JP2005163581A - Rotating fluid machine - Google Patents

Rotating fluid machine Download PDF

Info

Publication number
JP2005163581A
JP2005163581A JP2003401325A JP2003401325A JP2005163581A JP 2005163581 A JP2005163581 A JP 2005163581A JP 2003401325 A JP2003401325 A JP 2003401325A JP 2003401325 A JP2003401325 A JP 2003401325A JP 2005163581 A JP2005163581 A JP 2005163581A
Authority
JP
Japan
Prior art keywords
working medium
pressure
sliding surface
steam
valve plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003401325A
Other languages
Japanese (ja)
Inventor
Kenji Matsumoto
謙司 松本
Naoki Ito
直紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003401325A priority Critical patent/JP2005163581A/en
Priority to US10/998,713 priority patent/US20050169771A1/en
Publication of JP2005163581A publication Critical patent/JP2005163581A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0804Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B27/0821Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block component parts, details, e.g. valves, sealings, lubrication
    • F04B27/0839Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block component parts, details, e.g. valves, sealings, lubrication valve means, e.g. valve plate

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a leakage of an operating medium and the occurrence of abnormal wear at a sliding surface by suppressing fluctuation of bearing pressure of the sliding surface of a rotary valve of a rotating fluid machine. <P>SOLUTION: A high-pressure operating medium lead-in hole 73b for introducing high-temperature and high-pressure steam to the sliding surface 77 when a single first high-pressure operating medium passage P2 opened to the sliding surface 77 from a fixed side valve plate 73 and a plurality of second high-pressure operating medium passages P3 opened to the sliding surface 77 from a movable side valve plate 74, sequentially communicate following the rotation of a rotor, is opened to the fixed side valve plate 73. The high-temperature and high-pressure steam from the first high-pressure operating medium passage P2 and the high-temperature and high-pressure steam from the high-pressure operating medium lead-in hole 73b are thereby introduced uniformly to the whole area of the sliding surface 77. The fluctuation of bearing pressure of the sliding surface 77 is suppressed to stabilize the behavior of the fixed side valve plate 73 to thereby prevent the leakage of the high-temperature and high-pressure steam and the occurrence of abnormal wear. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ケーシングと、ケーシングに回転自在に支持されたロータと、ロータに設けられた作動部と、ケーシングおよびロータ間に設けられて作動部に対する作動媒体の供給・排出を制御するロータリバルブとを備えた回転流体機械に関する。   The present invention relates to a casing, a rotor rotatably supported by the casing, an operating part provided in the rotor, and a rotary valve provided between the casing and the rotor for controlling supply / discharge of the working medium to the operating part. The present invention relates to a rotary fluid machine including

かかる回転流体機械は、下記特許文献1により公知である。この回転流体機械のロータリバルブは、ケーシング側に支持された固定側バルブプレートとロータ側に支持された可動側バルブプレートとを摺動面において接触させたもので、固定側バルブプレートの摺動面には蒸気供給通路および蒸気排出通路が開口し、可動側バルブプレートの摺動面にはロータの複数個の膨張室に連通する複数個の蒸気通路が円周方向に等間隔に開口する。   Such a rotating fluid machine is known from Japanese Patent Application Laid-Open No. 2004-228561. The rotary valve of this rotary fluid machine has a sliding surface in contact with a fixed valve plate supported on the casing side and a movable valve plate supported on the rotor side. The steam supply passage and the steam discharge passage are opened, and a plurality of steam passages communicating with the plurality of expansion chambers of the rotor are opened at equal intervals in the circumferential direction on the sliding surface of the movable valve plate.

従って、固定側バルブプレートの蒸気供給通路から可動側バルブプレートの所定の蒸気通路に供給された高温高圧蒸気は膨張室内で膨張してピストンを駆動し、膨張仕事を終えた低温低圧蒸気は可動側バルブプレートの所定の蒸気通路から固定側バルブプレートの蒸気供排出路に排出され、この作用が各膨張室に対して順番に行われることでロータが回転駆動される。
特開2002−256805号公報
Therefore, the high-temperature and high-pressure steam supplied from the steam supply passage of the fixed valve plate to the predetermined steam passage of the movable valve plate expands in the expansion chamber to drive the piston, and the low-temperature and low-pressure steam that has finished the expansion work is movable side The steam is discharged from the predetermined steam passage of the valve plate to the steam supply / discharge passage of the fixed valve plate, and this action is sequentially performed on each expansion chamber, so that the rotor is rotationally driven.
JP 2002-256805 A

ところで、上記ロータリバルブでは、固定側バルブプレートの摺動面に開口する単一の高圧蒸気通路が可動側バルブプレートの摺動面に開口する複数の高圧蒸気通路に順次連通するようになっているため、ロータの回転に伴って固定側バルブプレート側の高圧蒸気通路と可動側バルブプレート側の高圧蒸気通路とが連通および遮断を交互に繰り返すようになり、連通時に摺動面の反力が減少して遮断時に摺動面の反力が増加することで、摺動面の密着度が固定側バルブプレート側の高圧蒸気通路の近傍で周期的に変化し、これが摺動面からの高温高圧蒸気の漏洩や摺動面の異常摩耗の原因となる問題がある。   By the way, in the rotary valve, a single high-pressure steam passage that opens on the sliding surface of the fixed-side valve plate is sequentially communicated with a plurality of high-pressure steam passages that open on the sliding surface of the movable-side valve plate. Therefore, as the rotor rotates, the high-pressure steam passage on the fixed side valve plate side and the high-pressure steam passage on the movable side valve plate side repeat communication and interruption alternately, and the reaction force on the sliding surface decreases during communication. As the reaction force of the sliding surface increases during shut-off, the degree of adhesion of the sliding surface changes periodically in the vicinity of the high-pressure steam passage on the fixed side valve plate side, which is the high-temperature high-pressure steam from the sliding surface. There is a problem that causes leakage and abnormal wear of the sliding surface.

本発明は前述の事情に鑑みてなされたもので、回転流体機械のロータリバルブの摺動面の面圧の変動を抑制し、摺動面における作動媒体の漏洩や異常摩耗の発生を防止することを目的とする。   The present invention has been made in view of the above-described circumstances, and suppresses fluctuations in the surface pressure of the sliding surface of the rotary valve of the rotary fluid machine, and prevents leakage of working medium and abnormal wear on the sliding surface. With the goal.

上記目的を達成するために、請求項1に記載された発明によれば、ケーシングと、ケーシングに回転自在に支持されたロータと、ロータに設けられた作動部と、ケーシングおよびロータ間に設けられて作動部に対する作動媒体の供給・排出を制御するロータリバルブとを備え、ロータリバルブは、ケーシング側に支持された固定側バルブプレートとロータ側に支持された可動側バルブプレートとを摺動面において接触させてなり、固定側バルブプレートから摺動面に開口する単一の第1高圧作動媒体通路と、可動側バルブプレートから摺動面に開口する複数の第2高圧作動媒体通路とが、ロータの回転に伴って順次連通する回転流体機械において、摺動面に高圧作動媒体を導入する高圧作動媒体導入孔を固定側バルブプレートに開口させたことを特徴とする回転流体機械が提案される。   To achieve the above object, according to the first aspect of the present invention, a casing, a rotor rotatably supported by the casing, an operating portion provided in the rotor, and a casing and the rotor are provided. A rotary valve that controls the supply and discharge of the working medium to and from the working unit. The rotary valve has a sliding surface that includes a fixed valve plate supported on the casing side and a movable valve plate supported on the rotor side on the sliding surface. A single first high-pressure working medium passage that is brought into contact and opens from the fixed-side valve plate to the sliding surface, and a plurality of second high-pressure working medium passages that open from the movable-side valve plate to the sliding surface include a rotor. In a rotating fluid machine that sequentially communicates with the rotation of the high-pressure working medium, the high-pressure working medium introduction hole for introducing the high-pressure working medium into the sliding surface is opened in the fixed valve plate. Rotating fluid machine is proposed characterized.

また請求項2に記載された発明によれば、請求項1の構成に加えて、第1高圧作動媒体通路と高圧作動媒体導入孔とを円周方向に等角度となるように配置したことを特徴とする回転流体機械が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, the first high-pressure working medium passage and the high-pressure working medium introduction hole are arranged so as to be equiangular in the circumferential direction. A featured rotating fluid machine is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、高圧作動媒体導入孔から摺動面に導入される高圧作動媒体は、第1高圧作動媒体通路から膨張行程にある第2高圧作動媒体通路に供給される高圧作動媒体、あるいは圧縮行程にある第2高圧作動媒体通路から第1高圧作動媒体通路に排出される高圧作動媒体であることを特徴とする回転流体機械が提案される。   According to the third aspect of the present invention, in addition to the configuration of the first or second aspect, the high pressure working medium introduced from the high pressure working medium introduction hole to the sliding surface is the first high pressure working medium passage. A high pressure working medium supplied to the second high pressure working medium passage in the expansion stroke, or a high pressure working medium discharged from the second high pressure working medium passage in the compression stroke to the first high pressure working medium passage. A rotating fluid machine is proposed.

尚、実施例のアキシャルピストンシリンダ群Aは本発明の作動部に対応し、実施例の第2蒸気通路P2は本発明の第1高圧作動媒体通路に対応し、実施例の第3蒸気通路P3は本発明の第2高圧作動媒体通路に対応する。   The axial piston cylinder group A of the embodiment corresponds to the operating portion of the present invention, the second steam passage P2 of the embodiment corresponds to the first high pressure working medium passage of the present invention, and the third steam passage P3 of the embodiment. Corresponds to the second high-pressure working medium passage of the present invention.

請求項1の構成によれば、ケーシング側に支持された固定側バルブプレートとロータ側に支持された可動側バルブプレートとを摺動面において接触させたロータリバルブにおいて、固定側バルブプレートから摺動面に開口する単一の第1高圧作動媒体通路と、可動側バルブプレートから摺動面に開口する複数の第2高圧作動媒体通路とがロータの回転に伴って順次連通する際に、摺動面に高圧作動媒体を導入する高圧作動媒体導入孔を固定側バルブプレートに開口させたことにより、第1高圧作動媒体通路からの高圧作動媒体と高圧作動媒体導入孔からの高圧作動媒体とを摺動面の全域に均一に導入し、摺動面の面圧の変動を抑制して固定側バルブプレートの挙動を安定させ、作動媒体の漏洩や異常摩耗の発生を防止することができる。特に、作動媒体の漏洩を阻止すべく摺動面の密封度を高めても、導入された作動媒体によって摺動面が固体潤滑になるのを防止して耐摩耗性を向上させることができる。   According to the configuration of the first aspect, in the rotary valve in which the fixed valve plate supported on the casing side and the movable valve plate supported on the rotor side are brought into contact with each other on the sliding surface, the rotary valve slides from the fixed valve plate. When a single first high-pressure working medium passage that opens to the surface and a plurality of second high-pressure working medium passages that open from the movable valve plate to the sliding surface are sequentially communicated with the rotation of the rotor, sliding By opening the high pressure working medium introduction hole for introducing the high pressure working medium into the fixed side valve plate, the high pressure working medium from the first high pressure working medium passage and the high pressure working medium from the high pressure working medium introduction hole are slid. It can be introduced uniformly over the entire moving surface, and the fluctuation of the surface pressure of the sliding surface can be suppressed to stabilize the behavior of the stationary side valve plate, and the leakage of the working medium and the occurrence of abnormal wear can be prevented. In particular, even if the sealing degree of the sliding surface is increased in order to prevent leakage of the working medium, it is possible to improve the wear resistance by preventing the sliding surface from becoming solid lubricated by the introduced working medium.

請求項2の構成によれば、第1高圧作動媒体通路と高圧作動媒体導入孔とを円周方向に等角度となるように配置したので、第1高圧作動媒体通路から導入される高圧作動媒体と高圧作動媒体導入孔から導入される高圧作動媒体とを摺動面の全域に一層均等に供給し、固定側バルブプレートの挙動を更に安定させることができる。   According to the configuration of the second aspect, since the first high pressure working medium passage and the high pressure working medium introduction hole are arranged at equal angles in the circumferential direction, the high pressure working medium introduced from the first high pressure working medium passage. And the high-pressure working medium introduced from the high-pressure working medium introduction hole can be more evenly supplied to the entire sliding surface, and the behavior of the fixed-side valve plate can be further stabilized.

請求項3の構成によれば、回転流体機械が膨張機である場合には、第1高圧作動媒体通路から膨張行程にある第2高圧作動媒体通路に供給される高圧作動媒体を摺動面に導入することができ、また回転流体機械が圧縮機である場合には、圧縮行程にある第2高圧作動媒体通路から第1高圧作動媒体通路に排出される高圧作動媒体を摺動面に導入することができる。   According to the configuration of the third aspect, when the rotary fluid machine is an expander, the high-pressure working medium supplied from the first high-pressure working medium passage to the second high-pressure working medium passage in the expansion stroke is used as the sliding surface. When the rotary fluid machine is a compressor, the high-pressure working medium discharged from the second high-pressure working medium passage in the compression stroke to the first high-pressure working medium passage is introduced into the sliding surface. be able to.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図9は本発明の一実施例を示すもので、図1は膨張機の縦断面図、図2は図1の2部拡大図、図3はロータの分解斜視図、図4は図1の4部拡大図、図5は図4の5−5線矢視図、図6は図4の6−6線矢視図、図7は図4の7−7線矢視図、図8は図4の8−8線矢視図、図9はコイルスプリング、パッキンリテーナおよびVパッキンの斜視図である。   1 to 9 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an expander, FIG. 2 is an enlarged view of two parts of FIG. 1, FIG. 3 is an exploded perspective view of a rotor, and FIG. 4 is an enlarged view taken along the line 5-5 in FIG. 4, FIG. 6 is a view taken along the line 6-6 in FIG. 4, FIG. 7 is a view taken along the line 7-7 in FIG. 8 is a perspective view taken along line 8-8 in FIG. 4, and FIG. 9 is a perspective view of the coil spring, packing retainer, and V packing.

図1〜図3に示すように、本実施例の膨張機Eは例えばランキンサイクル装置に使用されるもので、作動媒体としての高温高圧蒸気の熱エネルギーおよび圧力エネルギーを機械エネルギーに変換して出力する。膨張機Eのケーシング11は、ケーシング本体12と、ケーシング本体12の前面開口部にシール部材13を介して複数本のボルト14…で結合される前部カバー15と、ケーシング本体12の後面開口部にシール部材16を介して複数本のボルト17…で結合される後部カバー18と、ケーシング本体12の下面開口部にシール部材19を介して複数本のボルト20…で結合されるオイルパン21とで構成される。   As shown in FIGS. 1 to 3, the expander E of the present embodiment is used in, for example, a Rankine cycle device, and converts thermal energy and pressure energy of high-temperature and high-pressure steam as a working medium into mechanical energy and outputs it. To do. The casing 11 of the expander E includes a casing main body 12, a front cover 15 coupled to the front opening of the casing main body 12 with a plurality of bolts 14 through a seal member 13, and a rear opening of the casing main body 12. A rear cover 18 coupled with a plurality of bolts 17 through a sealing member 16, and an oil pan 21 coupled with a plurality of bolts 20 with a lower surface opening of the casing body 12 through a sealing member 19. Consists of.

ケーシング11の中央を前後方向に延びる軸線Lまわりに回転可能に配置されたロータ22は、その前部を前部カバー15に設けた組み合わせアンギュラベアリング23,23によって支持され、その後部をケーシング本体12に設けたラジアルベアリング24によって支持される。前部カバー15の後面に斜板ホルダ28が一体に形成されており、この斜板ホルダ28にアンギュラベアリング30を介して斜板31が回転自在に支持される。斜板31の軸線は前記ロータ22の軸線Lに対して傾斜しており、その傾斜角は固定である。   The rotor 22 arranged to be rotatable around the axis L extending in the front-rear direction in the center of the casing 11 is supported by combination angular bearings 23, 23 provided on the front cover 15 at the front part thereof, and the rear part thereof as the casing body 12. Is supported by a radial bearing 24 provided on the surface. A swash plate holder 28 is integrally formed on the rear surface of the front cover 15, and a swash plate 31 is rotatably supported by the swash plate holder 28 via an angular bearing 30. The axis of the swash plate 31 is inclined with respect to the axis L of the rotor 22, and the inclination angle is fixed.

ロータ22は、組み合わせアンギュラベアリング23,23で前部カバー15に支持された出力軸32と、出力軸32の後部に一体に形成された3個のスリーブ支持フランジ33,34,35と、後側のスリーブ支持フランジ35にメタルガスケット36を介して複数本のボルト37…で結合され、前記ラジアルベアリング24でケーシング本体12に支持されたロータヘッド38と、3個のスリーブ支持フランジ33,34,35に前方から嵌合して複数本のボルト39…で前側のスリーブ支持フランジ33に結合された断熱カバー40とを備える。   The rotor 22 includes an output shaft 32 supported on the front cover 15 by combined angular bearings 23, 23, three sleeve support flanges 33, 34, 35 integrally formed on the rear portion of the output shaft 32, and a rear side Are connected to the sleeve support flange 35 by a plurality of bolts 37 through a metal gasket 36 and supported by the casing body 12 by the radial bearing 24, and three sleeve support flanges 33, 34, 35. And a heat insulating cover 40 coupled to the front sleeve support flange 33 by a plurality of bolts 39.

3個のスリーブ支持フランジ33,34,35には各々5個のスリーブ支持孔33a…,34a…,35a…が軸線Lまわりに72°間隔で形成されており、それらのスリーブ支持孔33a…,34a…,35a…に5本のシリンダスリーブ41…が後方から嵌合する。各々のシリンダスリーブ41の後端にはフランジ41aが形成されており、このフランジ41aが後側のスリーブ支持フランジ35のスリーブ支持孔35aに形成した段部35bに嵌合した状態でメタルガスケット36に当接して軸方向に位置決めされる。各々のシリンダスリーブ41の内部にピストン42が摺動自在に嵌合しており、ピストン42の前端は斜板31に形成したディンプル31aに当接するとともに、ピストン42の後端とロータヘッド38との間に蒸気の膨張室43が区画される。   The three sleeve support flanges 33, 34, 35 are each formed with five sleeve support holes 33a, 34a, ..., 35a ... around the axis L at intervals of 72 °, and these sleeve support holes 33a, ..., Five cylinder sleeves 41 are fitted to the rear 34a, 35a,. A flange 41 a is formed at the rear end of each cylinder sleeve 41, and the flange 41 a is fitted to the metal gasket 36 in a state where the flange 41 a is fitted in a step portion 35 b formed in the sleeve support hole 35 a of the sleeve support flange 35 on the rear side. Abutting and positioning in the axial direction. A piston 42 is slidably fitted inside each cylinder sleeve 41, and the front end of the piston 42 abuts a dimple 31 a formed on the swash plate 31, and the rear end of the piston 42 and the rotor head 38 are in contact with each other. A steam expansion chamber 43 is defined between them.

次に、ロータ22の5個の膨張室43…に蒸気を供給・排出するロータリバルブ71の構造を、図4〜図9に基づいて説明する。   Next, the structure of the rotary valve 71 that supplies and discharges steam to and from the five expansion chambers 43 of the rotor 22 will be described with reference to FIGS.

図4に示すように、ロータ22の軸線Lに沿うように配置されたロータリバルブ71は、バルブ本体部72と、カーボン製の固定側バルブプレート73と、カーボン製、テフロン(登録商標)製、金属製等の可動側バルブプレート74とを備える。可動側バルブプレート74は、ロータ22の後面にノックピン75で回転方向に位置決めされた状態で、オイル通路閉塞部材45(図2参照)に螺合するボルト76で固定される。尚、ボルト76はロータヘッド38を出力軸32に固定する機能も兼ね備えている。   As shown in FIG. 4, the rotary valve 71 arranged along the axis L of the rotor 22 includes a valve main body 72, a carbon fixed side valve plate 73, carbon, and Teflon (registered trademark), And a movable valve plate 74 made of metal or the like. The movable side valve plate 74 is fixed to the rear surface of the rotor 22 with a bolt 76 that is screwed into the oil passage closing member 45 (see FIG. 2) while being positioned in the rotational direction by a knock pin 75. The bolt 76 also has a function of fixing the rotor head 38 to the output shaft 32.

バルブ本体部72は、その後部に一体に形成された円形のフランジ72aが後部カバー18の後面にシール部材91を介して当接し、複数本のボルト92…で固定される。このとき、バルブ本体部72の前部に一体に形成された円形断面の支持部72bが後部カバー18の支持孔18aに嵌合する。後部カバー18の支持孔18aに連なる支持面18bに環状のホルダ79が複数本のボルト80…で固定されており、このホルダ79の内部にシール部材82を介して保持された固定側バルブプレート73が、テフロン(登録商標)コーティングしたノックピン81,81で回り止めされる。固定側バルブプレート73はノックピン81,81によって回転方向に位置決めされるが、径方向および軸線L方向には僅かに移動可能にフローティング支持される。   The valve body 72 is fixed by a plurality of bolts 92... A circular flange 72 a formed integrally at the rear thereof abuts the rear surface of the rear cover 18 via a seal member 91. At this time, the support section 72 b having a circular cross section formed integrally with the front portion of the valve main body 72 is fitted into the support hole 18 a of the rear cover 18. An annular holder 79 is fixed to a support surface 18b connected to the support hole 18a of the rear cover 18 with a plurality of bolts 80, and a fixed side valve plate 73 held inside the holder 79 via a seal member 82. Is prevented by Teflon-coated knock pins 81, 81. The fixed side valve plate 73 is positioned in the rotational direction by the knock pins 81, 81, but is supported floating so as to be slightly movable in the radial direction and the axis L direction.

バルブ本体部72が固定側バルブプレート73に当接する合わせ面83に、円形断面の圧力室84が開口する。バルブ本体部72をシール部材93を介して貫通する蒸気供給パイプ85が圧力室84の中心を通って合わせ面83まで延びており、圧力室84の内部において、蒸気供給パイプ85の外周にコイルスプリング86、パッキンリテーナ87およびVパッキン88が順次配置される。   A pressure chamber 84 having a circular cross section opens on a mating surface 83 where the valve main body 72 abuts on the fixed valve plate 73. A steam supply pipe 85 that penetrates the valve main body 72 through the seal member 93 extends to the mating surface 83 through the center of the pressure chamber 84, and a coil spring is provided on the outer periphery of the steam supply pipe 85 inside the pressure chamber 84. 86, a packing retainer 87, and a V packing 88 are sequentially arranged.

蒸気供給パイプ85の先端と固定側バルブプレート73の合わせ面83との間には僅かな隙間が設定されており、蒸気供給パイプ85が軸線L方向に熱膨張しても、その先端が合わせ面83と干渉しないようになっている。蒸気供給パイプ85に形成した1個の通孔85aが圧力室84の後部に連通する。圧力室84に供給された高温高圧蒸気は固定側バルブプレート73を可動側バルブプレート74に向けて付勢し、両者の摺動面77を密着させてシール性を高める機能を発揮する。通孔85aの数は、蒸気供給パイプ85の強度および圧力室84への必要蒸気供給量に応じて複数個としても良い。   A slight gap is set between the tip of the steam supply pipe 85 and the mating surface 83 of the fixed valve plate 73. Even if the steam supply pipe 85 is thermally expanded in the direction of the axis L, the tip of the steam supply pipe 85 is the mating surface. 83 is not interfered with. One through hole 85 a formed in the steam supply pipe 85 communicates with the rear portion of the pressure chamber 84. The high-temperature and high-pressure steam supplied to the pressure chamber 84 urges the fixed side valve plate 73 toward the movable side valve plate 74 and exerts a function of improving the sealing performance by bringing the sliding surfaces 77 into close contact with each other. The number of the through holes 85a may be plural according to the strength of the steam supply pipe 85 and the required steam supply amount to the pressure chamber 84.

図4および図9から明らかなように、テーパーしていない等径のコイルスプリング86により付勢されるパッキンリテーナ87は、コイルスプリング86が当接する平坦面87aと、平坦面87aの反対側に形成された円錐面87bと、蒸気供給パイプ85の外周に緩く嵌合する貫通孔87cとを備える。パッキンリテーナ87により保持されるVパッキン88には、パッキンリテーナ87の円錐面87bに支持される円錐面88aと、固定側バルブプレート73の合わせ面83との間をシールする第1のシールリップS1と、圧力室84の内周面84aとの間をシールする第2のシールリップS2とが形成される。   As apparent from FIGS. 4 and 9, the packing retainer 87 biased by the coil spring 86 having an equal diameter which is not tapered is formed on the flat surface 87a with which the coil spring 86 abuts and on the opposite side of the flat surface 87a. And a through-hole 87c that fits loosely on the outer periphery of the steam supply pipe 85. The V-packing 88 held by the packing retainer 87 includes a first seal lip S1 that seals between the conical surface 88a supported by the conical surface 87b of the packing retainer 87 and the mating surface 83 of the fixed valve plate 73. And a second seal lip S2 that seals between the pressure chamber 84 and the inner peripheral surface 84a of the pressure chamber 84.

このVパッキン88は圧力室84の内周面84aとの間のシールを主要な目的とするもので、第2のシールリップS2を圧力室84の蒸気圧で径方向外側に変形させて内周面84aに密着させるようになっている。従って、第2のシールリップS2はバルブ本体部72の熱伸びによる圧力室84の内周面84aの内径の拡大に良く追従してシール性を確保することができる。   The V-packing 88 is mainly intended for sealing with the inner peripheral surface 84a of the pressure chamber 84. The second seal lip S2 is deformed radially outward by the vapor pressure of the pressure chamber 84 to thereby change the inner periphery. It is made to adhere to the surface 84a. Therefore, the second seal lip S2 can follow the expansion of the inner diameter of the inner peripheral surface 84a of the pressure chamber 84 due to the thermal expansion of the valve main body 72, and can ensure the sealing performance.

コイルスプリング86は、高温高圧蒸気の圧力が立ち上がる前にVパッキン88を固定側バルブプレート73との合わせ面83に押し付ける予荷重を与えるとともに、固定側バルブプレート73の振動をシール部材82と圧力室84内の高温高圧蒸気の圧力との協働により減衰させる機能を有する。パッキンリテーナ87はVパッキン88を圧力室84内で正しい姿勢で保持するとともに、高温高圧蒸気の熱を遮断してVパッキン88の耐久性を高める機能を有する。   The coil spring 86 provides a preload that presses the V packing 88 against the mating surface 83 with the fixed valve plate 73 before the pressure of the high-temperature and high-pressure steam rises, and also vibrates the fixed valve plate 73 with the seal member 82 and the pressure chamber. It has the function to attenuate by cooperation with the pressure of the high-temperature high-pressure steam in 84. The packing retainer 87 has a function of holding the V packing 88 in a correct posture in the pressure chamber 84 and increasing the durability of the V packing 88 by blocking the heat of the high-temperature and high-pressure steam.

またコイルスプリング86を、圧力室84の小さい空間内にスプリング巻き数を多く取るためにスプリングシートを廃止した構造とし、かつ直接Vパッキン88に当接させることなく、Vパッキン88との間に介在するパッキンリテーナ87をスプリングシートとして利用することで、Vパッキン88に特別のスプリングシートを設ける必要をなくし、コイルスプリング86の長さを最大限に確保しながら圧力室84の軸線L方向の寸法を小型化することができる。   In addition, the coil spring 86 has a structure in which the spring seat is eliminated in order to increase the number of spring windings in the small space of the pressure chamber 84, and is interposed between the V packing 88 without directly contacting the V packing 88. By using the packing retainer 87 as a spring seat, it is not necessary to provide a special spring seat on the V-packing 88, and the dimension of the pressure chamber 84 in the axis L direction can be increased while ensuring the maximum length of the coil spring 86. It can be downsized.

図4〜図8から明らかなように、ロータ22の軸線L上に蒸気供給パイプ85が配置され、その径方向外側に偏倚して蒸気排出パイプ89が配置される。蒸気供給パイプ85の内部に形成した第1蒸気通路P1は、固定側バルブプレート73に形成した第2蒸気通路P2を介して摺動面77に連通する。軸線Lを囲むように等間隔で配置された5個の第3蒸気通路P3…が可動側バルブプレート74を貫通しており、軸線Lを囲むようにロータ22に形成された5個の第4蒸気通路P4…の両端が、それぞれ前記第3蒸気通路P3…および前記膨張室43…に連通する。第2蒸気通路P2が摺動面77に開口する部分は円形であるのに対し、第5蒸気通路P5が摺動面77に開口する部分は軸線Lを中心とする円弧状に形成される。   As is clear from FIGS. 4 to 8, the steam supply pipe 85 is disposed on the axis L of the rotor 22, and the steam discharge pipe 89 is disposed biased radially outward. The first steam passage P <b> 1 formed inside the steam supply pipe 85 communicates with the sliding surface 77 via the second steam passage P <b> 2 formed in the fixed side valve plate 73. Five third steam passages P3... Arranged at equal intervals so as to surround the axis L pass through the movable side valve plate 74, and five fourth fourths formed in the rotor 22 so as to surround the axis L. Both ends of the steam passages P4 ... communicate with the third steam passages P3 ... and the expansion chambers 43, respectively. The portion where the second steam passage P2 opens to the sliding surface 77 is circular, whereas the portion where the fifth steam passage P5 opens to the sliding surface 77 is formed in an arc shape with the axis L as the center.

また固定側バルブプレート73の摺動面77には、相互に連通する円弧状の第5蒸気通路P5および2個の円弧状の第6蒸気通路P6,P6が凹設されており、第6蒸気通路P6,P6は合わせ面83においてバルブ本体部72に形成された2個の第7蒸気通路P7,P7に連通する。ケーシング本体12および後部カバー18の間には蒸気排出室94が形成されており、この蒸気排出室94は蒸気排出パイプ89に連通するとともに、バルブ本体部72に形成した2個の第7蒸気通路P7,P7に連通する。   Further, the sliding surface 77 of the fixed side valve plate 73 is provided with an arcuate fifth steam passage P5 and two arcuate sixth steam passages P6 and P6 that are in communication with each other. The passages P6 and P6 communicate with two seventh steam passages P7 and P7 formed in the valve body 72 at the mating surface 83. A steam discharge chamber 94 is formed between the casing body 12 and the rear cover 18, and this steam discharge chamber 94 communicates with the steam discharge pipe 89 and two seventh steam passages formed in the valve body 72. It communicates with P7 and P7.

摺動面77には高温高圧蒸気を供給する円形の第2蒸気通路P2と、低温低圧蒸気を排出する円弧状の第5蒸気通路P5とが開口しており、可動側バルブプレート74の5個の第3蒸気通路P3…の一つが円形の第2蒸気通路P2に連通した瞬間が吸気行程となり、前記第3蒸気通路P3が第2蒸気通路P2との連通を遮断されてから円弧状の第5蒸気通路P5に連通するまでの間が膨張行程となり、前記第3蒸気通路P3が円弧状の第5蒸気通路P5に連通している間が排気行程となる。   On the sliding surface 77, a circular second steam passage P2 for supplying high-temperature and high-pressure steam and an arc-shaped fifth steam passage P5 for discharging low-temperature and low-pressure steam are opened, and five movable valve plates 74 are provided. The moment when one of the third steam passages P3... Communicates with the circular second steam passage P2 is the intake stroke, and after the third steam passage P3 is disconnected from the second steam passage P2, the arc-shaped second steam passage P3. The expansion stroke occurs until the fifth steam passage P5 communicates, and the exhaust stroke occurs when the third steam passage P3 communicates with the arcuate fifth steam passage P5.

図4、図6および図7から明らかなように、ロータリバルブ71の固定側バルブプレート73の合わせ面83に2個の高圧作動媒体導入通路73a,73aが開口しており、これらの高圧作動媒体導入通路73a,73aの底部から延びる2個の高圧作動媒体導入孔73b,73bが可動側バルブプレート74との間の摺動面77に開口する。高圧作動媒体導入通路73a,73aは、パッキンリテーナ87と固定側バルブプレート73との隙間を介して蒸気供給パイプ85に連通しており、従って蒸気供給パイプ85からの高温高圧蒸気は前記隙間から高圧作動媒体導入通路73a,73aおよび高圧作動媒体導入孔73b,73bを経て摺動面77に供給される。   As apparent from FIGS. 4, 6, and 7, two high-pressure working medium introduction passages 73 a and 73 a are opened on the mating surface 83 of the fixed valve plate 73 of the rotary valve 71, and these high-pressure working mediums Two high-pressure working medium introduction holes 73 b and 73 b extending from the bottoms of the introduction passages 73 a and 73 a are opened in the sliding surface 77 between the movable side valve plate 74. The high-pressure working medium introduction passages 73a and 73a communicate with the steam supply pipe 85 through a gap between the packing retainer 87 and the fixed side valve plate 73. Therefore, high-temperature and high-pressure steam from the steam supply pipe 85 is high-pressure from the gap. It is supplied to the sliding surface 77 through the working medium introduction passages 73a and 73a and the high pressure working medium introduction holes 73b and 73b.

図6に最も良く示されるように、固定側バルブプレート73の摺動面77に開口する2個の高圧作動媒体導入孔73b,73bと、その摺動面77に開口する第2蒸気通路P2とは、軸線Lを中心として円周方向に等角度で、つまり120°間隔で配置される。また摺動面77に開口する2個の高圧作動媒体導入孔73b,73bの径方向の位置は、第2蒸気通路P2および第5蒸気通路P5の径方向内端よりも更に軸線L寄りとなっている。従って、固定側バルブプレート73に対して可動側バルブプレート74が回転しても、可動側バルブプレート74の摺動面77に開口する5個の第3蒸気通路P3…に2個の高圧作動媒体導入孔73b,73bが連通することはない。   As best shown in FIG. 6, two high-pressure working medium introduction holes 73 b and 73 b that open to the sliding surface 77 of the fixed-side valve plate 73, and a second steam passage P <b> 2 that opens to the sliding surface 77. Are arranged at equal angles in the circumferential direction around the axis L, that is, at intervals of 120 °. Further, the radial positions of the two high-pressure working medium introduction holes 73b and 73b opened in the sliding surface 77 are closer to the axis L than the radial inner ends of the second steam passage P2 and the fifth steam passage P5. ing. Therefore, even if the movable valve plate 74 rotates with respect to the fixed valve plate 73, two high-pressure working media are provided in the five third steam passages P3 that open to the sliding surface 77 of the movable valve plate 74. The introduction holes 73b and 73b do not communicate with each other.

次に、上記構成を備えた本実施例の膨張機Eの作用を説明する。   Next, the operation of the expander E of the present embodiment having the above configuration will be described.

蒸発器で水を加熱して発生した高温高圧蒸気は蒸気供給パイプ85内の第1蒸気通路P1と、合わせ面83と、固定側バルブプレート73の第2蒸気通路P2とを経て可動側バルブプレート74との摺動面77に達する。そして摺動面77に開口する第2蒸気通路P2はロータ22と一体に回転する可動側バルブプレート74に形成した5個の第3蒸気通路P3…に所定のタイミングで瞬間的に連通し、高温高圧蒸気は第3蒸気通路P3からロータ22に形成した第4蒸気通路P4を経てシリンダスリーブ41内の膨張室43に供給される。   The high-temperature and high-pressure steam generated by heating water in the evaporator passes through the first steam passage P1 in the steam supply pipe 85, the mating surface 83, and the second steam passage P2 of the fixed-side valve plate 73. A sliding surface 77 with 74 is reached. The second steam passage P2 opened in the sliding surface 77 is instantaneously communicated with the five third steam passages P3 formed in the movable valve plate 74 that rotates integrally with the rotor 22 at a predetermined timing. The high-pressure steam is supplied from the third steam passage P3 to the expansion chamber 43 in the cylinder sleeve 41 through the fourth steam passage P4 formed in the rotor 22.

ロータ22の回転に伴って第2蒸気通路P2および第3蒸気通路P3の連通が絶たれた後も膨張室43内で高温高圧蒸気が膨張することで、シリンダスリーブ41に嵌合するピストン42が上死点から下死点に向けて前方に押し出され、その前端が斜板31のディンプル31aを押圧する。その結果、ピストン42が斜板31から受ける反力でロータ22に回転トルクが与えられる。そしてロータ22が5分の1回転する毎に、相隣り合う新たな膨張室43内に高温高圧蒸気が供給されてロータ22が連続的に回転駆動される。   Even after the communication between the second steam passage P2 and the third steam passage P3 is cut off with the rotation of the rotor 22, the high-temperature and high-pressure steam expands in the expansion chamber 43, so that the piston 42 fitted to the cylinder sleeve 41 is moved. It is pushed forward from the top dead center toward the bottom dead center, and its front end presses the dimple 31 a of the swash plate 31. As a result, a rotational torque is applied to the rotor 22 by a reaction force that the piston 42 receives from the swash plate 31. Each time the rotor 22 rotates by one fifth, high-temperature and high-pressure steam is supplied into adjacent new expansion chambers 43 and the rotor 22 is continuously rotated.

ロータ22の回転に伴って下死点に達したピストン42が斜板31に押圧されて上死点に向かって後退する間に、膨張室43から押し出された低温低圧蒸気は、ロータ22の第4蒸気通路P4と、可動側バルブプレート74の第3蒸気通路P3と、摺動面77と、固定側バルブプレート73の第5蒸気通路P5および第6蒸気通路P6,P6と、合わせ面83と、バルブ本体部72の第7蒸気通路P7,P7と、蒸気排出室94と、蒸気排出パイプ89とを経て凝縮器に供給される。   The low-temperature and low-pressure steam pushed out of the expansion chamber 43 while the piston 42 reaching the bottom dead center with the rotation of the rotor 22 is pressed by the swash plate 31 and retreats toward the top dead center 4 steam passage P4, the third steam passage P3 of the movable side valve plate 74, the sliding surface 77, the fifth steam passage P5 and the sixth steam passages P6, P6 of the fixed side valve plate 73, and the mating surface 83 The steam is supplied to the condenser through the seventh steam passages P7 and P7 of the valve main body 72, the steam discharge chamber 94, and the steam discharge pipe 89.

ロータリバルブ71は固定側バルブプレート73および可動側バルブプレート74間の平坦な摺動面77を介してアキシャルピストンシリンダ群Aに蒸気を供給・排出するので、蒸気のリークを効果的に防止することができる。なぜならば、平坦な摺動面77は高精度の加工が容易なため、円筒状の摺動面に比べてクリアランスの管理が容易であるからである。しかも膨張機Eに供給される高温高圧蒸気の圧力が高まると、固定側バルブプレート73および可動側バルブプレート74の摺動面77から高温高圧蒸気が漏れ易くなるが、その圧力の増加に応じて圧力室84が発生する押圧荷重が増加して摺動面77の面圧を高めるので、高温高圧蒸気の圧力に応じたシール性を発揮させることができる。   Since the rotary valve 71 supplies and discharges steam to and from the axial piston cylinder group A through a flat sliding surface 77 between the fixed side valve plate 73 and the movable side valve plate 74, it is possible to effectively prevent steam leakage. Can do. This is because the flat sliding surface 77 is easy to process with high accuracy, and thus the clearance can be managed more easily than the cylindrical sliding surface. In addition, when the pressure of the high-temperature and high-pressure steam supplied to the expander E increases, the high-temperature and high-pressure steam easily leaks from the sliding surfaces 77 of the fixed side valve plate 73 and the movable side valve plate 74, but as the pressure increases. Since the pressure load generated by the pressure chamber 84 is increased and the surface pressure of the sliding surface 77 is increased, the sealing performance corresponding to the pressure of the high-temperature high-pressure steam can be exhibited.

ところで、固定側バルブプレート73の第2蒸気通路P2から可動側バルブプレート74との間の摺動面77に供給された高温高圧蒸気は、その第2蒸気通路P2が可動側バルブプレート74の5個の第3蒸気通路P3…のうちの何れかに連通した瞬間に膨張室43に供給され、何れの第3蒸気通路P3…とも連通しないときには摺動面77において塞き止められる。このように、可動側バルブプレート74の回転に伴って第2蒸気通路P2および第3蒸気通路P3の連通および遮断が繰り返し行われ、連通時には第2蒸気通路P2の近傍の蒸気圧が減少して摺動面77の面圧が増加し、遮断時には第2蒸気通路P2の近傍の蒸気圧が増加して摺動面77の面圧が減少する。   By the way, the high temperature and high pressure steam supplied from the second steam passage P2 of the fixed side valve plate 73 to the sliding surface 77 between the fixed side valve plate 73 and the movable side valve plate 74 has the second steam passage P2 of 5 of the movable side valve plate 74. .. Is supplied to the expansion chamber 43 at the moment when it communicates with any one of the third steam passages P3... And is not blocked by the sliding surface 77 when it does not communicate with any third steam passage P3. As described above, the second steam passage P2 and the third steam passage P3 are repeatedly communicated and cut off with the rotation of the movable valve plate 74, and the steam pressure in the vicinity of the second steam passage P2 decreases during the communication. The surface pressure of the sliding surface 77 increases, and when shut off, the vapor pressure near the second steam passage P2 increases and the surface pressure of the sliding surface 77 decreases.

従って、固定側バルブプレート73および可動側バルブプレート74の密着度は第2蒸気通路P2の近傍において周期的に変化することになり、これが摺動面77からの高温高圧蒸気の漏洩や、摺動面77の異常摩耗の原因となる可能性がある。   Accordingly, the degree of adhesion between the fixed valve plate 73 and the movable valve plate 74 periodically changes in the vicinity of the second steam passage P2, which causes leakage of high-temperature and high-pressure steam from the sliding surface 77 or sliding. This may cause abnormal wear of the surface 77.

しかしながら、本実施例によれば、固定側バルブプレート73の摺動面77に第2蒸気通路P2および2個の高圧作動媒体導入孔73b,73bが円周方向に等角度で開口しているため、第2蒸気通路P2および2個の高圧作動媒体導入孔73b,73bから摺動面77の全域に高温高圧蒸気を均一に供給し、フローティング支持された固定側バルブプレート73の挙動を安定させて高温高圧蒸気の漏洩や摺動面77の異常摩耗を抑制することができる。特に、作動媒体として蒸気を採用しているため、蒸気が液化した水が摺動面77に介在することにより、摺動面77の潤滑性能、冷却性能、シール性能等が大幅に高められ、ロータリバルブ71の耐久性の向上に寄与することができる。特に、高温高圧蒸気の漏洩を阻止すべく摺動面77の密封度を高めても、摺動面77が固体潤滑になるのを防止して耐摩耗性を向上させることができる。   However, according to the present embodiment, the second steam passage P2 and the two high-pressure working medium introduction holes 73b and 73b are opened at equal angles in the circumferential direction on the sliding surface 77 of the fixed-side valve plate 73. The high-temperature and high-pressure steam is uniformly supplied to the entire sliding surface 77 from the second steam passage P2 and the two high-pressure working medium introduction holes 73b and 73b, and the behavior of the fixed-side valve plate 73 supported by floating is stabilized. Leakage of high temperature and high pressure steam and abnormal wear of the sliding surface 77 can be suppressed. In particular, since steam is used as the working medium, the water in which the steam is liquefied intervenes on the sliding surface 77, so that the lubrication performance, cooling performance, sealing performance, etc. of the sliding surface 77 are greatly improved. This can contribute to improving the durability of the valve 71. In particular, even if the sealing degree of the sliding surface 77 is increased so as to prevent leakage of high-temperature and high-pressure steam, the sliding surface 77 can be prevented from becoming solid lubrication and wear resistance can be improved.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施例の膨張機Eは作動部としてアキシャルピストンシリンダ群Aを備えているが、作動部の構造はそれに限定されるものではない。   For example, the expander E according to the embodiment includes the axial piston cylinder group A as the operation unit, but the structure of the operation unit is not limited thereto.

また本発明の回転流体機械は膨張機Eに限定されず、圧縮機にも適用することができる。回転流体機械が膨張機Eの場合には、高圧作動媒体導入孔73b,73bから摺動面77に導入される高圧作動媒体は、第2蒸気通路P2から膨張行程にある第3蒸気通路P3…に供給される高圧作動媒体であり、回転流体機械が圧縮器の場合には、高圧作動媒体導入孔73b,73bから摺動面77に導入される高圧作動媒体は、圧縮行程にある第3蒸気通路P3…から第2蒸気通路P2に排出される高圧作動媒体である。   The rotary fluid machine of the present invention is not limited to the expander E, and can be applied to a compressor. When the rotary fluid machine is the expander E, the high-pressure working medium introduced into the sliding surface 77 from the high-pressure working medium introduction holes 73b, 73b is the third steam passage P3 in the expansion stroke from the second steam passage P2. When the rotary fluid machine is a compressor, the high-pressure working medium introduced into the sliding surface 77 from the high-pressure working medium introduction holes 73b and 73b is the third steam in the compression stroke. It is a high-pressure working medium discharged from the passage P3... To the second steam passage P2.

また実施例では固定側バルブプレート73が2個の高圧作動媒体導入孔73b,73bを備えているが、その個数は任意である。   In the embodiment, the fixed-side valve plate 73 includes two high-pressure working medium introduction holes 73b and 73b, but the number is arbitrary.

また実施例では高圧作動媒体導入孔73b,73bが第2蒸気通路P2および第5蒸気通路P5の径方向内端よりも更に径方向内側に開口しているが、第2蒸気通路P2および第5蒸気通路P5の径方向外端よりも更に径方向外側に開口していても良い。   In the embodiment, the high-pressure working medium introduction holes 73b and 73b are opened further radially inward than the radially inner ends of the second steam passage P2 and the fifth steam passage P5. You may open to the radial direction outer side further than the radial direction outer end of the steam path P5.

膨張機の縦断面図Vertical section of expander 図1の2部拡大図2 enlarged view of FIG. ロータの分解斜視図Exploded perspective view of rotor 図1の4部拡大図4 enlarged view of FIG. 図4の5−5線矢視図5-5 arrow view of FIG. 図4の6−6線矢視図6-6 arrow view of FIG. 図4の7−7線矢視図7-7 arrow view of FIG. 図4の8−8線矢視図8-8 arrow view of FIG. コイルスプリング、パッキンリテーナおよびVパッキンの斜視図Perspective view of coil spring, packing retainer and V packing

符号の説明Explanation of symbols

11 ケーシング
22 ロータ
71 ロータリバルブ
73 固定側バルブプレート
73b 高圧作動媒体導入孔
74 可動側バルブプレート
77 摺動面
A アキシャルピストンシリンダ群(作動部)
P2 第2蒸気通路(第1高圧作動媒体通路)
P3 第3蒸気通路(第2高圧作動媒体通路)
11 Casing 22 Rotor 71 Rotary valve 73 Fixed side valve plate 73b High pressure working medium introduction hole 74 Movable side valve plate 77 Sliding surface A Axial piston cylinder group (actuating part)
P2 Second steam passage (first high-pressure working medium passage)
P3 Third steam passage (second high-pressure working medium passage)

Claims (3)

ケーシング(11)と、
ケーシング(11)に回転自在に支持されたロータ(22)と、
ロータ(22)に設けられた作動部(A)と、
ケーシング(11)およびロータ(22)間に設けられて作動部(A)に対する作動媒体の供給・排出を制御するロータリバルブ(71)とを備え、
ロータリバルブ(71)は、ケーシング(11)側に支持された固定側バルブプレート(73)とロータ(22)側に支持された可動側バルブプレート(74)とを摺動面(77)において接触させてなり、固定側バルブプレート(73)から摺動面(77)に開口する単一の第1高圧作動媒体通路(P2)と、可動側バルブプレート(74)から摺動面(77)に開口する複数の第2高圧作動媒体通路(P3)とが、ロータ(22)の回転に伴って順次連通する回転流体機械において、
摺動面(77)に高圧作動媒体を導入する高圧作動媒体導入孔(73b)を固定側バルブプレート(73)に開口させたことを特徴とする回転流体機械。
A casing (11);
A rotor (22) rotatably supported by the casing (11);
An actuator (A) provided in the rotor (22);
A rotary valve (71) provided between the casing (11) and the rotor (22) for controlling the supply / discharge of the working medium to the working part (A),
The rotary valve (71) contacts the fixed valve plate (73) supported on the casing (11) side and the movable valve plate (74) supported on the rotor (22) side on the sliding surface (77). A single first high-pressure working medium passage (P2) opened from the fixed valve plate (73) to the sliding surface (77), and from the movable valve plate (74) to the sliding surface (77). In the rotating fluid machine in which the plurality of second high-pressure working medium passages (P3) that are opened communicate sequentially with the rotation of the rotor (22),
A rotary fluid machine, wherein a high-pressure working medium introduction hole (73b) for introducing a high-pressure working medium into a sliding surface (77) is opened in a fixed side valve plate (73).
第1高圧作動媒体通路(P2)と高圧作動媒体導入孔(73b)とを円周方向に等角度となるように配置したことを特徴とする、請求項1に記載の回転流体機械。   The rotary fluid machine according to claim 1, wherein the first high-pressure working medium passage (P2) and the high-pressure working medium introduction hole (73b) are arranged so as to be equiangular in the circumferential direction. 高圧作動媒体導入孔(73b)から摺動面(77)に導入される高圧作動媒体は、第1高圧作動媒体通路(P2)から膨張行程にある第2高圧作動媒体通路(P3)に供給される高圧作動媒体、あるいは圧縮行程にある第2高圧作動媒体通路(P3)から第1高圧作動媒体通路(P2)に排出される高圧作動媒体であることを特徴とする、請求項1または請求項2に記載の回転流体機械。
The high-pressure working medium introduced into the sliding surface (77) from the high-pressure working medium introduction hole (73b) is supplied from the first high-pressure working medium passage (P2) to the second high-pressure working medium passage (P3) in the expansion stroke. The high-pressure working medium that is discharged from the second high-pressure working medium passage (P3) in the compression stroke to the first high-pressure working medium passage (P2). The rotary fluid machine according to 2.
JP2003401325A 2003-12-01 2003-12-01 Rotating fluid machine Withdrawn JP2005163581A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003401325A JP2005163581A (en) 2003-12-01 2003-12-01 Rotating fluid machine
US10/998,713 US20050169771A1 (en) 2003-12-01 2004-11-30 Rotating fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401325A JP2005163581A (en) 2003-12-01 2003-12-01 Rotating fluid machine

Publications (1)

Publication Number Publication Date
JP2005163581A true JP2005163581A (en) 2005-06-23

Family

ID=34725295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401325A Withdrawn JP2005163581A (en) 2003-12-01 2003-12-01 Rotating fluid machine

Country Status (2)

Country Link
US (1) US20050169771A1 (en)
JP (1) JP2005163581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459846A (en) * 2011-03-31 2013-12-18 株式会社丰田自动织机 Swash-plate-type compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794473B2 (en) 2004-11-12 2010-09-14 C.R. Bard, Inc. Filter delivery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256805A (en) * 2001-03-06 2002-09-11 Honda Motor Co Ltd Rotary fluid machine
US6889710B2 (en) * 2002-11-15 2005-05-10 Air Products And Chemicals, Inc. Rotary sequencing valve with flexible port plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459846A (en) * 2011-03-31 2013-12-18 株式会社丰田自动织机 Swash-plate-type compressor

Also Published As

Publication number Publication date
US20050169771A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7549836B2 (en) Bearing seal with backup device
US8627758B2 (en) Axial piston pump with pistons having metallic sealing rings
RU2007139702A (en) IMPROVED DRIVING UNIT ON A FLUID MEDIUM FOR APPLICATION INSIDE A TURBO MACHINE
JP2005163581A (en) Rotating fluid machine
JP3923331B2 (en) Expansion machine
JP2005163582A (en) Rotating fluid machine
JP2005163577A (en) Rotating fluid machine
JP2005163578A (en) Rotating fluid machine
US20050254965A1 (en) Expansion machine
US20060153698A1 (en) Rotary fluid machine
US20050220643A1 (en) Rotary type fluid machine
JP2005163576A (en) Rotating fluid machine
JP2005163579A (en) Rotating fluid machine
EP3184753B1 (en) Sealing structure for turbine
JP2005163580A (en) Rotating fluid machine
JP2004239067A (en) Rotary fluid machinery
US20050158181A1 (en) Expansion engine
US20040216601A1 (en) Rotating fluid machine
JP2005171954A (en) Rotating fluid machine
JP2005155381A (en) Expansion machine
JP2004270524A (en) Rotary fluid-machinery
JP2005201160A (en) Rotary fluid machine
JP2004239069A (en) Rotary fluid machinery
JP2004270523A (en) Rotary fluid-machinery
JP2001254602A (en) Rotary hydraulic machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070131