JP2005163893A - Rolling bearing for machine tool spindle - Google Patents

Rolling bearing for machine tool spindle Download PDF

Info

Publication number
JP2005163893A
JP2005163893A JP2003402770A JP2003402770A JP2005163893A JP 2005163893 A JP2005163893 A JP 2005163893A JP 2003402770 A JP2003402770 A JP 2003402770A JP 2003402770 A JP2003402770 A JP 2003402770A JP 2005163893 A JP2005163893 A JP 2005163893A
Authority
JP
Japan
Prior art keywords
grease
bearing
machine tool
oil
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402770A
Other languages
Japanese (ja)
Inventor
Yoichiro Sugimori
庸一郎 杉森
Hirotoshi Miyajima
裕俊 宮島
Michiharu Naka
道治 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003402770A priority Critical patent/JP2005163893A/en
Publication of JP2005163893A publication Critical patent/JP2005163893A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6633Grease properties or compositions, e.g. rheological properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Rolling Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing for a machine tool spindle capable of sufficiently elongating its service life even under high speed rotation of 1,400,000 dmn or more. <P>SOLUTION: In this rolling bering for the machine tool spindle, a plurality of rolling elements are rotatably retained between an inner ring and an outer ring by a cage, and the grease including fine particles composed of an inorganic compound of average particle size of 2 μm or less by 0.1-7 mass% to the total grease, and applying the lubricant having dynamic viscosity of 15 to 40 mm<SP>2</SP>/s at 40°C as base oil is sealed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば旋盤、ボール盤、中ぐり盤、フライス盤、研削盤、ホーニング盤、超仕上盤、ラップ盤等で代表される、高速で摺動、回転する工作機械の主軸支持部等に好適に組み込まれる工作機械主軸用転がり軸受に関する。   The present invention is suitable for a spindle support portion of a machine tool that slides and rotates at high speed, represented by a lathe, drilling machine, boring machine, milling machine, grinding machine, honing machine, super finishing machine, lapping machine, etc. The present invention relates to a rolling bearing for a machine tool spindle to be incorporated.

上記に挙げたような工作機械のスピンドルには、主軸支持用に通常転がり軸受が組み込まれており、一般にアンギュラ玉軸受や円筒ころ軸受等が組み合わされて使用されている。工作機械の加工精度や生産性は主軸の回転速度に依存するところが大きく、生産性を高めるためには主軸の回転速度の高速化を図らなければならない。しかし、転がり軸受を高速回転下で使用すると、軸受の発熱が顕著化したり、遠心力により転動体と内外輪との間の接触面圧が増大したりするため、スピンドルの使用条件は著しく悪化し、結果として、摩耗や焼付き等に代表される軸受損傷の危険性が高まる。また、高速回転により発熱も大きくなることから、工作機械の熱変形が起こる危険性もあり、加工精度への影響もある。   A spindle of a machine tool such as that described above usually incorporates a rolling bearing for supporting the spindle, and is generally used in combination with an angular ball bearing or a cylindrical roller bearing. Machining accuracy and productivity of machine tools largely depend on the rotation speed of the spindle, and in order to increase productivity, it is necessary to increase the rotation speed of the spindle. However, if the rolling bearing is used under high speed rotation, the heat generation of the bearing becomes noticeable, and the contact surface pressure between the rolling elements and the inner and outer rings increases due to centrifugal force, so the spindle operating conditions are significantly deteriorated. As a result, the risk of bearing damage represented by wear and seizure increases. In addition, since heat generation increases due to high-speed rotation, there is a risk of thermal deformation of the machine tool, which also affects machining accuracy.

このような軸受システムに致命的な事態を発生させないため、また工作機械全体の熱変形による加工精度の低下を避けるためにも、高速回転下においては適切な潤滑方式を選択して主軸支持用転がり軸受における発熱を極力抑えなければならない。従来では、高速回転する工作機械の主軸支持用転がり軸受の潤滑には、潤滑油供給に伴う冷却効果が得られることから、オイルエア潤滑法、ノズルジェット潤滑法、アンダーレース潤滑法が採用されている。しかし、これらの潤滑方式では、潤滑油供給装置の導入が不可欠であるため、必然的にそのための設置面積が確保されなければならず、工作機械全体のコンパクト化を妨げてしまう。また、これらの潤滑方式では、潤滑油を継続的に消費し、しかも潤滑油供給装置の運転経費も必要であるため、工作機械全体としての運転経費が大きくなる。運転経費の削減のために種々の対策が講じられているが、ほぼ限界に達している状況にある。   In order to prevent a fatal situation from occurring in such a bearing system and to avoid a decrease in machining accuracy due to thermal deformation of the entire machine tool, an appropriate lubrication method is selected under high-speed rotation to rotate the spindle support. Heat generation in the bearing must be suppressed as much as possible. Conventionally, the lubrication of rolling bearings for supporting spindles of machine tools that rotate at high speeds has achieved the cooling effect associated with the supply of lubricating oil, so the oil-air lubrication method, nozzle jet lubrication method, and underlace lubrication method have been adopted. . However, in these lubrication methods, since it is indispensable to introduce a lubricating oil supply device, an installation area for that purpose must be ensured, and the overall machine tool is prevented from being made compact. Further, in these lubrication methods, the lubricating oil is continuously consumed, and the operating cost of the lubricating oil supply device is also required, so that the operating cost of the entire machine tool increases. Various measures have been taken to reduce operating costs, but the situation is almost reached.

軸受の潤滑方式としてグリースを封入する方式も一般的であるが、グリースの剪断に起因する軸受発熱が大きく、上記オイルエア潤滑法等に比べて軸受耐久性に対する信頼性も低いことから、高速回転を伴う工作機械の主軸支持用転がり軸受には本質的に不向きの潤滑方式である。しかしながら、グリース潤滑が実現できれば、潤滑油を継続供給する上記各潤滑方式では対応できない工作機械のコンパクト化や運転経費の削減等のメリットを享受することができる。また、グリース潤滑は、オイルエア潤滑方式等と異なり、多量に潤滑油を消費しないため、環境保全に寄与するという利点も有する。   Grease is generally used as a lubrication system for bearings, but bearing heat generation due to grease shearing is large, and the reliability of bearing durability is low compared to the above oil-air lubrication methods. This is a lubrication system that is essentially unsuitable for rolling bearings for supporting the spindle of machine tools. However, if grease lubrication can be realized, it is possible to enjoy merits such as downsizing of the machine tool and reduction of operation costs that cannot be supported by the above-described respective lubrication methods that continuously supply the lubricating oil. Grease lubrication also has the advantage of contributing to environmental conservation because it does not consume a large amount of lubricating oil, unlike an oil-air lubrication system.

このような背景から、本出願人は先に、ピュアダイヤモンドと、ダイヤモンドライクカーボンと、アモルファスカーボンとからなる微粒子(クラスターダイヤモンド)を含有するグリースを封入することにより、摺動面である金属表面同士が直接接触することを抑制し、軸受の耐焼付け性や耐摩耗性を向上させることを提案している(特許文献1参照)。   From such a background, the present applicant first encapsulates grease containing fine diamond (diamond-like carbon) and fine particles (cluster diamond) composed of amorphous carbon, so that the metal surfaces that are sliding surfaces are bonded to each other. Has been proposed to suppress direct contact and improve the seizure resistance and wear resistance of the bearing (see Patent Document 1).

特開2003−28174号公報JP 2003-28174 A

工作機械の高性能化に対する要求は強く、軸受にも例えばdmnが140万を超えるような高速回転に十分に耐え得ることが要求されている。上記特許文献1に記載のグリースは、クラスターダイヤモンドの作用により耐焼付き性や耐摩耗性の向上を図っているが、このような高速回転化に充分に対応できない可能性がある。また、クラスターダイヤモンドは高価であり、コスト面でも不利がある。   There is a strong demand for higher performance of machine tools, and bearings are also required to be able to sufficiently withstand high-speed rotation such as dmn exceeding 1.4 million. The grease described in Patent Document 1 has improved seizure resistance and wear resistance by the action of cluster diamond, but may not be able to cope with such high speed rotation sufficiently. In addition, cluster diamond is expensive and disadvantageous in terms of cost.

本発明はこのような状況に鑑みてなされたものであり、封入グリースを改良することによって、例えばdmn140万以上という高速回転条件下においても充分に長寿命を示す工作機械主軸用転がり軸受を提供することを目的とする。   The present invention has been made in view of such a situation, and provides a rolling bearing for a machine tool spindle that exhibits a sufficiently long life even under a high-speed rotation condition of, for example, dmn of 1.4 million or more by improving the sealed grease. For the purpose.

本発明に係る上記目的は、内輪と外輪との間に、複数の転動体を保持器により転動自在に保持してなり、かつ平均粒径が2μm以下の無機化合物からなる微粒子をグリース全量に対して0.1〜7質量%含み、かつ、40℃における動粘度が15〜40mm2/sの潤滑油を基油とするグリースを封入したことを特徴とする工作機械主軸用転がり軸受により達成される。 The object of the present invention is to hold a plurality of rolling elements between an inner ring and an outer ring so as to be freely rollable by a cage, and to make fine particles of an inorganic compound having an average particle diameter of 2 μm or less into the total amount of grease. Achieved by a rolling bearing for a machine tool spindle characterized in that it contains 0.1 to 7% by mass of grease and a grease based on a lubricating oil having a kinematic viscosity at 40 ° C. of 15 to 40 mm 2 / s. Is done.

本発明の工作機械主軸用転がり軸受は、低粘度の基油を含み、更に特定粒径の無機化合物からなる微粒子を含有するグリースを封入することにより、金属表面同士の直接接触を効率よく抑制でき、焼付き防止効果や摩耗防止効果がより一層良好となる。また、オイルエア潤滑法等のように潤滑油を連続して供給する方式と異なり、グリースを封入して使用できるため、運転コストの削減、省スペース化も可能になる。   The rolling bearing for a machine tool main spindle of the present invention can efficiently suppress direct contact between metal surfaces by enclosing grease containing fine particles made of an inorganic compound having a specific particle diameter and containing a low-viscosity base oil. Further, the seizure preventing effect and the wear preventing effect are further improved. In addition, unlike a method of continuously supplying lubricating oil such as the oil-air lubrication method, the grease can be enclosed and used, so that the operating cost can be reduced and the space can be saved.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の工作機械主軸用転がり軸受は、構造的には特に制限されるものではなく、例えば図1に示されるアンギュラ玉軸受10を例示することができる。図示されるアンギュラ玉軸受10は、内輪11と外輪12との間に、複数の玉13を保持器14により転動自在に保持して構成される。また、玉13は、窒化珪素や炭化珪素等のセラミック製とすることもできる。そして、本発明においては、内輪11、外輪12及び玉13で形成される軸受空間には、下記に示す特定のグリースが封入される。   The rolling bearing for a machine tool spindle of the present invention is not particularly limited in terms of structure, and for example, an angular ball bearing 10 shown in FIG. 1 can be exemplified. An angular ball bearing 10 shown in the figure is configured by a plurality of balls 13 held between an inner ring 11 and an outer ring 12 by a cage 14 so as to roll freely. The balls 13 can also be made of a ceramic such as silicon nitride or silicon carbide. In the present invention, the following specific grease is enclosed in the bearing space formed by the inner ring 11, the outer ring 12 and the balls 13.

封入グリースにおいて、基油は、40℃における動粘度が15〜40mm2/sであれば、種類は特に制限されない。40℃における動粘度が40mm2/sを超える基油を用いると、温度上昇が大きくなり、焼付きの問題が出てくる。また、この軸受温度上昇の観点からは基油の動粘度は低いほど好適ではあるが、動粘度が低すぎると摺動部に形成される油膜が薄くなり、軸受耐久性が低下するようになるため、本発明では40℃における動粘度が15mm2/s以上の基油を用いる。 In the encapsulated grease, the type of base oil is not particularly limited as long as the kinematic viscosity at 40 ° C. is 15 to 40 mm 2 / s. When a base oil having a kinematic viscosity at 40 ° C. exceeding 40 mm 2 / s is used, the temperature rise increases and the problem of seizure occurs. Further, from the viewpoint of increasing the bearing temperature, the lower the kinematic viscosity of the base oil, the better. However, if the kinematic viscosity is too low, the oil film formed on the sliding portion becomes thin and the bearing durability is lowered. Therefore, in the present invention, a base oil having a kinematic viscosity at 40 ° C. of 15 mm 2 / s or more is used.

尚、基油の種類としては、例えば鉱油系や合成油系の各潤滑油等が挙げられる。鉱油系潤滑油としては、鉱油を減圧蒸留、油剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製等を、適宜組み合わせて精製したものを用いることができる。前記合成油系潤滑基油としては、炭化水素系油、芳香族基油、エステル系油、エーテル系油等が挙げられる。前記炭化水素系油としては、ノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1−デセンオリゴマー、1−デセンとエチレンコオリゴマー等のポリ−α−オレフィン等が挙げられる。前記芳香族系油としては、モノアルキルナフタレン、ジアルキルナフタレン、ポリアルキルナフタレン等のアルキルナフタレン油等が挙げられる。前記エステル系油としては、ジブチルセバケート、ジ−2−エチルヘキシルセバケート、ジオクチルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジトリデシルタレート、メチル・アセチルシノレート等のジエステル油、トリオクチルトリメリテート、トリデシルトリメリテート、テトラオクチルピロメリテート等の芳香族エステル油、トリメチロールプロパンカプリレート、トリメチロールプロパンベラルゴネート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールベラルゴネート等のポリオールエステル油、炭酸エステル油等が挙げられる。前記エーテル系油としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールモノエーテル、ポリプロピレングリコールモノエーテル等のポリグリコール、あるいはモノアルキルトリフェニルエーテル、アルキルジフェニルエーテル、ジアルキルジフェニルエーテル、ペンタフェニルエーテル、テトラフェニルエーテル、モノアルキルテトラフェニルエーテル、ジアルキルテトラフェニルエーテル等のフェニルエーテル油等が挙げられる。これらの基油は、単独または混合物として用いることができる。   Examples of the base oil include mineral oils and synthetic oils. As the mineral oil-based lubricating oil, it is possible to use a refined oil obtained by appropriately combining mineral oil under reduced pressure distillation, oil removal, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, hydrorefining, etc. . Examples of the synthetic oil-based lubricating base oil include hydrocarbon-based oils, aromatic base oils, ester-based oils, ether-based oils, and the like. Examples of the hydrocarbon oil include normal paraffin, isoparaffin, polybutene, polyisobutylene, 1-decene oligomer, and poly-α-olefin such as 1-decene and ethylene co-oligomer. Examples of the aromatic oil include alkyl naphthalene oils such as monoalkylnaphthalene, dialkylnaphthalene, and polyalkylnaphthalene. Examples of the ester oil include dibutyl sebacate, di-2-ethylhexyl sebacate, dioctyl adipate, diisodecyl adipate, ditridecyl adipate, ditridecyl tartrate, and diester oil such as methyl acetyl cinolate, trioctyl trimellitate, Aromatic ester oils such as tridecyl trimellitate and tetraoctyl pyromellitate, polyol esters such as trimethylolpropane caprylate, trimethylolpropane verargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol verargonate Oil, carbonate ester oil and the like. Examples of the ether oil include polyglycols such as polyethylene glycol, polypropylene glycol, polyethylene glycol monoether, and polypropylene glycol monoether, or monoalkyl triphenyl ether, alkyl diphenyl ether, dialkyl diphenyl ether, pentaphenyl ether, tetraphenyl ether, and monoalkyl. Examples thereof include phenyl ether oils such as tetraphenyl ether and dialkyl tetraphenyl ether. These base oils can be used alone or as a mixture.

増ちょう剤は、上記の基油とともにグリースを形成し、維持できるものであれば特に制限されず、例えば、Li、Na、Ba、Ca、Al等を金属種とする金属石けんまたは複合金属石けん、ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物等の非石けん類を適宜選択して使用できる。但し、グリースの耐熱性を考慮するとウレア化合物、ウレア・ウレタン化合物、ウレタン化合物または、これらの混合物が好ましい。耐熱性能や音響特性を考慮すると、ジウレア化合物が特に好ましい。また、高速回転用途としては、バリウム複合石けんが特に望ましく、グリースを形成するのに必要な増ちょう剤の量が他の種類のものに比べ比較的多い(グリース全量の約30質量%)ため基油の保持性能が良く、高速回転下においても適度の離油特性を持つ。そのため、回転中に離油した油で軸受外輪部に付着したグリースを洗い流がしてしまうこともなく、軸受内部に多くのグリースを留めておくことができる。また、増ちょう剤の量は、上記基油との間でグリースを形成し得る量であれば特に制限はなく、グリース全量の10〜30質量%が一般的である。   The thickener is not particularly limited as long as it can form and maintain a grease with the above base oil. For example, a metal soap or a composite metal soap having a metal species of Li, Na, Ba, Ca, Al, etc., Non-soaps such as benton, silica gel, urea compounds, urea / urethane compounds, urethane compounds can be appropriately selected and used. However, considering the heat resistance of the grease, a urea compound, a urea / urethane compound, a urethane compound, or a mixture thereof is preferable. In view of heat resistance performance and acoustic characteristics, a diurea compound is particularly preferable. For high-speed rotation applications, barium composite soap is particularly desirable, and the amount of thickener necessary to form grease is relatively large compared to other types (about 30% by mass of the total amount of grease). Good oil retention performance and moderate oil release characteristics even under high speed rotation. Therefore, a large amount of grease can be retained inside the bearing without washing away the grease adhering to the outer ring portion of the bearing with the oil released during rotation. The amount of the thickener is not particularly limited as long as it can form grease with the base oil, and is generally 10 to 30% by mass of the total amount of grease.

グリースには、平均粒径が2μm以下である無機化合物からなる微粒子がグリース全量に対して0.1〜7質量%、好ましくは0.1〜5質量%添加される。この無機化合物からなる微粒子は、摩擦部の凹凸部に入り込み摩擦面を平滑化して表面硬度を上昇させ、かつ、摺動部材が互いに直接接触することを防止することによって軸受の寿命を延ばすと考えられる。但し、添加量が7質量%を超えると微粒子の2次凝集が起こり易くなり、グリース中での分散性が低下して耐摩耗性の改善効果が少なくなる。   To the grease, fine particles made of an inorganic compound having an average particle size of 2 μm or less are added in an amount of 0.1 to 7% by mass, preferably 0.1 to 5% by mass, based on the total amount of grease. It is thought that the fine particles made of the inorganic compound enter the concave and convex portions of the friction portion, smooth the friction surface to increase the surface hardness, and extend the life of the bearing by preventing the sliding members from directly contacting each other. It is done. However, if the addition amount exceeds 7% by mass, secondary aggregation of the fine particles tends to occur, dispersibility in the grease is lowered, and the effect of improving the wear resistance is reduced.

無機化合物からなる微粒子としては具体的に、SiO2、Al23、MgO、TiO2、PZT、ZnO等の金属酸化物、Si34、ZrN、CrN、TiAlN等の金属窒化物、SiC、TiC、WC等の金属炭化物、ベントナイト、スメクタイト、雲母等の(合成)粘土鉱物、ダイヤモンド等を挙げることができる。また、グラファイト、BN、WS2等の固体潤滑剤を挙げることができる。更に、これらは基油やウレア系増ちょう剤との親和性を改善するため、表面を親油性に改質したものを用いても良い。これら無機化合物の中でも、それ自身増ちょう作用を備える金属酸化物や粘土鉱物が好ましい。 Specific examples of the fine particles made of inorganic compounds include metal oxides such as SiO 2 , Al 2 O 3 , MgO, TiO 2 , PZT, and ZnO, metal nitrides such as Si 3 N 4 , ZrN, CrN, and TiAlN, SiC Metal carbides such as TiC and WC, (synthetic) clay minerals such as bentonite, smectite and mica, and diamond. Further, mention may be made of graphite, BN, a solid lubricant such as WS 2. Furthermore, in order to improve the affinity with a base oil or a urea-based thickener, those whose surfaces are modified to be lipophilic may be used. Among these inorganic compounds, metal oxides and clay minerals that have a thickening action themselves are preferable.

無機化合物からなる微粒子の粒径としては、上述したように摺動面の微小な凹凸に入り込む必要があることから、より小径であることが望ましく、本発明においては、平均粒径として2μm以下であると概ね良好な焼付き防止効果が発現する。平均粒径が2μmよりも大きくなると、異物(ゴミ)として作用する粒子が多くなり、摺動面の摩耗を促進して軸受の早期故障の原因となる。また、平均粒子は小さいほど好ましく、1μm以下がより好ましい。更に、摺動部の潤滑寿命を考慮すれば、実使用上における油膜厚さは約0.2μmであるため、平均粒径はこれより小さく、特に0.1μm以下が好ましい。尚、微粒子の形状は球形に近いほど好ましいが、上記の平均粒径内であれば、多面体(立方体や直方体等)や極端には針状でも構わない。   As described above, the particle size of the fine particles made of the inorganic compound needs to enter the minute irregularities of the sliding surface, so that it is desirable that the particle size is smaller. In the present invention, the average particle size is 2 μm or less. If it exists, the favorable seizure prevention effect will express. When the average particle diameter is larger than 2 μm, the number of particles acting as foreign matters (dust) increases, which promotes wear of the sliding surface and causes an early failure of the bearing. Further, the smaller the average particle, the better, and 1 μm or less is more preferable. Further, considering the lubrication life of the sliding portion, the oil film thickness in actual use is about 0.2 μm, so the average particle size is smaller than this, and particularly preferably 0.1 μm or less. The shape of the fine particles is preferably closer to a sphere, but may be a polyhedron (cube, rectangular parallelepiped, etc.) or extremely acicular as long as it is within the above average particle diameter.

上記グリースには、必要に応じて酸化防止剤、防錆剤、油性剤、極圧剤等を添加してもよい。これらは何れも公知のもので構わない。これらの添加剤の含有量は、個別にはグリース全量の0.05質量%以上、合計量でグリース全量の0.15〜10質量%の範囲となることが好ましい。特に、合計量で10質量%を越える場合は、含有量の増加に見合う効果が期待できないばかりか、相対的に他の成分の含有量が少なくなり、またグリース中でこれら添加剤が凝集し、トルク上昇等の好ましくない現象を招くこともある。   You may add antioxidant, a rust preventive agent, an oiliness agent, an extreme pressure agent, etc. to the said grease as needed. Any of these may be known ones. The content of these additives is preferably individually 0.05% by mass or more of the total amount of grease, and the total amount is preferably in the range of 0.15 to 10% by mass of the total amount of grease. In particular, when the total amount exceeds 10% by mass, not only an effect commensurate with the increase in content cannot be expected, but the content of other components is relatively reduced, and these additives aggregate in the grease, Undesirable phenomena such as an increase in torque may be caused.

以下、試験例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   EXAMPLES Hereinafter, although a test example is given and this invention is demonstrated further, this invention is not restrict | limited at all by this.

(試験−1:軸受耐久寿命試験)
工作機械用アンギュラ玉軸受(内径65mm、外径100mm、幅18mm、窒化珪素球)に、グリースを2.3g(軸受空間容積の15%占有)封入して試験軸受を作製した。尚、グリースは、40℃における動粘度が20mm2/sのエステル油に、バリウム複合石けんを30質量%の割合で配合したベースグリース、並びにこのベースグリースに添加量を変えてMgO(平均粒径0.3μm)を配合して調製したものを使用した。また、何れのグリースも、混和ちょう度が280となるように増ちょう剤量を調整した。
(Test-1: Bearing durability life test)
An angular contact ball bearing for machine tools (inner diameter 65 mm, outer diameter 100 mm, width 18 mm, silicon nitride sphere) was filled with 2.3 g of grease (occupying 15% of the bearing space volume) to produce a test bearing. The grease is a base grease in which barium composite soap is blended at a ratio of 30% by mass with an ester oil having a kinematic viscosity of 20 mm 2 / s at 40 ° C., and MgO (average particle size is changed by changing the addition amount to this base grease. 0.3 μm) was used. In addition, the amount of the thickener was adjusted so that the penetration of each grease was 280.

そして、各試験軸受について、図2に示す試験装置を用い、軸受耐久試験を行った。図示される試験装置は、背面組み合わせに配設した2つの試験軸受20で主軸6を支承し、主軸6が図示しないモータ及び変速機を介して回転駆動されるスピンドル構造となっている。また、試験装置本体24の軸方向の略中央部であって両試験軸受20の中間位置には、半径方向の潤滑剤供給のための貫通孔が設けられており、これにオイルエアノズル21が挿入されている、このオイルエアノズル21は、グリースニップルと置き換え可能な構造となっている。また、試験装置本体24には、軸受20の設定空間内の空気を排気するための排気路23が設けられている。更に、試験装置本体24には、熱電対25が、その検知部を試験軸受20の外輪20aと当接させて設置されている。   And about each test bearing, the bearing durability test was done using the testing apparatus shown in FIG. The illustrated test apparatus has a spindle structure in which a main shaft 6 is supported by two test bearings 20 arranged in a rear combination, and the main shaft 6 is rotationally driven via a motor and a transmission (not shown). In addition, a through hole for supplying a lubricant in the radial direction is provided at a substantially central portion in the axial direction of the test apparatus main body 24 and at an intermediate position between the two test bearings 20, and an oil air nozzle 21 is inserted into the through hole. The oil air nozzle 21 has a structure replaceable with a grease nipple. Further, the test apparatus main body 24 is provided with an exhaust path 23 for exhausting air in the setting space of the bearing 20. Further, a thermocouple 25 is installed in the test apparatus main body 24 with its detection part in contact with the outer ring 20 a of the test bearing 20.

試験は、雰囲気温度25℃、予圧98N、dmn150万の条件にて、軸受が焼き付きに至るまでの時間を測定し、軸受耐久寿命を評価した。結果を図3に、MgO無添加のベースグリースを封入した試験軸受の寿命に対する相対値で示すが、MgOを0.1質量%以上含有させることにより、耐久寿命の改善に効果が現れることがわかる。特に、0.1〜5質量%の範囲が最も効果的である。また、含有量が3質量%を超えると、耐久寿命の改善効果が徐々に弱まる傾向にあり、7質量%を超えると耐久寿命の改善効果がほとんど発現しなくなる。このことから、本発明においては、無機化合物からなる微粒子のグリース中の含有量は0.1〜7質量%、好ましくは0.1〜5質量%であることがわかる。   In the test, the time until the bearing was seized was measured under the conditions of an atmospheric temperature of 25 ° C., a preload of 98 N, and a dmn of 1,500,000 to evaluate the bearing durability life. The result is shown in FIG. 3 as a relative value with respect to the life of the test bearing in which the base grease not added with MgO is encapsulated, and it can be seen that the effect of improving the endurance life is exhibited by containing 0.1 mass% or more of MgO. . In particular, the range of 0.1 to 5% by mass is the most effective. If the content exceeds 3% by mass, the durability improving effect tends to be gradually weakened. If the content exceeds 7% by mass, the durability improving effect hardly appears. From this, in the present invention, it can be seen that the content of fine particles comprising an inorganic compound in the grease is 0.1 to 7% by mass, preferably 0.1 to 5% by mass.

(試験−2軸受外輪温度上昇比較)
上記試験−1と同様にして、MgO(平均粒径0.3μm)の含有量を0.5質量%とし,基油動粘度を種々変化させて調製したグリースを試験軸受に封入し、dmn150万で回転させたときの軸受外輪の雰囲気温度からの上昇を測定した。試験は図2に示す試験装置を用いて行い、雰囲気温度25℃、予圧98Nの条件でスピンドルの回転速度を500rpmずつ段階的に上昇させ、dmn150万に達した後5時間放置した後に軸受外輪温度を測定した。結果を図4に、40℃における基油動粘度が25mm2/sのグリースを封入した試験軸受の軸受外輪温度上昇に対する相対値で示すが、基油動粘度が低い程軸受外輪温度上昇は低く、40℃における基油動粘度が40mm2/sを超えると急激に温度が上昇している。このことから、本発明において、基油の動粘度の上限は40mm2/sであることがわかる。
(Test-2 Bearing outer ring temperature rise comparison)
In the same manner as in Test-1 above, grease prepared with various contents of MgO (average particle size 0.3 μm) 0.5 mass% and various base oil kinematic viscosities was sealed in a test bearing, and dmn 1.5 million The rise from the ambient temperature of the outer ring of the bearing when rotated at a speed was measured. The test is performed using the test apparatus shown in FIG. 2, and the spindle rotation speed is increased stepwise by 500 rpm under the conditions of an atmospheric temperature of 25 ° C. and a preload of 98 N. After reaching 1.5 million, the bearing outer ring temperature is reached. Was measured. The results are shown in FIG. 4 as a relative value to the temperature increase of the outer ring of the test bearing in which grease having a base oil dynamic viscosity at 40 ° C. of 25 mm 2 / s is sealed. When the base oil kinematic viscosity at 40 ° C. exceeds 40 mm 2 / s, the temperature increases rapidly. This shows that the upper limit of the kinematic viscosity of the base oil is 40 mm 2 / s in the present invention.

(試験−3:MgO粒径の検証)
工作機械用アンギュラ玉軸受(内径65mm、外径100mm、幅18mm、窒化珪素球)に、グリースを2.3g(軸受空間容積の15%占有)封入して試験軸受を作製した。尚、グリースは、40℃における動粘度が20mm2/sのエステル油に、バリウム複合石けんを30質量%の割合で配合したベースグリース、並びにこのベースグリースに平均粒径の異なるMgOを3質量%の割合で配合して調製したものを使用した。また、何れのグリースも、混和ちょう度が280となるように増ちょう剤量を調整した。
(Test-3: Verification of MgO particle size)
An angular contact ball bearing for machine tools (inner diameter 65 mm, outer diameter 100 mm, width 18 mm, silicon nitride sphere) was filled with 2.3 g of grease (occupying 15% of the bearing space volume) to produce a test bearing. The grease is a base grease in which barium composite soap is blended at a ratio of 30% by mass with an ester oil having a kinematic viscosity of 20 mm 2 / s at 40 ° C., and 3% by mass of MgO having a different average particle diameter. The one prepared by blending at a ratio of In addition, the amount of the thickener was adjusted so that the penetration of each grease was 280.

そして、図2に示す試験装置を用いて、雰囲気温度20℃、予圧98N、dmn150万の条件にて試験軸受を回転させた。1万時間経過後に回転を停止し、軸受を試験装置から取り外して内輪軌道面の形状を表面粗さ形状測定器(テーラーホブソン(株)製 フォームタリサーフPGI Plus)を利用して観察した。軸受内輪の転送面についたV字型の摩耗傷の深さを摩耗の指標とした。結果を図5に、MgO無添加のベースグリースを封入した試験軸受の摩耗深さに対する相対値で示すが、MgOの平均粒径が2μm以下であれば摩耗低減の効果が発現し、1μm以下がより好ましく、0.2μm以下が特に好ましいことがわかる。また、平均粒径が0.15μm以下で摩耗深さ比が不連続的に急低下しているが、この現象は、平均粒径を極度に減少させたことによってMgO微粒子群からアブレシブ摩耗を引き起こす要因が完全に取り除かれたことを示唆していると思われる。   Then, using the test apparatus shown in FIG. 2, the test bearing was rotated under the conditions of an atmospheric temperature of 20 ° C., a preload of 98 N, and a dmn of 1.5 million. After 10,000 hours had elapsed, the rotation was stopped, the bearing was removed from the test apparatus, and the shape of the inner ring raceway surface was observed using a surface roughness and shape measuring instrument (Form Talysurf PGI Plus manufactured by Taylor Hobson Co., Ltd.). The depth of the V-shaped wear scar on the transfer surface of the bearing inner ring was used as an index of wear. The result is shown in FIG. 5 as a relative value with respect to the wear depth of the test bearing in which the base grease not added with MgO is encapsulated. If the average particle diameter of MgO is 2 μm or less, the effect of reducing the wear is exhibited, and 1 μm or less is exhibited. It is more preferable that 0.2 μm or less is particularly preferable. Moreover, although the wear depth ratio is discontinuously sharply reduced when the average particle size is 0.15 μm or less, this phenomenon causes abrasive wear from the MgO fine particle group by extremely reducing the average particle size. It seems to suggest that the factor has been completely removed.

本発明の工作機械主軸用転がり軸受の一例を示す断面図である。It is sectional drawing which shows an example of the rolling bearing for machine tool spindles of this invention. 実施例の各試験で用いた試験装置を示す断面図である。It is sectional drawing which shows the testing apparatus used by each test of the Example. 試験−1で得られた酸化マグネシウムの含有量と焼付き寿命比との関係を示すグラフである。It is a graph which shows the relationship between content of magnesium oxide obtained by Test-1, and a seizure life ratio. 試験−2で得られた基油動粘度と外輪温度上昇比との関係を示すグラフである。It is a graph which shows the relationship between the base oil kinematic viscosity obtained by Test-2, and the outer ring temperature rise ratio. 試験−3で得られた酸化マグネシウムの平均粒径と摩耗深さ比との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of magnesium oxide obtained by Test-3, and the wear depth ratio.

符号の説明Explanation of symbols

10 アンギュラ玉軸受
11 内輪
12 外輪
13 玉
14 保持器
10 Angular Contact Ball Bearing 11 Inner Ring 12 Outer Ring 13 Ball 14 Cage

Claims (1)

内輪と外輪との間に、複数の転動体を保持器により転動自在に保持してなり、かつ平均粒径が2μm以下の無機化合物からなる微粒子をグリース全量に対して0.1〜7質量%含み、かつ、40℃における動粘度が15〜40mm2/sの潤滑油を基油とするグリースを封入したことを特徴とする工作機械主軸用転がり軸受。 Between the inner ring and the outer ring, a plurality of rolling elements are rotatably held by a cage, and fine particles made of an inorganic compound having an average particle size of 2 μm or less are 0.1 to 7 mass based on the total amount of grease. A rolling bearing for a spindle of a machine tool characterized by containing a grease containing a base oil of a lubricating oil having a kinematic viscosity at 40 ° C. of 15 to 40 mm 2 / s.
JP2003402770A 2003-12-02 2003-12-02 Rolling bearing for machine tool spindle Pending JP2005163893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402770A JP2005163893A (en) 2003-12-02 2003-12-02 Rolling bearing for machine tool spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402770A JP2005163893A (en) 2003-12-02 2003-12-02 Rolling bearing for machine tool spindle

Publications (1)

Publication Number Publication Date
JP2005163893A true JP2005163893A (en) 2005-06-23

Family

ID=34726253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402770A Pending JP2005163893A (en) 2003-12-02 2003-12-02 Rolling bearing for machine tool spindle

Country Status (1)

Country Link
JP (1) JP2005163893A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056938A (en) * 2005-08-23 2007-03-08 Nsk Ltd Rolling bearing
JP2009001611A (en) * 2007-06-19 2009-01-08 Nsk Ltd Rolling bearing and its grease composition
JP2012057682A (en) * 2010-09-07 2012-03-22 Chuo Spring Co Ltd Control cable for vehicle
JP2014129886A (en) * 2007-02-26 2014-07-10 Ntn Corp Rolling bearing
JP2015047868A (en) * 2013-09-03 2015-03-16 ユニカ株式会社 Coolant
KR20170057373A (en) * 2014-11-28 2017-05-24 가부시키가이샤 하모닉 드라이브 시스템즈 Method for lubricating strain wave gearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056938A (en) * 2005-08-23 2007-03-08 Nsk Ltd Rolling bearing
JP2014129886A (en) * 2007-02-26 2014-07-10 Ntn Corp Rolling bearing
JP2009001611A (en) * 2007-06-19 2009-01-08 Nsk Ltd Rolling bearing and its grease composition
JP2012057682A (en) * 2010-09-07 2012-03-22 Chuo Spring Co Ltd Control cable for vehicle
JP2015047868A (en) * 2013-09-03 2015-03-16 ユニカ株式会社 Coolant
KR20170057373A (en) * 2014-11-28 2017-05-24 가부시키가이샤 하모닉 드라이브 시스템즈 Method for lubricating strain wave gearing

Similar Documents

Publication Publication Date Title
JP5916781B2 (en) Rolling bearing
JP5346491B2 (en) Grease for high speed bearings
JP2017150615A (en) Rolling bearing
JP4461720B2 (en) Lubricant composition
JP2005163893A (en) Rolling bearing for machine tool spindle
JP2003028174A (en) Rolling bearing
JP2013018861A (en) Grease composition, and rolling bearing for machine tool
JP4614808B2 (en) Rolling bearing
JP2007262146A (en) Grease composition and spindle apparatus
JP2009121532A (en) Rolling bearing for high speed
JP3915877B2 (en) Grease composition and angular contact ball bearings for spindle support of machine tools
JP5305600B2 (en) Grease for high-speed bearings and rolling bearings for spindles
JP2013087193A (en) Grease composition and rolling bearing for machine tool
JP2003083341A (en) Rolling bearing
JP2009121531A (en) Rolling bearing for high speed
JP2006199771A (en) Grease composition and rolling bearing for use in machine tool axle
JP2004176774A (en) Rolling device
JP2008222793A (en) Grease for high-speed bearing and rolling bearing for spindle
JP2007056938A (en) Rolling bearing
JP2002349588A (en) Roller bearing
JP2009036222A (en) High-speed rolling bearing
JP2003042166A (en) Rolling bearing
JP2009019750A (en) Rolling bearing for high speed
JP2002276675A (en) Rolling bearing
JP2008286372A (en) Rolling bearing for high speed

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317