ヨーレート制御の高精度化を安価に実現することができる。
In any case, according to the configuration of this embodiment, at least one of the front wheel and the rear wheel is driven back and forth using the contact point of the other wheel as a reaction force receiver, thereby generating vertical vibrations in the vehicle body. Because it contributes to the high accuracy of vehicle yaw rate control by calculating the amount of change in vehicle specifications from the change in vibration,
As a sensor, only one vertical vibration detecting means 7 that enables an acceleration sensor is provided, and a plurality of sensors are not used, or the existing suspension stroke sensor is used as described above and no sensor is installed. Therefore, high accuracy of vehicle yaw rate control can be realized at low cost.

本発明の一実施例になる車両諸元変化量演算装置を具えた電気自動車を示す線図的側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view showing an electric vehicle including a vehicle specification change amount calculating device according to an embodiment of the present invention. 前後輪の同位相逆駆動により車体に生じさせた上限振動の周波数特性を示す特性図である。It is a characteristic view showing the frequency characteristic of the upper limit vibration generated in the vehicle body by the same phase reverse drive of the front and rear wheels.

符号の説明Explanation of symbols

1 車体
2F 前輪サスペンション装置
2R 後輪サスペンション装置
3F 前輪
3R 後輪
4F 前輪駆動モータ
4R 後輪駆動モータ
5 エネルギー供給装置
5a バッテリ
5b インバータ
6 コントローラ(上下振動発生用モータ駆動制御手段:車両諸元変化量演算手段)
7 上下振動検出手段(加速度センサ)
1 body
2F front wheel suspension system
2R rear wheel suspension system
3F front wheel
3R rear wheel
4F front wheel drive motor
4R Rear wheel drive motor 5 Energy supply device
5a battery
5b Inverter 6 Controller (Motor drive control means for generating vertical vibration: vehicle specification change calculation means)
7 Vertical vibration detection means (acceleration sensor)

Claims (5)

車体にサスペンション装置を介して懸架した前輪と後輪とを具え、これら前輪と後輪とを独立にモータ駆動するようにした電気自動車において、
前輪および後輪の少なくとも一方を、他方の車輪の接地点を反力受けとして前後駆動させることにより、車体に上下振動を発生させるための上下振動発生用モータ駆動制御手段と、
該車体の上下振動を検出するための上下振動検出手段と、
この手段により検出した車体上下振動から、車体上下振動の出方に影響を及ぼす車両諸元の変化量を演算するための車両諸元変化量演算手段とを具備してなることを特徴とする電気自動車の車両諸元変化量演算装置。
In an electric vehicle comprising a front wheel and a rear wheel suspended from a vehicle body via a suspension device, and driving the front and rear wheels independently of each other,
Motor drive control means for generating vertical vibrations for generating vertical vibrations in the vehicle body by driving at least one of the front wheels and rear wheels back and forth with the contact point of the other wheel as a reaction force;
Vertical vibration detection means for detecting vertical vibration of the vehicle body;
And a vehicle specification change amount calculating means for calculating a change amount of the vehicle specification affecting the way of the vehicle vertical vibration from the vehicle vertical vibration detected by the means. A vehicle specification change calculation device for automobiles.
請求項1に記載の車両諸元変化量演算装置において、
前記上下振動発生用モータ駆動制御手段が、前輪および後輪を同位相で相互逆向きに前後駆動することにより、車体に上下振動を発生させるものであり、
前記車両諸元変化量演算手段は、該車体上下振動の伝達特性から車重変化量を演算するものであることを特徴とする電気自動車の車両諸元変化量演算装置。
In the vehicle specification change amount calculation device according to claim 1,
The motor drive control means for generating vertical vibrations generates vertical vibrations in the vehicle body by driving the front wheels and rear wheels back and forth in opposite directions in the same phase,
The vehicle specification change amount calculation device for an electric vehicle, wherein the vehicle specification change amount calculation means calculates a vehicle weight change amount from a transmission characteristic of the vertical vibration of the vehicle body.
請求項2に記載の車両諸元変化量演算装置において、
前記上下振動発生用モータ駆動制御手段は、順次周波数が変化するよう車体を上下振動させるものであり、
前記車両諸元変化量演算手段は、該車体上下振動のゲインがピークになった時のピークゲイン周波数と、基準車両重量のもとで予め求めておいたピークゲイン周波数との差から車重変化量を演算するものであることを特徴とする電気自動車の車両諸元変化量演算装置。
In the vehicle specification change amount calculation device according to claim 2,
The vertical vibration generating motor drive control means vibrates the vehicle body so that the frequency changes sequentially,
The vehicle specification change amount calculation means calculates a vehicle weight change based on a difference between a peak gain frequency when the vehicle body vertical vibration gain reaches a peak and a peak gain frequency obtained in advance based on a reference vehicle weight. A vehicle specification change amount calculation device for an electric vehicle, characterized in that the amount is calculated.
請求項1に記載の車両諸元変化量演算装置において、
前記上下振動発生用モータ駆動制御手段が、前輪および後輪の一方を制動した状態で他方の車輪を前後駆動することにより、車体に上下振動を発生させるものであり、
前記車両諸元変化量演算手段は、該車体上下振動の大きさと、基準前後重量配分のもと前記上下振動発生用モータ駆動制御手段により発生させて予め求めておいた車体上下振動の大きさとの対比により、車両前後重量配分の変化量を演算するものであることを特徴とする電気自動車の車両諸元変化量演算装置。
In the vehicle specification change amount calculation device according to claim 1,
The vertical vibration generating motor drive control means generates vertical vibration in the vehicle body by driving the other wheel back and forth while braking one of the front wheels and the rear wheels,
The vehicle specification change amount calculating means calculates the magnitude of the vertical vibration of the vehicle body and the magnitude of the vertical vibration of the vehicle body that has been obtained in advance by the motor drive control means for generating vertical vibrations based on the reference front-rear weight distribution. A vehicle specification change amount calculation device for an electric vehicle, characterized in that the change amount of the vehicle front-rear weight distribution is calculated by comparison.
請求項1〜4のいずれか1項に記載の車両諸元変化量演算装置において、
前記車両諸元変化量の演算に先立ち、サスペンション装置の不均一なストロークに起因した車体の傾斜が解消されるよう前輪および後輪を同位相で相互逆向きに前後駆動するよう構成したことを特徴とする電気自動車の車両諸元変化量演算装置。
In the vehicle specification change amount calculation device according to any one of claims 1 to 4,
Prior to the calculation of the vehicle specification change amount, the front wheels and the rear wheels are driven back and forth in opposite phases in the same phase so that the inclination of the vehicle body caused by the uneven stroke of the suspension device is eliminated. A vehicle specification change calculation device for an electric vehicle.
JP2003407285A 2003-12-05 2003-12-05 Device for calculating vehicular item variations of electric vehicle Pending JP2005168260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407285A JP2005168260A (en) 2003-12-05 2003-12-05 Device for calculating vehicular item variations of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407285A JP2005168260A (en) 2003-12-05 2003-12-05 Device for calculating vehicular item variations of electric vehicle

Publications (1)

Publication Number Publication Date
JP2005168260A true JP2005168260A (en) 2005-06-23

Family

ID=34729380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407285A Pending JP2005168260A (en) 2003-12-05 2003-12-05 Device for calculating vehicular item variations of electric vehicle

Country Status (1)

Country Link
JP (1) JP2005168260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081684A (en) * 2008-09-24 2010-04-08 Toyota Industries Corp Pitching suppression device of industrial vehicle
JP2012051425A (en) * 2010-08-31 2012-03-15 Advics Co Ltd Vehicle weight estimating device and operation control device of vehicle
JPWO2015060319A1 (en) * 2013-10-23 2017-03-09 国立大学法人東京海洋大学 Load weight detector
JP2020091123A (en) * 2018-12-03 2020-06-11 住友ゴム工業株式会社 Display method, evaluation method, and graph for displaying equivalent cornering coefficient of vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081684A (en) * 2008-09-24 2010-04-08 Toyota Industries Corp Pitching suppression device of industrial vehicle
JP2012051425A (en) * 2010-08-31 2012-03-15 Advics Co Ltd Vehicle weight estimating device and operation control device of vehicle
JPWO2015060319A1 (en) * 2013-10-23 2017-03-09 国立大学法人東京海洋大学 Load weight detector
JP2020091123A (en) * 2018-12-03 2020-06-11 住友ゴム工業株式会社 Display method, evaluation method, and graph for displaying equivalent cornering coefficient of vehicle
JP7271924B2 (en) 2018-12-03 2023-05-12 住友ゴム工業株式会社 Display method, evaluation method and graph for displaying equivalent cornering coefficient of vehicle

Similar Documents

Publication Publication Date Title
US10046643B2 (en) Braking force control apparatus for a vehicle
US9233689B2 (en) Vehicle braking/driving force control apparatus
JP6252455B2 (en) Vehicle control device
JP4515201B2 (en) Vehicle stabilization control system
US9120469B2 (en) Vehicle behavior control apparatus
JP5488203B2 (en) Vehicle vibration suppression control device
KR101509600B1 (en) Motor Type Actuator Active Damping System
JP5880887B2 (en) Vehicle braking / driving force control device
WO2003095261A1 (en) Method and device for controlling vehicle
JP4911111B2 (en) Vehicle control device
US9227637B2 (en) Vehicle braking/driving force control apparatus
JP2006060936A (en) Vehicle behavior control system
JP2009273275A (en) Controller for vehicle
JP5652053B2 (en) Vehicle vibration estimation device and vehicle system vibration control device using the same
US20130166165A1 (en) Vehicle body vibration damping control device
JP2012030760A (en) Braking/driving force control device of vehicle
US20170106755A1 (en) Vehicle control apparatus
JP4754766B2 (en) Vehicle control method and vehicle control apparatus
CN111231940B (en) Vehicle motion control system
JP2009173089A (en) Control device for vehicle
JP6299572B2 (en) Vehicle control device
JP2005168260A (en) Device for calculating vehicular item variations of electric vehicle
JP6569462B2 (en) Vehicle control device
CN113085468A (en) Stability system for vehicle, control unit and method thereof
JP2007137107A (en) Driving/braking force controller for vehicle