JP2005163594A - Exhaust emission control device for compression ignition internal combustion engine - Google Patents

Exhaust emission control device for compression ignition internal combustion engine Download PDF

Info

Publication number
JP2005163594A
JP2005163594A JP2003402094A JP2003402094A JP2005163594A JP 2005163594 A JP2005163594 A JP 2005163594A JP 2003402094 A JP2003402094 A JP 2003402094A JP 2003402094 A JP2003402094 A JP 2003402094A JP 2005163594 A JP2005163594 A JP 2005163594A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
fuel
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003402094A
Other languages
Japanese (ja)
Other versions
JP4337527B2 (en
Inventor
Takamitsu Asanuma
孝充 浅沼
Shinya Hirota
信也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003402094A priority Critical patent/JP4337527B2/en
Publication of JP2005163594A publication Critical patent/JP2005163594A/en
Application granted granted Critical
Publication of JP4337527B2 publication Critical patent/JP4337527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine degree of deterioration of NO<SB>x</SB>occlusion catalyst in an exhaust emission control device for a compression ignition internal combustion engine. <P>SOLUTION: A fuel adding valve 14, a HC adsorption catalyst 11, and a NO<SB>x</SB>occlusion catalyst 12 are arranged in order toward a downstream side in an engine exhaust passage. When particulate fuel is added in exhaust gas for discharging NO<SB>x</SB>from the NO<SB>x</SB>occlusion catalyst 12, it is determined that the HC adsorption catalyst 11 is deteriorated if air fuel ratio of gaseous component in exhaust gas flowing out of the HC adsorption catalyst 11 does not become rich or the time being held rich gets shorter as compared with that of the non-deteriorated HC adsorption catalyst 11 even if it becomes rich. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は圧縮着火式内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for a compression ignition type internal combustion engine.

排気ガス中に含まれる炭化水素、即ちHCを吸着するためのHC吸着触媒を機関排気通路内に配置し、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガス中の酸素濃度が低下すると吸蔵されたNOXを放出するNOX吸蔵触媒をHC吸着触媒下流の機関排気通路内に配置した内燃機関が公知である(例えば特許文献1)。この内燃機関ではリーン空燃比のもとで燃焼が行われているときに発生するHCはHC吸着触媒に吸着され、このとき発生するNOXはNOX吸蔵触媒に吸蔵される。 An HC adsorption catalyst for adsorbing hydrocarbons contained in the exhaust gas, that is, HC, is disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, the NO x contained in the exhaust gas is occluded. internal combustion engine in which the oxygen concentration in the exhaust gas is arranged the NO X storing catalyst to release the NO X occluded when drops HC adsorption catalyst downstream of the engine exhaust passage that flows is known (e.g. Patent Document 1). In this internal combustion engine, HC generated when combustion is performed under a lean air-fuel ratio is adsorbed by the HC adsorption catalyst, and NO x generated at this time is stored in the NO x storage catalyst.

ところでこのようなNOX吸蔵触媒を用いたときにはNOX吸蔵触媒のNOX吸蔵能力が飽和する前にNOX吸蔵触媒からNOXを放出させる必要があり、この場合燃料の供給量を増量してNOX吸蔵触媒に流入する排気ガスの空燃比をリッチにすればNOX吸蔵触媒からNOXを放出させかつ放出したNOXを還元することができる。
しかしながらNOX吸蔵触媒からNOXを放出させる毎にリーンからリッチに空燃比を大巾に変化させると燃料消費量が増大してしまう。
However such when using the NO X storing catalyst should emit NO X from the NO X storing catalyst before the NO X storage ability of the NO X storage catalyst is saturated by increasing the supply amount of this fuel NO X fuel ratio of the exhaust gas flowing into the storage catalyst capable of reducing the NO X that NO X from storage catalyst to release NO X and release if rich.
However, if the air-fuel ratio is changed from lean to rich each time NO X is released from the NO X storage catalyst, fuel consumption increases.

ところが上述のHC吸着触媒ではHC吸着触媒の温度が活性化温度付近、即ち200℃付近になると吸着されているHCの酸化反応が活発となり、その結果排気ガス中の酸素が急激に消費されるために排気ガス中の酸素濃度が急激に低下する。従ってこのときには少量の燃料を追加供給すれば排気ガスの空燃比をリッチにすることができる。そこで上述の内燃機関ではHC吸着触媒において十分な量の酸素が消費されているか否かを検出し、HC吸着触媒において十分な量の酸素が消費されているときに排気ガスの空燃比をリッチにしてNOX吸蔵触媒からNOXを放出させるようにしている。
特開2003−97255号公報
However, in the above-described HC adsorption catalyst, when the temperature of the HC adsorption catalyst is near the activation temperature, that is, near 200 ° C., the oxidation reaction of the adsorbed HC becomes active, and as a result, oxygen in the exhaust gas is consumed rapidly. In addition, the oxygen concentration in the exhaust gas rapidly decreases. Therefore, at this time, if a small amount of fuel is additionally supplied, the air-fuel ratio of the exhaust gas can be made rich. Therefore, in the above-mentioned internal combustion engine, it is detected whether or not a sufficient amount of oxygen is consumed in the HC adsorption catalyst, and the exhaust gas air-fuel ratio is made rich when a sufficient amount of oxygen is consumed in the HC adsorption catalyst. Thus, NO X is released from the NO X storage catalyst.
JP 2003-97255 A

しかしながらHC吸着触媒の温度が活性化温度付近になる時期、即ちHC吸着触媒において十分な量の酸素が消費される時期は限られているので、NOX吸蔵触媒からのNOX放出作用からみて必要な時期にHC吸着触媒の温度が活性化温度にならず、斯くして上述の内燃機関ではNOX吸蔵触媒からNOXを放出することが必要となったときにNOX吸蔵触媒からNOXを放出することができないという問題がある。また、HC吸着触媒が劣化するとNOX吸蔵触媒からのNOX放出作用に影響が出るのでHC吸着触媒が劣化したか否かを判断する必要があるがこの内燃機関ではHC吸着触媒が劣化したか否かを全く判断していない。 However time the temperature of the HC adsorbing catalyst becomes near the activation temperature, that is, timing is limited to a sufficient amount of oxygen is consumed in the HC adsorbing catalyst, required viewed from NO X release action from the NO X storing catalyst not a temperature of the HC adsorption catalyst to the activation temperature in time, the NO X from the NO X storing catalyst when it becomes necessary to release the NO X from the NO X storing catalyst in an internal combustion engine described above with thus There is a problem that it cannot be released. In addition, if the HC adsorption catalyst deteriorates, it affects the NO x releasing action from the NO x storage catalyst, so it is necessary to determine whether the HC adsorption catalyst has deteriorated. No judgment is made at all.

上記問題点を解決するために本発明によれば、微粒子状の燃料を排気ガス中に添加するための燃料添加手段と、燃料添加手段下流の機関排気通路内に配置されて排気ガス中に含まれる炭化水素を吸着するHC吸着触媒と、HC吸着触媒下流の機関排気通路内に配置されて流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出するNOX吸蔵触媒とを具備し、HC吸着触媒が劣化していないときにNOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにはHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになると共に暫らくの間リッチに維持され、NOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチにならないか又はリッチになったとしてもリッチに維持される時間がHC吸着触媒非劣化時に比べて短かくなったときにはHC吸着触媒が劣化したと判断される。 In order to solve the above problems, according to the present invention, a fuel addition means for adding particulate fuel into the exhaust gas, and an exhaust gas disposed in the engine exhaust passage downstream of the fuel addition means are included in the exhaust gas. Exhaust gas that adsorbs NO x contained in the exhaust gas when the air-fuel ratio of the HC adsorption catalyst that adsorbs hydrocarbons and the exhaust gas that is disposed in the engine exhaust passage downstream of the HC adsorption catalyst and is lean is lean air-fuel ratio; and a the nO X storing catalyst to release the nO X occluding becomes the stoichiometric air-fuel ratio or rich, the exhaust gas so as to release the nO X from the nO X storage catalyst when the HC adsorption catalyst is not deteriorated in air-fuel ratio of the gaseous components in the exhaust gas when the particulate fuel is added to flow out from the HC adsorption catalyst is maintained at the rich during the interim pleasure with becomes rich during the releasing NO X from the NO X storing catalyst Therefore, when the particulate fuel is added to the exhaust gas, the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst does not become rich or even if it becomes rich When the HC adsorption catalyst is shorter than when the HC adsorption catalyst is not deteriorated, it is determined that the HC adsorption catalyst has deteriorated.

NOX吸蔵触媒から確実にNOXを放出させることができると共にHC吸着触媒が劣化したか否かを判断することができる。 It is possible to reliably release NO x from the NO x storage catalyst and determine whether the HC adsorption catalyst has deteriorated.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアクリーナ8に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁9が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置10が配置される。図1に示される実施例では機関冷却水が冷却装置10内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口はHC吸着触媒11の入口に連結される。また、HC吸着触媒11の出口は排気管13を介してNOX吸蔵触媒12に連結される。排気マニホルド5にはミスト状の、即ち微粒子状の燃料を排気ガス中に添加するための燃料添加弁14が取付けられる。本発明による実施例ではこの燃料は軽油からなる。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 through the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 8. A throttle valve 9 driven by a step motor is arranged in the intake duct 6, and a cooling device 10 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 10 and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the HC adsorption catalyst 11. The outlet of the HC adsorption catalyst 11 is connected to the NO x storage catalyst 12 through the exhaust pipe 13. The exhaust manifold 5 is provided with a fuel addition valve 14 for adding mist-like, that is, particulate fuel to the exhaust gas. In an embodiment according to the invention, this fuel consists of light oil.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路15を介して互いに連結され、EGR通路15内には電子制御式EGR制御弁16が配置される。また、EGR通路15周りにはEGR通路15内を流れるEGRガスを冷却するための冷却装置17が配置される。図1に示される実施例では機関冷却水が冷却装置17内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管18を介してコモンレール19に連結される。このコモンレール19内へは電子制御式の吐出量可変な燃料ポンプ20から燃料が供給され、コモンレール19内に供給された燃料は各燃料供給管18を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 15, and an electronically controlled EGR control valve 16 is disposed in the EGR passage 15. A cooling device 17 for cooling the EGR gas flowing in the EGR passage 15 is disposed around the EGR passage 15. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 17, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 19 via a fuel supply pipe 18. Fuel is supplied into the common rail 19 from an electronically controlled variable discharge amount fuel pump 20, and the fuel supplied into the common rail 19 is supplied to the fuel injection valve 3 via each fuel supply pipe 18.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。HC吸着触媒11にはHC吸着触媒11の温度を検出するための温度センサ21が取付けられ、排気管13内には排気ガス中のガス状成分の空燃比を検出するための空燃比センサ22が配置される。これら温度センサ21および空燃比センサ22の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、NOX吸蔵触媒12にはNOX吸蔵触媒12の前後差圧を検出するための差圧センサ23が取付けられており、この差圧センサ23の出力信号は対応するAD変換器37を介して入力ポート35に入力される。 The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. It comprises. A temperature sensor 21 for detecting the temperature of the HC adsorption catalyst 11 is attached to the HC adsorption catalyst 11, and an air-fuel ratio sensor 22 for detecting the air-fuel ratio of the gaseous component in the exhaust gas is provided in the exhaust pipe 13. Be placed. Output signals from the temperature sensor 21 and the air-fuel ratio sensor 22 are input to the input port 35 via the corresponding AD converters 37. Further, the NO X storing catalyst 12 has a differential pressure sensor 23 is attached for detecting the differential pressure of the NO X storage catalyst 12, the output signal of the differential pressure sensor 23 via a corresponding AD converter 37 To the input port 35.

アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁9駆動用ステップモータ、燃料添加弁14、EGR制御弁16および燃料ポンプ20に接続される。   A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. . Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 9, the fuel addition valve 14, the EGR control valve 16 and the fuel pump 20 through corresponding drive circuits 38.

図2に圧縮着火式内燃機関の別の実施例を示す。この実施例ではNOX吸蔵触媒12の出口に連結された排気管24内に排気ガス中のガス状成分の空燃比を検出するための空燃比センサ22が配置されている。 FIG. 2 shows another embodiment of the compression ignition type internal combustion engine. In this embodiment, an air-fuel ratio sensor 22 for detecting the air-fuel ratio of the gaseous component in the exhaust gas is disposed in the exhaust pipe 24 connected to the outlet of the NO x storage catalyst 12.

まず初めに図1および図2に示されるNOX吸蔵触媒12について説明すると、これらNOX吸蔵触媒12は三次元網目構造のモノリス担体或いはペレット状担体上に担持されているか、又はハニカム構造をなすパティキュレートフィルタ上に担持されている。このようにNOX吸蔵触媒12は種々の担体上に担持させることができるが、以下NOX吸蔵触媒12をパティキュレートフィルタ上に担持した場合について説明する。 First, the NO x storage catalyst 12 shown in FIGS. 1 and 2 will be described. The NO x storage catalyst 12 is supported on a monolithic carrier or pellet-like carrier having a three-dimensional network structure, or has a honeycomb structure. It is carried on a particulate filter. In this way, the NO x storage catalyst 12 can be supported on various carriers. Hereinafter, the case where the NO x storage catalyst 12 is supported on a particulate filter will be described.

図3(A)および(B)はNOX吸蔵触媒12を担持したパティキュレートフィルタ12aの構造を示している。なお、図3(A)はパティキュレートフィルタ12aの正面図を示しており、図3(B)はパティキュレートフィルタ12aの側面断面図を示している。図3(A)および(B)に示されるようにパティキュレートフィルタ12aはハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路60,61を具備する。これら排気流通路は下流端が栓62により閉塞された排気ガス流入通路60と、上流端が栓63により閉塞された排気ガス流出通路61とにより構成される。なお、図3(A)においてハッチングを付した部分は栓63を示している。従って排気ガス流入通路60および排気ガス流出通路61は薄肉の隔壁64を介して交互に配置される。云い換えると排気ガス流入通路60および排気ガス流出通路61は各排気ガス流入通路60が4つの排気ガス流出通路61によって包囲され、各排気ガス流出通路61が4つの排気ガス流入通路60によって包囲されるように配置される。 3A and 3B show the structure of the particulate filter 12a carrying the NO x storage catalyst 12. FIG. 3A shows a front view of the particulate filter 12a, and FIG. 3B shows a side sectional view of the particulate filter 12a. As shown in FIGS. 3A and 3B, the particulate filter 12a has a honeycomb structure and includes a plurality of exhaust flow passages 60 and 61 extending in parallel with each other. These exhaust flow passages include an exhaust gas inflow passage 60 whose downstream end is closed by a plug 62 and an exhaust gas outflow passage 61 whose upstream end is closed by a plug 63. In addition, the hatched part in FIG. Therefore, the exhaust gas inflow passages 60 and the exhaust gas outflow passages 61 are alternately arranged via the thin partition walls 64. In other words, each of the exhaust gas inflow passages 60 and the exhaust gas outflow passages 61 is surrounded by four exhaust gas outflow passages 61, and each exhaust gas outflow passage 61 is surrounded by four exhaust gas inflow passages 60. Arranged so that.

パティキュレートフィルタ12aは例えばコージライトのような多孔質材料から形成されており、従って排気ガス流入通路60内に流入した排気ガスは図3(B)において矢印で示されるように周囲の隔壁64内を通って隣接する排気ガス流出通路61内に流出する。
このようにNOX吸蔵触媒12をパティキュレートフィルタ12a上に担持させた場合には、各排気ガス流入通路60および各排気ガス流出通路61の周壁面、即ち各隔壁64の両側表面上および隔壁64内の細孔内壁面上には例えばアルミナからなる触媒担持が担持されており、図4(A)および(B)はこの触媒担体45の表面部分の断面を図解的に示している。図4(A)および(B)に示されるように触媒担体45の表面上には貴金属触媒46が分散して担持されており、更に触媒担体45の表面上にはNOX吸収剤47の層が形成されている。
The particulate filter 12a is formed of a porous material such as cordierite, so that the exhaust gas flowing into the exhaust gas inflow passage 60 is contained in the surrounding partition wall 64 as shown by an arrow in FIG. Through the exhaust gas outflow passage 61 adjacent thereto.
When the NO x storage catalyst 12 is thus supported on the particulate filter 12 a, the peripheral wall surfaces of the exhaust gas inflow passages 60 and the exhaust gas outflow passages 61, that is, on both side surfaces of the partition walls 64 and the partition walls 64. A catalyst support made of alumina, for example, is supported on the inner wall surfaces of the pores, and FIGS. 4A and 4B schematically show a cross section of the surface portion of the catalyst support 45. As shown in FIGS. 4A and 4B, a noble metal catalyst 46 is dispersedly supported on the surface of the catalyst carrier 45, and a layer of NO x absorbent 47 is further provided on the surface of the catalyst carrier 45. Is formed.

本発明による実施例では貴金属触媒46として白金Ptが用いられており、NOX吸収剤47を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。 In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 46, and the constituents of the NO x absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.

機関吸気通路、燃焼室2およびNOX吸蔵触媒12上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOX吸収剤47は排気ガスの空燃比がリーンのときにはNOXを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOXを放出するNOXの吸放出作用を行う。 When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NO x storage catalyst 12 is referred to as the air-fuel ratio of the exhaust gas, the NO x absorbent 47 air absorbs NO X when the lean, the oxygen concentration in the exhaust gas performs the absorbing and releasing action of the NO X that releases NO X absorbed and reduced.

即ち、NOX吸収剤47を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図4(A)に示されるように白金Pt46上において酸化されてNO2となり、次いでNOX吸収剤47内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOX吸収剤47内に拡散する。このようにしてNOXがNOX吸収剤47内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt46の表面でNO2が生成され、NOX吸収剤47のNOX吸収能力が飽和しない限りNO2がNOX吸収剤47内に吸収されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NO x absorbent 47 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG. 4 (A), NO is oxidized on platinum Pt 46 to become NO 2 , and then absorbed into the NO x absorbent 47 and combined with barium oxide BaO in the form of nitrate ions NO 3 −. It diffuses into the X absorbent 47. In this way, NO x is absorbed in the NO x absorbent 47. Exhaust oxygen concentration in the gas is NO 2 with high long as the surface of the platinum Pt46 are generated, the NO X absorbent 47 of the NO X absorbing capacity so long as NO 2 not to saturate is absorbed in the NO X absorbent 47 nitrate ions NO 3 - is generated.

これに対し、排気ガスの空燃比がリッチ或いは理論空燃比にされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図4(B)に示されるようにNOX吸収剤47内の硝酸イオンNO3 -がNO2の形でNOX吸収剤47から放出される。次いで放出されたNOXは排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, when the air-fuel ratio of the exhaust gas is made rich or stoichiometric, the oxidation concentration in the exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ). (B) nitrate in the NO X absorbent 47, as shown in the ion NO 3 - is released from the NO X absorbent 47 in the form of NO 2. Next, the released NO x is reduced by unburned HC and CO contained in the exhaust gas.

このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOXがNOX吸収剤47内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNOX吸収剤47のNOX吸収能力が飽和してしまい、斯くしてNOX吸収剤47によりNOXを吸収できなくなってしまう。そこで本発明による実施例ではNOX吸収剤47の吸収能力が飽和する前に燃料添加弁14から燃料を添加することによって排気ガスの空燃比を一時的にリッチにし、それによってNOX吸収剤47からNOXを放出させるようにしている。 Thus, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NO X in the exhaust gas is absorbed into the NO X absorbent 47. However becomes saturated is NO X absorbing capacity of the NO X absorbent 47 during the combustion of the fuel under a lean air-fuel ratio is continued, no longer able to absorb NO X by the NO X absorbent 47 and thus End up. Accordingly, in the embodiment according to the present invention, the air-fuel ratio of the exhaust gas is temporarily made rich by adding fuel from the fuel addition valve 14 before the absorption capacity of the NO x absorbent 47 is saturated, and thereby the NO x absorbent 47. NO x is released from the gas.

さて、上述したように燃料添加弁14から燃料を添加することによって排気ガスの空燃比をリッチにすると排気ガス中の酸素濃度が低下するためにNOX吸収剤47からNOXが放出され、放出されたNOXが排気ガス中に含まれる未燃HC,COによって還元される。この場合、添加された燃料が液状であったとすると理論上は排気ガスの空燃比がリッチになったとしても排気ガス中の酸素濃度は低下せず、従ってNOX吸収剤47からNOXが放出しない。また、燃料が液状である場合にはNOXの還元も行われない。即ち、NOX吸収剤47からNOXを放出させかつ放出されたNOXを還元するにはNOX吸蔵触媒12に流入する排気ガス中のガス状成分の空燃比をリッチにしなければならない。 Well, NO X from the NO X absorbent 47 to the oxygen concentration in the exhaust gas and the air-fuel ratio of the exhaust gas by adding the fuel from the fuel addition valve 14 to the rich decreased as described above is released, release been NO X is reduced by the unburned HC, CO contained in the exhaust gas. In this case, if the added fuel is to be a liquid theoretically even if the air-fuel ratio of the exhaust gas becomes rich without lowering the oxygen concentration in the exhaust gas, thus NO X from the absorbent 47 NO X release do not do. Further, when the fuel is liquid, NO X is not reduced. That is, in order to release NO X from the NO X absorbent 47 and reduce the released NO X , the air-fuel ratio of the gaseous component in the exhaust gas flowing into the NO X storage catalyst 12 must be made rich.

本発明では燃料添加弁14から添加される燃料は微粒子状であり、一部の燃料はガス状となっているがかなりの部分は液状となっている。本発明では添加された燃料がこのように微粒子状であっても排気ガス中の酸素濃度が低下しかつNOX吸蔵触媒12に流入する燃料がガス状となるようにNOX吸蔵触媒12の上流にHC吸着触媒11が配置されている。次にこのHC吸着触媒11について説明する。 In the present invention, the fuel added from the fuel addition valve 14 is in the form of fine particles, and some of the fuel is in the form of gas, but a substantial part is in the liquid state. Upstream of the NO X storage catalyst 12 as fuel in the present invention has been added fuel oxygen concentration of the thus during even particulate exhaust gas flowing into the lowered vital the NO X storing catalyst 12 becomes gaseous The HC adsorption catalyst 11 is disposed on the side. Next, the HC adsorption catalyst 11 will be described.

HC吸着触媒11はゼオライトのような細孔構造をもつ比表面積の大きな材料から構成されており、図1に示すHC吸着触媒11の基体はゼオライトの一種であるモルデナイトからなる。図5(A)から(D)はHC吸着触媒11の表面部分の断面を図解的に示している。なお、図5(B)は図5(A)におけるB部分の拡大図を示しており、図5(C)は図5(B)と同じ断面を示しており、図5(D)は図5(C)におけるD部分の拡大図を示している。図5(B)および(C)からわかるようにHC吸着触媒11の表面は凸凹した粗い表面形状を呈しており、この粗い表面形状を有する表面上には図5(D)に示されるように多数の細孔51が形成されていると共に白金Ptからなる貴金属触媒52が分散して担持されている。   The HC adsorption catalyst 11 is made of a material having a large specific surface area having a pore structure such as zeolite, and the base of the HC adsorption catalyst 11 shown in FIG. 1 is made of mordenite, which is a kind of zeolite. 5A to 5D schematically show a cross section of the surface portion of the HC adsorption catalyst 11. 5B shows an enlarged view of a portion B in FIG. 5A, FIG. 5C shows the same cross section as FIG. 5B, and FIG. The enlarged view of D section in 5 (C) is shown. As can be seen from FIGS. 5B and 5C, the surface of the HC adsorption catalyst 11 has an uneven rough surface shape. On the surface having this rough surface shape, as shown in FIG. 5D. A large number of pores 51 are formed, and a noble metal catalyst 52 made of platinum Pt is dispersed and supported.

燃料添加弁14から微粒子状の燃料が添加されると一部の燃料は蒸発してガス状になるがかなりの部分は微粒子の形で基体50の表面上に吸着する。図5(A)および(B)は燃料微粒子53が吸着する様子を示している。このように液状の形で燃料が吸着するときの燃料吸着割合はガス状燃料の吸着割合に比べてかなり高くなる。なお、HC吸着触媒11が吸着しうる微粒子状燃料の吸着量は図6に示されるようにHC吸着触媒11の温度が低くなるほど増大する。   When particulate fuel is added from the fuel addition valve 14, a part of the fuel evaporates to become a gaseous state, but a substantial part is adsorbed on the surface of the substrate 50 in the form of particulates. FIGS. 5A and 5B show how the fuel fine particles 53 are adsorbed. Thus, the fuel adsorption rate when the fuel is adsorbed in the liquid form is considerably higher than the adsorption rate of the gaseous fuel. The amount of particulate fuel that can be adsorbed by the HC adsorption catalyst 11 increases as the temperature of the HC adsorption catalyst 11 decreases as shown in FIG.

基体50の表面上に吸着した燃料微粒子53は徐々に蒸発してガス状燃料となる。このガス状燃料は主に炭素数の多いHCからなる。この炭素数の多いHCは蒸発する際にゼオライト表面上の酸点又は貴金属触媒52上においてクラッキングされ、炭素数の少ないHCに改質される。次いでこの改質されたガス状のHCがNOX吸蔵触媒12に流入する。 The fuel fine particles 53 adsorbed on the surface of the substrate 50 are gradually evaporated to become gaseous fuel. This gaseous fuel is mainly composed of HC having a large number of carbon atoms. When the HC having a large number of carbons evaporates, it is cracked on the acid sites on the zeolite surface or on the noble metal catalyst 52, and is reformed to HC having a small number of carbons. Next, the reformed gaseous HC flows into the NO x storage catalyst 12.

図7は燃料添加弁14からの燃料の添加量と、排気ガス中のガス状成分の空燃比A/Fとを示している。なお、図7において(A)はHC吸着触媒11に流入する排気ガス中のガス状成分の空燃比A/Fを示しており、(B)はHC吸着触媒11から流出してNOX吸蔵触媒12に流入する排気ガス中のガス状成分の空燃比A/Fを示しており、(C)はNOX吸蔵触媒12から流出する排気ガス中のガス状成分の空燃比A/Fを示している。 FIG. 7 shows the amount of fuel added from the fuel addition valve 14 and the air-fuel ratio A / F of the gaseous component in the exhaust gas. 7A shows the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing into the HC adsorption catalyst 11, and FIG. 7B shows the NO x storage catalyst flowing out from the HC adsorption catalyst 11. 12 shows the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing into the exhaust gas 12, and (C) shows the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out of the NO x storage catalyst 12. Yes.

本発明による実施例ではNOX吸蔵触媒12からNOXを放出すべきときには図7に示されるように燃料添加弁14から燃料が時間間隔を隔てて複数回に亘りパルス状に添加される。燃料添加弁14から燃料が添加されると一部の燃料は蒸発するために排気ガス中の酸素濃度は低くなり、斯くして図7(A)に示されるようにHC吸収触媒11に流入する排気ガス中のガス状成分の空燃比A/Fは小さくなる。しかしながら添加された燃料はかなりの部分が液状であるのでHC吸着触媒11に流入する排気ガス中のガス状成分の空燃比A/Fはリッチとなるほど小さくはならない。 In the embodiment according to the present invention, when NO x should be released from the NO x storage catalyst 12, as shown in FIG. 7, the fuel is added from the fuel addition valve 14 in a pulse shape over a plurality of times with a time interval. When fuel is added from the fuel addition valve 14, a part of the fuel evaporates, so the oxygen concentration in the exhaust gas becomes low, and thus flows into the HC absorption catalyst 11 as shown in FIG. The air-fuel ratio A / F of the gaseous component in the exhaust gas becomes small. However, since a considerable portion of the added fuel is liquid, the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing into the HC adsorption catalyst 11 does not become so small that it becomes rich.

一方、燃料添加弁14から燃料が添加されると燃料微粒子はHC吸着触媒11に吸着され、次いでこの燃料微粒子から燃料が徐々に蒸発して前述したようにクラッキングされ、改質される。燃料微粒子から蒸発した燃料又は改質された燃料の一部は排気ガス中に含まれる酸素を反応して酸化され、それによって排気ガス中の酸素濃度が低下する。一方、余剰の燃料、即ち余剰のHCはHC吸着触媒11から排出され、その結果HC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fはわずかばかりリッチとなる。   On the other hand, when fuel is added from the fuel addition valve 14, the fuel particulates are adsorbed by the HC adsorption catalyst 11, and then the fuel is gradually evaporated from the fuel particulates, cracked and reformed as described above. A part of the fuel evaporated from the fuel fine particles or the reformed fuel is oxidized by reacting with oxygen contained in the exhaust gas, thereby reducing the oxygen concentration in the exhaust gas. On the other hand, surplus fuel, that is, surplus HC is discharged from the HC adsorption catalyst 11, and as a result, the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 becomes slightly rich.

HC吸着触媒11に吸着された燃料微粒子からは燃料が徐々に蒸発し、吸着された燃料微粒子が少量となるまで、HC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fはわずかばかりリッチになり続ける。従って図7(B)に示されるように燃料添加弁14からの燃料の添加作用が完了した後にかなりの時間に亘ってHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fはわずかばかりリッチになり続ける。   The fuel is gradually evaporated from the fuel particulates adsorbed on the HC adsorption catalyst 11, and the air-fuel ratio A / F of the gaseous components in the exhaust gas flowing out from the HC adsorption catalyst 11 until the adsorbed fuel particulates become a small amount. Keeps getting slightly richer. Accordingly, as shown in FIG. 7B, the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 over a considerable time after the fuel addition operation from the fuel addition valve 14 is completed. F keeps getting slightly richer.

HC吸着触媒11から流出しNOX吸蔵触媒12に流入する排気ガス中のガス状成分の空燃比A/FがリッチになるとNOX吸蔵触媒12からNOXが放出され、放出されたNOXが未燃HC,COによって還元される。この場合、前述したようにNOX吸蔵触媒12に流入する未燃HCはHC吸着触媒11において改質されており、従って放出されたNOXは未燃HCによって良好に還元される。図7(C)からわかるようにNOX吸蔵触媒12からのNOXの放出作用と還元作用が行われている間、NOX吸蔵触媒12から流出する排気ガス中のガス状成分の空燃比A/Fはほぼ理論空燃比に維持される。 Air-fuel ratio A / F of the gaseous components in the exhaust gas flowing into the NO X storing catalyst 12 flows out from the HC adsorbing catalyst 11 NO X from the NO X storing catalyst 12 becomes rich is released, the released NO X is Reduced by unburned HC and CO. In this case, as described above, the unburned HC flowing into the NO x storage catalyst 12 is reformed in the HC adsorption catalyst 11, and thus the released NO x is satisfactorily reduced by the unburned HC. Figure 7 while the releasing action and the reducing action of the NO X from the NO X storing catalyst 12 as can be seen from (C) is being performed, NO X gaseous air-fuel ratio A component in the exhaust gas flowing out from the storage catalyst 12 / F is maintained substantially at the stoichiometric air-fuel ratio.

ところでHC吸着触媒11は長期間に亘って使用されるとHC吸着触媒11の基体を構成しているゼオライトが熱破壊したり、分子量の大きな炭化水素が固着堆積したり、ゼオライトの酸点や白金Ptの活性が低下したりしてHC吸着触媒11が次第に劣化する。HC吸着触媒11が劣化すると微粒子状の燃料を吸着保持する能力が低下すると共に蒸発したHCをクラッキングする能力が低下し、その結果ガス状HCの生成量が低下すると共に小さな分子量のガス状HCが生成されにくくなる。   By the way, when the HC adsorption catalyst 11 is used for a long period of time, the zeolite constituting the base of the HC adsorption catalyst 11 is thermally destroyed, hydrocarbons with a large molecular weight are fixedly deposited, the acid point of the zeolite and platinum The HC adsorption catalyst 11 gradually deteriorates due to a decrease in the activity of Pt. When the HC adsorption catalyst 11 deteriorates, the ability to adsorb and hold particulate fuel decreases and the ability to crack evaporated HC also decreases. As a result, the generation amount of gaseous HC decreases and the gaseous HC having a small molecular weight is reduced. It becomes difficult to generate.

図8は図7と同じ量の燃料を添加した場合の排気ガス中のガス状成分の空燃比A/Fを示している。なお、図8における(A),(B),(C)は図7の(A),(B),(C)と同じ場所における排気ガス中のガス状成分の空燃比A/Fを示している。また、図8の(B)および(C)における曲線aは夫々図7の(B)および(C)に示される曲線を表わしており、これら曲線aはHC吸着触媒11が劣化していない場合を示している。   FIG. 8 shows the air-fuel ratio A / F of the gaseous component in the exhaust gas when the same amount of fuel as in FIG. 7 is added. (A), (B), and (C) in FIG. 8 show the air-fuel ratio A / F of the gaseous component in the exhaust gas at the same location as (A), (B), and (C) in FIG. ing. Further, curves a in FIGS. 8B and 8C represent the curves shown in FIGS. 7B and 7C, respectively, and these curves a are obtained when the HC adsorption catalyst 11 is not deteriorated. Is shown.

一方、HC吸着触媒11が劣化すると図8の(B)および(C)に示される曲線はaからbへ、更に劣化するとbからcへ、更に劣化するとcからdへと変化する。即ち、HC吸着触媒11が劣化すると添加された微粒子状の燃料がガス化される割合が減少するために図8の(B)に示されるようにHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fがリッチに維持される時間Δt1が次第に短かくなる。また、HC吸着触媒11が更に劣化すると空燃比A/Fはリッチにならなくなり、この場合にはHC吸着触媒11が劣化するほど最も小さくなったときの空燃比A/Fと理論空燃比との差ΔA/F1は大きくなる。   On the other hand, when the HC adsorption catalyst 11 deteriorates, the curves shown in FIGS. 8B and 8C change from a to b, further deteriorate from b to c, and further deteriorate from c to d. That is, when the HC adsorption catalyst 11 deteriorates, the ratio of gasification of the added particulate fuel decreases, so that the gas in the exhaust gas flowing out from the HC adsorption catalyst 11 as shown in FIG. The time Δt1 during which the air-fuel ratio A / F of the gaseous component is maintained rich becomes gradually shorter. Further, when the HC adsorption catalyst 11 is further deteriorated, the air-fuel ratio A / F does not become rich. In this case, the air-fuel ratio A / F and the stoichiometric air-fuel ratio at the time when the HC adsorption catalyst 11 becomes the smallest as the HC adsorption catalyst 11 deteriorates. The difference ΔA / F1 increases.

また、図8の(C)に示されるようにHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fがリッチに維持される時間Δt1が短かくなるとNOX吸蔵触媒12から流出する排気ガス中のガス状成分の空燃比A/Fがほぼ理論空燃比に維持される時間Δt2が短かくなり、HC吸着触媒11が更に劣化した場合にはHC吸着触媒11が劣化するほど最も小さくなったときの空燃比A/Fと理論空燃比との差ΔA/F2は大きくなる。 Further, as shown in FIG. 8C, when the time Δt1 during which the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 is kept rich becomes short, the NO X storage catalyst 12 The time Δt2 during which the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the exhaust gas is substantially maintained at the stoichiometric air-fuel ratio becomes short, and the HC adsorption catalyst 11 deteriorates when the HC adsorption catalyst 11 further deteriorates. The difference ΔA / F2 between the air-fuel ratio A / F and the stoichiometric air-fuel ratio when it becomes the smallest becomes larger.

図8の(B)および(C)においてΔt1とΔt2とはほぼ等しく、ΔA/F1とΔA/F2とはほぼ等しい。従って図9(A)に示されるようにΔt1,Δt2が短かくなるにつれてHC吸着触媒11の劣化の度合は大きくなり、図9(B)に示されるようにΔA/F1,ΔA/F2が大きくなるにつれてHC吸着触媒11の劣化の度合は大きくなる。なお、HC吸着触媒11の実際の劣化の度合は図9(A)および(B)を組合わせて図9(C)に示されるようになる。従ってΔt1,Δt2,ΔA/F1,ΔA/F2を検出すればHC吸着触媒11の劣化の度合がわかることになる。   In FIGS. 8B and 8C, Δt1 and Δt2 are substantially equal, and ΔA / F1 and ΔA / F2 are substantially equal. Therefore, as Δt1 and Δt2 become shorter as shown in FIG. 9A, the degree of deterioration of the HC adsorption catalyst 11 becomes larger, and ΔA / F1 and ΔA / F2 become larger as shown in FIG. 9B. As the time goes on, the degree of deterioration of the HC adsorption catalyst 11 increases. The actual degree of deterioration of the HC adsorption catalyst 11 is as shown in FIG. 9C by combining FIGS. 9A and 9B. Therefore, the degree of deterioration of the HC adsorption catalyst 11 can be determined by detecting Δt1, Δt2, ΔA / F1, and ΔA / F2.

即ち、本発明では、図8(B)の曲線aで示されるようにHC吸着触媒11が劣化していないときにNOX吸蔵触媒12からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにはHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比がリッチになると共に暫らくの間リッチに維持され、NOX吸蔵触媒12からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fがリッチにならないか(図8(B)の曲線d)又はリッチになったとしてもリッチに維持される時間がHC吸着触媒非劣化時に比べて短かくなったときには(図8(B)の曲線b,c)HC吸着触媒11が劣化したと判断される。 That is, in the present invention, particulate fuel into exhaust gas in order to release the NO X from the NO X storing catalyst 12 when the HC adsorption catalyst 11 is not deteriorated as shown by the curve a shown in FIG. 8 (B) There the air-fuel ratio of the gaseous components in the exhaust gas flowing out from the HC adsorbing catalyst 11 is maintained rich during the interim pleasure with become rich when it is added, the exhaust gas so as to release the NO X from the NO X storing catalyst 12 Whether or not the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 when the particulate fuel is added becomes rich (curve d in FIG. 8B) or rich Even when the HC adsorbing catalyst 11 has become shorter, the HC adsorbing catalyst 11 is judged to have deteriorated when the time during which the HC adsorbing catalyst is maintained is shorter than when the HC adsorbing catalyst is not deteriorated (curves b and c in FIG.

排気ガス中のガス状成分の空燃比は排気ガス中のガス状成分から判断できるので、HC吸着触媒11から流出する排気ガス中のガス状成分の空燃比がリッチになったか否かを判断する判断手段として排気ガス中のガス状成分を検出するセンサを用いることができる。本発明による実施例では図1および図2に示されるようにこの判断手段として空燃比センサ22が用いられている。この空燃比センサ22は、ジルコニアの両側に白金薄膜電極を形成し、一方の白金薄膜電極を大気にさらすと共に他方の白金薄膜電極を拡散層を介して排気ガスにさらした、一般的に使用されているセンサであって、この空燃比センサ22は排気ガス中のガス状成分の空燃比に応じた出力信号を発生する。   Since the air-fuel ratio of the gaseous component in the exhaust gas can be determined from the gaseous component in the exhaust gas, it is determined whether or not the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 has become rich. A sensor that detects a gaseous component in the exhaust gas can be used as the determination means. In the embodiment according to the present invention, as shown in FIGS. 1 and 2, an air-fuel ratio sensor 22 is used as the determination means. This air-fuel ratio sensor 22 is generally used in which platinum thin film electrodes are formed on both sides of zirconia, one platinum thin film electrode is exposed to the atmosphere, and the other platinum thin film electrode is exposed to exhaust gas through a diffusion layer. The air-fuel ratio sensor 22 generates an output signal corresponding to the air-fuel ratio of the gaseous component in the exhaust gas.

図1に示す実施例ではHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比を検出しうるように空燃比センサ22が配置されており、この空燃比センサ22の出力信号に基づいてHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比がリッチになったか否かが判断される。   In the embodiment shown in FIG. 1, an air-fuel ratio sensor 22 is arranged so that the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 can be detected, and based on the output signal of this air-fuel ratio sensor 22. It is then determined whether or not the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 has become rich.

一方、図7(B)および(C)に示されるようにHC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/FがわずかばかりリッチになっているときにはNOX吸蔵触媒12から流出する排気ガス中のガス状成分の空燃比A/Fはほぼ理論空燃比となる。従って図2に示す実施例ではNOX吸蔵触媒12から流出する排気ガス中のガス状成分の空燃比を検出しうるように空燃比センサ22が配置されており、この空燃比センサ22により検出された排気ガス中のガス状成分の空燃比がほぼ理論空燃比であるときにHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになっていると判断される。 On the other hand, as shown in FIGS. 7B and 7C, when the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 is slightly rich, the NO x storage catalyst 12 is used. The air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the exhaust gas is almost the stoichiometric air-fuel ratio. Therefore, in the embodiment shown in FIG. 2, the air-fuel ratio sensor 22 is arranged so that the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the NO x storage catalyst 12 can be detected. When the air-fuel ratio of the gaseous component in the exhaust gas is substantially the stoichiometric air-fuel ratio, it is determined that the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst is rich.

次にNOX吸蔵触媒12からのNOX放出制御およびHC吸着触媒11の劣化判定を含む排気浄化処理全体について説明する。
本発明による実施例ではNOX吸蔵触媒12に単位時間当り吸蔵されるNOX量NOXAが要求トルクTQおよび機関回転数Nの関数として図10(A)に示すマップの形で予めROM32内に記憶されており、このNOX量NOXAを積算することによってNOX吸蔵触媒12に吸蔵されたNOX量ΣNOXが算出される。更に、本発明による実施例ではこのNOX量ΣNOXが許容値NXに達する毎にNOX吸蔵触媒12に流入する排気ガス中のガス状成分の空燃比A/Fが一時的にリッチにされ、それによってNOX吸蔵触媒12からNOXが放出される。
Next, the entire exhaust gas purification process including the NO X release control from the NO X storage catalyst 12 and the deterioration determination of the HC adsorption catalyst 11 will be described.
In the embodiment according to the present invention, the NO X amount NOXA stored per unit time in the NO X storage catalyst 12 is stored in advance in the ROM 32 as a function of the required torque TQ and the engine speed N in the form of a map shown in FIG. The NO X amount ΣNOX stored in the NO X storage catalyst 12 is calculated by integrating the NO X amount NOXA. Further, in the embodiment according to the present invention, the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing into the NO X storage catalyst 12 is temporarily made rich every time the NO X amount ΣNOX reaches the allowable value NX, As a result, NO X is released from the NO X storage catalyst 12.

また、HC吸着触媒11から流出する排気ガス中のガス状成分の空燃比A/Fをリッチにするのに必要な燃料添加量は空燃比がリーンなほど増大し、排気ガス量、即ち吸入空気量が多くなるほど増大する。一方、空燃比および吸入空気量は要求トルクTQおよび機関回転数Nの関数であり、従って本発明による実施例では燃料添加量AQが要求トルクTQおよび機関回転数Nの関数として図10(B)に示すマップの形で予めROM32内に記憶されている。   Further, the fuel addition amount necessary to enrich the air-fuel ratio A / F of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst 11 increases as the air-fuel ratio becomes leaner, and the exhaust gas amount, that is, the intake air It increases as the amount increases. On the other hand, the air-fuel ratio and the intake air amount are functions of the required torque TQ and the engine speed N. Therefore, in the embodiment according to the present invention, the fuel addition amount AQ is a function of the required torque TQ and the engine speed N as shown in FIG. Is stored in advance in the ROM 32 in the form of a map shown in FIG.

なお、図6に示されるようにHC吸着触媒11ではHC吸着触媒11の温度に応じて吸着しうる燃料量が変化するのでこのことを考慮して燃料添加量を定める必要がある。例えばHC吸着触媒11の温度が低くなるほど吸着しうる燃料量が増大するのでHC吸着触媒11の温度が低くなるほど燃料添加量を増大することができる。   As shown in FIG. 6, in the HC adsorption catalyst 11, the amount of fuel that can be adsorbed changes according to the temperature of the HC adsorption catalyst 11, so it is necessary to determine the amount of fuel added in consideration of this. For example, the amount of fuel that can be adsorbed increases as the temperature of the HC adsorption catalyst 11 decreases, so that the amount of fuel addition can be increased as the temperature of the HC adsorption catalyst 11 decreases.

一方、排気ガス中に含まれる粒子状物質はNOX吸蔵触媒12を担持しているパティキュレートフィルタ12a上に捕集され、順次酸化される。しかしながら捕集される粒子状物質の量が酸化される粒子状物質の量よりも多くなると粒子状物質がパティキュレートフィルタ12a上に次第に堆積し、この場合粒子状物質の堆積量が増大すると機関出力の低下を招いてしまう。従って粒子状物質の堆積量が増大したときには堆積した粒子状物質を除去しなければならない。この場合、空気過剰のもとでパティキュレートフィルタ12aの温度を600℃程度まで上昇させると堆積した粒子状物質が酸化され、除去される。 On the other hand, the particulate matter contained in exhaust gas is trapped on the particulate filter 12a carrying the the NO X storing catalyst 12, is sequentially oxidized. However, when the amount of the collected particulate matter is larger than the amount of the particulate matter to be oxidized, the particulate matter gradually accumulates on the particulate filter 12a. In this case, the engine output increases when the amount of the particulate matter deposited increases. Will be reduced. Therefore, when the amount of accumulated particulate matter increases, the deposited particulate matter must be removed. In this case, when the temperature of the particulate filter 12a is raised to about 600 ° C. under excess air, the deposited particulate matter is oxidized and removed.

そこで本発明による実施例ではパティキュレートフィルタ12a上に堆積した粒子状物質の量が許容量を越えたときには排気ガスの空燃比がリーンのもとでパティキュレートフィルタ12aの温度を上昇させ、それによって堆積した粒子状物質を酸化除去するようにしている。具体的に言うと本発明による実施例では差圧センサ23により検出されたパティキュレートフィルタ12aの前後差圧ΔPが許容値PXを越えたときに堆積粒子状物質の量が許容量を越えたと判断され、このときパティキュレートフィルタ12aに流入する排気ガスの空燃比をリーンに維持しつつ燃料添加弁14から燃料を添加してこの添加された燃料の酸化反応熱によりパティキュレートフィルタ12aの温度を上昇させる昇温制御が行われる。   Therefore, in the embodiment according to the present invention, when the amount of the particulate matter deposited on the particulate filter 12a exceeds the allowable amount, the temperature of the particulate filter 12a is raised under the lean air-fuel ratio of the exhaust gas, thereby The deposited particulate matter is removed by oxidation. Specifically, in the embodiment according to the present invention, when the differential pressure ΔP before and after the particulate filter 12a detected by the differential pressure sensor 23 exceeds the allowable value PX, it is determined that the amount of the deposited particulate matter exceeds the allowable amount. At this time, while maintaining the lean air-fuel ratio of the exhaust gas flowing into the particulate filter 12a, the fuel is added from the fuel addition valve 14, and the temperature of the particulate filter 12a is increased by the oxidation reaction heat of the added fuel. The temperature rise control is performed.

図11は排気浄化処理ルーチンを示している。
図11を参照するとまず初めにステップ100において図10(A)に示すマップから単位時間当り吸蔵されるNOX量NOXAが算出される。次いでステップ101ではこのNOXAがNOX吸蔵触媒12に吸蔵されているNOX量ΣNOXに加算される。次いでステップ102では吸蔵NOX量ΣNOXが許容値NXを越えたか否かが判別され、ΣNOX>NXとなったときにはステップ103に進んで燃料添加弁14からの燃料添加処理および劣化判断が行われる。この燃料添加処理および劣化判断の2つの例が図12および図13,14に示されている。
次いでステップ104では差圧センサ23によりパティキュレートフィルタ12aの前後差圧ΔPが検出される。次いでステップ105では差圧ΔPが許容値PXを越えたか否かが判別され、ΔP>PXとなったときにはステップ106に進んでパティキュレートフィルタ12aの昇温制御が行われる。
FIG. 11 shows an exhaust purification processing routine.
Referring to FIG. 11, first, at step 100, the NO X amount NOXA stored per unit time is calculated from the map shown in FIG. Next, at step 101, this NOXA is added to the NO X amount ΣNOX stored in the NO X storage catalyst 12. Then whether step 102 occluded amount of NO X .SIGMA.NOX has exceeded the allowable value NX is discriminated, .SIGMA.NOX> fuel addition processing and judging the deterioration of the fuel adding valve 14 proceeds to step 103, when it becomes NX is performed. Two examples of this fuel addition process and deterioration determination are shown in FIGS.
Next, at step 104, the differential pressure sensor 23 detects the front-rear differential pressure ΔP of the particulate filter 12a. Next, at step 105, it is judged if the differential pressure ΔP has exceeded the allowable value PX, and when ΔP> PX, the routine proceeds to step 106 where temperature increase control of the particulate filter 12a is performed.

図12を参照するとまず初めにステップ200において図10(B)に示すマップから燃料添加量AQが算出される。次いでステップ201では燃料添加量AQに従って燃料添加弁14から燃料、即ち軽油が添加される。次いでステップ202では図1に示される実施例においては空燃比センサ22の出力信号に基づいてΔt1およびΔA/F1が検出され、図2に示される実施例において空燃比センサ22の出力信号に基づいてΔt2およびΔA/F2が検出される。次いでステップ203では図9(C)に示す関係からHC吸着触媒11の劣化度合が算出される。次いでステップ204ではΣNOXがクリアされる。   Referring to FIG. 12, first, at step 200, the fuel addition amount AQ is calculated from the map shown in FIG. Next, at step 201, fuel, that is, light oil, is added from the fuel addition valve 14 in accordance with the fuel addition amount AQ. Next, at step 202, Δt1 and ΔA / F1 are detected based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. 1, and based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. Δt2 and ΔA / F2 are detected. Next, at step 203, the degree of deterioration of the HC adsorption catalyst 11 is calculated from the relationship shown in FIG. Next, at step 204, ΣNOX is cleared.

図13および図14に別の実施例を示す。図13(A)はNOX吸蔵触媒12からNOXを放出すべきときの燃料の添加量を示しており、通常は図13(A)に示す量の燃料が添加される。この実施例ではHC吸着触媒11が劣化したと判断されたときには燃料添加量の不足が原因であるかも知れないので次にNOX吸蔵触媒12からNOXを放出すべきときに図13(B)に示されるように排気ガス中に添加される微粒子状の燃料が増量され、HC吸着触媒11が劣化したか否かが再度判断される。 FIG. 13 and FIG. 14 show another embodiment. FIG. 13A shows the amount of fuel added when NO X should be released from the NO X storage catalyst 12, and usually the amount of fuel shown in FIG. 13A is added. Figure 13 when this embodiment should be released then the NO X storing catalyst 12 from NO X because lack of fuel addition amount may be the cause when it is determined that the HC adsorption catalyst 11 has deteriorated (B) As shown in FIG. 5, it is determined again whether or not the particulate fuel added to the exhaust gas has increased and the HC adsorption catalyst 11 has deteriorated.

このときHC吸着触媒11は劣化していないと判断された場合には燃料添加量の不足が原因であったと考えられるのでその後は図13(B)に示されるように増量された状態に保持される。これに対し、このときHC吸着触媒が劣化していると判断されたときにはその後NOX吸蔵触媒12からNOXを放出すべきときに図13(C)に示されるように一回当りの燃料添加量が減少せしめられるか、又は燃料の添加回数が減少せしめられる。即ち、燃料の吸着作用を期待しないでNOX吸蔵触媒12からNOXを放出させるために燃料添加量が減少せしめられる。 At this time, if it is determined that the HC adsorption catalyst 11 has not deteriorated, it is considered that it is caused by a shortage of the fuel addition amount, and thereafter, the increased amount is held as shown in FIG. 13 (B). The In contrast, added fuel per one time as shown in FIG. 13 (C) from subsequent the NO X storing catalyst 12 when it is determined that the HC adsorbing catalyst this time is deteriorated when releasing the NO X The amount can be reduced or the number of fuel additions can be reduced. That is, the amount of added fuel is made to decrease in order to from the NO X storing catalyst 12 not expect adsorption of fuel release NO X.

図14はこの実施例を実行するための燃料添加および劣化判断ルーチンを示している。
図14を参照するとまず初めに劣化の再チェック条件であるか否かが判別される。通常は再チェック条件ではないのでステップ301に進む。ステップ301では図10(B)に示すマップから燃料添加量AQが算出される。次いでステップ302では燃料添加量AQに補正係数Kを乗算することによって最終的な燃料添加量AQ(=AQ・K)が算出される。この補正係数Kは最初は1.0に設定されている。
FIG. 14 shows a fuel addition and deterioration determination routine for executing this embodiment.
Referring to FIG. 14, it is first determined whether or not a deterioration recheck condition is satisfied. Since it is not normally a recheck condition, the process proceeds to step 301. In step 301, the fuel addition amount AQ is calculated from the map shown in FIG. Next, at step 302, the final fuel addition amount AQ (= AQ · K) is calculated by multiplying the fuel addition amount AQ by the correction coefficient K. The correction coefficient K is initially set to 1.0.

次いでステップ303では最終的な燃料添加量AQに従って燃料添加弁14から燃料、即ち軽油が添加される。次いでステップ304では図1に示される実施例においては空燃比センサ22の出力信号に基づいてΔt1およびΔA/F1が検出され、図2に示される実施例においては空燃比センサ22の出力信号に基づいてΔt2およびΔA/F2が検出される。次いでステップ305では図9(C)に示す関係からHC吸着触媒11の劣化度合が予め定められた度合を越えたか否か、即ちHC吸着触媒11が劣化したか否かが判別される。HC吸着触媒11が劣化していないと判断されたときにはステップ307に進んでΣNOXがクリアされる。これに対し、HC吸着触媒11が劣化していると判断されたときにはステップ306に進んで再チェックすべきであると判断される。   Next, at step 303, fuel, that is, light oil, is added from the fuel addition valve 14 according to the final fuel addition amount AQ. Next, at step 304, Δt1 and ΔA / F1 are detected based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. 1, and based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. Δt2 and ΔA / F2 are detected. Next, at step 305, it is judged from the relationship shown in FIG. 9C whether or not the degree of deterioration of the HC adsorption catalyst 11 exceeds a predetermined degree, that is, whether or not the HC adsorption catalyst 11 has deteriorated. When it is determined that the HC adsorption catalyst 11 has not deteriorated, the routine proceeds to step 307, where ΣNOX is cleared. On the other hand, when it is determined that the HC adsorption catalyst 11 has deteriorated, the routine proceeds to step 306, where it is determined that rechecking should be performed.

再チェックすべきであると判断されるとステップ300において再チェックすべきであると判断されたときと同じ運転状態であるか否かが判別され、同じ運転状態のときにはステップ308に進んで図10(B)に示すマップから燃料添加量AQが算出される。次いでステップ309では燃料添加量AQに補正係数K0を乗算することによって最終的な燃料添加量AQ(=AQ・K0)が算出される。この補正係数K0は1.0より大きな値に設定されている。 If it is determined that rechecking is to be performed, it is determined in step 300 whether or not the operation state is the same as when it is determined that rechecking is to be performed. The fuel addition amount AQ is calculated from the map shown in (B). Next, at step 309, the final fuel addition amount AQ (= AQ · K 0 ) is calculated by multiplying the fuel addition amount AQ by the correction coefficient K 0 . This correction coefficient K 0 is set to a value larger than 1.0.

次いでステップ310では最終的な燃料添加量AQに従って燃料添加弁14から燃料、即ち軽油が添加される。このとき燃料の添加量は図13(B)に示されるように増量される。次いでステップ311では図1に示される実施例においては空燃比センサ22の出力信号に基づいてΔt1およびΔA/F1が検出され、図2に示される実施例においては空燃比センサ22の出力信号に基づいてΔt2およびΔA/F2が検出される。次いでステップ312では図9(C)に示す関係からHC吸着触媒11の劣化度合が予め定められた度合を越えたか否か、即ちHC吸着触媒11が劣化したか否かが判別される。   Next, at step 310, fuel, that is, light oil, is added from the fuel addition valve 14 in accordance with the final fuel addition amount AQ. At this time, the amount of fuel added is increased as shown in FIG. Next, at step 311, Δt 1 and ΔA / F 1 are detected based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. 1, and based on the output signal of the air-fuel ratio sensor 22 in the embodiment shown in FIG. Δt2 and ΔA / F2 are detected. Next, at step 312, it is determined from the relationship shown in FIG. 9C whether or not the deterioration degree of the HC adsorption catalyst 11 exceeds a predetermined degree, that is, whether or not the HC adsorption catalyst 11 has deteriorated.

HC吸着触媒11が劣化していないと判断されたときにはステップ311に進んで補正係数KがK0とされる。即ち、以後の添加量は図13(B)に示される添加量となる。これに対し、HC吸着触媒11が劣化していると判断されたときにはステップ307に進んで図13(C)に示すように燃料添加量が減少される。 Correction coefficient K proceeds to step 311 when the HC adsorption catalyst 11 is determined not to be degraded is a K 0. That is, the subsequent addition amount is the addition amount shown in FIG. On the other hand, when it is determined that the HC adsorption catalyst 11 has deteriorated, the routine proceeds to step 307, where the fuel addition amount is decreased as shown in FIG.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. 圧縮着火式内燃機関の別の実施例を示す全体図である。It is a general view which shows another Example of a compression ignition type internal combustion engine. パティキュレートフィルタの構造を示す図である。It is a figure which shows the structure of a particulate filter. NOX吸蔵触媒の触媒担体の表面部分の断面図である。2 is a cross-sectional view of a surface portion of a catalyst carrier of an NO x storage catalyst. FIG. HC吸着触媒の触媒担体の表面部分の断面図である。It is sectional drawing of the surface part of the catalyst support | carrier of HC adsorption catalyst. 燃料吸着量を示す図である。It is a figure which shows the amount of fuel adsorption. 排気ガス中のガス状成分の空燃比の変化を示す図である。It is a figure which shows the change of the air fuel ratio of the gaseous component in exhaust gas. 排気ガス中のガス状成分の空燃比の変化を示す図である。It is a figure which shows the change of the air fuel ratio of the gaseous component in exhaust gas. 劣化度合を示す図である。It is a figure which shows a deterioration degree. 吸蔵NOX量NOXA等のマップを示す図である。It is a diagram showing a map such as occluded amount of NO X NOXA. 排気浄化処理を行うためのフローチャートである。It is a flowchart for performing exhaust gas purification processing. 燃料添加処理および劣化判断を行うためのフローチャートである。It is a flowchart for performing a fuel addition process and deterioration determination. 燃料の添加パターンを示す図である。It is a figure which shows the addition pattern of a fuel. 燃料添加処理および劣化判断を行うためのフローチャートである。It is a flowchart for performing a fuel addition process and deterioration determination.

符号の説明Explanation of symbols

4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
11…HC吸着触媒
12…NOX吸蔵触媒
14…燃料添加弁
4 ... intake manifold 5 ... exhaust manifold 7 ... exhaust turbocharger 11 ... HC adsorption catalyst 12 ... NO X storing catalyst 14 ... fuel addition valve

Claims (7)

微粒子状の燃料を排気ガス中に添加するための燃料添加手段と、該燃料添加手段下流の機関排気通路内に配置されて排気ガス中に含まれる炭化水素を吸着するHC吸着触媒と、該HC吸着触媒下流の機関排気通路内に配置されて流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出するNOX吸蔵触媒とを具備し、HC吸着触媒が劣化していないときにNOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにはHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになると共に暫らくの間リッチに維持され、NOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチにならないか又はリッチになったとしてもリッチに維持される時間がHC吸着触媒非劣化時に比べて短かくなったときにはHC吸着触媒が劣化したと判断される圧縮着火式内燃機関の排気浄化装置。 A fuel addition means for adding particulate fuel into the exhaust gas, an HC adsorption catalyst disposed in the engine exhaust passage downstream of the fuel addition means to adsorb hydrocarbons contained in the exhaust gas, and the HC absorbing the air-fuel ratio of the exhaust gas air-fuel ratio of the exhaust gas flowing disposed adsorbing catalyst downstream of the engine exhaust passage at the time of lean of occluding NO X contained in the exhaust gas flowing becomes the stoichiometric air-fuel ratio or rich HC when the by comprising a the nO X storing catalyst to release the nO X was, particulate fuel is added to exhaust gas so as to release the nO X from the nO X storage catalyst when the HC adsorption catalyst is not deteriorated air-fuel ratio of the gaseous components in the exhaust gas flowing out from the adsorption catalyst is maintained rich during the interim pleasure with becomes richer, addition particulate fuel into exhaust gas in order to release the NO X from the NO X storing catalyst If the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst does not become rich or becomes rich, the time during which it remains rich is shorter than when the HC adsorption catalyst is not deteriorated. An exhaust emission control device for a compression ignition type internal combustion engine in which it is determined that the HC adsorption catalyst has deteriorated. 上記HC吸着触媒の基体がゼオライトからなり、白金からなる貴金属触媒が担持されており、該HC吸着触媒は排気ガス中に添加された微粒子状の燃料を吸着保持した後に徐々に蒸発させると共に蒸発した燃料をクラッキングする機能を有している請求項1に記載の圧縮着火式内燃機関の排気浄化装置。   The base of the HC adsorption catalyst is made of zeolite, and a noble metal catalyst made of platinum is supported. The HC adsorption catalyst gradually evaporates and evaporates after adsorbing and holding the particulate fuel added to the exhaust gas. The exhaust emission control device for a compression ignition type internal combustion engine according to claim 1, which has a function of cracking fuel. NOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになったときにはリッチに維持される時間が短かいほどHC吸着触媒の劣化の度合が大きいと判断される請求項1に記載の圧縮着火式内燃機関の排気浄化装置。 When the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst becomes rich when particulate fuel is added to the exhaust gas to release NO x from the NO x storage catalyst, it is kept rich. 2. The exhaust gas purification apparatus for a compression ignition type internal combustion engine according to claim 1, wherein it is determined that the degree of deterioration of the HC adsorption catalyst is greater as the time for which the operation is performed is shorter. NOX吸蔵触媒からNOXを放出すべく排気ガス中に微粒子状の燃料が添加されたときにHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチにならないときには最も小さくなったときの空燃比と理論空燃比との差が大きいほどHC吸着触媒の劣化の度合が大きいと判断される請求項1に記載の圧縮着火式内燃機関の排気浄化装置。 When particulate fuel is added to the exhaust gas to release NO x from the NO x storage catalyst, it becomes the smallest when the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst does not become rich. 2. The exhaust gas purification apparatus for a compression ignition type internal combustion engine according to claim 1, wherein it is determined that the degree of deterioration of the HC adsorption catalyst is larger as the difference between the current air-fuel ratio and the stoichiometric air-fuel ratio is larger. HC吸着触媒下流の機関排気通路内にHC吸着触媒から流出する排気ガス中のガス状成分の空燃比を検出しうる空燃比センサを配置し、該空燃比センサの出力信号に基づいてHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになったか否かを判断する請求項1に記載の圧縮着火式内燃機関の排気浄化装置。   An air-fuel ratio sensor capable of detecting the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst is disposed in the engine exhaust passage downstream of the HC adsorption catalyst, and the HC adsorption catalyst is based on the output signal of the air-fuel ratio sensor. 2. An exhaust emission control device for a compression ignition internal combustion engine according to claim 1, wherein it is determined whether or not the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the exhaust gas has become rich. NOX吸蔵触媒下流の機関排気通路内にNOX吸蔵触媒から流出する排気ガス中のガス状成分の空燃比を検出しうる空燃比センサを配置し、該空燃比センサにより検出された排気ガス中のガス状成分の空燃比に基づいてHC吸着触媒から流出する排気ガス中のガス状成分の空燃比がリッチになったか否かを判断する請求項1に記載の圧縮着火式内燃機関の排気浄化装置。 The NO X storage downstream of the catalyst in the engine exhaust passage an air-fuel ratio sensor capable of detecting an air-fuel ratio of the gaseous components in the exhaust gas flowing out from the NO X storing catalyst arranged, an exhaust gas detected by the air-fuel ratio sensor 2. The exhaust gas purification of a compression ignition type internal combustion engine according to claim 1, wherein it is determined whether or not the air-fuel ratio of the gaseous component in the exhaust gas flowing out from the HC adsorption catalyst becomes rich based on the air-fuel ratio of the gaseous component. apparatus. HC吸着触媒が劣化したと判断されたときはNOX吸蔵触媒からNOXを放出すべく排気ガス中に添加される微粒子状の燃料を増量してHC吸着触媒が劣化したか否かを再度判断し、HC吸着触媒が劣化していると再び判断されたときにはその後NOX吸蔵触媒からNOXを放出すべきときに燃料添加量を減少させる請求項1に記載の圧縮着火式内燃機関の排気浄化装置。 When it is determined that the HC adsorption catalyst has deteriorated, it is determined again whether the HC adsorption catalyst has deteriorated by increasing the amount of particulate fuel added to the exhaust gas so as to release NO X from the NO X storage catalyst. and, HC exhaust purification of a compression ignition type internal combustion engine according to claim 1 to reduce the fuel amount when the adsorption catalyst should be released NO X from then the NO X storage catalyst when it is again determined if has deteriorated apparatus.
JP2003402094A 2003-12-01 2003-12-01 Exhaust gas purification device for compression ignition type internal combustion engine Expired - Fee Related JP4337527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402094A JP4337527B2 (en) 2003-12-01 2003-12-01 Exhaust gas purification device for compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402094A JP4337527B2 (en) 2003-12-01 2003-12-01 Exhaust gas purification device for compression ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005163594A true JP2005163594A (en) 2005-06-23
JP4337527B2 JP4337527B2 (en) 2009-09-30

Family

ID=34725810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402094A Expired - Fee Related JP4337527B2 (en) 2003-12-01 2003-12-01 Exhaust gas purification device for compression ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP4337527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040280A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
DE102007000006B4 (en) * 2006-01-11 2009-04-23 Denso Corp., Kariya-shi An air-fuel ratio control apparatus equipped with an exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040280A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4626439B2 (en) * 2005-08-05 2011-02-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102007000006B4 (en) * 2006-01-11 2009-04-23 Denso Corp., Kariya-shi An air-fuel ratio control apparatus equipped with an exhaust emission control device

Also Published As

Publication number Publication date
JP4337527B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP3969450B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4270201B2 (en) Internal combustion engine
JP4155320B2 (en) Exhaust gas purification device for internal combustion engine
JP3938136B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4100412B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP4285460B2 (en) Exhaust gas purification device for internal combustion engine
JP2007297918A (en) Exhaust emission control device for internal combustion engine
JP2007154763A (en) Internal combustion engine
JP2006291873A (en) Exhaust emission control device of internal combustion engine
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
JP3514218B2 (en) Exhaust gas purification device for internal combustion engine
JP2008190445A (en) Exhaust emission control device for internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP2010007639A (en) Exhaust emission control device for internal combustion engine
JP2006336589A (en) Exhaust emission control device of internal combustion engine
JP4337527B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4321241B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2007231922A (en) Exhaust emission control device for compression ignition type internal combustion engine
JP4697073B2 (en) Exhaust gas purification device for internal combustion engine
JP4306566B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4506544B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2005163592A (en) Emission control device for compression ignition internal combustion engine
JP2008075585A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees