JP2005164428A - Defect inspection method and inspection device of laminate - Google Patents

Defect inspection method and inspection device of laminate Download PDF

Info

Publication number
JP2005164428A
JP2005164428A JP2003404673A JP2003404673A JP2005164428A JP 2005164428 A JP2005164428 A JP 2005164428A JP 2003404673 A JP2003404673 A JP 2003404673A JP 2003404673 A JP2003404673 A JP 2003404673A JP 2005164428 A JP2005164428 A JP 2005164428A
Authority
JP
Japan
Prior art keywords
temperature distribution
inspection
defect
inspected
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003404673A
Other languages
Japanese (ja)
Inventor
Kazunori Fujii
和典 藤井
Kenji Furuya
健司 古谷
Yoshiko Hishitani
佳子 菱谷
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003404673A priority Critical patent/JP2005164428A/en
Publication of JP2005164428A publication Critical patent/JP2005164428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method and a defect inspection device of a laminate, capable of detecting a defect of the laminate in a nondestructive/noncontact manner, regardless of the material of the laminate, and utilizable, for example, for deterioration diagnosis of for a solid oxide type fuel cell or process inspection at manufacturing. <P>SOLUTION: Thermal radiation distributions on the inspection body surface generated, when the inspection body 1 is heated from the back side and the surface side respectively by a lower infrared lamp 11; an upper infrared lamp 12 are detected by an infrared camera 20; and data of the change with passage of time of the thermal radiation distributions in the case of back side heating and surface side heating are compared by a data processing means 30, to thereby specify delamination P, based on the difference or the ratio between both data. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層体の欠陥、例えば固体酸化物形燃料電池(SOFC)用セルのような積層体の固体電解質と電極界面における剥離などの欠陥を非破壊・非接触、しかも積層体の材質に拘わりなく検出することができる欠陥検査方法と、このような欠陥検査に好適に用いることができる欠陥検査装置に関するものである。   The present invention provides non-destructive, non-contact, and non-destructive, non-destructive, and non-destructive measures for defects in laminates, such as delamination at the solid electrolyte and electrode interface of laminates such as solid oxide fuel cell (SOFC) cells. The present invention relates to a defect inspection method that can be detected without any concern, and a defect inspection apparatus that can be suitably used for such defect inspection.

例えば、固体酸化物形燃料電池用の固体電解質のような平板状絶縁性セラミックスの欠陥検査方法としては、セラミックシートの両面を電極で挟み、シートに直流高電圧を印加したときに発生する放電電流を検出することにより2Å以上の貫通孔の有無を検査する方法が知られている(特許文献1参照。)。
また、セラミック管の検査方法としては、その内部を光源で照明し、管壁からの透過光をカメラ等で画像撮影したり、画像処理を施したりすることによって欠陥の有無を検査す方法も知られている(例えば、特許文献2参照。)。
For example, as a defect inspection method for flat insulating ceramics such as a solid electrolyte for a solid oxide fuel cell, a discharge current generated when a DC high voltage is applied to the sheet by sandwiching both surfaces of the ceramic sheet with electrodes. A method for inspecting whether or not there is a through hole of 2 mm or more by detecting the above is known (see Patent Document 1).
In addition, as a method for inspecting ceramic tubes, there is also known a method for inspecting the presence or absence of defects by illuminating the interior with a light source and photographing the transmitted light from the tube wall with a camera or performing image processing. (For example, see Patent Document 2).

一方、欠陥検査に赤外線を用いることも知られており、過渡サーモグラフィーによるプロセス制御に関するものとして、未焼結のグリーンシート(金属と有機物)の潜在的な欠陥を検出する検査装置が開示されている(例えば、特許文献3参照。)。
また、接合型バブルシートの非破壊検査方法として、シリンダヘッドと、該シリンダヘッドに接合されたバブルシート間を熱が伝導する際におけるバブルシートの時間毎の温度分布変化を測定することによってバルブシートのシリンダヘッドに対する接合性の良否を判定することが開示されている(例えば、特許文献4参照。)。
特開2002−90346号公報 特開平11−242000号公報 特表2002−502968号公報 特開平9−96204号公報
On the other hand, it is also known to use infrared rays for defect inspection, and an inspection apparatus for detecting a potential defect in an unsintered green sheet (metal and organic matter) is disclosed as a process control by transient thermography. (For example, refer to Patent Document 3).
Further, as a non-destructive inspection method for a bonding type bubble sheet, a valve sheet is measured by measuring a change in temperature distribution of the bubble sheet over time when heat is conducted between the cylinder head and the bubble sheet bonded to the cylinder head. It is disclosed to determine whether or not the bonding property to the cylinder head is good (see, for example, Patent Document 4).
JP 2002-90346 A Japanese Patent Laid-Open No. 11-242000 JP-T-2002-502968 JP-A-9-96204

しかしながら、上記した従来技術のうち、特許文献1に記載のものは、被検査物であるセラミックスシートに高電圧を印加することから、非検査物を破損する可能性があるばかりでなく、検査システムに高電圧を用いることは、実際の操作上望ましいこととは言えない。
また、上記特許文献2に記載のものは、被検査物が光をある程度透過する材料でなければ適用できないという問題がある。
そして、特許文献3及び4に記載の技術については、被検査物の構造が比較的簡単であることを要し、燃料電池のように複雑な構造を有し、しかも多様の材料を用いた製品の検査にそのまま適用することは必ずしも容易ではないという問題点がある。
However, among the above-described conventional techniques, the one described in Patent Document 1 applies a high voltage to the ceramic sheet that is the object to be inspected. It is not desirable to use a high voltage for the actual operation.
Moreover, the thing of the said patent document 2 has the problem that it cannot apply, unless a to-be-inspected material is a material which permeate | transmits light to some extent.
The techniques described in Patent Documents 3 and 4 require that the structure of the object to be inspected is relatively simple, have a complicated structure like a fuel cell, and use various materials. There is a problem that it is not always easy to apply the method as it is.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、積層体の材質に左右されることなく、積層体の欠陥を非破壊・非接触で検出しることができ、例えば固体酸化物形燃料電池の劣化診断や、製造時の工程検査などに利用可能な積層体の欠陥検査方法及び欠陥検査装置を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide nondestructive and non-contacting of defects in the laminated body regardless of the material of the laminated body. An object of the present invention is to provide a defect inspection method and a defect inspection apparatus for a laminated body that can be detected, and can be used for, for example, deterioration diagnosis of a solid oxide fuel cell and process inspection during manufacturing.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、積層体に積層方向の熱移動を与えたときに、積層体表面における温度分布の変化を観察することによって上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have achieved the above object by observing changes in the temperature distribution on the surface of the laminate when heat transfer in the stacking direction is given to the laminate. The present inventors have found that the present invention can be accomplished and have completed the present invention.

本発明は、上記知見に基づくものであって、本発明の積層体の欠陥検査方法は、積層構造を有する被検査体をその表面又は裏面側から加熱又は冷却し、このときの被検査体表面の温度分布変化を検出して、被検査体の層間剥離の有無を判定するようにしたことを特徴としている。
そして、本発明の他の積層体の欠陥検査方法においては、被検査体を表面側から加熱又は冷却したときの被検査体表面の温度分布変化と、裏面側から加熱又は冷却した場合における被検査体表面の温度分布変化とを比較して、被検査体の層間剥離の有無を判定するようにしている。
This invention is based on the said knowledge, Comprising: The defect inspection method of the laminated body of this invention heats or cools the to-be-inspected object which has laminated structure from the surface or back side, and the to-be-inspected surface at this time It is characterized in that a change in temperature distribution is detected to determine the presence or absence of delamination of the object to be inspected.
In another defect inspection method for a laminate according to the present invention, the temperature distribution change on the surface of the object to be inspected when the object to be inspected is heated or cooled from the front side, and the object to be inspected in the case of being heated or cooled from the back side By comparing the temperature distribution change on the body surface, the presence or absence of delamination of the object to be inspected is determined.

また、本発明の積層体の欠陥検査装置は、上記欠陥検査方法を実施するのに好適なものであって、被検査体を表面側及び裏面側からそれぞれ加熱又は冷却する熱源又は冷却源と、加熱又は冷却された被検査体の表面の熱放射分布を検出する温度分布検出手段と、この温度分布検出手段によって検出された熱放射分布の経時変化データを収集して解析するデータ処理手段を備えたことを特徴としている。   In addition, the defect inspection apparatus for a laminate according to the present invention is suitable for carrying out the defect inspection method, and a heat source or a cooling source for heating or cooling the object to be inspected from the front surface side and the back surface side, and Temperature distribution detection means for detecting the heat radiation distribution on the surface of the object to be inspected that has been heated or cooled, and data processing means for collecting and analyzing the time-dependent data of the heat radiation distribution detected by the temperature distribution detection means. It is characterized by that.

また、本発明の固体酸化物形燃料電池用セルの検査装置は、上記のような積層体の欠陥検査装置を用いて構成されるものであって、このときの被検査体としての積層体が燃料電池用セルということになる。   The inspection apparatus for a solid oxide fuel cell according to the present invention is configured using the defect inspection apparatus for a laminate as described above, and the laminate as an object to be inspected at this time is provided. This is a fuel cell.

本発明の第1の欠陥検査方法によれば、被検査体としての積層体を表面又は裏面側から加熱又は冷却し、このときの被検査体表面の温度分布変化を検出するようにしているため、積層体に層間剥離のような欠陥が生じている場合には、当該部分における熱移動(伝導)が妨げられることから、当該部分に熱移動方向に応じた温度分布のむらが発生するので、これを検出することによって、積層体の材質に拘わりなく、積層体の欠陥を非破壊・非接触で検出でき、例えば固体酸化物形燃料電池用セルなどの検査に適用することができる。
また、本発明の第2の欠陥検査方法においては、被検査体を表面側及び裏面側からそれぞれ加熱又は冷却し、被検査体表面の温度分布変化を表面側から加熱又は冷却した場合と、裏面側から加熱又は冷却した場合とで比較するようにしているので、不純物など層間剥離以外のものが混在したとしても、被検査体の層間剥離を判別することができ、検査精度を向上させることができる。
According to the first defect inspection method of the present invention, the laminate as the object to be inspected is heated or cooled from the front surface or the back surface side, and the temperature distribution change on the surface of the object to be inspected at this time is detected. When a defect such as delamination occurs in the laminate, heat transfer (conduction) in the part is hindered, and uneven temperature distribution occurs in the part according to the heat transfer direction. By detecting the above, defects in the stacked body can be detected in a non-destructive and non-contact manner regardless of the material of the stacked body, and can be applied to, for example, inspection of a solid oxide fuel cell.
In the second defect inspection method of the present invention, the object to be inspected is heated or cooled from the front surface side and the back surface side, respectively, and the temperature distribution change of the surface of the object to be inspected is heated or cooled from the surface side; Compared with the case of heating or cooling from the side, even if impurities such as impurities other than delamination are mixed, delamination of the object to be inspected can be determined, and the inspection accuracy can be improved. it can.

さらに、本発明の積層体の欠陥検査装置は、被検査体としての積層体をその表面側及び裏面側からそれぞれ加熱又は冷却する熱源又は冷却源と、このときの積層体表面の熱放射分布を検出する温度分布検出手段と、この温度分布検出手段によって検出された熱放射分布の経時変化データを収集して解析するデータ処理手段を備えていることから、上記欠陥検査方法を円滑に実施することができ、例えば固体酸化物形燃料電池用セルの工程検査や、長時間使用後の劣化診断などのメンテナンスに適用することができる。   Furthermore, the defect inspection apparatus for a laminate of the present invention includes a heat source or a cooling source for heating or cooling a laminate as an object to be inspected from the front surface side and the back surface side, and the heat radiation distribution on the laminate surface at this time. The defect inspection method is smoothly implemented because it includes temperature distribution detection means to detect and data processing means for collecting and analyzing the temporal change data of the thermal radiation distribution detected by the temperature distribution detection means. For example, it can be applied to maintenance such as process inspection of solid oxide fuel cell and deterioration diagnosis after long-term use.

以下、本発明の積層体の欠陥検査方法の原理等について、詳細に説明する。
図1〜4は、本発明の積層体の欠陥検査方法を電解質2の上に電極3を形成して成る固体酸化物形燃料電池用セルの検査に適用した例を示すものであって、図1は、積層構造をなす被検査体1である上記セルの裏面(図中下方側)、すなわち電解質2の側から当該被検査体を加熱した場合を示し、この場合に電解質2と電極3の間に層間剥離Pが発生していると、当該層間剥離Pの部分が断熱層として機能するために、電解質2から電極3に向かう熱の移動が抑えらために、電極3における層間剥離部分の温度上昇が周囲の健全な部分よりも遅れることになる。したがって、当該被検査体1の温度分布を表面側(図中上方側)から観察することにより、周囲よりも温度の低い部分を層間剥離Pとして検出することができる。
Hereinafter, the principle of the defect inspection method for the laminate of the present invention will be described in detail.
1 to 4 show an example in which the method for inspecting a defect of a laminate according to the present invention is applied to an inspection of a solid oxide fuel cell formed by forming an electrode 3 on an electrolyte 2. 1 shows a case where the object to be inspected is heated from the back surface (lower side in the drawing) of the cell which is the object to be inspected 1 having a laminated structure, that is, the electrolyte 2 side. In this case, the electrolyte 2 and the electrode 3 If delamination P occurs in between, the portion of delamination P functions as a heat insulating layer, so that the heat transfer from the electrolyte 2 to the electrode 3 is suppressed. The temperature rise will be delayed from the surrounding healthy part. Therefore, by observing the temperature distribution of the device under test 1 from the surface side (upper side in the figure), a portion having a temperature lower than the surroundings can be detected as the delamination P.

図2は、上記被検査体1を表面側、すなわち電極3の側から加熱した場合を示すものであって、この場合に電解質2と電極3の間に層間剥離Pが発生していると、この層間剥離Pによって電極3から電解質2に向かう熱移動が妨げられることになるため、電極3における層間剥離部分の温度上昇が周囲の健全な部分よりも顕著なものとなる。したがって、当該被検査体1の温度分布を表面側から観察した場合に、周囲よりも温度の高い部分を層間剥離として検出することができる。   FIG. 2 shows the case where the device under test 1 is heated from the surface side, that is, the electrode 3 side. In this case, when delamination P occurs between the electrolyte 2 and the electrode 3, This delamination P hinders heat transfer from the electrode 3 to the electrolyte 2, so that the temperature rise of the delamination portion in the electrode 3 becomes more prominent than the surrounding healthy portion. Therefore, when the temperature distribution of the device under test 1 is observed from the surface side, a portion having a higher temperature than the surroundings can be detected as delamination.

なお、上記においては、被検査体1をその裏面側及び表面側から加熱した場合を例として説明したが、冷却した場合には、熱移動が逆になるので、表面側から冷却した場合は裏面側から加熱した場合と、裏面側から冷却した場合には表面側から加熱した場合と同じことになる。
また、電極3の側(図中上側)を表面側とし、電解質2の側(図中下側)を裏面側と表現したが、これは説明の便宜上のものであって、被検査体1の温度分布を電解質2の側から観察したとしても何ら差し支えない。
In the above description, the case where the object to be inspected 1 is heated from the back side and the front side has been described as an example. However, when cooled, the heat transfer is reversed. When heated from the side and when cooled from the back side, this is the same as when heated from the front side.
In addition, the electrode 3 side (upper side in the figure) is referred to as the front side, and the electrolyte 2 side (lower side in the figure) is referred to as the back side. Even if the temperature distribution is observed from the electrolyte 2 side, there is no problem.

また、上記した固体酸化物形燃料電池用セルに用いられる電解質2としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)、SDC(サマリウム・ドープ・セリア)、LSGM(La0.9Sr0.1Ga0.83Mg0.17)、GDC(ガリウム・ドープ・セリア)などが用いられるが、構成材料によっては、製造工程上不純物の凝集によるものと考えられる色の濃い斑点が観察されることがある。
このような斑点は、存在していても電解質としては何ら問題なく使用することができ、欠陥とはいえないが、周囲よりも熱を吸収し易く、放熱し易いため、被検査体表面の温度分布に種々の影響を及ぼす。
Examples of the electrolyte 2 used in the above-described solid oxide fuel cell include YSZ (yttria stabilized zirconia), SSZ (scandium stabilized zirconia), SDC (samarium-doped ceria), LSGM (La 0.9 Sr 0.1 Ga 0.83 Mg 0.17 O 3 ), GDC (gallium-doped ceria), etc. are used, but depending on the constituent materials, the color is considered to be due to the aggregation of impurities in the manufacturing process. Dark spots may be observed.
Even if such spots are present, they can be used as an electrolyte without any problems and cannot be said to be a defect, but because they absorb heat more easily and dissipate heat than the surroundings, the temperature of the surface of the object to be inspected Various effects on distribution.

例えば、図3に示すように、被検査体1の裏面側、すなわち電解質2の側から当該被検査体1を加熱した場合には、不純物の凝集による斑点部Sが局部的に温度上昇するため、高温部として観察されるため、温度分布が複雑なものとなる。
一方、図4に示すように、被検査体1の表面側、すなわち電極3の側から当該被検査体1を加熱した場合でも、電極3の厚さが薄いために斑点部Sの温度上昇によって高温部として観察されることになり、層間剥離Sの発生部分と同じ傾向の挙動を示すため、不純物の凝集による斑点部Sと層間剥離Pとの判別が困難となる。
For example, as shown in FIG. 3, when the device under test 1 is heated from the back side of the device under test 1, that is, the electrolyte 2 side, the spotted portion S due to the aggregation of impurities locally increases in temperature. Since it is observed as a high temperature part, the temperature distribution becomes complicated.
On the other hand, as shown in FIG. 4, even when the device under test 1 is heated from the surface side of the device under test 1, that is, from the electrode 3 side, the thickness of the electrode 3 is small, so Since it will be observed as a high temperature part and behaves in the same tendency as the part where the delamination S occurs, it is difficult to discriminate between the spot S and delamination P due to aggregation of impurities.

上述したように、斑点部Sの存在は性能上ほとんど問題にならないものの、層間剥離Pは燃料電池の性能低下を招く重大な欠陥であるため、これらを見分け、層間剥離Pのみを検出する必要がある。
そこで、図3に示したように被検査体1の裏面側から被検査体1を加熱した場合の温度分布変化と、図4に示したように表面側から被検査体1を加熱した場合の温度分布変化とを比較し、挙動の違いが大きい個所を検出することによって、層間剥離Pの発生部位を抽出することができる。
As described above, although the presence of the speckled portion S hardly causes a problem in performance, the delamination P is a serious defect that causes a decrease in the performance of the fuel cell. Therefore, it is necessary to distinguish between these and detect only the delamination P. is there.
Therefore, as shown in FIG. 3, the temperature distribution change when the object 1 is heated from the back side of the object 1 to be inspected, and the case where the object 1 is heated from the surface side as shown in FIG. The site where the delamination P is generated can be extracted by comparing the temperature distribution change and detecting the location where the difference in behavior is large.

例えば、表面側加熱の場合と裏面側加熱の場合の熱放射分布データの差や比(商)を採ることによって、表面側加熱と裏面側加熱とで同じ挙動を示す健全な部分や斑点部Sのデータを打ち消すと共に、表面側加熱と裏面側加熱とで逆の挙動を示す層間剥離Pの発生部分のデータを拡大することができ、層間剥離Pの発生部位のみを高精度に検出することができる。   For example, by taking the difference or ratio (quotient) of the heat radiation distribution data in the case of the front side heating and the case of the back side heating, the healthy part or the spot part S showing the same behavior in the front side heating and the back side heating. In addition to canceling the data, the data of the portion where the delamination P is generated that exhibits reverse behavior between the front side heating and the back side heating can be expanded, and only the generation site of the delamination P can be detected with high accuracy. it can.

なお、被検査体1をその裏面側及び表面側から冷却した場合には、上記のように斑点部Sが先に冷却され、当該部分が低温部として観察されることになるが、いずれにしても斑点部Sは、表面側冷却と裏面側冷却の場合で同じ挙動を示すことから、上記同様に表面側冷却と裏面側冷却の場合の温度分布変化を比較することによって、層間剥離Pの発生部位を検出することができる。   In addition, when the to-be-inspected object 1 is cooled from the back surface side and the surface side, the spot part S is cooled first as mentioned above, and the said part will be observed as a low-temperature part. Since the speckled portion S exhibits the same behavior in the case of the front side cooling and the back side cooling, the occurrence of delamination P is generated by comparing the temperature distribution change in the case of the front side cooling and the back side cooling as described above. A site can be detected.

本発明の積層体の欠陥検査方法において、被検査体1を表面側あるいは裏面側から加熱する熱源としては、例えば赤外線ランプなどを使用することができるが、被検査体の面を非接触で均一に加熱することができれば、これに限定されることはなく、輻射型ヒーターや熱風送風機などを利用することができる。
また、本発明の欠陥検査方法においては、被検査体1に積層方向の熱移動を与えることができればよく、被検査体1を加熱する代わりに冷却するようになすこともでき、このための手段としては、同様に被検査体の面を非接触で均一に冷却することができれば、特に限定されず、例えばペルチェ素子を用いた電子冷却器などを用いることができる。ペルチェ素子を冷却源として用いた場合、素子に流す電流の向きを反対にすれば加熱源としても使用できるので熱源を取り替えることなく欠陥検出を行うことができる。
In the defect inspection method for a laminate according to the present invention, for example, an infrared lamp can be used as a heat source for heating the object to be inspected 1 from the front surface side or the back surface side. If it can heat, it will not be limited to this, A radiation type heater, a hot air blower, etc. can be utilized.
Further, in the defect inspection method of the present invention, it suffices if heat transfer in the stacking direction can be given to the inspection object 1, and the inspection object 1 can be cooled instead of being heated. Similarly, there is no particular limitation as long as the surface of the object to be inspected can be uniformly cooled in a non-contact manner. For example, an electronic cooler using a Peltier element can be used. When a Peltier element is used as a cooling source, it can be used as a heating source by reversing the direction of the current flowing through the element, so that defect detection can be performed without replacing the heat source.

被検査体表面の温度分布を検出するためには、例えば赤外線カメラを用いることができるが、被検査体の検査領域における温度分布を検出できさえすれば、これに限定されるものではない。   In order to detect the temperature distribution on the surface of the inspection object, for example, an infrared camera can be used. However, the temperature distribution is not limited to this as long as the temperature distribution in the inspection region of the inspection object can be detected.

なお、被検査体1の表面温度については、加熱あるいは冷却開始直後には均一な温度分布を示し、開始後ある程度の時間が経過すると、層間剥離Pや不純物凝集による斑点部Sが存在する部分に温度変化が現れ始め、さらに加熱あるいは冷却が進むと、被検査体全体が均一な温度となってしまい、温度差分布が認められなくなることから、温度差が最も顕著な時点の温度分布を観察することが望ましい。また、上記したように被検査体1を表面側から加熱(又は冷却)した場合と裏面側から加熱(又は冷却)した場合の温度分布変化を比較することも必要となる。   The surface temperature of the object 1 to be inspected shows a uniform temperature distribution immediately after the start of heating or cooling, and after a certain amount of time has elapsed after the start, the delamination P or the spot portion S due to impurity aggregation exists in the portion. If the temperature change begins to appear and further heating or cooling progresses, the entire object to be inspected becomes a uniform temperature, and the temperature difference distribution is not recognized. It is desirable. Further, as described above, it is also necessary to compare the temperature distribution change when the object 1 is heated (or cooled) from the front surface side and when heated (or cooled) from the back surface side.

したがって、上記赤外線カメラとしては、画素配列を有し、被検査体の検査領域全体の平面画像を撮像することができるものであることが望ましく、各画素における放射熱量の経時変化データを記憶・収集すると共に、データ間の差や商(比)などを算出する演算機能や画像処理機能を備えたマイクロコンピュータをデータ処理手段として用いることが望ましい。   Therefore, it is desirable that the infrared camera has a pixel array and can capture a planar image of the entire inspection area of the object to be inspected, and stores and collects time-dependent data of the amount of radiant heat at each pixel. At the same time, it is desirable to use a microcomputer equipped with an arithmetic function and an image processing function for calculating a difference, a quotient (ratio), etc. between data as the data processing means.

本発明の積層体の欠陥検査装置は、被検査体を表面側及び裏面側からそれぞれ加熱又は冷却する熱源又は冷却源と、温度分布検出手段と、データ処理手段を備えており、上記欠陥検査方法を円滑に実施することができ、各種積層体の検査に実用することができる。
すなわち、生産ラインにおいては、プロセスの途中での検査ができるので、不良品に対する無駄な処理を回避することができ、製造コストの低減が可能である。例えば、固体酸化物形燃料電池における電解質の焼成プロセスの場合、焼成前に検査を行うことによって潜在的な欠陥検出ができるようになり、焼成コストの削減が可能になる。
The defect inspection apparatus for a laminate according to the present invention includes a heat source or a cooling source for heating or cooling an object to be inspected from the front surface side and the back surface side, a temperature distribution detection unit, and a data processing unit, and the defect inspection method described above. Can be carried out smoothly and can be practically used for inspection of various laminates.
That is, in the production line, since inspection can be performed in the middle of the process, useless processing for defective products can be avoided, and manufacturing cost can be reduced. For example, in the case of an electrolyte firing process in a solid oxide fuel cell, a potential defect can be detected by performing an inspection before firing, and the firing cost can be reduced.

また、本発明の欠陥検査装置は、装置自体をコンパクト化することができ、車載も可能になることから、自動車用燃料電池の欠陥検出にも利用できるようになり、評価データを逐次蓄積しておき、以前の評価データとその都度比較するようになすことによって、長時間使用時における経時的な劣化状況が診断でき、セル交換の指標とすることができる。   In addition, since the defect inspection apparatus of the present invention can be made compact and can be mounted on a vehicle, the defect inspection apparatus can be used for detecting a defect in a fuel cell for an automobile. In addition, by comparing each time with the previous evaluation data, it is possible to diagnose the deterioration over time during long-time use, and use it as an index for cell replacement.

以下、本発明を実施例に基づいて、さらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

図5は、本発明の積層体の欠陥検査装置の一例を示すものであって、図に示す欠陥検査装置は、検査対象である積層体を表面及び裏面側からそれぞれ加熱するための熱源として、2基の赤外線ランプ11及び12と、上記積層体表面の熱放射分布を検出する温度分布検出手段としての赤外線カメラ20と、当該赤外線カメラ20に接続され、赤外線カメラ20からの検出データを経時的に格納し、解析するデータ処理手段としてのマイクロコンピュータ30を備えており、上記赤外線ランプ11は、固体酸化物から成る電解質基板2と、この上に印刷法によって積層された電極3から構成された積層体1(被検査体)を表面側から加熱可能な位置に配設され、赤外線ランプ12は、当該積層体1を裏面側から加熱し得る位置に配設されている。   FIG. 5 shows an example of a defect inspection apparatus for a laminate according to the present invention, and the defect inspection apparatus shown in the figure serves as a heat source for heating the laminate to be inspected from the front and back sides, respectively. Two infrared lamps 11 and 12, an infrared camera 20 as temperature distribution detecting means for detecting the thermal radiation distribution on the surface of the laminate, and connected to the infrared camera 20, and the detection data from the infrared camera 20 is changed over time. The infrared lamp 11 is composed of an electrolyte substrate 2 made of a solid oxide and an electrode 3 laminated thereon by a printing method. The laminated body 1 (inspected object) is disposed at a position where it can be heated from the front surface side, and the infrared lamp 12 is disposed at a position where the laminated body 1 can be heated from the back surface side.

赤外線ランプ11及び12は、輻射熱(赤外線)Hによって積層体1の検査対象領域をその両面からそれぞれほぼ均一に加熱することができ、赤外線カメラ20は、積層体1の表面側(本例では、電極3の側)における放射赤外線hを検知し、検査対象領域の全面に亘る熱放射分布、すなわち温度分布を検出する。   The infrared lamps 11 and 12 can almost uniformly heat the inspection target area of the laminate 1 from both surfaces thereof by radiant heat (infrared) H, and the infrared camera 20 is connected to the surface side of the laminate 1 (in this example, Radiation infrared rays h on the electrode 3 side) are detected, and a thermal radiation distribution over the entire surface of the inspection target region, that is, a temperature distribution is detected.

データ処理手段としてのマイクロコンピュータ30は、赤外線カメラ20に接続されると共に、当該赤外線カメラ20によって検出された熱放射の分布データを経時的に格納するメモリを備えると共に、演算機能や画像処理機能を備え、格納されたデータ間の差や比を算出して、任意の時点における積層体表面の温度分布や、演算加工によって層間剥離の発生部分を強調した画像データを表示装置(図示せず)に出力する。   The microcomputer 30 as data processing means is connected to the infrared camera 20 and includes a memory for storing distribution data of thermal radiation detected by the infrared camera 20 over time, and has an arithmetic function and an image processing function. Provide the display device (not shown) by calculating the difference and ratio between the stored data and emphasizing the temperature distribution on the surface of the laminate at any point in time and the part where delamination occurred by arithmetic processing Output.

以下に、上記欠陥検査装置を用いた積層体1の検査要領について簡単に説明する。
まず、被検査体である積層体1の位置を調整し、検査領域を決定する。
Below, the inspection point of the laminated body 1 using the said defect inspection apparatus is demonstrated easily.
First, the position of the laminated body 1 that is an object to be inspected is adjusted to determine the inspection region.

次に、赤外線カメラ20と積層体1の間を遮光したのち、赤外線カメラ20によって加熱前の積層体1の表面側(電極3の側)における温度分布画像を撮像し、この場合の熱放射分布データをマイクロコンピュータ30のメモリに記憶させておく。   Next, after shielding between the infrared camera 20 and the laminate 1, a temperature distribution image on the surface side (electrode 3 side) of the laminate 1 before heating is taken by the infrared camera 20, and the thermal radiation distribution in this case Data is stored in the memory of the microcomputer 30.

そして、下側の赤外線ランプ11の電源を投入して、積層体1の裏面側からの加熱を開始し、赤外線カメラ20によって積層体表面の温度分布画像を所定時間ごとに撮像し、その時の熱放射分布データをリアルタイムに記憶させる。   Then, the power source of the lower infrared lamp 11 is turned on to start heating from the back side of the laminated body 1, and the temperature distribution image of the laminated body surface is taken every predetermined time by the infrared camera 20, and the heat at that time The radiation distribution data is stored in real time.

このようにして、裏面側からの加熱データの収集を終えたら、下側赤外線ランプ11の電源を切り、積層体1の放熱冷却を行う。
そして、マイクロコンピュータ30に収集された時間ごとの温度分布データと加熱前の温度分布データの差を算出し、最も温度差の顕著な温度分布画像を求め、裏面側加熱時の温度分布データとする。
Thus, when the collection of the heating data from the back surface side is completed, the power source of the lower infrared lamp 11 is turned off, and the laminated body 1 is radiated and cooled.
Then, the difference between the temperature distribution data collected by the microcomputer 30 for each time and the temperature distribution data before heating is calculated, the temperature distribution image having the most significant temperature difference is obtained, and is used as the temperature distribution data at the time of heating on the back side. .

積層体1の放熱が終了し、全体の温度が均一に低下したことが確認されたら、このときの積層体1の表面側温度分布画像を撮像し、熱放射分布データを同様に記憶させておく。   When it is confirmed that the heat dissipation of the laminated body 1 is finished and the entire temperature is uniformly reduced, the surface-side temperature distribution image of the laminated body 1 at this time is taken, and the thermal radiation distribution data is similarly stored. .

そして、上側の赤外線ランプ12の電源を投入して、積層体1の表面側からの加熱を開始し、同様に赤外線カメラ20によって積層体表面の温度分布画像を所定時間ごとに撮像し、このときの熱放射分布データをリアルタイムに記憶させる。   Then, the upper infrared lamp 12 is turned on to start heating from the surface side of the laminate 1, and similarly, a temperature distribution image of the laminate surface is taken every predetermined time by the infrared camera 20, and at this time The thermal radiation distribution data is stored in real time.

このようにして、表面側からの加熱データの収集が終了したら、上側赤外線ランプ12の電源を切り、積層体1の放冷を行うと共に、マイクロコンピュータ30に収集された時間ごとの温度分布データと表面側加熱の開始前の温度分布データの差を算出し、最も温度差の顕著な温度分布画像を求め、表面側加熱時の温度分布データとする。   In this way, when the collection of the heating data from the surface side is completed, the upper infrared lamp 12 is turned off, the laminate 1 is allowed to cool, and the temperature distribution data collected by the microcomputer 30 for each time The difference of the temperature distribution data before the start of the surface side heating is calculated, the temperature distribution image having the most significant temperature difference is obtained, and is used as the temperature distribution data at the time of the surface side heating.

次いで、先に求めた裏面側加熱時の温度分布データと表面側加熱時の温度分布データの差を算出することによって、層間剥離P以外の画像を削除した画像データを作成し、これを図示しない表示装置に出力することによって、当該画像から層間剥離Pが発生している部分を特定することができる。   Next, by calculating the difference between the temperature distribution data at the time of the back side heating and the temperature distribution data at the time of the front side heating obtained previously, image data other than the delamination P is created, which is not shown By outputting to the display device, it is possible to identify the part where the delamination P occurs from the image.

本発明の欠陥検査方法において、積層体を温度分布の観察面の反対側から加熱した場合における欠陥検出原理を示す説明図である。In the defect inspection method of this invention, it is explanatory drawing which shows the defect detection principle at the time of heating a laminated body from the opposite side of the observation surface of temperature distribution. 本発明の欠陥検査方法において、積層体を温度分布の観察面と同じ側から加熱した場合における欠陥検出原理を示す説明図である。In the defect inspection method of this invention, it is explanatory drawing which shows the defect detection principle at the time of heating a laminated body from the same side as the observation surface of temperature distribution. 本発明の欠陥検査方法において、層間剥離と斑点部が混在した積層体を温度分布の観察面の反対側から加熱した場合における欠陥検出原理を示す説明図である。In the defect inspection method of this invention, it is explanatory drawing which shows the defect detection principle when the laminated body in which delamination and the speckle part were mixed is heated from the opposite side of the observation surface of temperature distribution. 本発明の欠陥検査方法において、層間剥離と斑点部が混在した積層体を温度分布の観察面と同じ側から加熱した場合における欠陥検出原理を示す説明図である。In the defect inspection method of this invention, it is explanatory drawing which shows the defect detection principle when the laminated body in which delamination and the speckle part were mixed is heated from the same side as the observation surface of temperature distribution. 本発明の積層体の欠陥検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the defect inspection apparatus of the laminated body of this invention.

符号の説明Explanation of symbols

1 積層体(被検査体)
P 層間剥離
11 赤外線ランプ(熱源)
12 赤外線ランプ(熱源)
20 赤外線カメラ(温度分布検出手段)
30 マイクロコンピュータ(データ処理手段)
1 Laminated body (inspected object)
P Delamination 11 Infrared lamp (heat source)
12 Infrared lamp (heat source)
20 Infrared camera (temperature distribution detection means)
30 Microcomputer (data processing means)

Claims (6)

積層構造を有する被検査体を表面又は裏面側から加熱又は冷却し、加熱又は冷却時における被検査体表面の温度分布変化を検出して、被検査体の層間剥離の有無を判定することを特徴とする積層体の欠陥検査方法。   A test object having a laminated structure is heated or cooled from the front or back side, and the temperature distribution change of the test object surface during heating or cooling is detected to determine the presence or absence of delamination of the test object. A method for inspecting defects in a laminate. 積層構造を有する被検査体をその表面側から加熱又は冷却した場合における被検査体表面の温度分布変化と、上記被検査体をその裏面側から加熱又は冷却した場合における被検査体表面の温度分布変化とを比較して、被検査体の層間剥離の有無を判定することを特徴とする積層体の欠陥検査方法。   Change in temperature distribution on the surface of the inspection object when the inspection object having a laminated structure is heated or cooled from the surface side, and temperature distribution on the surface of the inspection object when the inspection object is heated or cooled from the back side A defect inspection method for a laminated body, characterized by comparing the change and determining the presence or absence of delamination of an object to be inspected. 上記被検査体をその表面側から加熱した場合における被検査体表面からの熱放射分布データと、上記被検査体をその裏面側から加熱した場合における被検査体表面からの熱放射分布データの差又は比に基づいて層間剥離を特定することを特徴とする請求項2に記載の積層体の欠陥検査方法。   The difference between the heat radiation distribution data from the surface of the inspection object when the object is heated from the surface side and the heat radiation distribution data from the surface of the inspection object when the object is heated from the back side Alternatively, delamination is specified based on the ratio. The method for inspecting a defect of a laminate according to claim 2. 上記被検査体をその表面側から冷却した場合における被検査体表面からの熱放射分布データと、上記被検査体をその裏面側から冷却した場合における被検査体表面からの熱放射分布データの差又は比に基づいて層間剥離を特定することを特徴とする請求項2に記載の積層体の欠陥検査方法。   The difference between the heat radiation distribution data from the surface of the inspection object when the inspection object is cooled from the surface side and the heat radiation distribution data from the surface of the inspection object when the inspection object is cooled from the back side. Alternatively, delamination is specified based on the ratio. The method for inspecting a defect of a laminate according to claim 2. 積層構造を有する被検査体を表面側及び裏面側からそれぞれ加熱又は冷却する熱源又は冷却源と、
上記被検査体表面の任意の位置における熱放射分布を検出する温度分布検出手段と、
上記温度分布検出手段により検出された熱放射分布の経時変化データを収集して解析するデータ処理手段を備えたことを特徴とする積層体の欠陥検査装置。
A heat source or a cooling source for heating or cooling an object to be inspected having a laminated structure from the front surface side and the back surface side, and
Temperature distribution detecting means for detecting thermal radiation distribution at an arbitrary position on the surface of the object to be inspected;
A defect inspection apparatus for a laminated body, comprising data processing means for collecting and analyzing temporal change data of thermal radiation distribution detected by the temperature distribution detection means.
請求項5に記載の積層体の欠陥検査装置を備え、被検査体が固体酸化物形燃料電池用セルであることを特徴とする固体酸化物形燃料電池用セルの検査装置。   An apparatus for inspecting a solid oxide fuel cell, comprising the defect inspection apparatus for a laminate according to claim 5, wherein the object to be inspected is a solid oxide fuel cell.
JP2003404673A 2003-12-03 2003-12-03 Defect inspection method and inspection device of laminate Pending JP2005164428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404673A JP2005164428A (en) 2003-12-03 2003-12-03 Defect inspection method and inspection device of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404673A JP2005164428A (en) 2003-12-03 2003-12-03 Defect inspection method and inspection device of laminate

Publications (1)

Publication Number Publication Date
JP2005164428A true JP2005164428A (en) 2005-06-23

Family

ID=34727608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404673A Pending JP2005164428A (en) 2003-12-03 2003-12-03 Defect inspection method and inspection device of laminate

Country Status (1)

Country Link
JP (1) JP2005164428A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264919A (en) * 2008-04-25 2009-11-12 Hioki Ee Corp Short-circuit position detector
JP2011516837A (en) * 2008-03-31 2011-05-26 ゼネラル・エレクトリック・カンパニイ Characterization of defects in composites identified by thermography
WO2013005841A1 (en) * 2011-07-06 2013-01-10 株式会社村田製作所 Method for determining laminate direction for laminate type electronic component, laminate direction determination device for laminate type electronic component, method for manufacturing serial laminate type electronic component, and manufacturing device for serial laminate type electronic component
CN102918384A (en) * 2010-03-16 2013-02-06 株式会社捷太格特 Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
JP2015052542A (en) * 2013-09-06 2015-03-19 三菱重工業株式会社 Inspection device and inspection method
JP2019158578A (en) * 2018-03-13 2019-09-19 トヨタ自動車株式会社 Method for specifying abnormal portion of battery
KR102496237B1 (en) * 2021-09-23 2023-02-06 주식회사 제이디 Device for inspecting defect of surface and thickness in electrode
KR102602641B1 (en) * 2023-02-15 2023-11-16 (주)아인테크놀러지 Apparatus for inspection crack of a substrate
JP7491816B2 (en) 2020-11-12 2024-05-28 池上通信機株式会社 Package inspection device and package inspection method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516837A (en) * 2008-03-31 2011-05-26 ゼネラル・エレクトリック・カンパニイ Characterization of defects in composites identified by thermography
JP2009264919A (en) * 2008-04-25 2009-11-12 Hioki Ee Corp Short-circuit position detector
CN102918384A (en) * 2010-03-16 2013-02-06 株式会社捷太格特 Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
KR101500965B1 (en) 2011-07-06 2015-03-17 가부시키가이샤 무라타 세이사쿠쇼 Method for determining laminate direction for laminate type electronic component, laminate direction determination device for laminate type electronic component, method for manufacturing serial laminate type electronic component, and manufacturing device for serial laminate type electronic component
CN103636301A (en) * 2011-07-06 2014-03-12 株式会社村田制作所 Method for determining laminate direction for laminate type electronic component, laminate direction determination device for laminate type electronic component, method for manufacturing serial laminate type electronic component, and manufacturing device
JPWO2013005841A1 (en) * 2011-07-06 2015-02-23 株式会社村田製作所 Stacking direction determination method for stacked electronic components, stacking direction determination device for stacked electronic components, manufacturing method for stacked electronic components, and manufacturing apparatus for stacked electronic components
WO2013005841A1 (en) * 2011-07-06 2013-01-10 株式会社村田製作所 Method for determining laminate direction for laminate type electronic component, laminate direction determination device for laminate type electronic component, method for manufacturing serial laminate type electronic component, and manufacturing device for serial laminate type electronic component
CN103636301B (en) * 2011-07-06 2016-10-12 株式会社村田制作所 The stacked direction decision method of laminated electronic component, the stacked direction decision maker of laminated electronic component, the manufacture method of laminated electronic component band and the manufacture device of laminated electronic component band
US9562863B2 (en) 2011-07-06 2017-02-07 Murata Manufacturing Co., Ltd. Method for determining layer direction of conductor layers in a multilayer electronic component
JP2015052542A (en) * 2013-09-06 2015-03-19 三菱重工業株式会社 Inspection device and inspection method
JP2019158578A (en) * 2018-03-13 2019-09-19 トヨタ自動車株式会社 Method for specifying abnormal portion of battery
JP7000932B2 (en) 2018-03-13 2022-01-19 トヨタ自動車株式会社 How to identify the abnormal part of the battery
JP7491816B2 (en) 2020-11-12 2024-05-28 池上通信機株式会社 Package inspection device and package inspection method
KR102496237B1 (en) * 2021-09-23 2023-02-06 주식회사 제이디 Device for inspecting defect of surface and thickness in electrode
KR102602641B1 (en) * 2023-02-15 2023-11-16 (주)아인테크놀러지 Apparatus for inspection crack of a substrate

Similar Documents

Publication Publication Date Title
KR101791719B1 (en) Inspection method and inspection device for solar cell
US9784625B2 (en) Flaw detection method and apparatus for fuel cell components
WO2013155135A1 (en) Flaw detection method and apparatus for fuel cell components
EP2743688B1 (en) Method and system for the examination of a sample by means of thermography
JP2006329982A (en) Inspection device and its method
TW201003962A (en) Photovoltaic devices inspection apparatus and method of determining defects in a photovoltaic devices
JP2005108801A (en) Defect detection device for laminated body and inspecting device for fuel cell
JP2008026113A (en) Defect inspection device of solar cell and method for inspecting defect of solar cell
JP2008224432A (en) Defect inspection device and method by photo luminescence of solar battery
JP2005164428A (en) Defect inspection method and inspection device of laminate
JP4583722B2 (en) Method for detecting pinhole and method for producing membrane electrode assembly
Schuss et al. Detecting defects in photovoltaic cells and panels with the help of time-resolved thermography under outdoor environmental conditions
TW201108445A (en) Inspecting apparatus, inspecting method, program and inspecting system for photovoltaic devices
CN211652648U (en) Infrared thermal image nondestructive test testing device based on electric pulse heating
CN206339310U (en) The measurement apparatus of smooth surface Temperature Distribution
CN113567492A (en) Nondestructive testing method and device for thermal barrier coating of turbine blade based on infrared heat dissipation
JP2016053557A (en) Evaluation device
KR101564287B1 (en) Apparatus and method for inspecting wafer using light
WO2015011947A1 (en) Sample measurement result processing device, sample measurement result processing method, and program
Morris Detection and characterization of package defects and integrity failure using dynamic scanning infrared thermography (DSIRT)
RU2235303C1 (en) Method of checking turbomachine blade cooling channels
US20120249777A1 (en) Inspection arrangement and inspection method for a solar installation
JP2024057656A (en) Inspection method and inspection device for inspecting defect in gas sensor element
CN118209582A (en) Thermal conductivity testing device, thermal conductivity testing method and sample purity judging method
KR20240095566A (en) Apparatus for measuring properties of solar cell module