JP2005163644A - Turbocharger - Google Patents

Turbocharger Download PDF

Info

Publication number
JP2005163644A
JP2005163644A JP2003404033A JP2003404033A JP2005163644A JP 2005163644 A JP2005163644 A JP 2005163644A JP 2003404033 A JP2003404033 A JP 2003404033A JP 2003404033 A JP2003404033 A JP 2003404033A JP 2005163644 A JP2005163644 A JP 2005163644A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
turbine shaft
bearing element
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003404033A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
高橋  毅
Kenji Ogimoto
健治 荻本
Yukitoshi Murakami
幸利 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003404033A priority Critical patent/JP2005163644A/en
Publication of JP2005163644A publication Critical patent/JP2005163644A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve both rising characteristics at starting and high speed rotational characteristics, by supporting a turbine shaft by a bearing formed by the combination of a rolling bearing element with a dynamic pressure bearing element, in a turbocharger. <P>SOLUTION: In this turbocharger in which the turbine shaft 1 transmitting rotation of a turbine blade 2 to a compressor blade 3 is supported by bearings 4, 5, the bearings 4, 5 are formed by the dynamic pressure bearing elements 41, 51 supporting the turbine shaft 1, and the rolling bearing elements 45, 55 supporting the dynamic pressure bearing elements 41, 51 on the peripheral sides of the dynamic pressure bearing elements 41, 51. The dynamic pressure bearing elements 41, 51 can be commonly used by the same member as the inner rings 46, 56 of the rolling bearing elements 45, 55. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ターボチャージャ、特に、タービン羽根の回転をコンプレッサ羽根に伝達するタービン軸が軸受で支えられているターボチャージャに関する。   The present invention relates to a turbocharger, and more particularly to a turbocharger in which a turbine shaft that transmits rotation of a turbine blade to a compressor blade is supported by a bearing.

従来、ターボチャージャのタービン軸はタービン側とコンプレッサ側との2箇所に配備された軸受で支えられていて、それらの軸受にはフローティングメタルを用いた滑り軸受や転がり軸受が用いられていた。   Conventionally, a turbine shaft of a turbocharger is supported by bearings provided at two locations on the turbine side and the compressor side, and a sliding bearing or a rolling bearing using a floating metal has been used for these bearings.

図5は従来のターボチャージャを概略で示した断面図であり、このターボチャージャでは、タービン羽根2の回転をコンプレッサ羽根3に伝達するタービン軸1を2箇所で支えているタービン側の軸受4とコンプレッサ側の軸受5との両方に転がり軸受が用いられている。また、このターボチャージャにおいて、タービン羽根2は、内燃機関から排出された高温(たとえば800℃程度)の排気ガスG1が流通するタービンハウジング6に収容されていて、そのタービンハウジング6内に流入してきた排気ガスG1がタービン羽根2を回転させて出口61より排出される。これに対し、コンプレッサ羽根3はコンプレッサハウジング7に収容されている。このコンプレッサ羽根3には、タービン軸1によってタービン羽根2の回転が伝達され、このコンプレッサ羽根3の回転により、入口71からコンプレッサハウジング7内に吸い込まれたエアA1が圧縮されて、たとえばエンジンの燃焼室などに過給される。なお、タービン羽根2はタービン軸1の一端部に取り付けられ、コンプレッサ羽根3はタービン軸1の他端部に取り付けられている。   FIG. 5 is a cross-sectional view schematically showing a conventional turbocharger. In this turbocharger, a turbine-side bearing 4 that supports the turbine shaft 1 transmitting the rotation of the turbine blade 2 to the compressor blade 3 at two locations, and Rolling bearings are used for both the compressor-side bearing 5. Further, in this turbocharger, the turbine blade 2 is accommodated in the turbine housing 6 through which the high-temperature (for example, about 800 ° C.) exhaust gas G1 discharged from the internal combustion engine flows, and has flowed into the turbine housing 6. The exhaust gas G1 rotates the turbine blade 2 and is discharged from the outlet 61. On the other hand, the compressor blade 3 is accommodated in the compressor housing 7. The rotation of the turbine blade 2 is transmitted to the compressor blade 3 by the turbine shaft 1, and the rotation of the compressor blade 3 compresses the air A1 sucked into the compressor housing 7 from the inlet 71, for example, combustion of the engine Supercharged in rooms. The turbine blade 2 is attached to one end portion of the turbine shaft 1, and the compressor blade 3 is attached to the other end portion of the turbine shaft 1.

他方、従来より、回転軸とケーシングとの間に介在される高速回転用玉軸受として、径小の第1玉軸受と径大の第2玉軸受とを一体化したものが提案されている(特許文献1参照)。   On the other hand, conventionally, a ball bearing for high-speed rotation interposed between a rotating shaft and a casing has been proposed in which a first ball bearing having a small diameter and a second ball bearing having a large diameter are integrated ( Patent Document 1).

実開昭62−16825公報Japanese Utility Model Publication No. 62-16825

ところで、転がり軸受又は玉軸受は、調芯特性や回転始動時の立上り特性に優れているものの、高速回転特性では、一定の回転数を越える範囲で特性の低下が現れることが判っている。これに対し、高速回転特性に優れるものとして知られている動圧軸受は回転始動時の立上り特性が転がり軸受に比べて劣っている。そのため、図4で説明した従来のターボチャージャのように、軸受に転がり軸受4,5が用いられていると、タービン軸1の回転速度を高速化する場合に、転がり軸受4,5の耐用寿命に問題を生じるおそれがある。   By the way, although rolling bearings or ball bearings are excellent in alignment characteristics and rise characteristics at the start of rotation, it has been found that characteristics are deteriorated in a range exceeding a certain number of rotations in high-speed rotation characteristics. On the other hand, a dynamic pressure bearing known to have excellent high-speed rotation characteristics is inferior to a rolling bearing in rising characteristics at the time of starting rotation. Therefore, if the rolling bearings 4 and 5 are used as the bearings as in the conventional turbocharger described with reference to FIG. 4, the service life of the rolling bearings 4 and 5 is increased when the rotational speed of the turbine shaft 1 is increased. May cause problems.

本発明は以上の状況に鑑みてなされたものであり、転がり軸受要素と動圧軸受要素とを組み合わせて回転始動時に要求される立上り特性と高速回転時に要求される高速回転特性との両方を充足させることができるようにした軸受によりタービン軸を支えるという構成を採用することによって、軸受の耐用寿命を改善することのできるターボチャージャを提供することを目的とする。   The present invention has been made in view of the above situation, and satisfies both the rise characteristic required at the time of rotation start and the high speed rotation characteristic required at the time of high speed rotation by combining the rolling bearing element and the dynamic pressure bearing element. It is an object of the present invention to provide a turbocharger that can improve the service life of a bearing by adopting a configuration in which a turbine shaft is supported by a bearing that can be made to operate.

また、本発明は、軸受として転がり軸受要素と動圧軸受要素とを組み合わせたものを用いるものでありながら、軸受の組込み工程が煩雑にならないターボチャージャを提供することを目的とする。   Another object of the present invention is to provide a turbocharger that does not complicate the process of assembling the bearing while using a combination of a rolling bearing element and a hydrodynamic bearing element as a bearing.

本発明に係るターボチャージャは、タービン羽根の回転をコンプレッサ羽根に伝達するタービン軸を軸受で支えているターボチャージャにおいて、上記軸受が、タービン軸を支える動圧軸受要素とその動圧軸受要素の外周側でその動圧軸受要素を支えている転がり軸受要素とによって形成されていることを特徴としている(請求項1)。   A turbocharger according to the present invention is a turbocharger in which a turbine shaft that transmits the rotation of a turbine blade to a compressor blade is supported by a bearing. The bearing includes a hydrodynamic bearing element that supports the turbine shaft and an outer periphery of the hydrodynamic bearing element. It is characterized in that it is formed on the side by a rolling bearing element that supports the hydrodynamic bearing element (claim 1).

上記構成とすると、タービン軸の回転始動時には、動圧軸受要素の軸受負荷が転がり軸受要素のそれよりも大きいために、動圧軸受要素がタービン軸及び転がり軸受要素の内輪と共回りした後、タービン軸の回転速度が増大するにつれてタービン軸が動圧軸受要素によるポンピング作用で潤滑剤に動圧が発生し、非接触で回転し始める。そして、タービン軸の回転速度が増大して高速回転し、動圧軸受要素の軸受負荷が転がり軸受要素のそれよりも小さくなると、それに伴ってタービン軸が動圧軸受要素に非接触で回転を続行し、動圧軸受要素や転がり軸受要素の内輪は回転を停止するか、あるいは、タービン軸よりも低速で回転するようになる。したがって、回転始動時には、回転始動時の立上り特性に優れている転がり軸受要素の特性が生かされる一方で動圧軸受要素に無理な負荷の加わることが抑制され、高速回転時には、高速回転特性に優れている動圧軸受要素の特性が生かされる一方で転がり軸受要素に無理な負荷の加わることが抑制される。このことにより、軸受の耐用寿命が改善される。   With the above configuration, since the bearing load of the hydrodynamic bearing element is larger than that of the rolling bearing element when the turbine shaft starts rotating, the hydrodynamic bearing element rotates together with the turbine shaft and the inner ring of the rolling bearing element. As the rotational speed of the turbine shaft increases, the turbine shaft generates dynamic pressure in the lubricant by the pumping action of the hydrodynamic bearing elements, and starts rotating without contact. And when the rotational speed of the turbine shaft increases and rotates at high speed, and the bearing load of the hydrodynamic bearing element becomes smaller than that of the rolling bearing element, the turbine shaft continues to rotate without contact with the hydrodynamic bearing element. However, the inner ring of the hydrodynamic bearing element or the rolling bearing element stops rotating or rotates at a lower speed than the turbine shaft. Therefore, at the time of rotation start, the characteristics of the rolling bearing element having excellent start-up characteristics at the time of rotation start are utilized, while an excessive load is suppressed on the hydrodynamic bearing element, and at high speed rotation, the high speed rotation characteristics are excellent. While the characteristics of the hydrodynamic bearing element are utilized, an unreasonable load is suppressed from being applied to the rolling bearing element. This improves the service life of the bearing.

本発明では、上記動圧軸受要素の軸受本体が、上記転がり軸受要素の内輪と同一部材によって共用されている、という構成を採用することが可能である(請求項2)。   In this invention, it is possible to employ | adopt the structure that the bearing main body of the said dynamic pressure bearing element is shared by the same member as the inner ring | wheel of the said rolling bearing element (Claim 2).

この手段によれば、動圧軸受要素と転がり軸受要素とを個別に組み込む必要がなくなり、転がり軸受要素を組み込むだけで動圧軸受要素も組み込まれたことになるので、軸受として転がり軸受要素と動圧軸受要素とを組み合わせたものを用いるものでありながら、軸受の組込み工程を、図4で説明した従来のターボチャージャに転がり軸受を組み込む工程と同等の作業効率で行うことができるようになる。その上、軸受として転がり軸受要素と動圧軸受要素とを組み合わせたものを用いるものでありながら、軸受の大きさが転がり軸受要素単独と同等になって軸受のコンパクトが図られるという利点もある。   According to this means, it is not necessary to separately incorporate the dynamic pressure bearing element and the rolling bearing element, and the dynamic pressure bearing element is also incorporated simply by incorporating the rolling bearing element. Although a combination of pressure bearing elements is used, the bearing assembling process can be performed with the same work efficiency as the process of incorporating the rolling bearing into the conventional turbocharger described with reference to FIG. In addition, although a combination of a rolling bearing element and a hydrodynamic bearing element is used as a bearing, there is an advantage that the size of the bearing is the same as that of the rolling bearing element alone and the bearing can be made compact.

また、本発明によれば、転がり軸受要素によって発揮される優れた調芯作用によって動圧軸受要素が調芯されるという利点もある。   Further, according to the present invention, there is an advantage that the hydrodynamic bearing element is aligned by the excellent alignment effect exhibited by the rolling bearing element.

以上のように、本発明によれば、転がり軸受要素と動圧軸受要素とを組み合わせた軸受の作用によって、回転始動時の立上り特性と高速回転特性との両方が充足されるようになるので、軸受の耐用寿命が改善されたターボチャージャを提供することが可能になる。また、動圧軸受要素を転がり軸受要素の内輪と同一部材によって共用したものでは、軸受の組込み工程が煩雑にならず、従来のターボチャージャの軸受を組み込む工程と同等の組込み作業効率を確保することが可能になるという効果が得られる。   As described above, according to the present invention, by the action of the bearing that combines the rolling bearing element and the hydrodynamic bearing element, both the start-up characteristics at the time of rotation start and the high-speed rotation characteristics are satisfied. It is possible to provide a turbocharger having an improved service life of the bearing. Also, in the case where the hydrodynamic bearing element is shared by the same member as the inner ring of the rolling bearing element, the assembly process of the bearing is not complicated, and the assembly work efficiency equivalent to the process of incorporating the conventional turbocharger bearing is ensured. Can be obtained.

図1は、本発明の第1の実施形態に係るターボチャージャを概略で示した断面図であり、図2は、図1のP部拡大図である。図3は、本発明の他の実施形態に係るターボチャージャを概略で示した断面図であり、図4は、図3のQ部拡大図である。   FIG. 1 is a cross-sectional view schematically showing a turbocharger according to a first embodiment of the present invention, and FIG. 2 is an enlarged view of a portion P in FIG. FIG. 3 is a cross-sectional view schematically showing a turbocharger according to another embodiment of the present invention, and FIG. 4 is an enlarged view of a portion Q in FIG.

図1に示した第1の実施形態のターボチャージャでは、タービン羽根2の回転をコンプレッサ羽根3に伝達するタービン軸1の2箇所が軸受4,5でそれぞれ支えられている点で、図5で説明したものと同様であるけれども、それらの軸受が、動圧軸受要素41,51と転がり軸受要素45,55とを組み合わせて構成されている点で図4で説明したものと異なっている。   In the turbocharger of the first embodiment shown in FIG. 1, two locations of the turbine shaft 1 that transmit the rotation of the turbine blade 2 to the compressor blade 3 are supported by bearings 4 and 5, respectively. Although similar to what has been described, these bearings differ from those described with reference to FIG. 4 in that they are configured by combining the hydrodynamic bearing elements 41, 51 and the rolling bearing elements 45, 55.

タービン側の軸受4の動圧軸受要素41は、図2にも示すように、タービン軸1の周囲にタービン軸1の回転時に動圧を発生させるための作動流体を保持する隙間Sを形成するスリーブ42を備えていると共に、タービン軸1の外周面に形成されたラジアル動圧溝43を備えている。尚、動圧軸受要素41とスリーブ42とは事実上同一物であるが、一般的用語として動圧軸受要素41という文言を使用し、具体的用語としてスリーブ42という文言を使用する(以下の動圧軸受要素51についても同様)。   As shown in FIG. 2, the dynamic pressure bearing element 41 of the turbine side bearing 4 forms a clearance S around the turbine shaft 1 for holding a working fluid for generating dynamic pressure when the turbine shaft 1 rotates. A sleeve 42 is provided, and a radial dynamic pressure groove 43 formed on the outer peripheral surface of the turbine shaft 1 is provided. The dynamic pressure bearing element 41 and the sleeve 42 are substantially the same, but the term “dynamic pressure bearing element 41” is used as a general term, and the term “sleeve 42” is used as a specific term (the following dynamics). The same applies to the pressure bearing element 51).

前記ラジアル動圧溝43は、たとえばV字状又はヘリングボーン状に形成されている。なお、ラジアル動圧溝43はスリーブ42の内周面に形成されていてもよい。このスリーブである動圧軸受要素41では、タービン軸1の回転が停止しているときにはタービン軸1がその重量によって作動流体に沈み込んで軸受本体42に線接触又は面接触している。これに対し、タービン軸1が回転しているときには、ラジアル動圧溝43のポンピング作用で作動流体が動圧を発生してタービン軸1とスリーブ42との間に作動流体膜が保持されるようになり、そのためにタービン軸1がスリーブ42に非接触で回転する。   The radial dynamic pressure groove 43 is formed, for example, in a V shape or a herringbone shape. The radial dynamic pressure groove 43 may be formed on the inner peripheral surface of the sleeve 42. In the hydrodynamic bearing element 41 which is this sleeve, when the rotation of the turbine shaft 1 is stopped, the turbine shaft 1 sinks into the working fluid by its weight and is in line contact or surface contact with the bearing body 42. On the other hand, when the turbine shaft 1 is rotating, the working fluid generates dynamic pressure by the pumping action of the radial dynamic pressure groove 43 so that the working fluid film is held between the turbine shaft 1 and the sleeve 42. Therefore, the turbine shaft 1 rotates without contact with the sleeve 42.

また、タービン側の軸受4の転がり軸受要素45は、動圧軸受要素41の軸受本体42に圧入などの手段で固着されてその動圧軸受要素41の外周側に配備された内輪46と、転動体47と、外輪48とを備えていて、転がり軸受要素45に本来備わっている調芯作用を発揮するようになっている。   Further, the rolling bearing element 45 of the turbine side bearing 4 is fixed to the bearing main body 42 of the dynamic pressure bearing element 41 by means such as press fitting, and the inner ring 46 disposed on the outer peripheral side of the dynamic pressure bearing element 41 and the rolling bearing element 45. A moving body 47 and an outer ring 48 are provided, and the centering action inherent to the rolling bearing element 45 is exhibited.

コンプレッサ側の軸受5についても同様で、51は動圧軸受要素、52は動圧軸受要素51のスリーブ、53はラジアル動圧溝、56は転がり軸受要素55の内輪、57は転動体、58は転がり軸受要素55の外輪である。   The same applies to the bearing 5 on the compressor side, 51 is a dynamic pressure bearing element, 52 is a sleeve of the dynamic pressure bearing element 51, 53 is a radial dynamic pressure groove, 56 is an inner ring of the rolling bearing element 55, 57 is a rolling element, and 58 is This is an outer ring of the rolling bearing element 55.

なお、軸受4,5が配備されている軸受室8には動圧軸受要素41,51の作動流体が保持されていて、この作動流体が転がり軸受要素45,55の潤滑剤として用いられることもある。   In addition, the working fluid of the hydrodynamic bearing elements 41 and 51 is held in the bearing chamber 8 in which the bearings 4 and 5 are provided, and this working fluid may be used as a lubricant for the rolling bearing elements 45 and 55. is there.

図1のターボチャージャにおいて、タービン軸1の回転始動時には、動圧軸受要素41,51の軸受負荷が転がり軸受要素45,55のそれよりも大きいために、動圧軸受要素41,51であるスリーブ42,52がタービン軸1及び転がり軸受要素45,55の内輪46,56と共回りした後、タービン軸1の回転速度が増大するにつれてタービン軸1が動圧軸受要素41,51のスリーブ42,52に非接触で回転し始める。そして、タービン軸1の回転速度が増大して高速回転し、動圧軸受要素41,51の軸受負荷が転がり軸受要素45,55のそれよりも小さくなると、それに伴ってタービン軸1が動圧軸受要素41,51のスリーブ42,52に非接触で回転を続行し、動圧軸受要素41,51や転がり軸受要素45,55の内輪46,56は回転を停止するか、あるいは、タービン軸1よりも低速で回転するようになる。したがって、回転始動時には、回転始動時の立上り特性に優れている転がり軸受要素45,55の特性が生かされる一方で動圧軸受要素41,51に無理な負荷の加わることが抑制され、高速回転時には、高速回転特性に優れている動圧軸受要素41,51の特性が生かされる一方で転がり軸受要素45,55に無理な負荷の加わることが抑制されるようになり、それによって軸受4,5の耐用寿命が改善される。   In the turbocharger of FIG. 1, when the rotation of the turbine shaft 1 is started, the bearing load of the dynamic pressure bearing elements 41 and 51 is larger than that of the rolling bearing elements 45 and 55. 42 and 52 rotate together with the turbine shaft 1 and the inner rings 46 and 56 of the rolling bearing elements 45 and 55, and then, as the rotational speed of the turbine shaft 1 increases, the turbine shaft 1 becomes the sleeve 42 of the hydrodynamic bearing elements 41 and 51, 52 starts rotating without contact. Then, when the rotational speed of the turbine shaft 1 increases and rotates at a high speed, and the bearing load of the dynamic pressure bearing elements 41 and 51 becomes smaller than that of the rolling bearing elements 45 and 55, the turbine shaft 1 moves accordingly. The rotation continues without contact with the sleeves 42 and 52 of the elements 41 and 51, and the dynamic bearing elements 41 and 51 and the inner rings 46 and 56 of the rolling bearing elements 45 and 55 stop rotating, or from the turbine shaft 1. Will also rotate at low speed. Therefore, at the time of starting rotation, the characteristics of the rolling bearing elements 45 and 55 having excellent rise characteristics at the time of starting rotation are utilized, while an excessive load is suppressed on the dynamic pressure bearing elements 41 and 51, and at the time of high speed rotation. In addition, while the characteristics of the hydrodynamic bearing elements 41 and 51 having excellent high-speed rotation characteristics are utilized, an unreasonable load is suppressed from being applied to the rolling bearing elements 45 and 55. The service life is improved.

この実施形態のターボチャージャにおいて、軸受4,5は、動圧軸受要素41,51と転がり軸受要素51,55とをあらかじめ嵌合させてユニット化しておき、そのユニットをタービン軸1に取り付けるという組付け工程を経て組み付けるようにすると、組付け工程が煩雑にならない。   In the turbocharger of this embodiment, the bearings 4 and 5 are a set in which the hydrodynamic bearing elements 41 and 51 and the rolling bearing elements 51 and 55 are fitted in advance to form a unit, and the unit is attached to the turbine shaft 1. If the assembly process is performed, the assembly process is not complicated.

図3に示した第2の実施形態のターボチャージャは、動圧軸受要素41,51のスリーブ42,52が転がり軸受要素45,55の内輪46,56と同一部材によって共用されている点が、図1で説明した実施形態と異なっている。   The turbocharger of the second embodiment shown in FIG. 3 is that the sleeves 42 and 52 of the hydrodynamic bearing elements 41 and 51 are shared by the same members as the inner rings 46 and 56 of the rolling bearing elements 45 and 55. This is different from the embodiment described in FIG.

この構成であれば、タービン軸1の回転始動時には、スリーブ42,52が内輪46,56と同一部材によって共用されている動圧軸受要素41,51の軸受負荷が転がり軸受要素45,55のそれよりも大きいために、図1で説明したところと同様に、動圧軸受要素41,51のスリーブ42,52がタービン軸1と共回りした後、タービン軸1の回転速度が増大するにつれてタービン軸1が動圧軸受要素41,51のスリーブ42,52 (内輪46,56)に非接触で回転し始める。そして、タービン軸1の回転速度が増大して高速回転し、動圧軸受要素41,51の軸受負荷が転がり軸受要素45,55のそれよりも小さくなると、それに伴ってタービン軸1が動圧軸受要素41,51のスリーブ42,52(内輪46,56)に非接触で回転を続行し、動圧軸受要素41,51(内輪46,56)は回転を停止するか、あるいは、タービン軸1よりも低速で回転するようになる。したがって、回転始動時には、回転始動時の立上り特性に優れている転がり軸受要素45,55の特性が生かされる一方で動圧軸受要素41,51に無理な負荷の加わることが抑制され、高速回転時には、高速回転特性に優れている動圧軸受要素41,51の特性が生かされる一方で転がり軸受要素45,55に無理な負荷の加わることが抑制されるようになり、それによって軸受4,5の耐用寿命が改善される。   With this configuration, when the turbine shaft 1 starts rotating, the bearing load of the dynamic pressure bearing elements 41 and 51 in which the sleeves 42 and 52 are shared by the same members as the inner rings 46 and 56 is the same as that of the rolling bearing elements 45 and 55. Since the sleeves 42 and 52 of the hydrodynamic bearing elements 41 and 51 rotate together with the turbine shaft 1 in the same manner as described in FIG. 1, the turbine shaft 1 increases as the rotational speed of the turbine shaft 1 increases. 1 begins to rotate without contact with the sleeves 42, 52 (inner rings 46, 56) of the hydrodynamic bearing elements 41, 51. Then, when the rotational speed of the turbine shaft 1 increases and rotates at high speed, and the bearing load of the hydrodynamic bearing elements 41 and 51 becomes smaller than that of the rolling bearing elements 45 and 55, the turbine shaft 1 is accordingly hydrodynamic bearing. The rotation continues without contact with the sleeves 42 and 52 (inner rings 46 and 56) of the elements 41 and 51, and the hydrodynamic bearing elements 41 and 51 (inner rings 46 and 56) stop rotating or from the turbine shaft 1. Will also rotate at low speed. Therefore, at the time of starting rotation, the characteristics of the rolling bearing elements 45 and 55 having excellent rise characteristics at the time of starting rotation are utilized, while an excessive load is suppressed on the dynamic pressure bearing elements 41 and 51, and at the time of high speed rotation. In addition, while the characteristics of the hydrodynamic bearing elements 41 and 51 having excellent high-speed rotation characteristics are utilized, an unreasonable load is suppressed from being applied to the rolling bearing elements 45 and 55. The service life is improved.

この実施形態のターボチャージャにおいて、軸受4,5は、動圧軸受要素41,51のスリーブ42,52が転がり軸受要素45,55の内輪46,56と同一部材によって共用されているために、転がり軸受要素45,55を組み込むだけで動圧軸受要素41,51も組み込まれたことになるので、軸受の組込み工程を、図4で説明した従来のターボチャージャに転がり軸受を組み込む工程と同等の作業効率で行うことができるようになる。   In the turbocharger of this embodiment, the bearings 4 and 5 are rolling because the sleeves 42 and 52 of the hydrodynamic bearing elements 41 and 51 are shared by the same members as the inner rings 46 and 56 of the rolling bearing elements 45 and 55. Since the dynamic pressure bearing elements 41 and 51 are also incorporated simply by incorporating the bearing elements 45 and 55, the bearing assembling process is equivalent to the process of incorporating the rolling bearing into the conventional turbocharger described in FIG. It can be done with efficiency.

ところで、動圧軸受要素41,51はタービン軸1に対する取付角度に高精度が要求され、その取付角度が傾斜していると動圧軸受要素41,51の本来の機能が十分に発揮されなくなる。しかし、図1又は図2のそれぞれの実施形態では、転がり軸受要素45,55によって発揮される優れた調芯作用により動圧軸受要素41,51も調芯されるようになって、動圧軸受要素41,51に要求される取付精度が容易に確保される。特に図2の実施形態では調芯機能を持つ転がり軸受要素45,55の内輪46,56と同一部材によって動圧軸受要素41,51の軸受本体42,52が共用されているためにこの作用が顕著に発揮される。   By the way, the dynamic pressure bearing elements 41 and 51 are required to have a high accuracy in the mounting angle with respect to the turbine shaft 1, and if the mounting angle is inclined, the original functions of the dynamic pressure bearing elements 41 and 51 are not sufficiently exhibited. However, in each of the embodiments shown in FIG. 1 or FIG. 2, the dynamic pressure bearing elements 41 and 51 are also aligned by the excellent alignment effect exhibited by the rolling bearing elements 45 and 55, so that the dynamic pressure bearing is provided. The mounting accuracy required for the elements 41 and 51 is easily ensured. In particular, in the embodiment shown in FIG. 2, since the bearing bodies 42 and 52 of the dynamic pressure bearing elements 41 and 51 are shared by the same members as the inner rings 46 and 56 of the rolling bearing elements 45 and 55 having the alignment function, this action is achieved. Prominently demonstrated.

本発明の第1の実施形態に係るターボチャージャを概略で示した断面図である。1 is a cross-sectional view schematically showing a turbocharger according to a first embodiment of the present invention. 本発明の第1の実施形態のターボチャージャの断面を示す図1のP部拡大図である。It is the P section enlarged view of FIG. 1 which shows the cross section of the turbocharger of the 1st Embodiment of this invention. 本発明の第2の実施形態に係るターボチャージャを概略で示した断面図である。It is sectional drawing which showed roughly the turbocharger which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態のターボチャージャの断面を示す図2のQ部拡大図である。It is the Q section enlarged view of Drawing 2 showing the section of the turbocharger of a 2nd embodiment of the present invention. 従来のターボチャージャを概略で示した断面図である。It is sectional drawing which showed the conventional turbocharger roughly.

符号の説明Explanation of symbols

1 タービン軸
2 タービン羽根
3 コンプレッサ羽根
4,5 軸受
41,51 動圧軸受要素
45,55 転がり軸受要素
DESCRIPTION OF SYMBOLS 1 Turbine shaft 2 Turbine blade 3 Compressor blade 4,5 Bearing 41,51 Dynamic pressure bearing element 45,55 Rolling bearing element

Claims (2)

タービン羽根の回転をコンプレッサ羽根に伝達するタービン軸を軸受で支えているターボチャージャにおいて、
上記軸受が、タービン軸を支える動圧軸受要素とその動圧軸受要素の外周側でその動圧軸受要素を支えている転がり軸受要素とによって形成されているターボチャージャ。
In the turbocharger that supports the turbine shaft that transmits the rotation of the turbine blade to the compressor blade with a bearing,
A turbocharger in which the bearing is formed by a hydrodynamic bearing element that supports a turbine shaft and a rolling bearing element that supports the hydrodynamic bearing element on the outer peripheral side of the hydrodynamic bearing element.
上記動圧軸受要素の軸受本体が、上記転がり軸受要素の内輪と同一部材によって共用されている請求項1に記載したターボチャージャ。
The turbocharger according to claim 1, wherein a bearing body of the dynamic pressure bearing element is shared by the same member as an inner ring of the rolling bearing element.
JP2003404033A 2003-12-03 2003-12-03 Turbocharger Withdrawn JP2005163644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404033A JP2005163644A (en) 2003-12-03 2003-12-03 Turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404033A JP2005163644A (en) 2003-12-03 2003-12-03 Turbocharger

Publications (1)

Publication Number Publication Date
JP2005163644A true JP2005163644A (en) 2005-06-23

Family

ID=34727119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404033A Withdrawn JP2005163644A (en) 2003-12-03 2003-12-03 Turbocharger

Country Status (1)

Country Link
JP (1) JP2005163644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3258126A1 (en) * 2016-04-06 2017-12-20 OTICS Corporation Rolling bearing assembly of an exhaust gas turbocharger with squeeze oil film damper
EP3260717A1 (en) * 2016-05-20 2017-12-27 OTICS Corporation Rolling bearing assembly of an exhaust gas turbocharger with squeeze oil film damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3258126A1 (en) * 2016-04-06 2017-12-20 OTICS Corporation Rolling bearing assembly of an exhaust gas turbocharger with squeeze oil film damper
EP3260717A1 (en) * 2016-05-20 2017-12-27 OTICS Corporation Rolling bearing assembly of an exhaust gas turbocharger with squeeze oil film damper

Similar Documents

Publication Publication Date Title
US8186886B2 (en) Turbocharger shaft bearing system
US7371011B2 (en) Turbocharger shaft bearing system
JP4367628B2 (en) Electric motor integrated turbocharger
JP2007046642A (en) Supercharger and fully floating bearing
JP2007009702A (en) Bearing device for turbocharger, and turbocharger
JP2010138753A (en) Bearing device for supercharger
JP2008518158A (en) Turbocharger unit with shaft attachment for rotor shaft
JP5771919B2 (en) Turbocharger using rolling bearing
JP2007071356A (en) Turbocharger rotation supporting device
JP2009270613A (en) Bearing structure of turbocharger
JP2010133266A (en) Bearing device for supercharger
JP2005163644A (en) Turbocharger
JP2008286079A (en) Oil seal structure
KR101966093B1 (en) Electric turbo-charger
JP5569114B2 (en) Turbocharger
JP2013002429A (en) Lubricating oil seal structure on turbine side of supercharger
JP2005163642A (en) Turbocharger
JP6536417B2 (en) Turbocharger
JP6540281B2 (en) Double row ball bearing
JP2007205179A (en) Turbocharger
JP2005076463A (en) Bearing device for turbocharger
JP2005163656A (en) Turbocharger
JP5995735B2 (en) Turbocharger bearing structure and turbocharger including the same
JPWO2018047947A1 (en) Seal ring and supercharger
JP4736817B2 (en) Turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081215