JP2005167510A - Temperature compensation piezoelectric oscillator - Google Patents

Temperature compensation piezoelectric oscillator Download PDF

Info

Publication number
JP2005167510A
JP2005167510A JP2003402098A JP2003402098A JP2005167510A JP 2005167510 A JP2005167510 A JP 2005167510A JP 2003402098 A JP2003402098 A JP 2003402098A JP 2003402098 A JP2003402098 A JP 2003402098A JP 2005167510 A JP2005167510 A JP 2005167510A
Authority
JP
Japan
Prior art keywords
temperature
voltage
compensation
low
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003402098A
Other languages
Japanese (ja)
Other versions
JP4314982B2 (en
Inventor
Masayuki Ishikawa
匡亨 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003402098A priority Critical patent/JP4314982B2/en
Publication of JP2005167510A publication Critical patent/JP2005167510A/en
Application granted granted Critical
Publication of JP4314982B2 publication Critical patent/JP4314982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature compensation piezoelectric oscillator by avoiding a temperature compensation voltage from being a voltage at a minimum capacitance (Cmin) so as to suppress variations in a load capacitance at a high temperature in order to avoid an unstable region caused around the minimum capacitance in C-V characteristics of a MOS varactor. <P>SOLUTION: The temperature compensation piezoelectric oscillator 100 is configured to include an oscillation circuit 12 and a frequency temperature compensation circuit 1, and the frequency temperature compensation circuit 1 is configured to include: a temperature detection section 3 whose parameter changes with ambient temperature; a temperature compensation voltage generating circuit (temperature compensation voltage generating section) 2 for generating voltages on the basis of the changed parameter of the temperature detection section 3; MOS capacitive elements MH 10, ML 11 whose capacitance is changed with a voltage difference between temperature compensation voltages (VH, VL) generated from the temperature compensation voltage generating circuit 2 and a reference voltage (Vref): clip voltage generating circuits (clip voltage generating means) 4, 5 for clipping the temperature compensation voltages to be a prescribed voltage; DC block capacitors 7, 9; and fixed resistors 6, 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特にMOS容量素子を使用して温度補償を行う圧電発振器において、MOS容量素子のC−V特性における不安定領域を回避する回路構成に関するものである。   The present invention relates to a piezoelectric oscillator using a piezoelectric vibrator such as a crystal vibrator, and in particular, in a piezoelectric oscillator that performs temperature compensation using a MOS capacitive element, avoids an unstable region in the CV characteristics of the MOS capacitive element. The present invention relates to a circuit configuration.

近年、水晶振動子等の圧電振動子に対して発振回路、温度補償回路等を付加した圧電発振器では周波数安定度は勿論のこと、小型化、低価格化等の要求が厳しく要求されている。圧電発振器の出力周波数は種々の要因で変化するが、比較的周波数の安定度が高い水晶発振器においても、周囲温度、電源電圧及び出力負荷等の条件変化による周波数変動があり、これ等に対応する手段は種々のものが提案されている。例えば温度変化に関しては水晶発振器に温度補償回路を付加し、この温度補償水晶発振器(以下、TCXOと記す)の発振ループの負荷容量を変化させて、水晶振動子固有の温度−周波数特性変動を相殺するように前記負荷容量を温度変化に対して制御するものがあり、大きく分けて直接温度補償方式、間接温度補償方式及びデジタル型補償方式の3つの補償方法がある。
特に、間接温度補償方式としてMOS型バラクタを用いて温度補償回路を構成しているものがあり、このMOS型バラクタには幾つかの構造が存在する。例えば、アキュムレーション型やPチャントランジスタ型等があげられる。Pチャントランジスタ型のMOS型バラクタを用いる方法について、同一出願人から、特願2003−287153として出願されている。
図6は従来のMOS型バラクタを用いた温度補償回路の一例を示す図である。これは、低温補償用MOS型バラクタML43と、高温補償用MOS型バラクタMH46を用い、MOS型バラクタの両端には一方に基準電圧Vref、他方に制御電圧VL、VHが抵抗44、41、45を介して印加される。このような構成にすることで、水晶振動子の3次の温度特性を補償するために、温度に対する3次の容量変化を得ている。またこのようなMOS型バラクタを用いた構成の間接温度補償方式においては、補償電圧VL、VHがリニア変化させることが可能な点が大きな特徴である。
特願2003−287153
In recent years, a piezoelectric oscillator in which an oscillation circuit, a temperature compensation circuit, and the like are added to a piezoelectric vibrator such as a crystal vibrator has been strictly demanded not only for frequency stability but also for miniaturization and cost reduction. The output frequency of a piezoelectric oscillator changes due to various factors. Even in a crystal oscillator with relatively high frequency stability, there are frequency fluctuations due to changes in conditions such as ambient temperature, power supply voltage, and output load. Various means have been proposed. For example, with regard to temperature changes, a temperature compensation circuit is added to the crystal oscillator, and the load capacity of the oscillation loop of this temperature compensated crystal oscillator (hereinafter referred to as TCXO) is changed to cancel the temperature-frequency characteristic variation inherent in the crystal oscillator. As described above, there is one that controls the load capacity with respect to a temperature change, and there are roughly three compensation methods: a direct temperature compensation method, an indirect temperature compensation method, and a digital compensation method.
In particular, as an indirect temperature compensation method, there is one in which a temperature compensation circuit is configured using a MOS varactor, and there are several structures in this MOS varactor. For example, an accumulation type, a P-channel transistor type, or the like can be given. A method using a P-channel transistor type MOS varactor has been filed as Japanese Patent Application No. 2003-287153 from the same applicant.
FIG. 6 is a diagram showing an example of a temperature compensation circuit using a conventional MOS varactor. This uses a low-temperature compensation MOS type varactor ML43 and a high-temperature compensation MOS type varactor MH46. The MOS type varactor has resistances 44, 41, 45 at one end and a control voltage VL, VH at the other end. Applied. With such a configuration, a third-order capacitance change with respect to temperature is obtained in order to compensate for the third-order temperature characteristics of the crystal resonator. In addition, the indirect temperature compensation method using such a MOS varactor is characterized in that the compensation voltages VL and VH can be linearly changed.
Japanese Patent Application No. 2003-287153

しかしながらアキュムレーション型の場合、その構造的な理由から図7に示すようにMOS型バラクタに印加する電位差と容量の関係(以下、C−V特性と記す)40におけるCmin付近(A部)が、電圧印加後に安定するまで時間がかかるといった問題があった。このCmin付近は間接温度補償方式において、高温補償回路の常温付近で使用するため、Cminの不安定さは発振器の常温時の周波数安定に影響を及ぼす。即ち、Cmin付近は電圧印加時の安定時間が遅いことから、発振器としての周波数起動時間に影響を与えることになり、高速起動を要求される現在の仕様を満足できない場合がある。
また、特許文献1はPチャントランジスタのソース及びドレイン領域に形成されたP型引出し電極と、N−Well領域に形成されたN型引出し電極との間にバイアスをかけることによりC−V特性における容量最小値(Cmin)付近の不安定領域を回避するものであり、新たに半導体プロセスの開発が必要となり、開発コストと多大な開発時間を要するといった問題がある。
本発明は、かかる課題に鑑み、MOS型バラクタのC−V特性における容量最小値(Cmin)付近の不安定領域を回避するために、温度補償電圧が容量最小値のときの電位差にならないようにして、高温時の負荷容量変動を抑制した温度補償型圧電発振器を提供することを目的する。
また他の目的は、従来のアキュムレーション型MOS型バラクタの課題を外部の回路構成により解決することにより、新たな半導体プロセスの開発の必要がなくなり、開発費の大幅な削減を行うことである。
However, in the case of the accumulation type, the relationship between the potential difference applied to the MOS type varactor and the capacitance (hereinafter referred to as CV characteristic) 40 as shown in FIG. There is a problem that it takes time to stabilize after application. Since the vicinity of Cmin is used near the room temperature of the high-temperature compensation circuit in the indirect temperature compensation method, the instability of Cmin affects the frequency stability of the oscillator at room temperature. That is, in the vicinity of Cmin, the stabilization time at the time of voltage application is slow, which affects the frequency startup time as an oscillator, and may not satisfy the current specifications required for high-speed startup.
Patent Document 1 discloses a CV characteristic in which a bias is applied between a P-type extraction electrode formed in a source and drain region of a P-channel transistor and an N-type extraction electrode formed in an N-Well region. This avoids an unstable region near the minimum capacitance value (Cmin), necessitating the development of a new semiconductor process, and has the problem of requiring development costs and a great deal of development time.
In view of such a problem, the present invention avoids a potential difference when the temperature compensation voltage is the minimum capacitance value in order to avoid an unstable region near the minimum capacitance value (Cmin) in the CV characteristic of the MOS varactor. An object of the present invention is to provide a temperature-compensated piezoelectric oscillator that suppresses load capacity fluctuation at high temperatures.
Another object is to solve the problem of the conventional accumulation-type MOS varactor with an external circuit configuration, thereby eliminating the need for development of a new semiconductor process and greatly reducing development costs.

本発明はかかる課題を解決するために、請求項1は、所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた圧電発振器であって、前記周波数温度補償回路は、周囲温度によりパラメータが変化する温度検出部と、該温度検出部により変化したパラメータに基づいて電圧を発生する温度補償用電圧発生部と、該温度補償用電圧発生部により発生された温度補償用電圧と基準電圧の電位差に基づいて容量が変化する複数のMOS容量素子と、前記温度補償用電圧を所定の電圧にクリップする複数のクリップ電圧発生手段とを備えたことを特徴とする。
基本的に温度補償回路は、周囲温度を検出する温度検出部と、例えば温度検出部がサーミスタにより構成されていれば、抵抗分圧により電圧変化として取り出し、その電圧変化に基づいて電圧を発生する温度補償用電圧発生部と、その電圧と基準電圧との電位差により3次の容量特性を有するMOS容量素子により構成される。しかし、MOS容量素子は低電位側での容量値が不安定になる特性があり、この不安定さが周波数変動の要因となっていた。そこで本発明では、さらにクリップ電圧発生手段を備え、MOS容量素子の容量値が不安定になる電位にならないように、温度により直線的に変化する温度補償用電圧発生部の出力を常温近傍でクリップして一定電位以下にならないようにしたものである。
かかる発明によれば、温度補償回路に更にクリップ電圧発生手段を備え、温度により直線的に変化する温度補償用電圧発生部の出力を常温近傍でクリップするので、MOS容量素子の容量値が不安定になる領域を回避して、高温側での周波数の安定度を更に高めることができる。
なお、本明細書において、圧電素子とは、圧電基板の主面に励振電極、リード端子を形成した素子を指称し、圧電振動子とは、この圧電素子自体、或いは圧電素子を気密封止した電子部品を指称する。
In order to solve the above problems, the present invention provides a piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency, an oscillation amplifier that excites the piezoelectric element by passing a current, and a temperature change. A frequency oscillator circuit comprising a frequency temperature compensation circuit that compensates for a change in oscillation frequency due to a temperature detection unit, wherein the frequency temperature compensation circuit includes a temperature detection unit whose parameter changes according to an ambient temperature, and a parameter that is changed by the temperature detection unit A temperature compensation voltage generator that generates a voltage based on the plurality of MOS capacitance elements whose capacitance changes based on a potential difference between the temperature compensation voltage generated by the temperature compensation voltage generator and a reference voltage; and And a plurality of clip voltage generating means for clipping the temperature compensation voltage to a predetermined voltage.
Basically, the temperature compensation circuit, if the temperature detection unit configured to detect the ambient temperature and, for example, the thermistor is constituted by a thermistor, takes out as a voltage change by resistance voltage division and generates a voltage based on the voltage change. The temperature compensation voltage generator is composed of a MOS capacitance element having a third-order capacitance characteristic due to a potential difference between the voltage and a reference voltage. However, the MOS capacitance element has a characteristic that the capacitance value on the low potential side becomes unstable, and this instability is a factor of frequency fluctuation. Therefore, the present invention further includes clip voltage generation means for clipping the output of the temperature compensation voltage generator that varies linearly with temperature so that the capacitance value of the MOS capacitor does not become unstable. As a result, the potential does not fall below a certain potential.
According to this invention, the temperature compensation circuit is further provided with the clipping voltage generation means, and the output of the temperature compensation voltage generator that changes linearly with the temperature is clipped near the normal temperature, so that the capacitance value of the MOS capacitor element is unstable. Thus, the frequency stability on the high temperature side can be further increased.
In this specification, the piezoelectric element refers to an element in which excitation electrodes and lead terminals are formed on the main surface of the piezoelectric substrate, and the piezoelectric vibrator refers to the piezoelectric element itself or the piezoelectric element hermetically sealed. An electronic component is designated.

請求項2は、前記温度補償用電圧発生部は、所定の電位を有する基準電圧を発生する基準制御電圧発生部と、前記圧電素子の温度特性の常温を中心として低温側の温度特性を補償する電圧を発生する低温制御電圧発生部と、高温側の温度特性を補償する電圧を発生する高温制御電圧発生部と、を備え、前記クリップ電圧発生手段は、前記低温制御電圧発生部及び高温制御電圧発生部の各出力を、前記MOS容量素子のC−V特性における低容量値領域の電位差以下にならないようにクリップすることを特徴とする。
基本的に温度補償回路は、周囲温度を検出する温度検出部と、例えば温度検出部がサーミスタにより構成されていれば、抵抗分圧により電圧変化として取り出し、その電圧変化に基づいて常温より低い温度範囲で電圧が上昇するように制御する低温制御電圧発生部と、逆に常温より高い温度範囲で電圧が上昇するように制御する高温制御電圧発生部とがある。そして、本発明ではクリップ電圧発生手段により、これらの出力が温度変化により直線的に変化する特性を、常温近傍で所定の電圧以下にならないようにクリップすることにより、特に、高温制御電圧発生部の電圧が低温側で一定電圧として、MOS容量素子のC−V特性における低容量値領域の不安定領域を回避することができる。
かかる発明によれば、クリップ電圧発生手段は、低温制御電圧発生部及び高温制御電圧発生部の各出力を、MOS容量素子のC−V特性における低容量値領域の電位差以下にならないようにクリップするので、MOS容量素子の低容量値領域での電位変化に対する容量値の不安定さを回避することができる。
請求項3は、前記クリップ電圧発生手段は、前記低温制御電圧発生部及び高温制御電圧発生部の各出力を、常温近傍を中心として高温側及び低温側に亘って前記基準電圧との電位差が所定の一定電圧になるように制御することを特徴とする。
例えば、クリップ電圧発生手段がない場合、低温制御電圧発生部の電圧は低温側から直線的に降下する電圧であり、高温制御電圧発生部の電圧は逆に高温側から直線的に上昇する電圧であり、ほぼ常温で交差する。このままの電圧をMOS容量素子に印加すると、特に高温制御電圧発生部の電圧が低くなる低温側で、MOS容量素子の容量値が不安定となり、結果的に高温側での周波数が不安定となる。
かかる発明によれば、クリップ電圧発生手段は、低温制御電圧発生部及び高温制御電圧発生部の各出力を、常温近傍を中心として高温側及び低温側に亘って基準電圧との電位差が所定の一定電圧になるように制御するので、MOS容量素子の容量値が不安定となる電位を避けて、結果的に高温側での周波数を更に安定にすることができる。
According to a second aspect of the present invention, the temperature compensation voltage generator compensates a temperature characteristic on a low temperature side centering on a room temperature of the temperature characteristic of the piezoelectric element, and a reference control voltage generator that generates a reference voltage having a predetermined potential. A low temperature control voltage generator that generates a voltage, and a high temperature control voltage generator that generates a voltage that compensates for temperature characteristics on the high temperature side, and the clip voltage generator includes the low temperature control voltage generator and the high temperature control voltage. Each output of the generation unit is clipped so as not to be equal to or less than a potential difference in a low capacitance value region in the CV characteristic of the MOS capacitance element.
Basically, if the temperature compensation circuit is composed of a thermistor and a temperature detector that detects the ambient temperature, for example, a temperature change is extracted as a voltage change by resistance voltage division, and a temperature lower than normal temperature based on the voltage change. There are a low temperature control voltage generator that controls the voltage to rise in a range, and a high temperature control voltage generator that controls the voltage to rise in a temperature range higher than room temperature. In the present invention, the clip voltage generating means clips the characteristic that these outputs change linearly with a temperature change so that it does not become a predetermined voltage or less near room temperature. It is possible to avoid an unstable region in a low capacitance value region in the CV characteristics of the MOS capacitor element by setting the voltage to a constant voltage on the low temperature side.
According to this invention, the clip voltage generating means clips the outputs of the low temperature control voltage generator and the high temperature control voltage generator so as not to be less than the potential difference of the low capacitance value region in the CV characteristic of the MOS capacitor. Therefore, instability of the capacitance value with respect to potential change in the low capacitance value region of the MOS capacitance element can be avoided.
According to a third aspect of the present invention, the clip voltage generating means has a predetermined potential difference from the reference voltage over the high temperature side and the low temperature side around the normal temperature around each output of the low temperature control voltage generation unit and the high temperature control voltage generation unit. It is controlled to become a constant voltage of.
For example, when there is no clip voltage generation means, the voltage of the low temperature control voltage generator is a voltage that drops linearly from the low temperature side, and the voltage of the high temperature control voltage generator is a voltage that increases linearly from the high temperature side. Yes, cross at almost normal temperature. If this voltage is applied to the MOS capacitor element, the capacitance value of the MOS capacitor element becomes unstable, particularly on the low temperature side where the voltage of the high temperature control voltage generator is lowered, and as a result, the frequency on the high temperature side becomes unstable. .
According to this invention, the clip voltage generating means is configured such that each of the outputs of the low temperature control voltage generation unit and the high temperature control voltage generation unit has a predetermined constant potential difference from the reference voltage over the high temperature side and the low temperature side centered around the normal temperature. Since the voltage is controlled to be a voltage, a potential at which the capacitance value of the MOS capacitance element becomes unstable can be avoided, and as a result, the frequency on the high temperature side can be further stabilized.

請求項4は、前記クリップ電圧発生手段は、クリップ電圧を発生するクリップ電圧発生源と、ダイオードとを備え、前記クリップ電圧発生源の電圧値を任意に設定可能としたことを特徴とする。
クリップ電圧発生手段の一例として、クリップ電圧発生源とダイオードのアノードを接続し、そのカソード側を低温制御電圧発生部及び高温制御電圧発生部の各出力に接続する。この回路構成により制御電圧がクリップ電圧より高い場合は、逆バイアスとして働いて制御電圧がそのまま出力されるが、制御電圧がクリップ電圧より低くなると、順バイアスとなりクリップ電圧がそのまま出力される。従って、クリップ電圧を任意に設定できるようにしておけば、各種の電圧でクリップ電圧を設定することができる。
かかる発明によれば、クリップ電圧発生手段は、クリップ電圧発生源の電圧値を任意に設定可能としたので、各種の電圧でクリップ電圧を設定することができる。
請求項5は、前記複数のMOS容量素子は、前記圧電素子の温度特性の常温を中心として低温側の温度特性を補償する低温部補償用MOS容量素子と、高温側の温度特性を補償する高温部補償用MOS容量素子であり、前記低温部補償用MOS容量素子は前記常温近傍及びそれ以下の温度において、前記圧電発振器の負荷容量が減少するように前記温度補償用電圧発生手段により制御されると共に、前記高温部補償用MOS容量素子は前記常温近傍及びそれ以上の温度において、前記圧電発振器の負荷容量が増加するように前記温度補償用電圧発生手段により制御されることを特徴とする。
MOS容量素子の特性は、印加電圧の上昇と共に非線形に容量値が増加する特性を持っている。従って、常温を基準として低温側に対しては温度が低下すると出力電圧が上昇し、高温側に対しては温度が上昇すると出力電圧が上昇するようにして、その電圧をMOS容量素子に印加すれば、常温を基準として温度が低下すれば容量が減少して周波数を高めるように働き、逆に常温を基準として温度が上昇すれば容量が増加して周波数を低めるように働く。
かかる発明によれば、MOS容量素子を周波数温度補償回路に組み込むことにより、温度変化を電圧変化として可変容量素子に印加するので、水晶振動子の温度特性をより細かく補償することができる。
According to a fourth aspect of the present invention, the clip voltage generation means includes a clip voltage generation source that generates a clip voltage and a diode, and the voltage value of the clip voltage generation source can be arbitrarily set.
As an example of the clip voltage generation means, a clip voltage generation source and an anode of a diode are connected, and the cathode side is connected to each output of a low temperature control voltage generation unit and a high temperature control voltage generation unit. With this circuit configuration, when the control voltage is higher than the clip voltage, the control voltage is output as it is as a reverse bias, but when the control voltage is lower than the clip voltage, it becomes a forward bias and the clip voltage is output as it is. Therefore, if the clip voltage can be arbitrarily set, the clip voltage can be set with various voltages.
According to this invention, since the clip voltage generation means can arbitrarily set the voltage value of the clip voltage generation source, the clip voltage can be set with various voltages.
According to a fifth aspect of the present invention, the plurality of MOS capacitance elements include a low temperature portion compensation MOS capacitance element that compensates for a low temperature temperature characteristic centered on a normal temperature characteristic of the piezoelectric element, and a high temperature temperature compensation for the high temperature temperature characteristic. The low-temperature portion compensation MOS capacitance element is controlled by the temperature compensation voltage generation means so that the load capacitance of the piezoelectric oscillator is reduced near the room temperature and below. In addition, the high temperature compensation MOS capacitor is controlled by the temperature compensation voltage generating means so that the load capacity of the piezoelectric oscillator is increased near the room temperature and above.
The characteristic of the MOS capacitor element has a characteristic that the capacitance value increases nonlinearly as the applied voltage increases. Therefore, the output voltage rises when the temperature falls on the low temperature side with respect to the normal temperature, and the output voltage rises when the temperature rises on the high temperature side, and this voltage is applied to the MOS capacitor element. For example, if the temperature decreases with the normal temperature as a reference, the capacity decreases and the frequency is increased. Conversely, if the temperature increases with the normal temperature as a reference, the capacity increases and the frequency is decreased.
According to this invention, by incorporating the MOS capacitance element into the frequency temperature compensation circuit, the temperature change is applied as a voltage change to the variable capacitance element, so that the temperature characteristics of the crystal resonator can be compensated more finely.

請求項6は、前記低温部補償用MOS容量素子と前記高温部補償用MOS容量素子とを極性を異なるように並列接続した並列回路を、前記発振器の発振ループに挿入し、前記低温部補償用MOS容量素子と高温部補償用MOS容量素子との接続点に前記基準制御電圧発生部の出力端を抵抗を介して接続し、前記低温部補償用MOS容量素子の他端に前記低温制御電圧発生部の出力端と前記クリップ電圧発生手段とを抵抗を介して接続すると共に、前記高温部補償用MOS容量素子の他端に前記高温制御電圧発生部の出力端と前記クリップ電圧発生手段とを抵抗を介して接続することを特徴とする。
温度補償の基本は、発振ループ内にMOS容量素子を挿入し、そのMOS容量素子の素子容量が温度によって変化するようにし、その容量変化が発振ループの負荷容量の一部として働くようにすることである。本発明のMOS容量素子は、低温側を補償するものと、高温側を補償するものを2つ用意して、夫々の極性を逆にして並列に接続すると共に、夫々の端子に抵抗を介してクリップ電圧発生手段を接続するものである。
かかる発明によれば、MOS容量素子に低温側を補償するものと、高温側を補償するものを2つ用意して、夫々の極性を逆にして並列に接続すると共に、夫々の端子に抵抗を介してクリップ電圧発生手段を接続するので、低温側と高温側の制御電圧を常温を基準として対照的に構成することができるばかりでなく、常温を中心として低温側及び高温側の電圧を一定とすることができる。
請求項7は、前記低温部補償用MOS容量素子と前記高温部補償用MOS容量素子とを極性を異なるように並列接続した並列回路の何れか一方のMOS容量素子に直列に容量素子を接続し、前記低温制御電圧発生部の出力電圧と前記高温制御電圧発生部の出力電圧を直流的に分離することを特徴とする。
低温側と高温側何れかのMOS容量素子に直列に固定容量素子を接続することにより、高温側の電圧と低温側の電圧を直流的にカットする役目を持たせることができる。
かかる発明によれば、基準電圧に対して低温側と高温側の電圧を直流的にカットして個別に印加できるので、温度変化に対して正確な制御電圧を印加することができる。
According to a sixth aspect of the present invention, a parallel circuit in which the low-temperature portion compensation MOS capacitor element and the high-temperature portion compensation MOS capacitor element are connected in parallel so as to have different polarities is inserted into an oscillation loop of the oscillator, An output terminal of the reference control voltage generator is connected to a connection point between the MOS capacitor element and the high-temperature part compensation MOS capacitor element via a resistor, and the low-temperature control voltage generator is generated at the other end of the low-temperature part compensation MOS capacitor element. And connecting the output terminal of the high-temperature control voltage generator and the clip voltage generator to the other end of the high-temperature compensation MOS capacitor element. It is characterized by connecting via.
The basics of temperature compensation are to insert a MOS capacitance element in the oscillation loop so that the capacitance of the MOS capacitance element changes with temperature, and the capacitance change works as part of the load capacitance of the oscillation loop. It is. The MOS capacitance element of the present invention is prepared with two devices that compensate for the low temperature side and one that compensates for the high temperature side, and the polarities are reversed and connected in parallel, and each terminal is connected via a resistor. A clip voltage generating means is connected.
According to this invention, two MOS capacitor elements that compensate for the low temperature side and two that compensate for the high temperature side are prepared and connected in parallel with their polarities reversed, and resistors are connected to the respective terminals. Since the clip voltage generating means is connected to the low voltage side, the control voltage on the low temperature side and the high temperature side can be configured in contrast to the normal temperature, and the low and high temperature voltages can be kept constant around the normal temperature. can do.
According to a seventh aspect of the present invention, a capacitor element is connected in series to one of the MOS capacitor elements in a parallel circuit in which the low-temperature portion compensation MOS capacitor element and the high-temperature portion compensation MOS capacitor element are connected in parallel with different polarities. The output voltage of the low temperature control voltage generator and the output voltage of the high temperature control voltage generator are separated in a DC manner.
By connecting a fixed capacitor element in series to either the low-temperature side or the high-temperature side MOS capacitor element, it is possible to serve to cut the high-temperature side voltage and the low-temperature side voltage in a DC manner.
According to this invention, since the low-temperature side voltage and the high-temperature side voltage can be cut and applied individually with respect to the reference voltage, an accurate control voltage can be applied to the temperature change.

以上記載のごとく請求項1の発明によれば、温度補償回路に更にクリップ電圧発生手段を備え、温度により直線的に変化する温度補償用電圧発生部の出力を常温近傍でクリップするので、MOS容量素子の容量値が不安定になる領域を回避して、高温側での周波数の安定度を更に高めることができる。
また請求項2では、クリップ電圧発生手段は、低温制御電圧発生部及び高温制御電圧発生部の各出力を、MOS容量素子のC−V特性における低容量値領域の電位差以下にならないようにクリップするので、MOS容量素子の低容量値領域での電位変化に対する容量値の不安定さを回避することができる。
また請求項3では、クリップ電圧発生手段は、低温制御電圧発生部及び高温制御電圧発生部の各出力を、常温近傍を中心として高温側及び低温側に亘って基準電圧との電位差が所定の一定電圧になるように制御するので、MOS容量素子の容量値が不安定となる電位を避けて、結果的に高温側での周波数を更に安定にすることができる。
また請求項4では、クリップ電圧発生手段は、クリップ電圧発生源の電圧値を任意に設定可能としたので、各種の電圧でクリップ電圧を設定することができる。
また請求項5では、MOS容量素子を周波数温度補償回路に組み込むことにより、温度変化を電圧変化として可変容量素子に印加するので、水晶振動子の温度特性をより細かく補償することができる。
また請求項6では、MOS容量素子に低温側を補償するものと、高温側を補償するものを2つ用意して、夫々の極性を逆にして並列に接続すると共に、夫々の端子に抵抗を介してクリップ電圧発生手段を接続するので、低温側と高温側の制御電圧を常温を基準として対照的に構成することができるばかりでなく、常温を中心として低温側及び高温側の電圧を一定とすることができる。
また請求項7では、基準電圧に対して低温側と高温側の電圧を直流的にカットして個別に印加できるので、温度変化に対して正確な制御電圧を印加することができる。
As described above, according to the first aspect of the present invention, the temperature compensation circuit is further provided with the clipping voltage generating means, and the output of the temperature compensating voltage generating section that changes linearly with temperature is clipped in the vicinity of the normal temperature. By avoiding the region where the capacitance value of the element becomes unstable, the stability of the frequency on the high temperature side can be further increased.
According to a second aspect of the present invention, the clip voltage generating means clips the outputs of the low temperature control voltage generator and the high temperature control voltage generator so as not to be less than the potential difference of the low capacitance value region in the CV characteristic of the MOS capacitor. Therefore, instability of the capacitance value with respect to potential change in the low capacitance value region of the MOS capacitance element can be avoided.
According to a third aspect of the present invention, the clip voltage generating means is configured such that each of the outputs of the low temperature control voltage generation unit and the high temperature control voltage generation unit has a predetermined constant potential difference from the reference voltage over the high temperature side and the low temperature side centered around the normal temperature. Since the voltage is controlled to be a voltage, a potential at which the capacitance value of the MOS capacitance element becomes unstable can be avoided, and as a result, the frequency on the high temperature side can be further stabilized.
According to the fourth aspect of the present invention, since the clip voltage generation means can arbitrarily set the voltage value of the clip voltage generation source, the clip voltage can be set with various voltages.
According to the fifth aspect of the present invention, since the temperature change is applied to the variable capacitance element as a voltage change by incorporating the MOS capacitance element in the frequency temperature compensation circuit, the temperature characteristics of the crystal resonator can be compensated more finely.
According to the sixth aspect of the present invention, two MOS capacitor elements, one for compensating the low temperature side and the other for compensating the high temperature side, are prepared and connected in parallel with their polarities reversed, and resistors are connected to the respective terminals. Since the clip voltage generating means is connected to the low voltage side, the control voltage on the low temperature side and the high temperature side can be configured in contrast to the normal temperature, and the low and high temperature voltages can be kept constant around the normal temperature. can do.
According to the seventh aspect of the present invention, since the low-temperature side voltage and the high-temperature side voltage can be individually applied by cutting them with respect to the reference voltage, an accurate control voltage can be applied to the temperature change.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
まず、本発明の実施形態を説明する前に、図4及び図5を参照して本発明の最も主となる技術原理について説明をしておく。図4(a)はMOS型バラクタのC−V特性を表す図である。この図から温度補償の原理を概略的に説明すると、MOS型バラクタのC−V特性50の立ち上がる領域(B領域)と立ち下がる領域(A領域)を利用して、それぞれ低温と高温の補償を行う構成である。図4(b)は図4(a)の特性を有するMOS型バラクタを使用したときの負荷容量と温度の関係(補償容量カーブ)を表す図である。低温領域Cは後述する低温部補償用のMOS型バラクタMLにより生成され、高温領域Dは後述する高温部補償用のMOS型バラクタMHにより生成され、その結果、水晶振動子の周波数を温度補償するための容量カーブ51の特性を得ることができる。即ち、低温用と高温用にそれぞれMOS型バラクタが必要となる。
図5(a)は高温補償電圧と温度との関係を示す図である。即ち、高温補償には図5(b)に示すようにMOS型バラクタのC−V特性の立ち上がりカーブ31における左側領域(使用領域)部分を利用するので、温度補償を必要としない低温及び常温近傍の温度領域では、VH33をリミッタ制御して一定電圧として、温度補償を必要とする高温領域に達した時、温度上昇に伴って電圧が上昇するようにVH33を制御し、これにより、Vref32とVH33が等しい(電位差=0)ところP点が補償温度の高温部になるようにする。尚、従来の補償電圧34は図5(a)に示す破線に示すように補償範囲外の温度領域であっても直線変化するものであった。この場合C−V特性のCmin部(図5(b)の29の領域)を広域に使用するため、先に延べた問題が発生していた。そこでこの問題解決するには図5(b)の30の領域だけを使用することが有用であり、そのために、図5(a)のQ点まで一定電圧になるように、電圧リミット機能(電圧クリップ機能)を設けた。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
First, before describing the embodiment of the present invention, the most principal technical principle of the present invention will be described with reference to FIG. 4 and FIG. FIG. 4A is a diagram illustrating the CV characteristics of the MOS varactor. From this figure, the principle of temperature compensation is schematically explained. Using the rising region (B region) and falling region (A region) of the CV characteristic 50 of the MOS varactor, low temperature compensation and high temperature compensation can be performed. It is the structure to perform. FIG. 4B is a diagram showing the relationship between the load capacity and temperature (compensation capacity curve) when the MOS varactor having the characteristics shown in FIG. 4A is used. The low temperature region C is generated by a MOS varactor ML for low temperature portion compensation described later, and the high temperature region D is generated by a MOS varactor MH for high temperature portion compensation described later. As a result, the frequency of the crystal resonator is temperature compensated. Therefore, it is possible to obtain the characteristic of the capacity curve 51 for the purpose. That is, MOS type varactors are required for low temperature and high temperature, respectively.
FIG. 5A shows the relationship between the high temperature compensation voltage and the temperature. That is, as shown in FIG. 5 (b), the left side region (use region) in the rising curve 31 of the CV characteristic of the MOS varactor is used for the high temperature compensation. In the temperature region, the VH 33 is controlled to be a constant voltage, and when reaching a high temperature region that requires temperature compensation, the VH 33 is controlled so that the voltage rises as the temperature rises, whereby Vref 32 and VH 33 are controlled. Are equal (potential difference = 0), the point P is set to a high temperature portion of the compensation temperature. The conventional compensation voltage 34 linearly changes even in the temperature region outside the compensation range, as shown by the broken line in FIG. In this case, since the Cmin part (29 area in FIG. 5B) of the CV characteristic is used in a wide area, the problem described above has occurred. Therefore, in order to solve this problem, it is useful to use only the region 30 in FIG. 5B. For this purpose, the voltage limit function (voltage) is used so that the voltage is constant up to the point Q in FIG. Clip function).

図1は本発明の温度補償型圧電発振器の部分構成を示すブロック図である。この温度補償型圧電発振器100は、大きく分けて所定の周波数で励振される圧電素子を備えた圧電振動子(水晶振動子)Xと、この圧電素子に電流を流して励振させる発振用増幅器からなる発振回路12と、温度変化による発振周波数の変化を補償する周波数温度補償回路1とを備えて構成される。尚、発振回路12は図ではコルピッツ発振回路であるが、他の発振回路でも構わない。
そして周波数温度補償回路1は、周囲温度によりパラメータが変化する温度検出部3と、この温度検出部3により変化したパラメータに基づいて電圧を発生する温度補償用電圧発生回路(温度補償用電圧発生部)2と、この温度補償用電圧発生回路2により発生された温度補償用電圧(VH、VL)と基準電圧(Vref)の電位差に基づいて容量が変化するMOS容量素子MH10、ML11と、温度補償用電圧を所定の電圧にクリップするクリップ電圧発生回路(クリップ電圧発生手段)4、5と、直流阻止用コンデンサ7、9と、固定抵抗6、8とを備えて構成されている。
そしてML(低温部補償用MOS容量素子)11の対向電極とコンデンサ7との接続点Pには抵抗6を介して低温制御電圧端子(以下、VLと記す)に接続され、さらにクリップ電圧発生回路4が接続されている。またコンデンサ7の他端はコンデンサ9を介して接地され、その接続中点QがMH(高温部補償用MOS容量素子)10の対向電極と接続され、且つ抵抗8を介して高温制御電圧端子(以下、VHと記す)に接続され、さらにクリップ電圧発生回路5が接続されている。また、MLとMHの対向電極同士を接続した接続中点Rを圧電振動子(水晶振動子)Xに接続すると共に、抵抗13を介してVrefに接続されている。尚、本実施形態のクリップ電圧発生回路4は、ダイオードDとクリップ電源Vcl1が直列に接続され、ダイオードDのカソードがVLに接続されている。またクリップ電圧発生回路5は、ダイオードDとクリップ電源Vcl2が直列に接続され、ダイオードDのカソードがVHに接続されている。更に、クリップ電源Vcl1、及びクリップ電源Vcl2は電圧が調整できるようになっている。
FIG. 1 is a block diagram showing a partial configuration of a temperature compensated piezoelectric oscillator according to the present invention. This temperature-compensated piezoelectric oscillator 100 is roughly composed of a piezoelectric vibrator (quartz crystal vibrator) X including a piezoelectric element excited at a predetermined frequency, and an oscillation amplifier that excites the piezoelectric element by passing a current. The oscillation circuit 12 and a frequency temperature compensation circuit 1 that compensates for a change in oscillation frequency due to a temperature change are provided. The oscillation circuit 12 is a Colpitts oscillation circuit in the figure, but may be another oscillation circuit.
The frequency temperature compensation circuit 1 includes a temperature detection unit 3 whose parameters change according to the ambient temperature, and a temperature compensation voltage generation circuit (temperature compensation voltage generation unit) that generates a voltage based on the parameters changed by the temperature detection unit 3. ) 2, MOS capacitance elements MH 10 and ML 11 whose capacitance changes based on the potential difference between the temperature compensation voltages (VH and VL) generated by the temperature compensation voltage generation circuit 2 and the reference voltage (Vref), and temperature compensation Clip voltage generating circuits (clip voltage generating means) 4 and 5 for clipping the operating voltage to a predetermined voltage, DC blocking capacitors 7 and 9, and fixed resistors 6 and 8.
A connection point P between the counter electrode of the ML (low-temperature portion compensation MOS capacitor) 11 and the capacitor 7 is connected to a low-temperature control voltage terminal (hereinafter referred to as VL) via a resistor 6, and further a clip voltage generation circuit. 4 is connected. The other end of the capacitor 7 is grounded via a capacitor 9, its connection midpoint Q is connected to a counter electrode of an MH (high temperature part compensation MOS capacitor element) 10, and a high temperature control voltage terminal ( (Hereinafter referred to as VH) and a clip voltage generation circuit 5 is further connected. In addition, a connection midpoint R where the counter electrodes of ML and MH are connected to each other is connected to a piezoelectric vibrator (quartz crystal vibrator) X and also connected to Vref via a resistor 13. In the clip voltage generation circuit 4 of the present embodiment, the diode D and the clip power supply Vcl1 are connected in series, and the cathode of the diode D is connected to VL. In the clip voltage generation circuit 5, the diode D and the clip power supply Vcl2 are connected in series, and the cathode of the diode D is connected to VH. Further, the voltage of the clip power supply Vcl1 and the clip power supply Vcl2 can be adjusted.

図2は本発明の補償電圧の温度特性を表す図である。縦軸は補償電圧を表し、横軸は周囲温度を表す。図1を参照しながら説明する。温度補償用電圧発生回路2から発生されるVrefは例えばプラスの一定の電圧21であり、抵抗13を介して接続点Rに供給する。接続点RはMLとMHの異なる極性同士が接続されているので、MLに対しては逆バイアスとなり、MHに対しては順バイアスとなる。その状態でまず電圧VL20の動作を温度が−40℃から+90℃まで連続して変化したとして説明する。VL20は−40℃のときVrefとの交点R’にあり、そのときのML11の容量は、ML11の端子間電圧が0Vであるときの所定の容量となる(図4(b)電位差0Vのときの容量)。そして温度が上昇するとVL20は直線的に低下し、それに伴ってML11の電位差が大きくなり容量が増加する。そして+25℃付近になると、クリップ電圧発生回路4のクリップ電圧Vcl1よりVLが低くなるので、クリップ電圧発生回路4のダイオードDが順バイアスとなり接続中点P’の電圧はクリップ電圧Vcl1の電圧となる。その後も温度が上昇するとVL20は更に低下するが、接続中点Pの電圧はクリップ電圧Vcl1によりクリップされて一定となる。   FIG. 2 is a graph showing temperature characteristics of the compensation voltage according to the present invention. The vertical axis represents the compensation voltage, and the horizontal axis represents the ambient temperature. This will be described with reference to FIG. Vref generated from the temperature compensation voltage generation circuit 2 is, for example, a positive constant voltage 21 and is supplied to the connection point R via the resistor 13. Since the connection point R is connected to different polarities of ML and MH, the connection point R is reverse-biased with respect to ML and forward-biased with respect to MH. In this state, the operation of the voltage VL20 will be described assuming that the temperature continuously changes from −40 ° C. to + 90 ° C. VL20 is at the intersection R ′ with Vref at −40 ° C., and the capacity of ML11 at that time is a predetermined capacity when the voltage between terminals of ML11 is 0 V (FIG. 4B, when the potential difference is 0V). Capacity). When the temperature rises, VL20 decreases linearly, and accordingly, the potential difference of ML11 increases and the capacity increases. At around + 25 ° C., since VL becomes lower than the clip voltage Vcl1 of the clip voltage generation circuit 4, the diode D of the clip voltage generation circuit 4 becomes forward biased, and the voltage at the connection midpoint P ′ becomes the voltage of the clip voltage Vcl1. . Thereafter, when the temperature rises, VL20 further decreases, but the voltage at the connection midpoint P is clipped by the clip voltage Vcl1 and becomes constant.

次に電圧VH22の動作を温度が+90℃から−40℃まで連続して変化したとして説明する。VH22は+90℃のときVrefとの交点Sにあり、そのときのMH10の容量はMH10の端子間電圧が0Vであるときの所定の容量となる(図4(b)電位差0Vの容量)。そして温度が低下するとVH22は直線的に低下し、それに伴ってMH10の電位差が大きくなり容量が減少する。そして+25℃付近になると、クリップ電圧発生回路5のクリップ電圧Vcl2よりVH22が低くなるので、クリップ電圧発生回路5のダイオードDが順バイアスとなり接続中点Qの電圧はクリップ電圧Vcl2の電圧となる。その後も温度が低下するとVH22は更に低下するが、接続中点Qの電圧はクリップ電圧Vcl2によりクリップされて一定となる。
尚、低温補償に関してはMOS型バラクタのC−V特性におけるCmax側を使用するので(図4(a)参照)、C−V特性の不安定領域(Cmin)による問題は発生しないが、本実施形態のようにVLもクリップさせることで、常温付近の電圧を不変のものにすることができる。即ち、従来ではMOS型バラクタのC−V特性における飽和領域では、VH、VLが変化しても容量が変わらない(=周波数が安定)ということで、図2の破線のような電圧(補償温度範囲外でも電圧変化する特性)を使用していた。しかし実際は素子固体間における特性バラツキによっては、常温付近でも大きく容量変化(感度をもっている)がおこるなど完全な飽和領域でない場合があったが、本発明に基づく温度補償型圧電発振器の場合では、温度補償範囲外に対してMOS型バラクタの固体間の特性のバラツキ等による負荷容量の不要な変動を防止することができるので、特に常温近傍における周波数の安定度が優れたものとなる。またさらに、TCXOとして温度補償する時、従来ではVH、VL電圧に関しては図3(a)のように電圧オフセット調整や図3(b)のようにGain調整を行うため、常温付近(A領域、B領域)の電圧が変化してしまう。この時、容量値が変化しなければ問題ないが、VL25、29、VH26、30が変化してしまう。従って、基準となる常温の周波数が温度補償することでずれてしまう結果となり、非常に温度補償しにくい状態が発生していた。そこで本実施形態では、クリップ電圧発生回路4、5を設けることにより、常温付近の電圧をクリップして一定な値とするため、容量(周波数)的に安定するので、基準周波数を不要に変動させることなく上述した電圧オフセットやゲイン調整を行うことができる。
Next, the operation of the voltage VH22 will be described on the assumption that the temperature has continuously changed from + 90 ° C. to −40 ° C. VH22 is at the intersection S with Vref at + 90 ° C., and the capacity of MH10 at that time is a predetermined capacity when the voltage between the terminals of MH10 is 0 V (FIG. 4B, the capacity of potential difference 0V). When the temperature decreases, VH22 decreases linearly, and accordingly, the potential difference of MH10 increases and the capacity decreases. At around + 25 ° C., VH22 becomes lower than the clip voltage Vcl2 of the clip voltage generation circuit 5, so that the diode D of the clip voltage generation circuit 5 becomes forward biased and the voltage at the connection midpoint Q becomes the voltage of the clip voltage Vcl2. After that, when the temperature decreases, VH22 further decreases, but the voltage at the midpoint of connection Q is clipped by the clip voltage Vcl2 and becomes constant.
For low temperature compensation, since the Cmax side in the CV characteristic of the MOS varactor is used (see FIG. 4A), there is no problem due to the unstable region (Cmin) of the CV characteristic. By clipping the VL as in the form, the voltage near the normal temperature can be made unchanged. That is, in the conventional case, in the saturation region of the C-V characteristics of the MOS varactor, the capacitance does not change (= the frequency is stable) even if VH and VL change. (Characteristic that changes voltage even when out of range). However, in reality, depending on the characteristic variation between element solids, there was a case where it was not a complete saturation region such as a large capacitance change (having sensitivity) even near room temperature, but in the case of the temperature compensated piezoelectric oscillator according to the present invention, the temperature Unnecessary fluctuations in the load capacity due to variations in characteristics between the solids of the MOS type varactor can be prevented with respect to outside the compensation range, so that the frequency stability is excellent particularly in the vicinity of room temperature. Furthermore, when temperature compensation is performed as TCXO, conventionally, with respect to the VH and VL voltages, voltage offset adjustment as shown in FIG. 3A and gain adjustment as shown in FIG. The voltage in the (B region) changes. At this time, if the capacitance value does not change, there is no problem, but VL25, 29, VH26, 30 will change. Therefore, the room temperature frequency used as a reference is shifted due to temperature compensation, and a state in which temperature compensation is very difficult has occurred. Therefore, in the present embodiment, by providing the clip voltage generation circuits 4 and 5, the voltage near room temperature is clipped to a constant value, so that the capacitance (frequency) is stable, so the reference frequency is changed unnecessarily. The above-described voltage offset and gain adjustment can be performed without any problem.

本発明の温度補償型圧電発振器の部分構成を示すブロック図。The block diagram which shows the partial structure of the temperature compensation type | mold piezoelectric oscillator of this invention. 本発明の補償電圧の温度特性を表す図である。It is a figure showing the temperature characteristic of the compensation voltage of this invention. TCXOとして温度補償する時、VH、VL電圧に関して電圧オフセット調整やGain調整を行うため、常温付近の電圧が変化してしまう様子を表す図。The figure showing a mode that the voltage near normal temperature changes in order to perform voltage offset adjustment and Gain adjustment regarding VH and VL voltage when temperature compensation is performed as TCXO. 本発明の最も主となる技術原理について説明する図。The figure explaining the main technical principle of this invention. 本発明の最も主となる技術原理について説明する図。The figure explaining the main technical principle of this invention. 従来のMOS型バラクタを用いた温度補償回路の一例を示す図。The figure which shows an example of the temperature compensation circuit using the conventional MOS type | mold varactor. MOS型バラクタに印加する電位差と容量の関係を表す図。The figure showing the relationship between the electric potential difference applied to MOS type varactor, and a capacity | capacitance.

符号の説明Explanation of symbols

1 周波数温度補償回路、2 温度補償用電圧発生回路、3 温度検出部、4、5 クリップ電圧発生回路、6、8、13 抵抗、7、9 直流阻止用コンデンサ、10、11 MOS容量素子、X 水晶振動子   1 frequency temperature compensation circuit, 2 temperature compensation voltage generation circuit, 3 temperature detection unit, 4, 5 clip voltage generation circuit, 6, 8, 13 resistance, 7, 9 DC blocking capacitor, 10, 11 MOS capacitance element, X Crystal oscillator

Claims (7)

所定の周波数で励振される圧電素子を備えた圧電振動子と、該圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた圧電発振器であって、
前記周波数温度補償回路は、周囲温度によりパラメータが変化する温度検出部と、該温度検出部により変化したパラメータに基づいて電圧を発生する温度補償用電圧発生部と、該温度補償用電圧発生部により発生された温度補償用電圧と基準電圧の電位差に基づいて容量が変化する複数のMOS容量素子と、前記温度補償用電圧を所定の電圧にクリップする複数のクリップ電圧発生手段とを備えたことを特徴とする温度補償型圧電発振器。
A piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, an oscillation amplifier that excites the piezoelectric element by passing a current, and a frequency temperature compensation circuit that compensates for a change in oscillation frequency due to a temperature change. A piezoelectric oscillator,
The frequency temperature compensation circuit includes a temperature detection unit whose parameter changes according to the ambient temperature, a temperature compensation voltage generation unit that generates a voltage based on the parameter changed by the temperature detection unit, and the temperature compensation voltage generation unit. A plurality of MOS capacitors whose capacitance changes based on a potential difference between the generated temperature compensation voltage and a reference voltage, and a plurality of clip voltage generation means for clipping the temperature compensation voltage to a predetermined voltage. A temperature compensated piezoelectric oscillator.
前記温度補償用電圧発生部は、所定の電位を有する基準電圧を発生する基準制御電圧発生部と、前記圧電素子の温度特性の常温を中心として低温側の温度特性を補償する電圧を発生する低温制御電圧発生部と、高温側の温度特性を補償する電圧を発生する高温制御電圧発生部と、を備え、
前記クリップ電圧発生手段は、前記低温制御電圧発生部及び高温制御電圧発生部の各出力を、前記MOS容量素子のC−V特性における低容量値領域の電位差以下にならないようにクリップすることを特徴とする請求項1に記載の温度補償型圧電発振器。
The temperature compensation voltage generator includes a reference control voltage generator that generates a reference voltage having a predetermined potential, and a low temperature that generates a voltage that compensates for the temperature characteristics on the low temperature side centered on the temperature characteristics of the piezoelectric element. A control voltage generator, and a high temperature control voltage generator that generates a voltage that compensates for temperature characteristics on the high temperature side,
The clip voltage generation means clips the outputs of the low-temperature control voltage generation unit and the high-temperature control voltage generation unit so as not to be equal to or lower than the potential difference in the low capacitance value region in the CV characteristic of the MOS capacitance element. The temperature compensated piezoelectric oscillator according to claim 1.
前記クリップ電圧発生手段は、前記低温制御電圧発生部及び高温制御電圧発生部の各出力を、常温近傍を中心として高温側及び低温側に亘って前記基準電圧との電位差が所定の一定電圧になるように制御することを特徴とする請求項1又は2に記載の温度補償型圧電発振器。   The clip voltage generation means has a predetermined constant voltage difference between the output of the low temperature control voltage generation unit and the high temperature control voltage generation unit with respect to the reference voltage over the high temperature side and the low temperature side around the normal temperature. The temperature compensated piezoelectric oscillator according to claim 1, wherein the temperature compensated piezoelectric oscillator is controlled as follows. 前記クリップ電圧発生手段は、クリップ電圧を発生するクリップ電圧発生源と、ダイオードとを備え、前記クリップ電圧発生源の電圧値を任意に設定可能としたことを特徴とする請求項2に記載の温度補償型圧電発振器。   The temperature according to claim 2, wherein the clip voltage generation means includes a clip voltage generation source for generating a clip voltage and a diode, and the voltage value of the clip voltage generation source can be arbitrarily set. Compensated piezoelectric oscillator. 前記複数のMOS容量素子は、前記圧電素子の温度特性の常温を中心として低温側の温度特性を補償する低温部補償用MOS容量素子と、高温側の温度特性を補償する高温部補償用MOS容量素子であり、前記低温部補償用MOS容量素子は前記常温近傍及びそれ以下の温度において、前記圧電発振器の負荷容量が減少するように前記温度補償用電圧発生手段により制御されると共に、前記高温部補償用MOS容量素子は前記常温近傍及びそれ以上の温度において、前記圧電発振器の負荷容量が増加するように前記温度補償用電圧発生手段により制御されることを特徴とする請求項1に記載の温度補償型圧電発振器。   The plurality of MOS capacitance elements include a low temperature portion compensation MOS capacitance element that compensates for a low temperature temperature characteristic centered on a normal temperature of the piezoelectric element, and a high temperature portion compensation MOS capacitor that compensates for a high temperature temperature characteristic. The low-temperature portion compensation MOS capacitance element is controlled by the temperature compensation voltage generating means so that the load capacitance of the piezoelectric oscillator is reduced near and below the normal temperature, and the high-temperature portion 2. The temperature according to claim 1, wherein the compensation MOS capacitance element is controlled by the temperature compensation voltage generating means so that a load capacitance of the piezoelectric oscillator is increased near the room temperature and above. Compensated piezoelectric oscillator. 前記低温部補償用MOS容量素子と前記高温部補償用MOS容量素子とを極性を異なるように並列接続した並列回路を、前記発振器の発振ループに挿入し、前記低温部補償用MOS容量素子と高温部補償用MOS容量素子との接続点に前記基準制御電圧発生部の出力端を抵抗を介して接続し、前記低温部補償用MOS容量素子の他端に前記低温制御電圧発生部の出力端と前記クリップ電圧発生手段とを抵抗を介して接続すると共に、前記高温部補償用MOS容量素子の他端に前記高温制御電圧発生部の出力端と前記クリップ電圧発生手段とを抵抗を介して接続することを特徴とする請求項1又は2に記載の温度補償型圧電発振器。   A parallel circuit in which the low-temperature portion compensation MOS capacitor element and the high-temperature portion compensation MOS capacitor element are connected in parallel with different polarities is inserted into an oscillation loop of the oscillator, and the low-temperature portion compensation MOS capacitor element and the high-temperature portion compensation MOS capacitor element An output terminal of the reference control voltage generation unit is connected to a connection point with the MOS compensation element for part compensation through a resistor, and an output terminal of the low temperature control voltage generation unit is connected to the other end of the MOS capacitor element for low temperature part compensation. The clip voltage generating means is connected via a resistor, and the output terminal of the high temperature control voltage generating portion and the clip voltage generating means are connected via a resistor to the other end of the high temperature portion compensating MOS capacitance element. The temperature compensated piezoelectric oscillator according to claim 1 or 2. 前記低温部補償用MOS容量素子と前記高温部補償用MOS容量素子とを極性を異なるように並列接続した並列回路の何れか一方のMOS容量素子に直列に容量素子を接続し、前記低温制御電圧発生部の出力電圧と前記高温制御電圧発生部の出力電圧を直流的に分離することを特徴とする請求項6に記載の温度補償型圧電発振器。   A capacitor element is connected in series to one of the MOS capacitor elements of a parallel circuit in which the low-temperature part compensation MOS capacitor element and the high-temperature part compensation MOS capacitor element are connected in parallel with different polarities, and the low-temperature control voltage 7. The temperature compensated piezoelectric oscillator according to claim 6, wherein the output voltage of the generator and the output voltage of the high temperature control voltage generator are separated in a DC manner.
JP2003402098A 2003-12-01 2003-12-01 Temperature compensated piezoelectric oscillator Expired - Fee Related JP4314982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402098A JP4314982B2 (en) 2003-12-01 2003-12-01 Temperature compensated piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402098A JP4314982B2 (en) 2003-12-01 2003-12-01 Temperature compensated piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JP2005167510A true JP2005167510A (en) 2005-06-23
JP4314982B2 JP4314982B2 (en) 2009-08-19

Family

ID=34725814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402098A Expired - Fee Related JP4314982B2 (en) 2003-12-01 2003-12-01 Temperature compensated piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP4314982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823462B2 (en) 2010-10-28 2014-09-02 Seiko Epson Corporation Piezoelectric oscillation circuit and temperature-constant piezoelectric oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823462B2 (en) 2010-10-28 2014-09-02 Seiko Epson Corporation Piezoelectric oscillation circuit and temperature-constant piezoelectric oscillator

Also Published As

Publication number Publication date
JP4314982B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP5129394B2 (en) Oscillator
US5004988A (en) Quartz crystal oscillator with temperature-compensated frequency characteristics
US6853262B2 (en) Voltage-controlled oscillator circuit which compensates for supply voltage fluctuations
US6734747B1 (en) Piezoelectric oscillator
US20030025567A1 (en) Crystal oscillator
US20190158021A1 (en) Temperature-compensated crystal oscillator, and electronic device using the same
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP4314982B2 (en) Temperature compensated piezoelectric oscillator
JP4424001B2 (en) Temperature compensated piezoelectric oscillator
JP2016144163A (en) Voltage controlled oscillation circuit
JP2012138890A (en) Piezoelectric oscillator
WO2021205695A1 (en) Variable-capacitance element and oscillator comprising same
JP2005217773A (en) Voltage-controlled piezoelectric oscillator
US8610513B2 (en) Crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
JPWO2005013475A1 (en) Piezoelectric oscillator
JP2602727B2 (en) Piezoelectric oscillator
JP2006033238A (en) Voltage-controlled oscillator
JP2007019565A (en) Crystal oscillator
JP2019169906A (en) Oscillation device
JP2006135540A (en) Temperature compensation piezoelectric oscillator
JP3266883B2 (en) Piezoelectric oscillator
JP2750886B2 (en) Temperature sensitive voltage generating circuit and temperature compensating element using the same
JP4311313B2 (en) Piezoelectric oscillator
JPH1013153A (en) Voltage-controlled oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees