JP2005166681A - Discharge tube and electrode for discharge tube - Google Patents

Discharge tube and electrode for discharge tube Download PDF

Info

Publication number
JP2005166681A
JP2005166681A JP2005009463A JP2005009463A JP2005166681A JP 2005166681 A JP2005166681 A JP 2005166681A JP 2005009463 A JP2005009463 A JP 2005009463A JP 2005009463 A JP2005009463 A JP 2005009463A JP 2005166681 A JP2005166681 A JP 2005166681A
Authority
JP
Japan
Prior art keywords
carbon
discharge tube
electrode
resin
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009463A
Other languages
Japanese (ja)
Inventor
Morinobu Endo
守信 遠藤
Yoshihisa Suda
吉久 須田
Osamu Shimizu
修 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2005009463A priority Critical patent/JP2005166681A/en
Publication of JP2005166681A publication Critical patent/JP2005166681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To optionally control current density in discharging in addition to the attainment of a longer life and lower power consumption. <P>SOLUTION: A carbon-based electrode composed of carbon powder and amorphous carbon is used as an electrode 6 (6'). The carbon-based electrode is manufactured by mixing carbon powder such as graphite to a resin such as a furan resin or a chlorinated vinyl chloride resin, which forms amorphous carbon after baking and is molded into a desired shape, and baking it twice at different temperatures and in different atmospheres. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は熱陰極、冷陰極の放電管及び放電管用電極にかかわり、更に詳しくは、長寿命かつ低消費電力の放電管及び放電管用電極に関する。   The present invention relates to discharge tubes and discharge tube electrodes for hot cathodes and cold cathodes, and more particularly to discharge tubes and discharge tube electrodes having a long life and low power consumption.

従来からある放電管として、例えばパソコン、ワープロ、液晶テレビなどの液晶表示装置においては、液晶バックライト用光源として、一般的に、冷陰極放電管が使用されている。すなわち、図1の(a),(b)に要部構成を示すような冷陰極放電管が知られている(特開平11−233063号公報)。なお(a)は横断面図、(b)は縦断面図である。図1において1は放電媒体(希ガス、水銀など)を封有するガラス管、2は前記ガラス管1の内壁面に形成された蛍光体層である。   As a conventional discharge tube, for example, in a liquid crystal display device such as a personal computer, a word processor, and a liquid crystal television, a cold cathode discharge tube is generally used as a light source for a liquid crystal backlight. That is, there is known a cold cathode discharge tube whose main configuration is shown in FIGS. 1A and 1B (Japanese Patent Laid-Open No. 11-233303). (A) is a transverse sectional view, and (b) is a longitudinal sectional view. In FIG. 1, reference numeral 1 denotes a glass tube containing a discharge medium (rare gas, mercury, etc.), and 2 denotes a phosphor layer formed on the inner wall surface of the glass tube 1.

また、3,3′はガラス管1の両端部にそれぞれ封装された一対の電極、4は電極3,3′の外周面を被覆して形成された電子放射性物質層、5,5′は電極3,3′に接続してガラス管1外部から所要の電力を供給する導入線である。なお、電極3,3′はNi製の円筒電極などであり、ガラス管1の端部に封止・導入した導入線5,5′の先端を嵌合・溶接して電気的及び機械的に接続・保持して放電電極として機能させる構成を採っている。さらに、電子放射性物質層4は、例えばBa,Ca,Srなどアルカリ土類金属酸化物の粉末を塗布・焼き付けて形成されている。   3 and 3 'are a pair of electrodes sealed at both ends of the glass tube 1, 4 is an electron-emitting material layer formed covering the outer peripheral surface of the electrodes 3 and 3', and 5 and 5 'are electrodes. 3, 3 ', which is an introduction line for supplying required power from the outside of the glass tube 1. The electrodes 3 and 3 'are Ni cylindrical electrodes or the like, and the leading ends of the lead wires 5 and 5' sealed and introduced at the end of the glass tube 1 are fitted and welded electrically and mechanically. It is configured to connect and hold to function as a discharge electrode. Furthermore, the electron-emitting material layer 4 is formed by applying and baking an alkaline earth metal oxide powder such as Ba, Ca, and Sr.

この種の冷陰極放電管は、対応する点灯装置に装着し、導入線5,5′を介して通電すると、電極3,3′間での放電が開始し、紫外線を照射(放射)する。そして、この紫外線が蛍光体層2にて可視光線に変換され、所要の可視光を発光して光源としての機能をなしている。放電媒体が直接可視光を発光する場合は、蛍光体層の形成を省略できる。   When this type of cold cathode discharge tube is attached to a corresponding lighting device and is energized through lead-in wires 5 and 5 ', discharge between the electrodes 3 and 3' starts and irradiates (radiates) ultraviolet rays. And this ultraviolet-ray is converted into visible light in the fluorescent substance layer 2, The required visible light is light-emitted, and the function as a light source is comprised. When the discharge medium directly emits visible light, the formation of the phosphor layer can be omitted.

ところで、冷陰極放電管の使用にあたっては、装置全体のコンパクト化や高性能化の点で、冷陰極放電管の小型化、高発光効率が望まれるだけでなく、低消費電力・長寿命であることなども要求されている。このような要求に対して、電子放射性物質層における酸化物の検討が主になされてきた。   By the way, when using the cold cathode discharge tube, not only the downsizing and high luminous efficiency of the cold cathode discharge tube are desired, but also low power consumption and long life are required in terms of downsizing and high performance of the entire apparatus. That is also required. In response to such demands, studies have been mainly made on oxides in the electron-emitting material layer.

しかしながら、前記構成の冷陰極放電管は、なお、次のような不都合が認められ、依然として実用上問題がある。すなわち、冷陰極放電管に具備・内装されている冷陰極3,3′は、その製造過程での加工・変形、或いは点灯中の熱膨張やイオン衝撃によって、電極が消耗したり、電子放射性物質層4に亀裂が生じたり、電子放射性物質層4の剥離・脱落を生じ、結果的に、所要機能の持続性が損なわれ、長寿命化が十分図れないという問題がある。   However, the cold cathode discharge tube having the above configuration still has the following problems and still has practical problems. In other words, the cold cathodes 3 and 3 'provided in and installed in the cold cathode discharge tube are consumed by processing or deformation during the manufacturing process, thermal expansion or ion bombardment during lighting, There is a problem that the layer 4 is cracked or the electron-emitting material layer 4 is peeled off or dropped, resulting in a loss of sustainability of required functions and a long life.

本発明は、上記課題を解決するために、長寿命化と低消費電力化を図ると同時に、放電における電流密度を任意に制御可能な放電管及び放電管用電極の提供を目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a discharge tube and a discharge tube electrode capable of arbitrarily controlling the current density in discharge while at the same time extending the life and reducing the power consumption.

本発明によれば、密封容器と、該密封容器内で対向配置された1対の電極とを具備し、該1対の電極の少なくとも一方が炭素系電極である放電管が提供され、これによって上記の課題が解決される。   According to the present invention, there is provided a discharge tube comprising a sealed container and a pair of electrodes disposed opposite to each other in the sealed container, wherein at least one of the pair of electrodes is a carbon-based electrode. The above problem is solved.

本発明によれば、炭素を含み、密封容器内で放電管の電極として使用される放電管用電極もまた提供される。   According to the present invention, there is also provided a discharge tube electrode comprising carbon and used as an electrode of a discharge tube in a sealed container.

前述の炭素系電極は、炭素粉末とアモルファス炭素とを含むことが好適である。   The aforementioned carbon-based electrode preferably includes carbon powder and amorphous carbon.

前述の炭素系電極はまた、金属または半金属化合物をさらに含むことが好ましい。   The aforementioned carbon-based electrode preferably further contains a metal or metalloid compound.

なお電子放出性を向上させるために、炭素粉末はカーボンナノチューブ、カーボンナノファイバーを含むことが望ましい。   In order to improve electron emission, the carbon powder preferably contains carbon nanotubes and carbon nanofibers.

また放電管用電極に使用する炭素系電極の形状として、円断面の円柱状、四角断面の角柱状、コイル状、円錐状、円筒状であることが望ましい。この様な形状とすることでイオン衝撃による電極の消耗をより防止することができる。   Further, the shape of the carbon-based electrode used for the discharge tube electrode is preferably a circular columnar column, a square columnar prism, a coil, a cone, or a cylinder. By adopting such a shape, it is possible to further prevent the electrode from being consumed by ion bombardment.

本発明に用いる炭素系電極は、賦形性を有し焼成後高い炭素残査収率を示す樹脂組成物と、炭素粉末と、必要に応じて金属化合物、半金属化合物の一種または二種以上を混合し、該混合物を放電管の寸法や形状などに合わせて、また放電特性や電流密度を制御する目的で円断面の円柱状、四角断面の矩形状、コイル状、円錐状、円筒状などの所望の形状に賦形し、該賦形物を焼成することによって製造される。   The carbon-based electrode used in the present invention comprises a resin composition having a formability and a high carbon residue yield after firing, carbon powder, and optionally one or more metal compounds and metalloid compounds. In order to control the discharge characteristics and current density according to the dimensions and shape of the discharge tube, and to mix the mixture, the cylindrical shape of the circular cross section, the rectangular shape of the square cross section, the coil shape, the conical shape, the cylindrical shape, etc. It is manufactured by shaping into a desired shape and firing the shaped product.

炭素粉末としては、カーボンブラック、黒鉛、コークス粉等が挙げられるが、使用する炭素粉末種と量は、目的とする電極の抵抗値・形状及び放電特性により適宜選択され、単独でも二種以上の混合体でも使用することができるが、特に形状制御の簡易さから黒鉛を使用することが好ましく、賦形性及び構造制御を容易とするために、平均粒径100μm以下の高配向性熱分解黒鉛(HOPG)、キッシュ黒鉛、天然黒鉛、人造黒鉛、直径200nm以下の気相成長炭素繊維より選ばれることが望ましい。   Examples of the carbon powder include carbon black, graphite, coke powder, and the like. The type and amount of carbon powder to be used are appropriately selected depending on the resistance value / shape and discharge characteristics of the target electrode. Although it can also be used as a mixture, it is particularly preferable to use graphite from the viewpoint of simplicity of shape control. In order to facilitate shaping and structure control, highly oriented pyrolytic graphite having an average particle size of 100 μm or less. It is desirable to be selected from (HOPG), quiche graphite, natural graphite, artificial graphite, and vapor grown carbon fiber having a diameter of 200 nm or less.

カーボンナノチューブ、カーボンナノファイバーは、グラファイト六角網平面を筒状に丸めて形成される欠陥の無い「単層」或いはそれらが入れ子状に積層した「多層」のチューブ状物質で、直径15nm以下で長さが数十nm〜数μmがナノチューブ。直径で15〜100nm程度の領域をナノファイバーと呼ぶ。アーク放電法、気相熱分解法、レーザー昇華法、電解法、流動触媒法等によって生成されるが、最近ではポリマーブレンド法により中空のチューブ状或いは場合によっては無空のファイバーも提案されており、ここでは中空、無空の両方を含めた広義でカーボンナノチューブ、カーボンナノファイバーとして使用するものである。   Carbon nanotubes and carbon nanofibers are defect-free “single-layer” tubes formed by rolling graphite hexagonal mesh planes into cylinders, or “multi-layer” tube-like materials in which they are nested, and have a diameter of 15 nm or less. Nanotubes are tens of nanometers to several micrometers. A region having a diameter of about 15 to 100 nm is called a nanofiber. It is produced by arc discharge method, vapor phase pyrolysis method, laser sublimation method, electrolysis method, fluidized catalyst method, etc. Recently, hollow tube-like or sometimes empty fiber has been proposed by polymer blend method. In this case, it is used as a carbon nanotube or carbon nanofiber in a broad sense including both hollow and non-empty.

金属、半金属化合物としては、一般に入手可能な金属炭化物、半金属炭化物、金属硼化物・半金属硼化物、金属珪化物・半金属珪化物、金属窒化物・半金属窒化物、金属酸化物、半金属酸化物等が挙げられる。使用する金属・半金属化合物の種類と量は、目的とするフィラメントの抵抗値・形状及び目的とするCVDで生成させる膜の種類により適宜選択され、単独でも二種以上の混合体でも使用することができるが、抵抗値制御、耐熱性の観点から、特に炭化硼素、炭化珪素、窒化硼素を使用することが好ましい。   Metals and metalloid compounds include commonly available metal carbides, metalloid carbides, metal borides and metalloid borides, metal silicides and metalloid silicides, metal nitrides and metalloid nitrides, metal oxides, Examples include semi-metal oxides. The type and amount of the metal / metalloid compound to be used is appropriately selected depending on the desired filament resistance and shape and the type of film to be formed by the target CVD, and can be used alone or in a mixture of two or more. However, from the viewpoint of resistance value control and heat resistance, it is particularly preferable to use boron carbide, silicon carbide, or boron nitride.

前記賦形性を有し焼成後高い炭素残査収率を示す樹脂組成物は、焼成によりアモルファス状炭素、好ましくは、高温下での使用時に黒鉛化が進行しない難黒鉛化性炭素となり得る高分子樹脂であり、炭素化前段階の加熱時に分子間架橋を生じさせ三次元化させることで、高い炭素残渣収率を示すものであり、かつ、焼成炭素化時に黒鉛粉末や金属化合物、半金属化合物をパッキング、収縮する能力を有するものであり、熱硬化性樹脂や熱可塑性樹脂の一種または二種以上の複合体である。ここで熱硬化性樹脂としては、フェノール樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、メラミン樹脂、アルキッド樹脂、コブナ樹脂等が用いられ、経時熱構造変化の少ないことなどから、好ましくはフラン樹脂及び/又はフェノール樹脂が用いられる。また、熱可塑性樹脂としては、ポリ塩素化塩化ビニル樹脂、ポリアクリロニトリル、ポリアミド、ポリイミド等が用いられ、成形性の容易さ及びフラン樹脂やフェノール樹脂と複合化した際の取り扱いの容易さから好ましくはポリ塩素化塩化ビニル樹脂が用いられる。   The resin composition having a formability and showing a high carbon residue yield after firing is an amorphous carbon, preferably a polymer capable of becoming non-graphitizable carbon that does not progress graphitization when used at high temperatures. It is a resin and shows high carbon residue yield by generating intermolecular cross-linking during heating in the pre-carbonization stage and making it three-dimensional, and at the time of calcination carbonization, graphite powder, metal compound, metalloid compound It is a kind of a thermosetting resin or a thermoplastic resin, or a composite of two or more kinds. Here, as the thermosetting resin, phenol resin, furan resin, epoxy resin, xylene resin, benzoxazine resin, unsaturated polyester resin, melamine resin, alkyd resin, cobuna resin, etc. are used, and there is little thermal structural change with time. From the above, preferably, a furan resin and / or a phenol resin is used. Further, as the thermoplastic resin, polychlorinated vinyl chloride resin, polyacrylonitrile, polyamide, polyimide, etc. are used, preferably from the ease of moldability and ease of handling when complexed with furan resin or phenol resin. Polychlorinated vinyl chloride resin is used.

放電管用電極として必要な特性を具備せしめることを目的として、焼成後にアモルファス炭素となる高分子樹脂に黒鉛粉末と、必要に応じて金属化合物、半金属化合物を混合した後、混合機を用いて充分に分散させる。次にこの混合体を、製膜機や押し出し成型機のような通常のプラスチック成形を行う際に使用されている成形機を用い、黒鉛微粉末、金属化合物、半金属化合物を一方向に配向制御等させつつ、円断面の円柱状、四角断面の矩形状、コイル状、円錐状、円筒状などの所望の形状に成形する。該成形体は、エアオーブン中で炭素前駆体化処理及び固化処理を施した後、窒素、アルゴン等の不活性ガス雰囲気中で昇温速度を制御しつつ焼成することで炭化を終了させ、アモルファス炭素と黒鉛粉末、カーボンナノチューブ、カーボンナノファイバー、金属化合物、半金属化合物とからなる炭素複合体の放電管電極用の炭素系電極が得られる。   For the purpose of providing the necessary characteristics as an electrode for a discharge tube, a graphite resin and, if necessary, a metal compound and a semi-metal compound are mixed with a polymer resin that becomes amorphous carbon after firing, and then sufficiently mixed using a mixer. To disperse. Next, this mixture is controlled in a unidirectional orientation of fine graphite powder, metal compound, and metalloid compound using a molding machine that is used for ordinary plastic molding such as a film forming machine or an extrusion molding machine. While being equalized, it is formed into a desired shape such as a cylindrical shape with a circular cross section, a rectangular shape with a square cross section, a coil shape, a conical shape, or a cylindrical shape. The molded body is subjected to a carbon precursor conversion treatment and a solidification treatment in an air oven, and then calcinated in an inert gas atmosphere such as nitrogen and argon while controlling the temperature rising rate to finish carbonization. A carbon-based electrode for a discharge tube electrode of a carbon composite composed of carbon and graphite powder, carbon nanotube, carbon nanofiber, metal compound, and metalloid compound is obtained.

ここで、炭素化は不活性ガス雰囲気もしくは真空下で700〜2800℃程度まで加熱昇温し行われるが、炭素化時の昇温速度が大きいと賦形体の形状が変形したり微細なクラックが生じるなどの欠陥が生じる。したがって、500℃までは毎時50℃以下、それ以降も毎時100℃以下で行うことが適切である。   Here, carbonization is performed by heating and raising the temperature to about 700 to 2800 ° C. in an inert gas atmosphere or under vacuum, but if the heating rate during carbonization is large, the shape of the shaped body is deformed or fine cracks are generated. Defects such as occur. Therefore, it is appropriate to carry out at 50 ° C. or less up to 500 ° C. and 100 ° C. or less per hour thereafter.

また本発明で、高温耐熱性を得るために不活性雰囲気中または真空中で、放電管電極として使用する温度よりも260℃以上500℃以下の温度だけ高い温度、好ましくは約300℃高い温度まで焼成炭素化処理を施すことで、より安定した放電特性と低消費電力及び長寿命化を達成することが可能となる。   In the present invention, in order to obtain high temperature heat resistance, in an inert atmosphere or in vacuum, the temperature is higher by 260 ° C. or more and 500 ° C. or less than the temperature used as the discharge tube electrode, preferably about 300 ° C. By performing the calcination carbonization treatment, it is possible to achieve more stable discharge characteristics, lower power consumption, and longer life.

本発明における放電管電極においては、成形性の優れる高分子樹脂を炭素化することで得られるアモルファス炭素中に、電子放出性の優れた黒鉛のエッジ部やカーボンナノチューブ、カーボンナノファイバーを、均一かつ一方向に配向制御し、アモルファス炭素と黒鉛、カーボンナノチューブ、カーボンナノファイバーとの複合体とすることで、電子放出特性の優れた黒鉛エッジ部やカーボンナノチューブ・カーボンナノファイバーの尖鋭状炭素を一様かつ均等に露出させて、仕事関数が小さく電子放出のしきい値電圧が小さく、電子放出が可能な任意の形状の電極を形成することができる。また、耐熱性にも優れることから繰り返して使用するに際し、突入電流も無く、安定な放電電流が得られ、長寿命なものとなる。   In the discharge tube electrode of the present invention, graphite edge portions, carbon nanotubes, and carbon nanofibers having excellent electron emission properties are uniformly and amorphously obtained by carbonizing a polymer resin having excellent moldability. By controlling the orientation in one direction and making it a composite of amorphous carbon and graphite, carbon nanotubes, and carbon nanofibers, the graphite edges with excellent electron emission characteristics and the sharp carbon of carbon nanotubes / carbon nanofibers can be made uniform. In addition, it is possible to form an electrode having an arbitrary shape capable of electron emission by being uniformly exposed and having a small work function and a small threshold voltage for electron emission. In addition, since it is excellent in heat resistance, there is no inrush current when it is used repeatedly, a stable discharge current is obtained, and a long life is obtained.

密封容器内で一対の放電管用電極を配置させる放電管において、前記一対の放電管用電極のうち少なくともいずれか一方に前述のようにして得られた炭素系電極を使用することで、長寿命かつ低消費電力の放電管及び放電管用電極として機能する。   In a discharge tube in which a pair of discharge tube electrodes are arranged in a sealed container, the use of the carbon-based electrode obtained as described above for at least one of the pair of discharge tube electrodes enables long life and low It functions as a discharge tube and a discharge tube electrode for power consumption.

以下に、図1を参照して実施例によって本発明を更に具体的に説明するが、本願発明はこの実施例によって何等限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to FIG. 1, but the present invention is not limited to this embodiment.

実施例1
組成物として、塩素化塩化ビニル樹脂(日本カーバイド製 T−741)40質量部、フラン樹脂(日立化成製 VF303)20質量部に、天然黒鉛微粉末(日本黒鉛製 平均粒度5μm)40質量部と、可塑材としてジアリルフタレートモノマー20質量部を添加して、分散、混合し、押し出し成形で細線状に成形し、その後窒素ガス雰囲気中1000℃、さらにアルゴンガス雰囲気中2000℃で焼成し、円柱状炭素系電極を得た。
Example 1
As a composition, 40 parts by mass of a chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide), 20 parts by mass of a furan resin (VF303 manufactured by Hitachi Chemical), 40 parts by mass of natural graphite fine powder (average particle size 5 μm manufactured by Nippon Graphite) Then, 20 parts by mass of diallyl phthalate monomer is added as a plasticizer, dispersed, mixed, formed into a thin wire by extrusion molding, and then fired at 1000 ° C. in a nitrogen gas atmosphere and 2000 ° C. in an argon gas atmosphere to form a cylindrical shape A carbon-based electrode was obtained.

図2(a),(b)は図1に示した形式の冷陰極放電管において本発明の炭素系電極を用いた例を示すもので、(a)は横断面図、(b)は縦断面図である。図2(a),(b)において1は放電媒体(希ガス、水銀など)を封入する直管型のガラス管、2はガラス管1の内壁面に形成されている蛍光体層、6,6′はガラス管1の両端部にそれぞれ封装された一対の電極、4は電極6,6′の外周面に設けられた電子放射性物質の塗布層、5,5′は電極3,3′に接続してガラス管1外部から所要の電力を供給する導入線である。   2 (a) and 2 (b) show an example in which the carbon-based electrode of the present invention is used in a cold cathode discharge tube of the type shown in FIG. 1, (a) is a cross-sectional view, and (b) is a longitudinal section FIG. 2 (a) and 2 (b), 1 is a straight tube type glass tube that encloses a discharge medium (rare gas, mercury, etc.), 2 is a phosphor layer formed on the inner wall surface of the glass tube 1, 6 'is a pair of electrodes sealed at both ends of the glass tube 1, 4 is a coating layer of an electron radioactive material provided on the outer peripheral surface of the electrodes 6 and 6', and 5 and 5 'are electrodes 3 and 3'. It is an introduction line that connects and supplies required power from the outside of the glass tube 1.

電極6,6′として、前述の円柱状炭素系電極を使用し通電するとこの電極間で容易に放電が開始し、紫外線が蛍光体層2によって可視光に変換され、発光効率の高い放電管として機能した。実施例1の場合、例えば200Vrms程度の管電圧印加で容易に点灯し、所要の発光輝度が得られ、また長時間にわたって安定した放電が得られた。
実施例2
組成物として、塩素化塩化ビニル樹脂(日本カーバイド製 T−741)50質量部に、カーボンナノファイバー(昭和電工製 平均直径100nm)50質量部と、可塑材としてジアリルフタレートモノマー20質量部を添加して、分散、混合し、押し出し成形し、その後窒素ガス雰囲気中1000℃、さらに真空中1500℃で焼成し、円柱状炭素系電極を得た。
When the above-described cylindrical carbon-based electrodes are used as the electrodes 6 and 6 ', discharge is easily started between the electrodes, and ultraviolet rays are converted into visible light by the phosphor layer 2 to form a discharge tube with high luminous efficiency. It worked. In the case of Example 1, for example, it was easily turned on by applying a tube voltage of about 200 Vrms, required light emission luminance was obtained, and stable discharge was obtained for a long time.
Example 2
As a composition, 50 parts by mass of carbon nanofiber (Showa Denko average diameter 100 nm) and 50 parts by mass of diallyl phthalate monomer as plasticizer are added to 50 parts by mass of chlorinated vinyl chloride resin (T-741 made by Nippon Carbide). Then, it was dispersed, mixed, extruded, and then fired at 1000 ° C. in a nitrogen gas atmosphere and further at 1500 ° C. in a vacuum to obtain a cylindrical carbon-based electrode.

得られた円柱状炭素系電極を実施例1と同様に使用し通電するとこの電極間で容易に放電が開始し、紫外線が蛍光体層2によって可視光に変換され、発光効率の高い放電管として機能した。実施例2の場合、例えば190Vrms程度の管電圧印加で容易に点灯し、所要の発光輝度が得られ、また長時間にわたって安定した放電が得られた。
実施例3
組成物として、塩素化塩化ビニル樹脂(日本カーバイド製 T−741)50質量部に、天然黒鉛微粉末(日本黒鉛製 平均粒度5μm)25質量部と、カーボンナノファイバー(昭和電工製 平均直径100nm)25質量部と、可塑材としてジアリルフタレートモノマー20質量部を添加して、分散、混合し、押し出し成形して、その後窒素ガス雰囲気中1000℃、さらに真空中1500℃で焼成し、機械加工後円筒状炭素系電極を得た。
When the obtained cylindrical carbon-based electrode is used and energized in the same manner as in Example 1, discharge easily starts between the electrodes, and ultraviolet light is converted into visible light by the phosphor layer 2 to form a discharge tube with high luminous efficiency. It worked. In the case of Example 2, for example, it was easily turned on by applying a tube voltage of about 190 Vrms, required light emission luminance was obtained, and stable discharge was obtained for a long time.
Example 3
As a composition, 50 parts by mass of chlorinated vinyl chloride resin (T-741 manufactured by Nippon Carbide), 25 parts by mass of natural graphite fine powder (average particle size 5 μm manufactured by Nippon Graphite), and carbon nanofiber (average diameter 100 nm manufactured by Showa Denko) 25 parts by mass and 20 parts by mass of diallyl phthalate monomer as a plasticizer are added, dispersed, mixed, extruded, and then fired at 1000 ° C. in a nitrogen gas atmosphere and further at 1500 ° C. in a vacuum. A carbon-like electrode was obtained.

得られた円筒状炭素系電極を実施例1と同様に使用し通電するとこの電極間で容易に放電が開始し、紫外線が蛍光体層2によって可視光に変換され、発光効率の高い放電管として機能した。実施例3の場合、例えば200Vrms程度の管電圧印加で容易に点灯し、所要の発光輝度が得られ、また長時間にわたって安定した放電が得られた。   When the obtained cylindrical carbon-based electrode is used and energized in the same manner as in Example 1, discharge easily starts between the electrodes, and ultraviolet light is converted into visible light by the phosphor layer 2, so that the discharge tube has high luminous efficiency. It worked. In the case of Example 3, for example, it was easily turned on by applying a tube voltage of about 200 Vrms, required light emission luminance was obtained, and stable discharge was obtained for a long time.

以上説明したように、本発明の密封容器内で一対となって対向配置される放電管用電極において、炭素系電極を使用する放電管用電極は長寿命化と低消費電力化を飛躍的に向上することを知見し、本発明を完成するに至った。   As described above, in the discharge tube electrodes disposed in a pair as opposed to each other in the sealed container of the present invention, the discharge tube electrode using the carbon-based electrode dramatically improves the long life and low power consumption. This has been found and the present invention has been completed.

従来の冷陰極放電管の要部構成を示す図である。It is a figure which shows the principal part structure of the conventional cold cathode discharge tube. 本発明の炭素系電極を使用した冷陰極放電管の要部構成を示す図である。It is a figure which shows the principal part structure of the cold cathode discharge tube using the carbon-type electrode of this invention.

Claims (12)

密封容器と、該密封容器内で対向配置された1対の電極とを具備し、該1対の電極の少なくとも一方が700〜2800℃の範囲の異なる温度および異なる雰囲気で2回焼成して炭素化を行った炭素系電極である放電管。   A sealed container and a pair of electrodes arranged oppositely in the sealed container, wherein at least one of the pair of electrodes is baked twice at different temperatures and in different atmospheres in the range of 700 to 2800 ° C. A discharge tube that is a carbon-based electrode. 1回目の焼成の温度は1000℃で2回目の焼成の温度は1000℃を超える温度である請求項1記載の放電管。   The discharge tube according to claim 1, wherein the temperature of the first firing is 1000 ° C, and the temperature of the second firing exceeds 1000 ° C. 前記炭素系電極は、炭素粉末とアモルファス炭素とを含む請求項1または2記載の放電管。   The discharge tube according to claim 1 or 2, wherein the carbon-based electrode includes carbon powder and amorphous carbon. 前記炭素系電極は、金属または半金属化合物をさらに含む請求項3記載の放電管。   The discharge tube according to claim 3, wherein the carbon-based electrode further contains a metal or a metalloid compound. 前記炭素粉末は、カーボンナノチューブまたはカーボンナノファイバを含む請求項3または4記載の放電管。   The discharge tube according to claim 3 or 4, wherein the carbon powder includes carbon nanotubes or carbon nanofibers. 前記炭素系電極は、柱状、筒状、コイル状または錐体状である請求項1〜5のいずれか1項記載の放電管。   The discharge tube according to claim 1, wherein the carbon-based electrode has a columnar shape, a cylindrical shape, a coil shape, or a cone shape. 炭素を含み、密封容器内で放電管の電極として使用され700〜2800℃の範囲の異なる温度および異なる雰囲気で2回焼成して炭素化を行った放電管用電極。   An electrode for a discharge tube that contains carbon and is used as an electrode of a discharge tube in a sealed container and is carbonized by firing twice at different temperatures and in different atmospheres in the range of 700 to 2800 ° C. 1回目の焼成の温度は1000℃で2回目の焼成の温度は1000℃を超える温度である請求項7記載の放電管用電極。   The discharge tube electrode according to claim 7, wherein the first firing temperature is 1000 ° C., and the second firing temperature exceeds 1000 ° C. 9. 炭素粉末とアモルファス炭素とを含む請求項7または8記載の放電管用電極。   The discharge tube electrode according to claim 7 or 8, comprising carbon powder and amorphous carbon. 金属または半金属化合物をさらに含む請求項9記載の放電管用電極。   The discharge tube electrode according to claim 9, further comprising a metal or metalloid compound. 前記炭素粉末は、カーボンナノチューブまたはカーボンナノファイバを含む請求項9または10記載の放電管用電極。   The electrode for a discharge tube according to claim 9 or 10, wherein the carbon powder includes carbon nanotubes or carbon nanofibers. 柱状、筒状、コイル状または錐体状である請求項7〜11のいずれか1項記載の放電管用電極。   The discharge tube electrode according to any one of claims 7 to 11, which has a columnar shape, a cylindrical shape, a coil shape, or a cone shape.
JP2005009463A 2005-01-17 2005-01-17 Discharge tube and electrode for discharge tube Pending JP2005166681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009463A JP2005166681A (en) 2005-01-17 2005-01-17 Discharge tube and electrode for discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009463A JP2005166681A (en) 2005-01-17 2005-01-17 Discharge tube and electrode for discharge tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002118041A Division JP2003317656A (en) 2002-04-19 2002-04-19 Discharge tube and electrode for discharge tube

Publications (1)

Publication Number Publication Date
JP2005166681A true JP2005166681A (en) 2005-06-23

Family

ID=34737551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009463A Pending JP2005166681A (en) 2005-01-17 2005-01-17 Discharge tube and electrode for discharge tube

Country Status (1)

Country Link
JP (1) JP2005166681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464793B2 (en) 2020-09-30 2024-04-09 エヌシーエックス コーポレーション Field emission cathode device and method for forming a field emission cathode device - Patents.com

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464793B2 (en) 2020-09-30 2024-04-09 エヌシーエックス コーポレーション Field emission cathode device and method for forming a field emission cathode device - Patents.com

Similar Documents

Publication Publication Date Title
Bonard et al. Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes
US7239073B2 (en) Carbon substance and method for manufacturing the same, electron emission element and composite materials
JP2008255003A (en) Carbon nanotube composite utilizing carbide-derived carbon, its production method, electron emission source containing it, and electron emission device provided with the electron emission source
CN1581410A (en) Magnetron
JPH05125619A (en) Graphite fiber having cylindrical structure
CN1841642A (en) High-load and high-intensity discharge lamp
US20050206293A1 (en) Electron-emmiting material and manufacturing method therefor
JP2008105922A (en) Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
Chen et al. Flexible low-dimensional semiconductor field emission cathodes: fabrication, properties and applications
JP3137961B2 (en) Electron emission electrode
Egorov et al. Carbon-based field emitters: properties and applications
US7294955B2 (en) Electrode for electron gun and electron gun using same
JPWO2005066993A1 (en) Electron emitting material, method for manufacturing the same, and electron emitting device using the same
US20100072879A1 (en) Field emission device with anode coating
JP2005166681A (en) Discharge tube and electrode for discharge tube
JP4648527B2 (en) Method for manufacturing cathode
TWI290952B (en) Blue fluorescent substance for display device and method for producing the same and field emission type display device
JP2003317656A (en) Discharge tube and electrode for discharge tube
JP2004152591A (en) Field emission lamp
JP2004119263A (en) Electron emissive material and its manufacturing method and field emission device and picture drawing element using it
JP4266679B2 (en) Electron emission source and manufacturing method
JP4815783B2 (en) Carbon nanotube, method for producing carbon nanotube, and electron emission material
JP2002100278A (en) Carbonaceous emitter and manufacturing method thereof
JP3686946B2 (en) Hydrogen storage material
JP3137960B2 (en) Electron emission material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805