JP2005164820A - Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method - Google Patents

Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method Download PDF

Info

Publication number
JP2005164820A
JP2005164820A JP2003401494A JP2003401494A JP2005164820A JP 2005164820 A JP2005164820 A JP 2005164820A JP 2003401494 A JP2003401494 A JP 2003401494A JP 2003401494 A JP2003401494 A JP 2003401494A JP 2005164820 A JP2005164820 A JP 2005164820A
Authority
JP
Japan
Prior art keywords
waveguide
refractive index
type optical
optical component
mach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003401494A
Other languages
Japanese (ja)
Inventor
Yutaka Ishii
裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003401494A priority Critical patent/JP2005164820A/en
Publication of JP2005164820A publication Critical patent/JP2005164820A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling optical characteristics of a waveguide type optical component by which the optical characteristics can be controlled while controlling the induction quantity of double refraction in the refractive index control of a waveguide by using light induction type refractive index changes, and to provide the waveguide type optical component controlled in optical characteristics of polarization-independent and polarization-dependent and its manufacturing method. <P>SOLUTION: In the method for controlling optical characteristics of the waveguide type optical component by using light induction type refractive index changes, the waveguide type optical components has a Mach-Zehnder interferometer arranged in an optical circuit and two arms of the Mach-Zehnder interferometer are irradiated with ultraviolet light of polarized waves of different directions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導波路型光部品の光学特性調整方法に関し、光回路の局所的な複屈折を効果的に調節して生産性を向上させ、特に導波路の複屈折を効果的に調整し、光回路の偏波特性を効率よく調整する方法に関する。   The present invention relates to a method for adjusting the optical characteristics of a waveguide-type optical component, and effectively adjusts the local birefringence of the optical circuit to improve productivity, and in particular, effectively adjusts the birefringence of the waveguide. The present invention relates to a method for efficiently adjusting the polarization characteristics of an optical circuit.

従来、導波路型光部品の光学特性調整方法に関しては、例えば以下の特許文献1〜6に開示された方法が提案されている。
特許文献1には、基板上にクラッド層に埋没された光伝搬作用をもつコア部を含む単一モード光導波路を形成する工程と、前記単一モード光導波路に可視又は紫外光レーザ光を照射してコア部の複屈折値を調整する工程とを有する光回路の製造方法が記載されている。この特許文献1に記載の方法では、紫外領域に光に敏感なGeOなどのドーパントを光導波路に添加しており、照射する紫外光の偏波に関しては記載されていない。
特許文献2には、基板上に形成されたコア及びクラッドからなる光導波路で構成される光回路の特性を調整するために、光導波路に室温で水素を含浸させる工程と、前記光導波路に熱処理を行う工程と、前記光導波路に局部的に可視光又は紫外光を照射する工程とを備えた特性調整方法が記載されている。この特許文献2に記載の方法では、光導波路の紫外光感受性を高めるために水素を含浸させている。この特許文献2には、照射する紫外光の偏波に関しては記載されていない。
特許文献3には、基板上にクラッド層を形成する工程と、該クラッド層に埋設されて光伝搬作用をもつコア部を含む単一モード導波路を形成する工程と、前記単一モード光導波路に残留応力による応力を与え、かつトリミングにより前記応力を非可逆的に変化させ得る応力付与膜を前記クラッド層上に形成する工程を備えた集積光デバイスの製造方法が記載されている。
特許文献4には、マッハ-ツェンダ干渉計よりなる光回路を製造する際に、マッハ-ツェンダ干渉計の2本のアーム導波路に対し2ヶ所又はそれ以上の異なる部位に、照射領域幅の異なる紫外或いは可視領域の光を照射し、特性トリミングを行う方法が記載されている。この特許文献4には、照射する紫外光の偏波に関しては記載されていない。
特許文献5には、近接部を有する2本の導波路をもつ方向性結合器を備えた導波路型光デバイスを製造する際に、近接部における少なくとも1本の光導波路に紫外光を照射して前記方向性結合器を通過する光の互いに実質的に直交する2つの偏光成分の結合度を調整する工程を含む導波路型光デバイスの製造方法が記載されている。この特許文献5には、照射する紫外光の偏波に関しては記載されていない。
特許文献6には、導波路を備えた光デバイスの光学特性を調整するために、紫外線又は赤外線レーザデバイスによって局部加熱を行う方法が記載されている。この特許文献6には、照射する紫外光の偏波に関しては記載されていない。
特開平6−51145号公報 特開平6−308546号公報 特公平7−18964号公報 特開2001−264567号公報 特開2001−330742号公報 特表2002−530689号公報 T.Meyer et al.,"Birefringence writing and erasing in ultra-low-birefringence fibers by polarized UV side-exposure: origin and applications", Proc. OFS '96, We5-1,1996.
Conventionally, for example, methods disclosed in the following Patent Documents 1 to 6 have been proposed as methods for adjusting the optical characteristics of a waveguide type optical component.
Patent Document 1 discloses a step of forming a single-mode optical waveguide including a core portion having a light propagation action embedded in a clad layer on a substrate, and irradiating the single-mode optical waveguide with visible or ultraviolet laser light. And a process for adjusting the birefringence value of the core part. In the method described in Patent Document 1, a dopant such as GeO 2 sensitive to light is added to the optical waveguide in the ultraviolet region, and there is no description regarding the polarization of the ultraviolet light to be irradiated.
Patent Document 2 discloses a step of impregnating an optical waveguide with hydrogen at room temperature in order to adjust the characteristics of an optical circuit composed of an optical waveguide composed of a core and a clad formed on a substrate, and a heat treatment on the optical waveguide. There is described a characteristic adjusting method including a step of performing a step of irradiating visible light or ultraviolet light locally on the optical waveguide. In the method described in Patent Document 2, hydrogen is impregnated in order to increase the ultraviolet light sensitivity of the optical waveguide. This Patent Document 2 does not describe polarization of ultraviolet light to be irradiated.
Patent Document 3 discloses a step of forming a clad layer on a substrate, a step of forming a single mode waveguide including a core portion embedded in the clad layer and having a light propagation action, and the single mode optical waveguide. Describes a method of manufacturing an integrated optical device, which includes a step of forming a stress-applying film on the clad layer that can apply stress due to residual stress to the stress and irreversibly change the stress by trimming.
In Patent Document 4, when an optical circuit composed of a Mach-Zehnder interferometer is manufactured, the irradiation area width differs at two or more different sites with respect to the two arm waveguides of the Mach-Zehnder interferometer. A method for performing characteristic trimming by irradiating light in the ultraviolet or visible region is described. This Patent Document 4 does not describe the polarization of ultraviolet light to be irradiated.
In Patent Document 5, when manufacturing a waveguide type optical device including a directional coupler having two waveguides having a proximity part, at least one optical waveguide in the proximity part is irradiated with ultraviolet light. A method of manufacturing a waveguide type optical device is described which includes a step of adjusting the degree of coupling of two polarization components substantially orthogonal to each other of light passing through the directional coupler. This Patent Document 5 does not describe the polarization of ultraviolet light to be irradiated.
Patent Document 6 describes a method of performing local heating with an ultraviolet or infrared laser device in order to adjust optical characteristics of an optical device including a waveguide. This Patent Document 6 does not describe the polarization of ultraviolet light to be irradiated.
JP-A-6-511145 JP-A-6-308546 Japanese Patent Publication No. 7-18964 JP 2001-264567 A JP 2001-330742 A Japanese translation of PCT publication No. 2002-530689 T. Meyer et al., "Birefringence writing and erasing in ultra-low-birefringence fibers by polarized UV side-exposure: origin and applications", Proc. OFS '96, We5-1, 1996.

前述した従来技術のうち、特許文献3に記載された方法は、残留応力を制御することにより複屈折を制御しているが、この方法は残留応力を制御するためにSi膜などを積層する必要があり、作業工程が増えるとともに製品歩留まりが悪くなるために製造コストが上昇するので好ましくない。
これ以外の特許文献1,2及び4〜6に記載された方法は、紫外光などを照射することにより導波路の複屈折を制御する方法であるが、照射されるUVの偏光状態・偏波の向きにより導波路に導入される複屈折が異なるものになることが知られている(例えば、非特許文献1参照。)。
Among the above-described conventional techniques, the method described in Patent Document 3 controls birefringence by controlling the residual stress. However, this method requires stacking a Si film or the like to control the residual stress. This is not preferable because the manufacturing cost increases because the work yield increases and the product yield deteriorates.
The other methods described in Patent Documents 1, 2 and 4 to 6 are methods for controlling the birefringence of the waveguide by irradiating ultraviolet light or the like. It is known that the birefringence introduced into the waveguide differs depending on the direction of the angle (see, for example, Non-Patent Document 1).

非特許文献1によると、紫外線照射により誘起される屈折率上昇は、照射される紫外線の偏波と同じ向きの入射光に対して大きく働くとされている。しかしながら、前述した従来技術では、照射する紫外線の偏光状態や偏波の向きを調節する点については言及しておらず、実際に製造に適用する上で、照射する紫外光の偏光状態や偏波の向きを調節することはなく、導波路型光部品の特性、特に複屈折起因の偏波特性を再現性良く調整することが困難であった。   According to Non-Patent Document 1, the increase in refractive index induced by ultraviolet irradiation is said to work greatly on incident light in the same direction as the polarization of the irradiated ultraviolet light. However, the above-mentioned conventional technology does not mention the point of adjusting the polarization state and polarization direction of the irradiated ultraviolet light, and the polarization state and polarization of the irradiated ultraviolet light when actually applied to manufacturing. Therefore, it is difficult to adjust the characteristics of the waveguide-type optical component, particularly the polarization characteristics due to birefringence, with good reproducibility.

図1は、基板1上にコア2(導波路)とクラッド3とを備えて構成された平面型光導波路4に対し、一般的な紫外光(無偏光、全偏光、円偏光、楕円偏光、導波路の伝搬方向に対して平行でも垂直でもない直線偏光など、導波路の向きと照射する紫外光の偏波の向きを特に制御していない紫外光)を照射した場合に導入される異方性(複屈折)を示す斜視図である。この図中符号Aは、コア2に照射する偏波の向きを調節していない紫外光を示し、Bは導波路に導入される複屈折の向きを示しており、この導波路中には照射される紫外光Aの偏波の向き(紫外光の電界の向き)に異方性を持つBの向きの複屈折が導入される。ここで、任意の偏光状態の紫外光を、導波路に平行な電界成分を持つ偏波(z偏波)と導波路に直交する電界成分を持つ偏波(x偏波)とに分けて考える。   FIG. 1 shows a general ultraviolet light (non-polarized light, all-polarized light, circularly-polarized light, elliptically-polarized light, etc.) with respect to a planar optical waveguide 4 configured with a core 2 (waveguide) and a clad 3 on a substrate 1. Anisotropy introduced when irradiating with ultraviolet light that does not control the direction of the waveguide and the direction of polarization of the irradiated ultraviolet light, such as linearly polarized light that is neither parallel nor perpendicular to the propagation direction of the waveguide It is a perspective view which shows property (birefringence). In this figure, symbol A indicates ultraviolet light in which the direction of polarized light applied to the core 2 is not adjusted, and B indicates the direction of birefringence introduced into the waveguide. The birefringence of the direction of B having anisotropy in the direction of polarization of the ultraviolet light A (the direction of the electric field of the ultraviolet light) is introduced. Here, ultraviolet light in an arbitrary polarization state is divided into polarized light having an electric field component parallel to the waveguide (z-polarized light) and polarized light having an electric field component orthogonal to the waveguide (x-polarized light). .

図2は、導波路方向に平行な偏波成分の紫外光のz偏波によって導入される異方性(複屈折)を示し、導波路に平行な電界成分を持つ紫外線Cのz偏波により、導波路と平行なDの向きの複屈折が導入される。これは、導波路を伝搬する光のx偏波成分とy偏波成分とに対して等価に働くので、このような紫外光の偏波成分(z偏波)による屈折率変化は、導波路を伝搬する光に対して複屈折性を持たない。   FIG. 2 shows the anisotropy (birefringence) introduced by the z-polarization of ultraviolet light having a polarization component parallel to the waveguide direction, and the z-polarization of ultraviolet C having an electric field component parallel to the waveguide. Birefringence in the direction of D parallel to the waveguide is introduced. This works equivalently for the x-polarized component and the y-polarized component of the light propagating through the waveguide, and thus the refractive index change due to the polarized component (z-polarized) of the ultraviolet light is the waveguide. It does not have birefringence for light propagating through

図3は、導波路方向に直交する方向の偏波成分の紫外光のx偏波で導入される異方性(複屈折)を示し、導波路に直交する電界成分を持つ紫外光Eのx偏波により、導波路に直交するx方向(F方向)に複屈折が導入される。この場合、導波路を伝搬するx偏波に対する屈折率上昇が、y偏波に対する屈折率上昇よりも大きくなる。すなわち、x偏波とy偏波に対して異なる量の屈折率変化、つまり複屈折が導入されることになる。   FIG. 3 shows the anisotropy (birefringence) introduced by x-polarization of ultraviolet light having a polarization component in a direction orthogonal to the waveguide direction, and x of ultraviolet light E having an electric field component orthogonal to the waveguide. Due to the polarization, birefringence is introduced in the x direction (F direction) orthogonal to the waveguide. In this case, the refractive index increase for the x polarization propagating through the waveguide is larger than the refractive index increase for the y polarization. That is, a different amount of refractive index change, that is, birefringence is introduced for the x-polarized wave and the y-polarized wave.

一般に、紫外光を照射することによって導入される屈折率変化は、屈折率の絶対値と比較して非常に小さい。例えば、石英系ガラスの場合、紫外光で導入される屈折率変化量は、最大でもせいぜい10−3オーダーである。したがって、これを用いた光回路の特性調整には、屈折率の違いにより導波路への光閉じ込めが異なる現象を利用するなどの紫外光照射による屈折率変化を直接使うのではなく、例えば、マッハ-ツェンダ干渉計のアームの光路長を僅かに変化させて位相シフトを生じさせ、干渉条件を変えるなどの場合が多い。この時、「一般的な紫外光」、すなわち導波路の向きと照射する紫外光の偏光の向きを特に制御していない紫外光Aを照射して光回路の光学特性の調整を行う場合、図4に示すように、導波路の片側又は両側に、導波光のx偏波・y偏波に対して異なる屈折率変化を与えることになる。図4は、従来技術により一般的な紫外光により光路長を変化させてマッハ-ツェンダ干渉計を有する導波路型光部品5を作製する状態を示す図であり、図中符号6は基板、7はクラッド、8,9はコア(導波路)、10は第1の方向性結合器、11は第2の方向性結合器、12は第1のアーム、13は第2のアームである。図4の例示では、第1のアーム12に一般的な紫外光を照射し、この第1のアーム12の光路長を僅かに変化させ、マッハ-ツェンダ干渉計を有する導波路型光部品5を作製している。このような導波路型光部品5では、x偏波とy偏波のそれぞれに対する光路長が、異なる変化率で同時に変化することとなり、光回路の光学特性と偏波特性、換言すれば、x偏波・y偏波のそれぞれに対する光学特性とそれらの差を同時に制御することが非常に困難であった。 In general, the refractive index change introduced by irradiation with ultraviolet light is very small compared to the absolute value of the refractive index. For example, in the case of quartz-based glass, the amount of change in refractive index introduced by ultraviolet light is at most on the order of 10 −3 . Therefore, for adjusting the characteristics of an optical circuit using this, the refractive index change due to ultraviolet light irradiation is not used directly, such as using the phenomenon that the optical confinement in the waveguide differs depending on the refractive index. -In many cases, the optical path length of the arm of the Zehnder interferometer is slightly changed to cause a phase shift to change the interference condition. At this time, when adjusting the optical characteristics of the optical circuit by irradiating “general ultraviolet light”, that is, ultraviolet light A in which the direction of the waveguide and the direction of polarization of the irradiated ultraviolet light are not particularly controlled, FIG. As shown in FIG. 4, different refractive index changes are given to the x-polarized light and the y-polarized light of the guided light on one side or both sides of the waveguide. FIG. 4 is a diagram showing a state in which a waveguide type optical component 5 having a Mach-Zehnder interferometer is manufactured by changing the optical path length with general ultraviolet light according to the prior art. In FIG. Is a core (waveguide), 10 is a first directional coupler, 11 is a second directional coupler, 12 is a first arm, and 13 is a second arm. In the illustration of FIG. 4, the first arm 12 is irradiated with general ultraviolet light, the optical path length of the first arm 12 is slightly changed, and the waveguide type optical component 5 having a Mach-Zehnder interferometer is obtained. I am making it. In such a waveguide-type optical component 5, the optical path length for each of the x-polarized wave and the y-polarized light changes simultaneously at different rates of change, and in other words, the optical characteristics and polarization characteristics of the optical circuit, It has been very difficult to simultaneously control the optical characteristics of x-polarized light and y-polarized light and the difference between them.

また、多くの場合、紫外光の光路中にミラー(反射鏡)を用いるが、この紫外光の反射率は偏波成分毎に異なる場合があり、導波路型光部品の特性を調整するための紫外線照射装置等の光学系ごとに導波路型光部品に導入される複屈折量が異なる場合があるなど、再現性よく光回路の特性調整を行うことが困難であった。   In many cases, a mirror (reflecting mirror) is used in the optical path of ultraviolet light, but the reflectivity of this ultraviolet light may differ for each polarization component, and is used to adjust the characteristics of the waveguide type optical component. It has been difficult to adjust the characteristics of the optical circuit with good reproducibility, for example, the amount of birefringence introduced into the waveguide type optical component may be different for each optical system such as an ultraviolet irradiation device.

本発明は前記事情に鑑みてなされ、光誘起型の屈折率変化を用いた導波路の屈折率調整において複屈折の導入量を制御しつつ、光学特性を調整可能な導波路型光部品の光学特性調整方法、偏波無依存分及び偏波依存分の光学特性がなされた導波路型光部品及びその製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and the optical properties of a waveguide-type optical component capable of adjusting the optical characteristics while controlling the amount of birefringence introduced in the adjustment of the refractive index of the waveguide using a light-induced refractive index change. It is an object of the present invention to provide a waveguide type optical component having a characteristic adjustment method, polarization-independent and polarization-dependent optical characteristics, and a method for manufacturing the same.

前記目的を達成するため、本発明は、光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームに、異なる向きの偏波の紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法を提供する。
この調整方法において、2本のアームに照射する紫外光の照射量(ここで、照射量は偏波の向きに拘わらず、光パワー×照射時間の絶対量である。)を等しくすることが好ましい。
In order to achieve the above object, the present invention provides a method for adjusting the optical characteristics of a waveguide-type optical component using a light-induced refractive index change, wherein the waveguide-type optical component is included in an optical circuit. An optical characteristic adjusting method for a waveguide type optical component is provided, in which two arms of the Mach-Zehnder interferometer are irradiated with ultraviolet light having different directions of polarization.
In this adjustment method, it is preferable to equalize the amount of ultraviolet light irradiated to the two arms (where the amount of irradiation is the absolute amount of light power × irradiation time regardless of the direction of polarization). .

また本発明は、マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームの屈折率が同量ずつ上昇し、かつこの屈折率上昇領域の屈折率の異方性の向きが異なっていることを特徴とする導波路型光部品を提供する。   The present invention also relates to a waveguide-type optical component having a Mach-Zehnder interferometer, in which the refractive indexes of the two arms of the Mach-Zehnder interferometer are increased by the same amount, and the refractive index of the refractive index increasing region is increased. There is provided a waveguide type optical component characterized in that the direction of anisotropy is different.

また本発明は、前記光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームの屈折率が同量ずつ上昇し、かつこの屈折率上昇領域の屈折率の異方性の向きが異なっている導波路型光部品を製造することを特徴とする導波路型光部品の製造方法を提供する。   According to the present invention, there is provided a Mach-Zehnder interferometer in the optical circuit by performing the optical characteristic adjusting method, and the refractive indexes of the two arms of the Mach-Zehnder interferometer are increased by the same amount, and Provided is a method for manufacturing a waveguide-type optical component, characterized by manufacturing a waveguide-type optical component having different refractive index anisotropy directions in the refractive index increasing region.

また本発明は、光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームの少なくとも一方に導波路長手方向と平行な向きの偏波の紫外光を照射し、かつ2本のアームの少なくとも一方に導波路長手方向と平行でない向きの偏波の紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法を提供する。   The present invention also relates to a method for adjusting the optical characteristics of a waveguide-type optical component utilizing a light-induced change in refractive index, wherein the waveguide-type optical component has a Mach-Zehnder interferometer in the optical circuit. -At least one of the two arms of the Zehnder interferometer is irradiated with polarized ultraviolet light in a direction parallel to the longitudinal direction of the waveguide, and at least one of the two arms is polarized in a direction not parallel to the longitudinal direction of the waveguide Provided is a method for adjusting optical characteristics of a waveguide type optical component, characterized by irradiating a wave of ultraviolet light.

また本発明は、マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームのいずれかに、屈折率上昇の異方性の向きが導波路長手方向と平行な屈折率上昇領域と、屈折率上昇の異方性の向きが導波路長手方向と直交する屈折率上昇領域とが設けられていることを特徴とする導波路型光部品を提供する。   The present invention also relates to a waveguide-type optical component having a Mach-Zehnder interferometer, in which one of the two arms of the Mach-Zehnder interferometer has an anisotropic direction of refractive index increase in the longitudinal direction of the waveguide. And a refractive index increasing region in which the direction of anisotropy of increasing the refractive index is orthogonal to the longitudinal direction of the waveguide is provided.

また本発明は、前記光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームのいずれかに、屈折率上昇の異方性の向きが導波路長手方向と平行な屈折率上昇領域と、屈折率上昇の異方性の向きが導波路長手方向と直交する屈折率上昇領域とが設けられた導波路型光部品を製造することを特徴とする導波路型光部品の製造方法を提供する。   The present invention also includes a Mach-Zehnder interferometer in the optical circuit by performing the optical characteristic adjusting method, and anisotropy of an increase in refractive index is provided in one of the two arms of the Mach-Zehnder interferometer. A waveguide type optical component having a refractive index increasing region whose direction is parallel to the longitudinal direction of the waveguide and a refractive index increasing region where the anisotropic direction of the refractive index increase is perpendicular to the longitudinal direction of the waveguide is manufactured. A method for manufacturing a waveguide type optical component is provided.

また本発明は、光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームのいずれか2箇所以上に、偏波の向きが互いに異なる紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法を提供する。   The present invention also relates to a method for adjusting the optical characteristics of a waveguide-type optical component utilizing a light-induced change in refractive index, wherein the waveguide-type optical component has a Mach-Zehnder interferometer in the optical circuit. Provided is a method for adjusting the optical characteristics of a waveguide-type optical component, characterized in that ultraviolet light having different polarization directions is irradiated to any two or more of two arms of a Zehnder interferometer.

また本発明は、マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームが有する屈折率上昇領域の屈折率の異方性の向きと、屈折率の異方性の大きさとの少なくとも一方が2本のアームで互いに異なることを特徴とする導波路型光部品を提供する。   The present invention also relates to a waveguide-type optical component having a Mach-Zehnder interferometer, wherein the refractive index anisotropy direction of the refractive index increasing region of the two arms of the Mach-Zehnder interferometer, and the refractive index. There is provided a waveguide type optical component characterized in that at least one of the magnitudes of anisotropy differs between two arms.

また本発明は、前記光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、マッハ-ツェンダ干渉計の2本のアームが有する屈折率上昇領域の屈折率の異方性の向きと、屈折率の異方性の大きさとの少なくとも一方が2本のアームで互いに異なる導波路型光部品を製造することを特徴とする導波路型光部品の製造方法を提供する。   Further, the present invention provides the anisotropy of the refractive index of the refractive index increasing region having the Mach-Zehnder interferometer in the optical circuit by performing the optical characteristic adjusting method and having the two arms of the Mach-Zehnder interferometer. A waveguide-type optical component manufacturing method is provided, in which at least one of the direction and the refractive index anisotropy is different from each other by two arms.

本発明によれば、光回路中にマッハ-ツェンダ干渉計を有する導波路型光部品に対して、複屈折の無い屈折率変化を用いた偏波無依存分の光学特性の調整と、複屈折の導入による、偏波依存分の光学特性の調整とを同時に行うことができ、高性能な導波路型光部品を効率よく製造することができる。
また、導波路型光部品に導入される複屈折量を精密に制御することができ、再現性よく光回路の特性調整を行うことができる。
According to the present invention, for a waveguide type optical component having a Mach-Zehnder interferometer in an optical circuit, adjustment of polarization independent optical characteristics using a refractive index change without birefringence, and birefringence Thus, it is possible to simultaneously adjust the optical characteristics corresponding to the polarization dependence, and to efficiently manufacture a high-performance waveguide type optical component.
Further, the amount of birefringence introduced into the waveguide type optical component can be precisely controlled, and the characteristics of the optical circuit can be adjusted with good reproducibility.

以下、図面を参照して本発明の実施形態を説明する。
図5は、本発明に係る導波路型光部品の光学特性調整方法の第1の例を示す図である。本調整方法は、導波路型光部品として、基板6上に導波路となる2本のコア8,9が、2箇所で接近しそれ以外は略平行な蛇行状態で設けられ、かつこれらのコア8,9を囲むクラッド7が設けられ、全体として平板形状をなすマッハ-ツェンダ干渉計を有する導波路型光部品20において、本発明の光学特性調整方法を実施する場合を例示している。この導波路型光部品20は、中央部を挟んでその両側に2本のコア8,9がそれぞれ接近した第1の方向性結合器10及び第2の方向性結合器11と、前記中央部分において2本のコア8,9が離間して平行な部分を有するように形成された第1のアーム12及び第2のアーム13とを備えて構成されたマッハ-ツェンダ干渉計を有している。このマッハ-ツェンダ干渉計は、長手方向両端にそれぞれ2つのポートを有し、例えば図5中、左側の2つのポートのうちの一方に入力光14を入射すると、右側の2つのポートからそれぞれスルーポート出力15とクロスポート出力16が出射される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 5 is a diagram showing a first example of a method for adjusting optical characteristics of a waveguide type optical component according to the present invention. In this adjustment method, two optical cores 8 and 9 serving as waveguides are provided on a substrate 6 as waveguide-type optical components, and are provided in a meandering state in which two cores approach each other and are substantially parallel to each other. In the waveguide type optical component 20 having the Mach-Zehnder interferometer that is provided with the clad 7 that surrounds the plates 8 and 9 and has a flat plate shape as a whole, the optical characteristic adjustment method of the present invention is illustrated. The waveguide-type optical component 20 includes a first directional coupler 10 and a second directional coupler 11 in which two cores 8 and 9 approach each other on both sides of the central portion, and the central portion. 1 includes a Mach-Zehnder interferometer configured to include a first arm 12 and a second arm 13 formed so that the two cores 8 and 9 are spaced apart and have parallel portions. . This Mach-Zehnder interferometer has two ports at both ends in the longitudinal direction. For example, when the input light 14 is incident on one of the two left ports in FIG. A port output 15 and a cross port output 16 are emitted.

この導波路型光部品20は、基板6上にマッハ-ツェンダ干渉計を構成する2本のコア8,9(導波路)が設けられ、これらのコア8,9を囲むクラッド7が設けられ、コア8,9材料の屈折率がクラッド材料の屈折率よりも高く、コア8,9内で光の伝搬が行われるとともに、コア8,9が光誘起型、特に紫外光誘起型の屈折率変化を生じ得る材料であれば良く、これらの材質や形状は特に限定されない。基板6としては、例えば石英ガラス板、セラミックス製基板、シリコン基板などが挙げられる。コア8,9は、GeOを添加した石英ガラスなどを用いて形成することが望ましい。コア8,9のパターンは、フォトリソグラフィーなどの手法を用いて形成できる。クラッド7は、石英ガラスの他、合成樹脂を用いて形成することもできる。 In this waveguide type optical component 20, two cores 8 and 9 (waveguides) constituting a Mach-Zehnder interferometer are provided on a substrate 6, and a clad 7 surrounding these cores 8 and 9 is provided. The refractive index of the core 8, 9 material is higher than the refractive index of the clad material, light is propagated in the core 8, 9 and the core 8, 9 is light-induced, particularly ultraviolet light-induced refractive index change. Any material may be used as long as the material can generate the above-described material, and the material and shape thereof are not particularly limited. Examples of the substrate 6 include a quartz glass plate, a ceramic substrate, and a silicon substrate. The cores 8 and 9 are preferably formed using quartz glass to which GeO 2 is added. The pattern of the cores 8 and 9 can be formed using a technique such as photolithography. The clad 7 can also be formed using synthetic resin in addition to quartz glass.

本例による光学特性調整方法では、下方に向けて偏波調整していない紫外光Aを照射する図示していない紫外光源と、この紫外光源から照射された紫外光を受けて異なる偏波成分に分け、偏波の向きがアーム12,13の平行部分と平行な紫外光Gを透過するとともに、偏波の向きがアーム12,13の平行部分と直交する紫外光Iを反射する偏光ミラー17と、偏光ミラー17で反射された紫外光Iを更に反射して下方のアーム13に照射するミラー18とを備えた調整装置を用いて実施される。この偏光ミラー17は、反射面を45°の角度で配置し、紫外光Aをこの反射面に向けて垂直方向に照射することによって、偏波の向きがアーム12,13の平行部分と平行な紫外光Gと、偏波の向きがアーム12,13の平行部分と直交する紫外光Iとが同じ光パワーでそれぞれのアーム12,13に照射できるようになっている。   In the optical characteristic adjustment method according to this example, the ultraviolet light source (not shown) that irradiates the ultraviolet light A that is not polarization-adjusted downward, and the different polarization components are received by receiving the ultraviolet light emitted from the ultraviolet light source. A polarization mirror 17 that transmits ultraviolet light G whose polarization direction is parallel to the parallel portions of the arms 12 and 13 and that reflects ultraviolet light I whose polarization direction is orthogonal to the parallel portions of the arms 12 and 13; The adjustment device includes a mirror 18 that further reflects the ultraviolet light I reflected by the polarizing mirror 17 and irradiates the lower arm 13 with the reflected light. The polarizing mirror 17 has a reflecting surface disposed at an angle of 45 ° and irradiates the ultraviolet light A in a vertical direction toward the reflecting surface, so that the polarization direction is parallel to the parallel portions of the arms 12 and 13. The ultraviolet light G and the ultraviolet light I whose polarization direction is orthogonal to the parallel portions of the arms 12 and 13 can be irradiated to the arms 12 and 13 with the same optical power.

この調整装置に光学特性を調整する導波路型光部品20をセットし、紫外光源から紫外線Aを照射すると、偏光ミラー17を透過した偏波の向きがアーム12,13の平行部分と平行な紫外光Gが第1のアーム12に局部照射されるとともに、偏光ミラー17で反射された偏波の向きがアーム12,13の平行部分と直交する紫外光Iがミラー18によって反射された後、第2のアーム13に局部照射される。   When the waveguide type optical component 20 for adjusting the optical characteristics is set in this adjusting device and the ultraviolet light A is irradiated from the ultraviolet light source, the direction of the polarized light transmitted through the polarizing mirror 17 is the ultraviolet light parallel to the parallel portions of the arms 12 and 13. After the light G is locally irradiated on the first arm 12 and the ultraviolet light I whose polarization direction reflected by the polarizing mirror 17 is orthogonal to the parallel part of the arms 12 and 13 is reflected by the mirror 18, The two arms 13 are irradiated locally.

それぞれの紫外光G,Iを所定時間照射すると、第1、第2のアーム12,13に屈折率上昇領域が形成され、光路長が変化する。本例では、第1のアーム12に偏波の向きがアーム12,13の平行部分と平行な紫外光Gを照射し、第2のアーム13に偏波の向きがアーム12,13の平行部分と直交する紫外光Iを照射することで、これらのアーム12,13に導入される屈折率の異方性(複屈折)の向きが異なっており、第1のアーム12に形成される屈折率上昇領域ではアーム12,13の平行部分と平行な向きHの複屈折が導入され、第2のアームでは該長手方向と直交する向きJの複屈折が導入される。これにより導波光のx偏波に対しては2本のアームで光路長に差が生じ、一方、導波光のy偏波に対しては2本のアームの光路長の変化は等しくなる。   When each ultraviolet light G, I is irradiated for a predetermined time, a refractive index increasing region is formed in the first and second arms 12, 13, and the optical path length changes. In this example, the first arm 12 is irradiated with the ultraviolet light G whose polarization direction is parallel to the parallel part of the arms 12 and 13, and the second arm 13 is directed to the parallel part of the arms 12 and 13. The direction of the anisotropy (birefringence) of the refractive index introduced into the arms 12 and 13 is different by irradiating the ultraviolet light I orthogonal to the refractive index formed in the first arm 12. In the ascending region, birefringence in the direction H parallel to the parallel portions of the arms 12 and 13 is introduced, and in the second arm, birefringence in the direction J perpendicular to the longitudinal direction is introduced. This causes a difference in optical path length between the two arms for the x-polarized light of the guided light, while changes in the optical path lengths of the two arms are equal for the y-polarized light of the guided light.

その結果、本例による光学特性調整方法では、調整前は偏波無依存の光学特性(x,y両偏波ともクロスポートに100%出力される)を持つマッハ-ツェンダ干渉計に対し、図5に示すように非対称な向きの偏波の紫外光G,Iをそれぞれのアーム12,13に照射することによって、x偏波はスルーポート出力がほぼ100%、y偏波はドーズ前と同様にクロスポート出力がほぼ100%となる偏波ビームスプリッタ(PBS;Polarized-Beam Splitter)を作製することができる。   As a result, in the optical characteristic adjustment method according to this example, before the adjustment, a Mach-Zehnder interferometer having polarization-independent optical characteristics (both x and y polarized waves are output to the crossport) is shown in FIG. As shown in FIG. 5, by irradiating the arms 12 and 13 with ultraviolet light G and I having asymmetrical polarization, the x-polarized light has almost 100% through-port output and the y-polarized light is the same as before the dose. In addition, a polarized beam splitter (PBS; Polarized-Beam Splitter) having a cross-port output of almost 100% can be manufactured.

紫外光源としては、Ar第2高調波(SHG;Second Harmonic Generation)レーザ(発振波長244nm)、KrFエキシマレーザ(発振波長248nm)、ArFエキシマレーザ(発振波長193nm)、XeFエキシマレーザ(発振波長351nm)、Xeエキシマランプ(波長172nm)、KrClエキシマランプ(波長222nm)、XeIエキシマランプ(253nm)、Iエキシマランプ(波長341nm)などの紫外光源を用い、これらの光源からの無偏光な出力光を偏光子を通すなどの手法により必要な偏光を得、これを導波路に対して照射することにより、同様の効果を得ることが可能である。 As the ultraviolet light source, Ar + second harmonic generation (SHG) laser (oscillation wavelength 244 nm), KrF excimer laser (oscillation wavelength 248 nm), ArF excimer laser (oscillation wavelength 193 nm), XeF excimer laser (oscillation wavelength 351 nm) ), Xe excimer lamp (wavelength 172 nm), KrCl excimer lamp (wavelength 222 nm), XeI excimer lamp (253 nm), I 2 excimer lamp (wavelength 341 nm), etc., and non-polarized output light from these light sources It is possible to obtain the same effect by obtaining the necessary polarized light by a method such as passing a polarizer through a polarizer and irradiating it with respect to the waveguide.

前述した第1の実施形態にあっては、マッハ-ツェンダ干渉計を光回路中に持つ導波路型光部品において、特に2本のアームの両方に照射する紫外光の照射量(絶対値)を同じとし、かつこの屈折率上昇領域の屈折率の異方性(複屈折)の向きが異なるようにする場合について述べたが、本発明の目的を実現するには、図8〜11に示すように、2本のアームの両方に照射する紫外光の照射量(絶対値)を同じとする必要はない。   In the first embodiment described above, in the waveguide-type optical component having the Mach-Zehnder interferometer in the optical circuit, the irradiation amount (absolute value) of the ultraviolet light applied to both of the two arms is particularly determined. Although the case where the same and the direction of the anisotropy (birefringence) of the refractive index in the refractive index increasing region are different has been described, in order to realize the object of the present invention, as shown in FIGS. Moreover, it is not necessary to make the irradiation amount (absolute value) of the ultraviolet light irradiated to both the two arms the same.

図8は本発明の光学特性調整方法の第2の例を示す図である。本例ではマッハ-ツェンダ干渉計の第2のアーム13に導波路長手方向と平行な向きの偏波の紫外光Gを照射し、かつ第1のアーム12に導波路長手方向と平行でない向きの偏波の紫外光Kを照射する。第1のアーム12に照射される偏波は、アーム13に照射される紫外光と異なる光パワーであってもよい。図8中、符号Hは紫外光Gにより導入される屈折率上昇領域に導入される複屈折の向きであり、またLは紫外光Kにより導入される屈折率上昇領域に導入される複屈折の向きである。
これによって、アーム12,13の少なくとも片側に導波路の向きと平行な偏波の紫外光Gを照射して偏波無依存分の光学特性を調整し、かつ導波路の少なくとも片側に、導波路の向きと平行でない向きの偏波の紫外光Kを照射して、偏波依存分の光学特性を調整することができ、この調整方法でも光回路の局所的な複屈折を調整する目的は達成できる。
FIG. 8 is a diagram showing a second example of the optical characteristic adjusting method of the present invention. In this example, the second arm 13 of the Mach-Zehnder interferometer is irradiated with polarized ultraviolet light G in a direction parallel to the longitudinal direction of the waveguide, and the first arm 12 is oriented in a direction not parallel to the longitudinal direction of the waveguide. Irradiate polarized ultraviolet light K. The polarized light applied to the first arm 12 may have an optical power different from the ultraviolet light applied to the arm 13. In FIG. 8, symbol H denotes the direction of birefringence introduced into the refractive index increasing region introduced by the ultraviolet light G, and L denotes birefringence introduced into the refractive index increasing region introduced by the ultraviolet light K. The direction.
As a result, the polarization-independent optical characteristics are adjusted by irradiating at least one side of the arms 12 and 13 with polarized ultraviolet light G parallel to the direction of the waveguide, and the waveguide is provided on at least one side of the waveguide. It is possible to adjust the polarization-dependent optical characteristics by irradiating polarized ultraviolet light K in a direction that is not parallel to the direction of light, and this adjustment method also achieves the purpose of adjusting the local birefringence of the optical circuit it can.

図9は本発明の光学特性調整方法の第3の例を示す図である。本例ではマッハ-ツェンダ干渉計の第1のアーム12に導波路長手方向と平行な向きの偏波の紫外光Gを照射し、かつ第1のアーム12の他部に導波路長手方向と平行でない向きの偏波の紫外光Kを両方照射し、一方、第2のアーム13には紫外光を照射していない。
これによって、アーム(導波路)の少なくとも片側に導波路の向きと平行な偏波を照射して偏波無依存分の光学特性を調整し、かつ導波路の少なくとも片側に、導波路の向きと平行でない向きの偏波を照射して、偏波依存分の光学特性を調整することができ、この調整方法でも光回路の局所的な複屈折を調整する目的は達成できる。
FIG. 9 is a diagram showing a third example of the optical characteristic adjusting method of the present invention. In this example, the first arm 12 of the Mach-Zehnder interferometer is irradiated with ultraviolet light G having a polarization parallel to the longitudinal direction of the waveguide, and the other part of the first arm 12 is parallel to the longitudinal direction of the waveguide. The second arm 13 is not irradiated with ultraviolet light.
As a result, at least one side of the arm (waveguide) is irradiated with polarized light parallel to the direction of the waveguide to adjust the polarization-independent optical characteristics, and at least one side of the waveguide has the direction of the waveguide It is possible to adjust polarization-dependent optical characteristics by irradiating polarized light in a non-parallel direction, and this adjustment method can also achieve the purpose of adjusting the local birefringence of the optical circuit.

図10は本発明の光学特性調整方法の第4の例を示す図である。本例ではマッハ-ツェンダ干渉計の第1のアーム12に偏波の向きを調節していない紫外光Aを照射し、かつ第2のアーム13に導波路長手方向と平行な向きの偏波の紫外光Gを照射している。
これによって、アーム(導波路)の少なくとも片側に導波路の向きと平行な偏波を照射して偏波無依存分の光学特性を調整し、かつ導波路の少なくとも片側に、導波路の向きと平行でない向きの偏波を照射して、偏波依存分の光学特性を調整することができ、この調整方法でも光回路の局所的な複屈折を調整する目的は達成できる。
FIG. 10 is a diagram showing a fourth example of the optical characteristic adjusting method of the present invention. In this example, the first arm 12 of the Mach-Zehnder interferometer is irradiated with ultraviolet light A whose polarization direction is not adjusted, and the second arm 13 is polarized in a direction parallel to the longitudinal direction of the waveguide. Ultraviolet light G is irradiated.
As a result, at least one side of the arm (waveguide) is irradiated with polarized light parallel to the direction of the waveguide to adjust the polarization-independent optical characteristics, and at least one side of the waveguide has the direction of the waveguide It is possible to adjust polarization-dependent optical characteristics by irradiating polarized light in a non-parallel direction, and this adjustment method can also achieve the purpose of adjusting the local birefringence of the optical circuit.

図11は本発明の光学特性調整方法の第5の例を示す図である。本例ではマッハ-ツェンダ干渉計の第1のアーム12に導波路長手方向と平行な向きの偏波の紫外光Gを照射し、かつ第1のアーム12の他部に偏波の向きを調節していない紫外光Aを両方照射し、第2のアーム13には紫外光を照射していない。
これによって、アーム(導波路)の少なくとも片側に導波路の向きと平行な偏波を照射して偏波無依存分の光学特性を調整し、かつ導波路の少なくとも片側に、導波路の向きと平行でない向きの偏波を照射して、偏波依存分の光学特性を調整することができ、この調整方法でも光回路の局所的な複屈折を調整する目的は達成できる。
FIG. 11 is a diagram showing a fifth example of the optical property adjusting method of the present invention. In this example, the first arm 12 of the Mach-Zehnder interferometer is irradiated with polarized ultraviolet light G in a direction parallel to the longitudinal direction of the waveguide, and the polarization direction is adjusted to the other part of the first arm 12. Both the ultraviolet light A which has not been irradiated are irradiated, and the second arm 13 is not irradiated with the ultraviolet light.
As a result, at least one side of the arm (waveguide) is irradiated with polarized light parallel to the direction of the waveguide to adjust the polarization-independent optical characteristics, and at least one side of the waveguide has the direction of the waveguide It is possible to adjust polarization-dependent optical characteristics by irradiating polarized light in a non-parallel direction, and this adjustment method can also achieve the purpose of adjusting the local birefringence of the optical circuit.

前述した各例で用いた偏波は、導波路長手方向に直交する向きに電界を持つ偏波であるか、あるいは導波路長手方向に平行な向きに電界を持つ偏波を照射した。しかしながら、本発明の目的を達成するためには、2本のアームに与えられる複屈折に差を生じるようにすればよく、導波路に平行又は直交する偏波をアームに照射することに限定されない。
照射する偏波の向きにより、導波路に導入される異方性(複屈折)の大きさは異なる。図12〜17に示すように、導波路と平行な偏波は複屈折が最小で、導波路の無機と紫外光の偏波の向き(電界の向き)とのなす角度が大きくなるに従い導入される複屈折は大きくなり、導波路と偏波の向きとが直交する場合に導入される複屈折が最大となる。
The polarized wave used in each of the above examples was polarized light having an electric field in a direction perpendicular to the longitudinal direction of the waveguide, or polarized light having an electric field in a direction parallel to the longitudinal direction of the waveguide. However, in order to achieve the object of the present invention, it is sufficient to make a difference in the birefringence given to the two arms, and the invention is not limited to irradiating the arm with polarized waves parallel or orthogonal to the waveguide. .
The magnitude of anisotropy (birefringence) introduced into the waveguide varies depending on the direction of the polarized light to be irradiated. As shown in FIGS. 12 to 17, the polarization parallel to the waveguide has the minimum birefringence, and is introduced as the angle between the waveguide inorganic and the direction of polarization of the ultraviolet light (the direction of the electric field) increases. Birefringence increases, and the birefringence introduced when the waveguide and the direction of polarization are orthogonal is maximized.

図12は、コア12(導波路)の向きに関係なく、無偏光・全偏光などの、偏波の向きを調節していない紫外光Aを照射して誘起した屈折率上昇領域の異方性を示す。なお図12中、符号aは照射される紫外光の偏光の向きを示し、Aは照射される紫外光の偏波成分を示し、Bは導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折Bは中程度となる。   FIG. 12 shows the anisotropy of the refractive index increase region induced by irradiation with ultraviolet light A whose polarization direction is not adjusted, such as non-polarized light or total polarized light, regardless of the direction of the core 12 (waveguide). Indicates. In FIG. 12, the symbol a indicates the direction of polarization of the irradiated ultraviolet light, A indicates the polarization component of the irradiated ultraviolet light, and B indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence B introduced into the waveguide is moderate.

図13は、コア12(導波路)の向きと平行な向きに電界を持つ偏波の紫外光Gを照射して誘起した屈折率上昇領域の異方性を示す。なお図13中、符号gは照射される紫外光の偏光の向きを示し、Gは照射される紫外光の偏波成分を示し、Hは導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折Hは最小となる。   FIG. 13 shows the anisotropy of the refractive index increase region induced by irradiating polarized ultraviolet light G having an electric field in a direction parallel to the direction of the core 12 (waveguide). In FIG. 13, symbol g indicates the direction of polarization of the irradiated ultraviolet light, G indicates the polarization component of the irradiated ultraviolet light, and H indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence H introduced into the waveguide is minimized.

図14は、コア12(導波路)の向きと成す角度θが0°<θ<45°の範囲となる向きに電界を持つ偏波の紫外光K1を照射した場合に得られる屈折率上昇領域の屈折率の異方性を示す図である。なお図14中、符号k1は照射される紫外光の偏光の向きを示し、K1は照射される紫外光の偏波成分を示し、L1は導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折L1は小となる。   FIG. 14 shows the refractive index increase region obtained when the polarized ultraviolet light K1 having an electric field is irradiated in the direction in which the angle θ formed with the direction of the core 12 (waveguide) is in the range of 0 ° <θ <45 °. It is a figure which shows the anisotropy of refractive index. In FIG. 14, symbol k1 indicates the direction of polarization of the irradiated ultraviolet light, K1 indicates the polarization component of the irradiated ultraviolet light, and L1 indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence L1 introduced into the waveguide is small.

図15は、コア12(導波路)の向きと成す角度θが45°となる向きに電界を持つ紫外光を照射した場合に得られる屈折率上昇領域の屈折率の異方性を示す図である。なお図15中、符号k2は照射される紫外光の偏光の向きを示し、K2は照射される紫外光の偏波成分を示し、L2は導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折L2は中程度となる。   FIG. 15 is a diagram showing the anisotropy of the refractive index in the refractive index increasing region obtained when the ultraviolet light having an electric field is irradiated in the direction in which the angle θ formed with the direction of the core 12 (waveguide) is 45 °. is there. In FIG. 15, symbol k2 indicates the direction of polarization of the irradiated ultraviolet light, K2 indicates the polarization component of the irradiated ultraviolet light, and L2 indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence L2 introduced into the waveguide is moderate.

図16は、コア12(導波路)の向きと成す角度θが45°<θ<90°の範囲となる向きに電界を持つ紫外線偏波を照射した場合に得られる屈折率上昇領域の屈折率の異方性を示す図である。なお図16中、符号k3は照射される紫外光の偏光の向きを示し、K3は照射される紫外光の偏波成分を示し、L3は導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折L3は大となる。   FIG. 16 shows the refractive index of the refractive index increasing region obtained when ultraviolet polarized light having an electric field is applied in the direction in which the angle θ formed with the direction of the core 12 (waveguide) is in the range of 45 ° <θ <90 °. It is a figure which shows the anisotropy of. In FIG. 16, symbol k3 indicates the direction of polarization of the irradiated ultraviolet light, K3 indicates the polarization component of the irradiated ultraviolet light, and L3 indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence L3 introduced into the waveguide is large.

図17は、コア12(導波路)の向きと成す角度θが90°の範囲となる向きに電界を持つ紫外線偏波を照射した場合に得られる屈折率上昇領域の屈折率の異方性を示す図である。なお図12中、符号iは照射される紫外光の偏光の向きを示し、Iは照射される紫外光の偏波成分を示し、Jは導波路に導入される複屈折の向きを示す。この場合、導波路に導入される複屈折Jは最大となる。   FIG. 17 shows the refractive index anisotropy in the refractive index increasing region obtained when ultraviolet polarized light having an electric field is irradiated in the direction in which the angle θ formed with the direction of the core 12 (waveguide) is in the range of 90 °. FIG. In FIG. 12, symbol i indicates the direction of polarization of the irradiated ultraviolet light, I indicates the polarization component of the irradiated ultraviolet light, and J indicates the direction of birefringence introduced into the waveguide. In this case, the birefringence J introduced into the waveguide is maximized.

これらの偏波を用いて、2本のアームに照射する紫外光の偏波の向き・照射量の少なくとも一方を異なるものにすることにより、マッハ-ツェンダ干渉計の偏波特性(偏波毎の分岐比など)を調整することも可能である。
上記ではマッハ-ツェンダ干渉計において第1及び第2のアーム12,13の前後の光結合部を3dBの分岐比を持つ方向性結合器10,11としたが、それらの方向性結合器10,11の代わりに、特開2000−162454号公報「光カプラ及びそれを用いたマッハツェンダ型光合分波器」、特開2000−221345号公報「マルチモード干渉光素子」に示されるようなマルチモード干渉光結合器(MMIカプラ;Multi-Mode Interferometer)を用いても良い。
Using these polarizations, the polarization characteristics of the Mach-Zehnder interferometer (for each polarization) are changed by making at least one of the polarization direction and the amount of irradiation of the ultraviolet light irradiating the two arms different. It is also possible to adjust the branching ratio of
In the above description, in the Mach-Zehnder interferometer, the optical coupling portions before and after the first and second arms 12 and 13 are the directional couplers 10 and 11 having a branching ratio of 3 dB. Multimode interference as disclosed in Japanese Patent Application Laid-Open No. 2000-162454 “Optical coupler and Mach-Zehnder optical multiplexer / demultiplexer using the same”, Japanese Patent Application Laid-Open No. 2000-221345 “Multimode interference optical device”. An optical coupler (MMI coupler; Multi-Mode Interferometer) may be used.

なお、前述した各例では、紫外光を照射して光学特性を調整する対象としてPLC(Planar Lightwave Circuit;平面型光回路)の場合について述べたが、光ファイバカプラを用いて作製した、インタリーバなどとして用いられるマッハ-ツェンダ干渉計の光学特性の調整においても同様に、光遅延線の導波路(光ファイバ)と平行な向きの電界を持つ偏波紫外光を照射して光路長を変えつつ、導波路(光ファイバ)に導入される複屈折を最小化することが可能である。   In each of the above-described examples, the case of a PLC (Planar Lightwave Circuit) is described as an object of adjusting the optical characteristics by irradiating ultraviolet light. However, an interleaver manufactured using an optical fiber coupler, etc. Similarly, in the adjustment of the optical characteristics of the Mach-Zehnder interferometer used as the optical delay line while irradiating polarized ultraviolet light with an electric field parallel to the waveguide (optical fiber) of the optical delay line, It is possible to minimize the birefringence introduced into the waveguide (optical fiber).

図5に示す光学特性調整方法を実施し、マッハ-ツェンダ干渉計を有する導波路型光部品を作製した。   The optical characteristic adjusting method shown in FIG. 5 was carried out to produce a waveguide type optical component having a Mach-Zehnder interferometer.

<光回路の作製>
石英ガラス系導波路を有する導波路型光部品(光回路はマッハ-ツェンダ干渉計を構成)を作製した。導波路型光部品の基板には石英ガラス板を用いた。下部クラッド層は純粋石英ガラスを、コア層はGe添加石英ガラス(若干量のBとPを含む)をいずれもCVD(化学気相合成)法で堆積し、フォトリソグラフィーによりコア層の不要な部分を除去してコア(導波路)形状を形成し、コアを埋め込むように上部クラッド層を堆積させた。上部クラッド層はBとPを添加した石英ガラスとし、屈折率を純粋石英ガラスと等しくしつつ、軟化点温度が純粋石英ガラスよりも若干低くなるようにした。
<Fabrication of optical circuit>
A waveguide-type optical component having a silica glass waveguide (the optical circuit is a Mach-Zehnder interferometer) was fabricated. A quartz glass plate was used as the substrate of the waveguide type optical component. The lower cladding layer is made of pure silica glass, and the core layer is made of Ge-added quartz glass (including a small amount of B 2 O 3 and P 2 O 5 ) by CVD (chemical vapor synthesis) method. An unnecessary portion of the core layer was removed to form a core (waveguide) shape, and an upper clad layer was deposited so as to embed the core. The upper clad layer was made of quartz glass to which B 2 O 3 and P 2 O 5 were added, and the softening point temperature was made slightly lower than that of pure quartz glass while making the refractive index equal to that of pure quartz glass.

下部クラッド層・コア・上部クラッド層を形成した後、導波路型光部品全体を一旦800〜1000℃に加熱後徐冷し、ガラス膜堆積時に形成されるガラス中の欠陥を除去すると共に、残留応力が除去されるような処理を行った。
導波路パラメータとして、コア断面形状は5.5μm×5.5μmの略正方形状とし、クラッドとの比屈折率差(Δ)は1.0%となるようにコアのGeO添加量を調整した。
形成された光回路は、分岐比が3dB(測定波長1.55μm)となる方向性結合器を2個有し、これらの間に、互いに等しい光路長を持つ2本のアームを持つマッハ-ツェンダ干渉計とした。
After forming the lower clad layer, core, and upper clad layer, the entire waveguide type optical component is once heated to 800 to 1000 ° C. and then slowly cooled to remove defects in the glass formed during the glass film deposition and Processing was performed to remove the stress.
As the waveguide parameters, the core cross-sectional shape was a substantially square shape of 5.5 μm × 5.5 μm, and the GeO 2 addition amount of the core was adjusted so that the relative refractive index difference (Δ) with the cladding was 1.0%. .
The formed optical circuit has two directional couplers with a branching ratio of 3 dB (measurement wavelength 1.55 μm), and a Mach-Zehnder having two arms having the same optical path length between them. An interferometer was used.

<導波路型光部品への紫外光照射>
導波路型光部品に紫外光を照射した際の屈折率変化が大きくなるように、光感受性を高めるため、前記導波路型光部品をHローディング処理した。すなわち、20〜60℃・100気圧のHガス雰囲気中に7〜14日暴露して導波路型光部品にHガスを浸透させた。なお、導波路自体が十分な光感受性を有している場合、このHローディング処理は不要である。
<Ultraviolet light irradiation to waveguide type optical components>
In order to increase the photosensitivity so that the change in refractive index when the waveguide type optical component is irradiated with ultraviolet light is increased, the waveguide type optical component is subjected to H 2 loading treatment. That is, the waveguide type optical component was infiltrated with H 2 gas by being exposed in an atmosphere of H 2 gas at 20 to 60 ° C. and 100 atm for 7 to 14 days. If the waveguide itself has sufficient light sensitivity, this H 2 loading process is unnecessary.

紫外光源と、図5に示すように配置した偏光ミラー17とミラー18との組み合わせを備えた紫外線照射装置に前記Hローディング処理後の導波路型光部品をセットした。
紫外光源としては、Ar第2高調波(SHG;Second Harmonic Generation)レーザ(発振波長244nm)を用いた。レーザ発振条件はCWとし、照射パワーは200mWとした。ArSHGレーザ光は、偏光ミラー17の複屈折軸に対して45°の角度をなすように、すなわち導波路のアームの長手方向に平行な偏波と直交する偏波とに分離した際、それぞれが等しい照射量(ここで、照射量は偏波の向きに拘わらず、光パワー×照射時間の絶対量である。)を持つように入射し、偏光ミラー17で分離した後、一方のアーム12にその長手方向に平行な偏波の紫外光が照射されるようにし、また他方のアーム13にその長手方向と直交する方向の偏波の紫外光が照射されるようにした。
The waveguide-type optical component after the H 2 loading process was set in an ultraviolet irradiation device provided with a combination of an ultraviolet light source and a polarizing mirror 17 and a mirror 18 arranged as shown in FIG.
As the ultraviolet light source, an Ar + second harmonic generation (SHG) laser (oscillation wavelength 244 nm) was used. The laser oscillation condition was CW, and the irradiation power was 200 mW. When the Ar + SHG laser light is separated at a 45 ° angle with respect to the birefringence axis of the polarizing mirror 17, that is, when the Ar + SHG laser light is separated into a polarization parallel to the longitudinal direction of the waveguide arm and a polarization orthogonal thereto, Each arm is incident so as to have an equal irradiation amount (here, the irradiation amount is an absolute amount of light power × irradiation time regardless of the direction of polarization) and separated by the polarizing mirror 17, then one arm. 12 is irradiated with polarized ultraviolet light parallel to the longitudinal direction, and the other arm 13 is irradiated with polarized ultraviolet light in a direction perpendicular to the longitudinal direction.

2本のアーム12,13に照射される紫外光のパワーの絶対値が等しくなるようにし、2本のアーム12,13に導入される屈折率変化が、
・導入される異方性がx方向では2本のアーム12,13で異なり(すなわち、導波光のx偏波に対しては2本のアームで光路長に差が生じ)、
・導入される異方性がy方向については、2本のアームで等価となる(すなわち、導波光のy偏波に対しては2本のアームの光路長の変化は等しくなる)、
ようにした。
The absolute value of the power of the ultraviolet light applied to the two arms 12 and 13 is made equal, and the refractive index change introduced into the two arms 12 and 13 is
The introduced anisotropy differs between the two arms 12 and 13 in the x direction (that is, there is a difference in the optical path length between the two arms with respect to the x polarization of the guided light),
The introduced anisotropy is equivalent in the two directions for the y direction (that is, the change in the optical path length of the two arms is equal for the y polarization of the guided light),
I did it.

<紫外光照射に伴う光学特性の変化>
前記の導波路型光部品に、図5に示した通り、2本のアーム12,13で異なる偏波の紫外光を照射した。紫外光の照射時間(ドーズ時間)毎に各偏波に対するマッハ-ツェンダ干渉計の分岐比を図6,7に示す。
<Changes in optical properties due to ultraviolet light irradiation>
The waveguide type optical component was irradiated with ultraviolet light having different polarizations by the two arms 12 and 13 as shown in FIG. FIGS. 6 and 7 show the branching ratio of the Mach-Zehnder interferometer for each polarization for each irradiation time (dose time) of ultraviolet light.

図6及び図7から判る通り、図5に示した2本のアームに対する非対称な紫外光の照射によって、y偏波に対する光学特性は殆ど変化しないのに対し、x偏波に対する光学特性のみ変化していることが判る。特に、紫外光を照射する前(ドーズ時間が0秒の時)はx,y偏波ともにクロスポートへの出力がほぼ100%であるのに対し、ドーズ時間が1000秒前後の時には、x偏波はスルーポート出力がほぼ100%、y偏波はドーズ前と同様にクロスポート出力がほぼ100%となっている。
つまり、最初は偏波無依存の光学特性(x,y両偏波ともクロスポートに100%出力される)を持つマッハ-ツェンダ干渉計が、非対称な紫外光の照射によって偏波ビームスプリッタ(PBS;Polarized-Beam Splitter)になったと言える。
本実験により、マッハ-ツェンダ干渉計の2本のアームに異なる偏波を持つ紫外光を照射することにより、光回路の偏波特性を広い範囲で調整できることが実証された。
As can be seen from FIG. 6 and FIG. 7, the asymmetrical ultraviolet light irradiation to the two arms shown in FIG. You can see that In particular, before irradiating with ultraviolet light (when the dose time is 0 second), the output to the cross port is almost 100% for both x and y polarized waves, whereas when the dose time is around 1000 seconds, the x polarization is The wave has a through-port output of almost 100%, and the y-polarized wave has a cross-port output of almost 100% as before the dose.
That is, at first, a Mach-Zehnder interferometer having polarization-independent optical characteristics (100% of both x and y polarizations are output to the crossport) is converted into a polarization beam splitter (PBS) by asymmetric ultraviolet light irradiation. ; Polarized-Beam Splitter).
This experiment demonstrates that the polarization characteristics of an optical circuit can be adjusted over a wide range by irradiating two arms of a Mach-Zehnder interferometer with ultraviolet light having different polarizations.

一般的な紫外光照射により導波路中に導入される異方性を示す平面型光導波路の斜視図である。It is a perspective view of the planar optical waveguide which shows the anisotropy introduce | transduced in a waveguide by general ultraviolet light irradiation. 導波路長手方向に平行な向きの偏波成分の紫外光で導入される異方性を示す平面型光導波路の斜視図である。FIG. 5 is a perspective view of a planar optical waveguide showing anisotropy introduced by ultraviolet light having a polarization component in a direction parallel to the longitudinal direction of the waveguide. 導波路長手方向に直交する向きの偏波成分の紫外光で導入される異方性を示す平面型光導波路の斜視図である。It is a perspective view of the planar optical waveguide which shows the anisotropy introduced with the ultraviolet light of the polarization component of the direction orthogonal to a waveguide longitudinal direction. 従来の技術による、一般的な紫外光照射による光路長調整方法を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view which shows the waveguide type optical component provided with the Mach-Zehnder interferometer for demonstrating the optical path length adjustment method by the general ultraviolet irradiation by the prior art. 本発明による光学特性調整方法の第1の例を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view showing a waveguide type optical component provided with a Mach-Zehnder interferometer for explaining a first example of an optical characteristic adjusting method according to the present invention. 本発明に係る実施例において作製した導波路型光部品のx偏波の分岐比の変化を示すグラフである。It is a graph which shows the change of the branching ratio of x polarization | polarized-light of the waveguide type optical component produced in the Example which concerns on this invention. 本発明に係る実施例において作製した導波路型光部品のy偏波の分岐比の変化を示すグラフである。It is a graph which shows the change of the branching ratio of y polarization of the waveguide type optical component produced in the example concerning the present invention. 本発明による光学特性調整方法の第2の例を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view which shows the waveguide type optical component provided with the Mach-Zehnder interferometer for demonstrating the 2nd example of the optical characteristic adjustment method by this invention. 本発明による光学特性調整方法の第3の例を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view which shows the waveguide type optical component provided with the Mach-Zehnder interferometer for demonstrating the 3rd example of the optical characteristic adjustment method by this invention. 本発明による光学特性調整方法の第4の例を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view which shows the waveguide type optical component provided with the Mach-Zehnder interferometer for demonstrating the 4th example of the optical characteristic adjustment method by this invention. 本発明による光学特性調整方法の第5の例を説明するためのマッハ-ツェンダ干渉計を備えた導波路型光部品を示す斜視図である。It is a perspective view which shows the waveguide type optical component provided with the Mach-Zehnder interferometer for demonstrating the 5th example of the optical characteristic adjustment method by this invention. 導波路に偏波の向きを調節していない紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。It is a perspective view which shows the anisotropy of the refractive index raise area | region induced by irradiating the ultraviolet light which is not adjusting the direction of polarization to a waveguide. 導波路にその長手方向と平行な向きの紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。It is a perspective view which shows the anisotropy of the refractive index raise area | region induced by irradiating a waveguide with the ultraviolet light of the direction parallel to the longitudinal direction. 導波路にその長手方向となす角度θが0°<θ<45°の向きの偏波の紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。FIG. 6 is a perspective view showing anisotropy of a refractive index increasing region induced by irradiating a polarized ultraviolet light having an angle θ of 0 ° <θ <45 ° with a longitudinal direction of the waveguide. 導波路にその長手方向となす角度θが45°の向きの偏波の紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。It is a perspective view which shows the anisotropy of the refractive index raise area | region induced by irradiating the polarized light with the direction whose angle (theta) which makes with respect to the longitudinal direction to a waveguide is 45 degrees. 導波路にその長手方向となす角度θが45°<θ<90°の向きの偏波の紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。FIG. 6 is a perspective view showing anisotropy of a refractive index increasing region induced by irradiating a waveguide with polarized ultraviolet light having an angle θ of 45 ° <θ <90 ° with respect to the longitudinal direction of the waveguide. 導波路にその長手方向となす角度θが90°の向きの偏波の紫外光を照射して誘起した屈折率上昇領域の異方性を示す斜視図である。It is a perspective view which shows the anisotropy of the refractive index raise area | region induced by irradiating the polarized light with the polarization | polarized-light whose direction (theta) which makes the longitudinal direction to a waveguide 90 degrees.

符号の説明Explanation of symbols

1,6…基板、2,8,9…コア、3,7…クラッド、4…平面型光導波路、5…導波路型光部品、10…第1の方向性結合器、11…第2の方向性結合器、12…第1のアーム、13…第2のアーム、14…入力、15…スルーポート出力、16…クロスポート出力、17…偏光ミラー、18…ミラー、20…導波路型光部品。
DESCRIPTION OF SYMBOLS 1,6 ... Board | substrate, 2,8,9 ... Core, 3,7 ... Cladding, 4 ... Planar type optical waveguide, 5 ... Waveguide type | mold optical component, 10 ... 1st directional coupler, 11 ... 2nd Directional coupler, 12 ... first arm, 13 ... second arm, 14 ... input, 15 ... through port output, 16 ... crossport output, 17 ... polarizing mirror, 18 ... mirror, 20 ... waveguide type light parts.

Claims (10)

光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームに、異なる向きの偏波の紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法。   A method for adjusting the optical characteristics of a waveguide type optical component utilizing a light-induced change in refractive index, wherein the waveguide type optical component has a Mach-Zehnder interferometer in an optical circuit. A method for adjusting the optical characteristics of a waveguide-type optical component, characterized in that two arms are irradiated with ultraviolet light having different directions of polarization. 2本のアームに照射する紫外光の照射量(ここで、照射量は偏波の向きに拘わらず、光パワー×照射時間の絶対量である。)を等しくすることを特徴とする請求項1に記載の導波路型光部品の光学特性調整方法。   2. The irradiation amount of ultraviolet light irradiating two arms (here, the irradiation amount is an absolute amount of light power × irradiation time regardless of the direction of polarization). A method for adjusting the optical characteristics of the waveguide-type optical component according to claim 1. マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームの屈折率が同量ずつ上昇し、かつこの屈折率上昇領域の屈折率の異方性の向きが異なっていることを特徴とする導波路型光部品。   A waveguide type optical component having a Mach-Zehnder interferometer, in which the refractive indexes of the two arms of the Mach-Zehnder interferometer are increased by the same amount, and the refractive index anisotropy of the refractive index increasing region is increased. A waveguide type optical component characterized by having different directions. 請求項1又は2に記載された光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームの屈折率が同量ずつ上昇し、かつこの屈折率上昇領域の屈折率の異方性の向きが異なっている導波路型光部品を製造することを特徴とする導波路型光部品の製造方法。   The optical characteristic adjusting method according to claim 1 or 2 is performed, and the optical circuit has a Mach-Zehnder interferometer, and the refractive indexes of the two arms of the Mach-Zehnder interferometer are increased by the same amount. A method for manufacturing a waveguide-type optical component, characterized in that a waveguide-type optical component having different refractive index anisotropy directions in the refractive index increasing region is manufactured. 光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームの少なくとも一方に導波路長手方向と平行な向きの偏波の紫外光を照射し、かつ2本のアームの少なくとも一方に導波路長手方向と平行でない向きの偏波の紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法。   A method for adjusting the optical characteristics of a waveguide type optical component using a photo-induced refractive index change, wherein the waveguide type optical component has a Mach-Zehnder interferometer in an optical circuit, and the Mach-Zehnder interferometer At least one of the two arms is irradiated with polarized ultraviolet light in a direction parallel to the waveguide longitudinal direction, and at least one of the two arms is irradiated with polarized ultraviolet light in a direction not parallel to the waveguide longitudinal direction. Irradiating a method for adjusting optical characteristics of a waveguide type optical component. マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームのいずれかに、屈折率上昇の異方性の向きが導波路長手方向と平行な屈折率上昇領域と、屈折率上昇の異方性の向きが導波路長手方向と平行でない屈折率上昇領域とが設けられていることを特徴とする導波路型光部品。   A waveguide-type optical component having a Mach-Zehnder interferometer, in which one of the two arms of the Mach-Zehnder interferometer has a refractive index whose refractive index rise is parallel to the longitudinal direction of the waveguide. A waveguide-type optical component comprising: a rising region; and a refractive index increasing region in which the direction of anisotropy in increasing the refractive index is not parallel to the longitudinal direction of the waveguide. 請求項5に記載された光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームのいずれかに、屈折率上昇の異方性の向きが導波路長手方向と平行な屈折率上昇領域と、屈折率上昇の異方性の向きが導波路長手方向と平行でない屈折率上昇領域とが設けられた導波路型光部品を製造することを特徴とする導波路型光部品の製造方法。   6. An optical characteristic adjusting method according to claim 5, wherein a Mach-Zehnder interferometer is provided in the optical circuit, and either of the two arms of the Mach-Zehnder interferometer has an anisotropic refractive index increase. Produces a waveguide-type optical component that has a refractive index increasing region in which the orientation is parallel to the waveguide longitudinal direction and a refractive index increasing region in which the anisotropy direction of the refractive index increase is not parallel to the waveguide longitudinal direction A method for manufacturing a waveguide-type optical component. 光誘起型の屈折率変化を利用した導波路型光部品の光学特性調整方法であって、導波路型光部品が光回路中にマッハ-ツェンダ干渉計を有し、このマッハ-ツェンダ干渉計の2本のアームのいずれか2箇所以上に、偏波の向きが互いに異なる紫外光を照射することを特徴とする導波路型光部品の光学特性調整方法。   A method for adjusting the optical characteristics of a waveguide type optical component utilizing a light-induced change in refractive index, wherein the waveguide type optical component has a Mach-Zehnder interferometer in an optical circuit. A method for adjusting optical characteristics of a waveguide-type optical component, wherein ultraviolet light having different polarization directions is irradiated to any two or more of two arms. マッハ-ツェンダ干渉計を有する導波路型光部品であって、マッハ-ツェンダ干渉計の2本のアームが有する屈折率上昇領域の屈折率の異方性の向きと、屈折率の異方性の大きさとの少なくとも一方が2本のアームで互いに異なることを特徴とする導波路型光部品。   A waveguide type optical component having a Mach-Zehnder interferometer, in which the two arms of the Mach-Zehnder interferometer have a refractive index anisotropy direction and a refractive index anisotropy direction. A waveguide type optical component, wherein at least one of the sizes is different from each other by two arms. 請求項8に記載された光学特性調整方法を行って、光回路中にマッハ-ツェンダ干渉計を有し、マッハ-ツェンダ干渉計の2本のアームが有する屈折率上昇領域の屈折率の異方性の向きと、屈折率の異方性の大きさとの少なくとも一方が2本のアームで互いに異なる導波路型光部品を製造することを特徴とする導波路型光部品の製造方法。   An optical characteristic adjustment method according to claim 8, wherein the optical circuit has a Mach-Zehnder interferometer, and the refractive index increases in the refractive index increasing region of the two arms of the Mach-Zehnder interferometer. A waveguide-type optical component manufacturing method, wherein at least one of the direction of the property and the magnitude of anisotropy of the refractive index is different from each other by two arms.
JP2003401494A 2003-12-01 2003-12-01 Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method Withdrawn JP2005164820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003401494A JP2005164820A (en) 2003-12-01 2003-12-01 Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401494A JP2005164820A (en) 2003-12-01 2003-12-01 Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005164820A true JP2005164820A (en) 2005-06-23

Family

ID=34725410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401494A Withdrawn JP2005164820A (en) 2003-12-01 2003-12-01 Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005164820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027895A1 (en) * 2009-09-07 2011-03-10 古河電気工業株式会社 Plc type demodulator and optical transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027895A1 (en) * 2009-09-07 2011-03-10 古河電気工業株式会社 Plc type demodulator and optical transmission system
US8526102B2 (en) 2009-09-07 2013-09-03 Furukawa Electronic Co., Ltd. PLC-type demodulator and optical transmission system
JP5684131B2 (en) * 2009-09-07 2015-03-11 古河電気工業株式会社 PLC type demodulator and optical transmission system

Similar Documents

Publication Publication Date Title
US6442311B1 (en) Optical device having modified transmission characteristics by localized thermal treatment
US6256435B1 (en) Polarization insensitive grating in a planar channel optical waveguide and method to achieve the same
JP3703013B2 (en) Interferometer optical circuit and manufacturing method thereof
US7627203B2 (en) Thermo-optic devices providing thermal recirculation
JP4405978B2 (en) Optical signal processor
JPH06289241A (en) Polarized light separating element
Takahashi et al. Compact and low-loss coherent mixer based on high Δ ZrO 2-SiO 2 PLC
Amorim et al. Monolithic add–drop multiplexers in fused silica fabricated by femtosecond laser direct writing
JP3374990B2 (en) Optical circuit characteristic adjustment method
CA2361952A1 (en) Laser ablation of waveguide structures
Syahriar et al. Thermooptic interferometric switches fabricated by electron beam irradiation of silica-on-silicon
JP2005164820A (en) Method for controlling optical characteristic of waveguide type optical component, waveguide type optical component, and its manufacturing method
JPH0651145A (en) Optical circuit and its production
Posner et al. Integrated polarizing coupler based on tilted gratings
Johlen et al. Measurement of the birefringence of UV-written channel silica waveguides by magnetooptic polarization-mode coupling
JPH04298702A (en) Optical circuit and its characteristic adjusting method
JP2004309807A (en) Laminated optical waveguide
Nasu et al. Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits
JP2004170657A (en) Waveguide type variable optical attenuator
JP3715206B2 (en) Interferometer optical circuit manufacturing method
JP3616549B2 (en) Optical circuit manufacturing method
Kudalippalliyalil et al. Low-loss and Ultra-broadband Silicon Nitride Angled MMI Polarization Splitter
JP2005208299A (en) Method for manufacturing waveguide type optical component, and waveguide type optical component
JP2009053425A (en) Method for forming optical waveguide wavelength filter and optical waveguide wavelength filter
Davis et al. Distributed Bragg deflectors fabricated in sol-gel based waveguides

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206