JP2005166730A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005166730A
JP2005166730A JP2003400030A JP2003400030A JP2005166730A JP 2005166730 A JP2005166730 A JP 2005166730A JP 2003400030 A JP2003400030 A JP 2003400030A JP 2003400030 A JP2003400030 A JP 2003400030A JP 2005166730 A JP2005166730 A JP 2005166730A
Authority
JP
Japan
Prior art keywords
plane
wafer
impurity concentration
semiconductor device
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003400030A
Other languages
Japanese (ja)
Inventor
Yoshito Ueda
淑人 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003400030A priority Critical patent/JP2005166730A/en
Publication of JP2005166730A publication Critical patent/JP2005166730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress plane channeling at the time of ion implantation without changing a crystal plane direction of a wafer itself. <P>SOLUTION: At the time of ion implantation into the semiconductor wafer W1, a tilting angle θ with respect to a (100)-plane is set to 0° or above and a twisting angle δ with respect to the <011>-direction is set within a range of 45°±5°. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体装置および半導体装置の製造方法に関し、特に、イオン注入時のチルト角およびツイスト角の設定方法に適用して好適なものである。   The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device, and is particularly suitable for application to a tilt angle and twist angle setting method during ion implantation.

従来の半導体装置では、結晶面方位(100)面を主面とするシリコンウェハが用いられており、このようなシリコンウェハに対してイオン注入を行う場合、チャネリングを防止するため、イオン注入方向をウェハの垂直方向から7°程度傾けることが行われている。
また、例えば、特許文献1には、面チャネリングを防止しつつ、シリコンウェハ表面に垂直にイオン注入できるようにするため、(100)面に直交する2つの面のそれぞれと3.5度以上の角度を成す結晶面方位に垂直な面をシリコンウェハの一主面とする方法が開示されている。
特開平7−172990号公報
In a conventional semiconductor device, a silicon wafer having a crystal plane orientation (100) plane as a main surface is used. When ion implantation is performed on such a silicon wafer, the ion implantation direction is changed to prevent channeling. Inclining about 7 ° from the vertical direction of the wafer is performed.
In addition, for example, in Patent Document 1, in order to prevent surface channeling and to perform ion implantation perpendicular to the silicon wafer surface, each of two surfaces orthogonal to the (100) plane is 3.5 degrees or more. A method is disclosed in which a plane perpendicular to the crystal plane orientation forming an angle is used as one main surface of a silicon wafer.
JP 7-172990 A

しかしながら、イオン注入方向をウェハの垂直方向から7°程度傾ける方法では、例えば、B+などの質量の軽いイオンを注入すると、シリコンウェハの深さ方向において、ピーク位置での不純物濃度が低下するとともに、最深部の不純物濃度が裾引き状に上昇する。このため、シリコンウェハの深さ方向における不純物濃度分布が緩慢となり、半導体デバイスの電気的特性のバラツキが大きくなるという問題があった。また、シリコンウェハの不純物濃度の面内分布のバラツキも大きくなるという問題があった。 However, in the method in which the ion implantation direction is tilted by about 7 ° from the vertical direction of the wafer, for example, when ions having a light mass such as B + are implanted, the impurity concentration at the peak position decreases in the depth direction of the silicon wafer. The impurity concentration in the deepest part increases in a trailing manner. For this reason, there has been a problem that the impurity concentration distribution in the depth direction of the silicon wafer becomes slow, and the variation in electrical characteristics of the semiconductor device becomes large. In addition, there is a problem that the variation in the in-plane distribution of the impurity concentration of the silicon wafer increases.

また、特許文献1に開示された方法では、シリコンインゴットからシリコンウェハを斜めに切り出す必要があり、切り出し角度の制御が困難になるとともに、結晶面方位の管理も煩雑化するという問題があった。
そこで、本発明の目的は、ウェハ自体の結晶面方位を変更することなく、イオン注入時の面チャネリングを抑制することが可能な半導体装置および半導体装置の製造方法を提供することである。
In addition, the method disclosed in Patent Document 1 has a problem that it is necessary to cut a silicon wafer obliquely from a silicon ingot, which makes it difficult to control the cutting angle and complicates the management of crystal plane orientation.
Accordingly, an object of the present invention is to provide a semiconductor device and a method of manufacturing the semiconductor device that can suppress surface channeling during ion implantation without changing the crystal plane orientation of the wafer itself.

上述した課題を解決するために、本発明の一態様に係る半導体装置によれば、(100)面に対するチルト角が0°以上、<011>方向に対してツイスト角が45°±5°の範囲内で不純物がイオン注入されていることを特徴とする。
これにより、結晶面方位(100)面を主面とする半導体ウェハにイオン注入を行った場合においても、面チャネリングを抑制することが可能となる。このため、ピーク位置での不純物濃度の低下を抑制することが可能となるとともに、最深部の不純物濃度が裾引き状に上昇することを防止することができ、シリコンウェハの深さ方向における不純物濃度分布を急峻化することが可能となるとともに、不純物濃度の面内分布のバラツキも低減することができ、特殊な半導体ウェハを用いることなく、半導体デバイスの電気的特性のバラツキを低減することができる。
In order to solve the above-described problem, according to the semiconductor device of one embodiment of the present invention, the tilt angle with respect to the (100) plane is 0 ° or more and the twist angle is 45 ° ± 5 ° with respect to the <011> direction. Impurities are ion-implanted within the range.
Thereby, even when ion implantation is performed on a semiconductor wafer having a crystal plane orientation (100) plane as a main surface, it is possible to suppress plane channeling. For this reason, it is possible to suppress a decrease in the impurity concentration at the peak position, and it is possible to prevent the impurity concentration in the deepest part from rising in a trailing manner, and to reduce the impurity concentration in the depth direction of the silicon wafer. The distribution can be sharpened, the variation in the in-plane distribution of the impurity concentration can be reduced, and the variation in the electrical characteristics of the semiconductor device can be reduced without using a special semiconductor wafer. .

また、本発明の一態様に係る半導体装置の製造方法によれば、(100)面を主面とするウェハ上にマスクパターンを形成する工程と、前記ウェハ主面に対するチルト角が0°以上、オリフラに対してツイスト角が45°±5°の範囲内の条件で、前記マスクパターンが形成されたウェハに不純物をイオン注入する工程とを備えることを特徴とする。
これにより、シリコンウェハの深さ方向における不純物濃度分布を急峻化することが可能となるとともに、不純物濃度の面内分布のバラツキも低減することができ、特殊な半導体ウェハを用いることなく、半導体デバイスの電気的特性のバラツキを低減することができる。
According to the method for manufacturing a semiconductor device of one embodiment of the present invention, a step of forming a mask pattern on a wafer having a (100) plane as a main surface, and a tilt angle with respect to the wafer main surface of 0 ° or more, And a step of ion-implanting impurities into the wafer on which the mask pattern is formed under the condition that a twist angle with respect to the orientation flat is within a range of 45 ° ± 5 °.
As a result, the impurity concentration distribution in the depth direction of the silicon wafer can be sharpened, and variations in the in-plane distribution of the impurity concentration can be reduced. A semiconductor device can be used without using a special semiconductor wafer. The variation in electrical characteristics can be reduced.

以下、本発明の実施形態に係る半導体装置およびその製造方法について図面を参照しながら説明する。
図1は、本発明の第1実施形態に係るイオン注入時のチルト角およびツイスト角の設定方法を示す断面図である。
図1において、半導体ウェハW1は(100)面を主面とするように構成され、<011>方向に沿ってオリフラORが形成されている。なお、半導体ウェハW1としては、例えば、ダイアモンド格子または閃亜鉛鉱格子などの結晶構造を持つ材料を用いることができ、Si、Ga、SiGa、GaAsなどに適用することができる。また、オリフラORの代わりにノッチを設けるようにしてもよい。
Hereinafter, a semiconductor device and a manufacturing method thereof according to embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a method for setting a tilt angle and a twist angle during ion implantation according to the first embodiment of the present invention.
In FIG. 1, a semiconductor wafer W1 is configured to have a (100) plane as a main surface, and an orientation flat OR is formed along the <011> direction. As the semiconductor wafer W1, for example, a material having a crystal structure such as a diamond lattice or a zinc blende lattice can be used, and can be applied to Si, Ga, SiGa, GaAs, and the like. Further, a notch may be provided instead of the orientation flat OR.

そして、半導体ウェハW1のイオン注入を行う場合、(100)面に対するチルト角θ(半導体ウェハW1の垂直方向からの入射角度)が0°以上、<011>方向に対してツイスト角δ(入射角度と直交する面の角度)が45°±5°の範囲内に設定することができる。
これにより、結晶面方位(100)面を主面とする半導体ウェハW1にイオン注入を行った場合においても、面チャネリングを抑制することが可能となる。このため、ピーク位置での不純物濃度の低下を抑制することが可能となるとともに、最深部の不純物濃度が裾引き状に上昇することを防止することができ、半導体ウェハW1の深さ方向における不純物濃度分布を急峻化することが可能となるとともに、不純物濃度の面内分布のバラツキも低減することができ、特殊な半導体ウェハW1を用いることなく、半導体デバイスの電気的特性のバラツキを低減することができる。
When ion implantation of the semiconductor wafer W1 is performed, the tilt angle θ (incident angle from the vertical direction of the semiconductor wafer W1) with respect to the (100) plane is 0 ° or more, and the twist angle δ (incident angle) with respect to the <011> direction. Can be set within a range of 45 ° ± 5 °.
Thereby, even when ion implantation is performed on the semiconductor wafer W1 having the crystal plane orientation (100) plane as a main surface, it is possible to suppress the plane channeling. For this reason, it is possible to suppress a decrease in the impurity concentration at the peak position, and it is possible to prevent the impurity concentration in the deepest portion from rising in a trailing manner, and to reduce the impurity in the depth direction of the semiconductor wafer W1. Concentration distribution can be sharpened, variation in in-plane distribution of impurity concentration can be reduced, and variation in electrical characteristics of semiconductor devices can be reduced without using a special semiconductor wafer W1. Can do.

図2は、本発明の第2実施形態に係るツイスト角をパラメータとした注入深さに対する不純物濃度を示す図である。なお、図2は、注入エネルギー180KeV、ドーズ量1E14の条件で、結晶面方位(100)のシリコンウェハにボロンBを注入し、深さ方向の不純物濃度をSIMS(Secondary Ion Mass Spectrometry:二次イオン質量分析)にて測定した結果を示す。   FIG. 2 is a diagram showing the impurity concentration with respect to the implantation depth using the twist angle as a parameter according to the second embodiment of the present invention. In FIG. 2, boron B is implanted into a silicon wafer having a crystal plane orientation (100) under conditions of an implantation energy of 180 KeV and a dose of 1E14, and the impurity concentration in the depth direction is determined by SIMS (Secondary Ion Mass Spectrometry: secondary ions. (Mass spectrometry) shows the measurement results.

図2において、領域Aに示すように、チルト角=7°、ツイスト角=0°の条件では、ピーク位置での不純物濃度が低下しているのに対し、チルト角=7°、ツイスト角=45°の条件では、ピーク位置での不純物濃度の低下が抑制されていることがわかる。
また、領域Bに示すように、チルト角=7°、ツイスト角=0°の条件では、最深部の不純物濃度が裾引き状に上昇しているのに対し、チルト角=7°、ツイスト角=45°の条件では、最深部の不純物濃度が裾引き状に上昇することが抑制されていることがわかる。
In FIG. 2, as shown in region A, the impurity concentration at the peak position is decreased under the conditions of tilt angle = 7 ° and twist angle = 0 °, whereas tilt angle = 7 ° and twist angle = It can be seen that the decrease in the impurity concentration at the peak position is suppressed under the condition of 45 °.
Further, as shown in the region B, when the tilt angle is 7 ° and the twist angle is 0 °, the impurity concentration in the deepest part is rising like a tail, whereas the tilt angle is 7 ° and the twist angle. It can be seen that under the condition of = 45 °, the impurity concentration in the deepest part is suppressed from rising in a trailing shape.

図3は、本発明の第3実施形態に係る不純物濃度の面内分布を示す図である。なお、図3は、注入エネルギー180KeV、ドーズ量1E14の条件で、面方位(100)のシリコンウェハにボロンBを注入した場合を示し、図3(a)では、チルト角=7°、ツイスト角=0°に設定し、図3(b)では、チルト角=7°、ツイスト角=45°に設定した。   FIG. 3 is a diagram showing an in-plane distribution of impurity concentration according to the third embodiment of the present invention. FIG. 3 shows a case where boron B is implanted into a silicon wafer having a plane orientation (100) under the conditions of implantation energy 180 KeV and dose 1E14. In FIG. 3A, tilt angle = 7 °, twist angle. In FIG. 3B, the tilt angle was set to 7 ° and the twist angle was set to 45 °.

この結果、図3(b)のシリコンウェハW3では、図3(a)のシリコンウェハW2に比べて、不純物濃度の面内分布が均一化されており、イオン注入時のツイスト角=45°に設定することにより、不純物濃度の面内分布を改善することができる。   As a result, in the silicon wafer W3 in FIG. 3B, the in-plane distribution of the impurity concentration is uniform compared to the silicon wafer W2 in FIG. 3A, and the twist angle at the time of ion implantation is 45 °. By setting, the in-plane distribution of the impurity concentration can be improved.

本発明の第1実施形態に係るイオン注入方法を示す斜視図。The perspective view which shows the ion implantation method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る注入深さに対する不純物濃度を示す図。The figure which shows the impurity concentration with respect to the implantation depth which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る不純物濃度の面内分布を示す図。The figure which shows the in-plane distribution of the impurity concentration which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

W1 半導体ウェハ、W2、W3 シリコンウェハ   W1 semiconductor wafer, W2, W3 silicon wafer

Claims (2)

(100)面に対するチルト角が0°以上、<011>方向に対してツイスト角が45°±5°の範囲内で不純物がイオン注入されていることを特徴とする半導体装置。   A semiconductor device wherein impurities are ion-implanted within a tilt angle of 0 ° or more with respect to a (100) plane and a twist angle of 45 ° ± 5 ° with respect to the <011> direction. (100)面を主面とするウェハ上にマスクパターンを形成する工程と、
前記ウェハ主面に対するチルト角が0°以上、オリフラに対してツイスト角が45°±5°の範囲内の条件で、前記マスクパターンが形成されたウェハに不純物をイオン注入する工程とを備えることを特徴とする半導体装置の製造方法。

Forming a mask pattern on a wafer having a (100) plane as a main surface;
And a step of ion-implanting impurities into the wafer on which the mask pattern is formed under a condition in which a tilt angle with respect to the main surface of the wafer is 0 ° or more and a twist angle with respect to the orientation flat is within a range of 45 ° ± 5 °. A method for manufacturing a semiconductor device.

JP2003400030A 2003-11-28 2003-11-28 Semiconductor device and its manufacturing method Pending JP2005166730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400030A JP2005166730A (en) 2003-11-28 2003-11-28 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400030A JP2005166730A (en) 2003-11-28 2003-11-28 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005166730A true JP2005166730A (en) 2005-06-23

Family

ID=34724406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400030A Pending JP2005166730A (en) 2003-11-28 2003-11-28 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005166730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142341A (en) * 2017-04-25 2019-12-26 신에쯔 한도타이 가부시키가이샤 Manufacturing method of bonded wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142341A (en) * 2017-04-25 2019-12-26 신에쯔 한도타이 가부시키가이샤 Manufacturing method of bonded wafer
KR102420831B1 (en) 2017-04-25 2022-07-14 신에쯔 한도타이 가부시키가이샤 Manufacturing method of bonded wafer

Similar Documents

Publication Publication Date Title
US9287123B2 (en) Techniques for forming angled structures for reduced defects in heteroepitaxy of semiconductor films
US7029969B2 (en) Method of manufacture of a silicon carbide MOSFET including a masking with a tapered shape and implanting ions at an angle
US8815720B2 (en) Method of etching a workpiece
US9461172B2 (en) Method for fabricating semiconductor device
US8450194B2 (en) Method to modify the shape of a cavity using angled implantation
US10332748B2 (en) Etch rate modulation through ion implantation
KR102590843B1 (en) 3D device and 5INFET device processing method and IINFET device forming method
US20100012988A1 (en) Metal oxide semiconductor devices having implanted carbon diffusion retardation layers and methods for fabricating the same
US8906727B2 (en) Heteroepitaxial growth using ion implantation
US6802719B2 (en) Implantation method
JP2006245338A (en) Method of manufacturing field effect transistor
US20160315176A1 (en) Method for fabricating three dimensional device
JP2005166730A (en) Semiconductor device and its manufacturing method
US5543337A (en) Method for fabricating field effect transistor structure using symmetrical high tilt angle punchthrough implants
JP2014049620A (en) Semiconductor device manufacturing method
TW440931B (en) Method for manufacturing a semiconductor device
JPH0982726A (en) Manufacture of semiconductor device
EP4425533A1 (en) Process for manufacturing localized ion implants in silicon-carbide power electronic devices
US20160315177A1 (en) Method for fabricating asymmetrical three dimensional device
US20040043572A1 (en) Semiconductor device manufacturing method
JPH05166745A (en) Ion implanting method
CN118588540A (en) Method for fabricating localized ion implantation in silicon carbide power electronics
JP2024125279A (en) Process for producing localized ion implants in silicon carbide power electronic devices - Patents.com
JPS60733A (en) Semiconductor device and manufactur thereof
JP2023144854A (en) Manufacturing method of semiconductor device