JP2005163149A - Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method - Google Patents

Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method Download PDF

Info

Publication number
JP2005163149A
JP2005163149A JP2003406592A JP2003406592A JP2005163149A JP 2005163149 A JP2005163149 A JP 2005163149A JP 2003406592 A JP2003406592 A JP 2003406592A JP 2003406592 A JP2003406592 A JP 2003406592A JP 2005163149 A JP2005163149 A JP 2005163149A
Authority
JP
Japan
Prior art keywords
frequency
frequency antenna
plasma
dimensional
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003406592A
Other languages
Japanese (ja)
Inventor
Takashi Hirao
孝 平尾
Mutsuo Yamashita
睦雄 山下
Ryuichiro Kamei
龍一郎 亀井
Ryuzo Kurahashi
隆三 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEINAN KOGYO KK
Taisei Kako Co Ltd
Original Assignee
SEINAN KOGYO KK
Taisei Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEINAN KOGYO KK, Taisei Kako Co Ltd filed Critical SEINAN KOGYO KK
Priority to JP2003406592A priority Critical patent/JP2005163149A/en
Publication of JP2005163149A publication Critical patent/JP2005163149A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new high-frequency plasma CVD method for three-dimensionally depositing a thin film uniformly at high speed on the surface of a substrate of a mechanical component made of metal or glass or plastic bottle etc. <P>SOLUTION: A pair of high-frequency antenna coils 5 and 5 are arranged apart from and opposite to each other within a vacuum chamber 2 into which gaseous raw materials are introduced. A plasma is generated within the vacuum chamber 2 by applying a high-frequency voltage or pulse voltage to the pair of the high-frequency antenna coils 5 and 5 and the substrate S having a three-dimensional shape on the surface is charged into the space between the pair of the high-frequency antenna coils 5 and 5 to form the deposited film on the surface of the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラスチック容器などの基材の表面に三次元的に薄膜を高速かつ均一に成膜するための三次元高周波プラズマCVD装置並びに三次元高周波プラズマCVD法に関する。   The present invention relates to a three-dimensional high-frequency plasma CVD apparatus and a three-dimensional high-frequency plasma CVD method for forming a thin film three-dimensionally and uniformly on the surface of a base material such as a plastic container.

従来より、例えば、ビールや炭酸飲料用の容器としては、ガスバリア性の問題によりアルミ缶が用いられており、一部ビール容器としてDLC内面コーティングされたペットボトルが実用されているが、一般的にはプラスチックボトルは使用できないと考えられている。また、バイオ新薬をはじめとする種々の新薬用の容器としては、割れるおそれが少なく取り扱いに便利で、形態の自由度の大きいプラスチックボトルへの期待もあるが、高度のガスバリア性、耐湿性が要求される薬剤ではガラスボトルが用いられているのが現状である。かかる現状を打破し、プラスチック容器の機能性を一層高めるべく、近年、プラズマによる表面処理技術が開発されている。また、金属やガラス製の各種機械部品などの分野においても、プラズマによる表面処理技術が開発されている。   Conventionally, for example, aluminum cans have been used as containers for beer and carbonated drinks due to gas barrier properties, and some PET bottles with DLC inner surface coating are practically used as beer containers. It is believed that plastic bottles cannot be used. In addition, as a container for various new drugs such as bio-new drugs, there is a high possibility of plastic bottles that are easy to handle with little risk of breaking and have a high degree of freedom in form, but requires high gas barrier properties and moisture resistance. Currently, glass bottles are used for the drugs to be used. In order to overcome this situation and further improve the functionality of plastic containers, surface treatment technology using plasma has been developed in recent years. Also, surface treatment technology using plasma has been developed in the fields of various mechanical parts made of metal or glass.

例えば、特許文献1には、プラズマによってボトル内面の強化処理を行う技術が開示されて、おり、特許文献2には、円筒状電極の内部にプラスチックボトルを配置し、このボトル内に棒状電極を挿入してボトル内に原料ガスを導入し、高周波放電によりボトル内部にプラズマを発生させてボトル内面に薄膜を形成させる簡易式のプラズマCVD法が開示されている。
特表2001−518685号公報 特開2001−310960号公報
For example, Patent Document 1 discloses a technique for strengthening the inner surface of a bottle using plasma, and Patent Document 2 includes a plastic bottle disposed inside a cylindrical electrode, and a rod-shaped electrode disposed in the bottle. A simple plasma CVD method is disclosed in which a raw material gas is introduced into a bottle and plasma is generated inside the bottle by high frequency discharge to form a thin film on the inner surface of the bottle.
Special table 2001-518685 gazette JP 2001-310960 A

これら文献に記載の技術はいずれもボトル内面にシリコン酸化膜や炭素被膜を形成するものであるが、ボトル表面(外面)に薄膜を形成することはできない。また、かかる技術ではプラズマ密度が低く、DLCやCH4などの炭素系被膜や、ヘキサメチルジシロキサン(以下、「HMDSO」という。)などの酸化珪素系被膜では成膜速度が遅く、量産に向かないという問題がある。 All of the techniques described in these documents are to form a silicon oxide film or a carbon film on the inner surface of the bottle, but cannot form a thin film on the bottle surface (outer surface). In addition, such a technique has a low plasma density, and a carbon-based film such as DLC or CH 4 or a silicon oxide-based film such as hexamethyldisiloxane (hereinafter referred to as “HMDSO”) has a low film formation rate, and is suitable for mass production. There is a problem of not.

実用的な速度で成膜できる従来の大型プラズマCVD装置は種々のものがあるが、プラスチック容器表面の成膜を行う場合、比較的低温域に維持する必要があり、従来の多くのプラズマCVD装置は利用できない。また、いわゆる平行平板式のプラズマCVDが一般的であるが、電極間の距離がせいぜい5cm程度しかなく、プラスチックボトルなどの3次元容器を電極間に配置できない。   There are various conventional large-sized plasma CVD apparatuses capable of forming a film at a practical speed. However, when forming a film on the surface of a plastic container, it is necessary to maintain a relatively low temperature range. Is not available. In addition, so-called parallel plate type plasma CVD is common, but the distance between the electrodes is only about 5 cm at most, and a three-dimensional container such as a plastic bottle cannot be disposed between the electrodes.

一方、本願発明者の一人である山下は、誘導結合型高周波放電プラズマによる表面処理技術を既に考案し、例えば、M.Yamashita:J. Vac. Sci. Techonol., A7, (1989)151.Mutsuo Yamashita:J. Vac. Sci. Jpn(真空), Vol. 44, No.5, (2001)32に開示している。この開示した技術は誘導結合型プラズマスパッタリング装置であって、平板状のターゲットと、基板を保持する基板保持台との間に高周波アンテナコイルを設置し、この高周波アンテナコイルに高周波電源装置からマッチングボックス(インピーダンス整合回路)を介して高周波電力を供給することにより高密度プラズマを発生させるようになっているものである。   Meanwhile, Yamashita, one of the inventors of the present application, has already devised a surface treatment technique using inductively coupled high-frequency discharge plasma, for example, M. Yamashita: J. Vac. Sci. Techonol., A7, (1989) 151. Yamashita: J. Vac. Sci. Jpn (vacuum), Vol. 44, No. 5, (2001) 32. This disclosed technique is an inductively coupled plasma sputtering apparatus in which a high-frequency antenna coil is installed between a flat target and a substrate holding base for holding a substrate, and a matching box is connected to the high-frequency antenna coil from the high-frequency power supply device. A high-density plasma is generated by supplying high-frequency power via an (impedance matching circuit).

かかる誘導結合型高周波放電プラズマは、専ら高周波アンテナコイルに供給する高周波電力によって発生し、発生したプラズマはコイルの中に閉じこめられ、ターゲット周辺に特別な磁気回路を構成しなくとも、1012/cm3以上の高密度のプラズマ密度が得られるとともに、コイルの大きさを適切に設定することによりプラズマが閉じこめられる空間を大きく確保できるという利点がある。したがって、上記の誘導結合型高周波放電プラズマ発生原理を、プラズマCVD装置に転用することにより、プラスチックボトルなど基材の表面に高速に薄膜を気相成長させることが可能になると考えられる。 Such inductively coupled high-frequency discharge plasma is generated exclusively by high-frequency power supplied to a high-frequency antenna coil, and the generated plasma is confined in the coil, and is not required to form a special magnetic circuit around the target, and is 10 12 / cm. There are advantages that a high plasma density of 3 or more can be obtained, and that a large space for confining plasma can be secured by appropriately setting the size of the coil. Therefore, it is considered that a thin film can be vapor-phase-grown at high speed on the surface of a substrate such as a plastic bottle by diverting the above inductively coupled high-frequency discharge plasma generation principle to a plasma CVD apparatus.

しかし、単に薄膜が形成されれば良いというものではなく、形成される薄膜のピンホールの解消はもとより、ボトルのガスバリア性、耐湿性の保証のためにはその三次元表面に形成される薄膜の膜厚並びに膜質の均一性が要求される。   However, it is not just that a thin film needs to be formed. In addition to eliminating pinholes in the formed thin film, the thin film formed on its three-dimensional surface is not only used to guarantee the gas barrier properties and moisture resistance of the bottle. Uniformity in film thickness and film quality is required.

そこで、本発明は、プラスチックボトルなどの基材の三次元表面に高速かつ均一に薄膜を形成できる新規な三次元高周波プラズマCVD装置並びに三次元高周波プラズマCVD法を提供することを目的とする。   Therefore, an object of the present invention is to provide a novel three-dimensional high-frequency plasma CVD apparatus and a three-dimensional high-frequency plasma CVD method capable of forming a thin film at high speed and uniformly on a three-dimensional surface of a substrate such as a plastic bottle.

本発明の三次元高周波プラズマCVD装置は、真空チャンバーと、真空チャンバー内に原料ガスを供給するガス供給管と、真空チャンバー内を所定圧力に保持すべく真空チャンバー内のガスを排気する排気管と、真空チャンバー内にプラズマを発生させるべく真空チャンバー内に配置される高周波アンテナコイルと、該高周波アンテナコイルに高周波電力乃至パルス電力を印加する電源回路と、高周波アンテナコイルによって発生されたプラズマ中に表面が三次元形状を有する基材を支持する三次元形状基材支持部材とを備える。   The three-dimensional high-frequency plasma CVD apparatus of the present invention includes a vacuum chamber, a gas supply pipe for supplying a source gas into the vacuum chamber, an exhaust pipe for exhausting the gas in the vacuum chamber so as to keep the inside of the vacuum chamber at a predetermined pressure, A high-frequency antenna coil disposed in the vacuum chamber to generate plasma in the vacuum chamber, a power supply circuit for applying high-frequency power or pulse power to the high-frequency antenna coil, and a surface in the plasma generated by the high-frequency antenna coil Includes a three-dimensional shape base material supporting member that supports a base material having a three-dimensional shape.

前記高周波アンテナコイルとしては、円形コイルを好適に採用でき、その他、基材投入空間の周りを立体的に取り囲むように湾曲させたコイルを用いることも可能である。円形コイルの巻数は、要求されるプラズマ密度が得られれば特に限定されるものではないが、巻数3〜8程度が好適である。高周波アンテナコイルの材質としては、アルミニウム材を好適に用いることができ、その他銅やカーボンなどの適宜の材料を採用できる。この高周波アンテナコイルは真空チャンバー内に設置されるためにプラズマに接するが、コイルの表面近傍にはイオンシースが生じ、これによってコイルの各巻線間やコイル−接地間の電気的絶縁を直流的にも高周波的にも保つことが可能である。また、高周波アンテナコイルそれ自体、インピーダンス整合回路を構成する。なお、高周波アンテナコイルを管状部材によって構成し、該コイル内に冷媒を流通させることでコイルを冷却させることが可能である。   As the high-frequency antenna coil, a circular coil can be suitably used, and a coil that is curved so as to surround the base material charging space in three dimensions can also be used. The number of turns of the circular coil is not particularly limited as long as the required plasma density is obtained, but about 3 to 8 turns are preferable. As a material of the high-frequency antenna coil, an aluminum material can be suitably used, and other appropriate materials such as copper and carbon can be adopted. This high-frequency antenna coil is in contact with the plasma because it is installed in the vacuum chamber, but an ion sheath is formed near the surface of the coil, thereby galvanically insulating the coil windings and between the coil and ground. In addition, it is possible to maintain high frequency. The high frequency antenna coil itself constitutes an impedance matching circuit. In addition, it is possible to cool a coil by comprising a high frequency antenna coil by a tubular member and distribute | circulating a refrigerant | coolant in this coil.

電源回路は、高周波アンテナコイルに高周波電力乃至パルス電力を供給し、これにより高周波プラズマを発生させるものである。この電源回路の発振周波数は4MHz〜50MHz、最大出力1kW程度とすることができ、成膜時にアンテナコイルに入射する電力は、原料ガスの種類、真空チャンバーの構造や大きさ、高周波アンテナコイルの特性などによって適宜のものとすることができる。電源回路としてパルス発振器を用いてパルス電圧を高周波アンテナコイルに印加する場合、チャンバー内の雰囲気温度上昇を抑制でき、プラスチック容器を基材とする場合に好適である。また、対の高周波アンテナコイルに印加する高周波電圧の位相を互いに180度変えることにより、真空チャンバー内のプラズマ密度を大幅に増加させることができる。また、両コイルに印加する高周波電圧の値を独立して変えることもでき、これによれば、真空チャンバー内のプラズマ密度の分布を変えることができ、成膜速度の向上と同時に膜厚分布の制御をも行うことができる。   The power supply circuit supplies high frequency power or pulse power to the high frequency antenna coil, thereby generating high frequency plasma. The oscillation frequency of this power supply circuit can be 4 MHz to 50 MHz, and the maximum output is about 1 kW. The power incident on the antenna coil during film formation depends on the type of source gas, the structure and size of the vacuum chamber, and the characteristics of the high frequency antenna coil. For example, it can be made appropriate. When a pulse voltage is applied to the high-frequency antenna coil using a pulse oscillator as a power supply circuit, an increase in the atmospheric temperature in the chamber can be suppressed, which is suitable when a plastic container is used as a base material. Further, the plasma density in the vacuum chamber can be significantly increased by changing the phase of the high-frequency voltage applied to the pair of high-frequency antenna coils by 180 degrees. In addition, the value of the high-frequency voltage applied to both coils can be changed independently, which can change the plasma density distribution in the vacuum chamber, and at the same time as improving the film formation rate, Control can also be performed.

基材の三次元表面の形状は適宜のものとすることができ、プラスチックボトルのように周面並びに底面を有するもの、管のように周面を有するものの他、山形状のもの、凹凸溝を有する板状部材などを挙げることができる。   The shape of the three-dimensional surface of the base material can be appropriate, in addition to those having a peripheral surface and a bottom surface like a plastic bottle, those having a peripheral surface like a tube, a mountain shape, and uneven grooves Examples thereof include a plate member.

かかる本発明の三次元高周波プラズマCVD装置によれば、高周波アンテナコイルに高周波電圧乃至パルス電圧を印加することにより発生する高密度プラズマ内に基材を支持するので、基材の三次元表面の全体にわたってプラズマ密度が均質化され、高速かつ均一に三次元表面に薄膜が成膜される。   According to the three-dimensional high-frequency plasma CVD apparatus of the present invention, since the base material is supported in the high-density plasma generated by applying a high-frequency voltage or pulse voltage to the high-frequency antenna coil, the entire three-dimensional surface of the base material is supported. The plasma density is homogenized throughout, and a thin film is formed on the three-dimensional surface at high speed and uniformly.

なお、プラズマをより効率的に閉じこめるために、高周波アンテナコイルの外側にプラズマ遮蔽用の遮蔽板を配設するのが好ましい。これによれば、チャンバー内におけるプラズマの分散が緩和され、プラズマがチャンバーの中央に集中するようになり、成膜速度の向上、薄膜の均一性の向上が図られる。また、真空チャンバーの外周の適当な箇所に磁石を設置することによりチャンバー内の磁場を制御することによってもプラズマ密度の向上を図ることができる。このプラズマ遮蔽板の中心部には孔を設けることができ、この孔を小さくすると、プラズマはアンテナコイル内にほぼ完全に閉じこめられてその密度をさらに増す。   In order to confine the plasma more efficiently, it is preferable to arrange a shielding plate for plasma shielding outside the high frequency antenna coil. According to this, the dispersion of the plasma in the chamber is relaxed, and the plasma is concentrated in the center of the chamber, so that the film formation speed and the thin film uniformity can be improved. The plasma density can also be improved by controlling the magnetic field in the chamber by installing a magnet at an appropriate location on the outer periphery of the vacuum chamber. A hole can be provided in the central portion of the plasma shielding plate, and if this hole is made small, the plasma is almost completely confined in the antenna coil to further increase its density.

さらに薄膜の均一性を向上するために、基材を囲む多孔性電極と、該多孔性電極に高周波電圧を印加するイオンエネルギー制御用電源とをさらに備えることができる。これによれば、基材の表面形状に応じてプラズマ中のイオンエネルギーを制御し、成膜される薄膜の一層の高品質化を図ることが可能となる。   Further, in order to improve the uniformity of the thin film, a porous electrode surrounding the substrate and an ion energy control power source for applying a high frequency voltage to the porous electrode can be further provided. According to this, it is possible to control the ion energy in the plasma according to the surface shape of the base material and to further improve the quality of the thin film to be formed.

より好ましくは、前記高周波アンテナコイルを少なくとも一対設けるとともに各高周波アンテナコイルを円形コイルとし、該対の高周波アンテナコイルを真空チャンバー内で離間して対向配置して、前記支持部材によって支持される基材を対の高周波アンテナコイルの間の空間に投入することができる。これによれば、各高周波アンテナコイルによってそれぞれ発生されるプラズマが対のコイルの中央部で融合し、プラズマ密度の一層の高密度化、均一化が図られるとともに、プラズマを比較的広い空間に閉じこめることが可能となる。さらに、対のコイルの間にプラズマが生起された広い空間が形成され、この空間に大きな基材を投入することができる。したがって、比較的大きなプラスチックボトルなどの基材に対して、高周波プラズマCVD法による薄膜の成膜を高速に行うことが可能となる。   More preferably, at least a pair of the high-frequency antenna coils are provided and each high-frequency antenna coil is a circular coil, and the pair of high-frequency antenna coils are spaced apart from each other in a vacuum chamber and supported by the support member. Can be introduced into the space between the pair of high frequency antenna coils. According to this, the plasma generated by each high-frequency antenna coil is fused at the center of the pair of coils, so that the plasma density can be further increased and made uniform and the plasma can be confined in a relatively wide space. It becomes possible. Further, a wide space where plasma is generated is formed between the pair of coils, and a large base material can be put into this space. Therefore, a thin film can be formed at a high speed by a high-frequency plasma CVD method on a relatively large base material such as a plastic bottle.

前記支持部材は、基材を対の高周波アンテナコイルの間の空間に投入し及び該空間から離脱させるように往復動可能に構成することができる。これによれば、三次元形状の基材を容易に対のコイル間に設置させることができ、成膜後も容易に取り出すことが可能となる。   The support member can be configured to be capable of reciprocating so that the base material is inserted into and removed from the space between the pair of high-frequency antenna coils. According to this, a three-dimensional base material can be easily installed between a pair of coils, and can be easily taken out even after film formation.

上記本発明の三次元高周波プラズマCVD装置において、同時点において磁力線の向きが同方向となるように前記高周波電力乃至パルス電力が各高周波アンテナコイルに供給されるように構成してもよく、逆に、同時点において磁力線の向きが逆方向となるように前記高周波電力乃至パルス電力が各高周波アンテナコイルに供給されるように構成してもよい。このように磁力線の方向を制御することにより、相乗効果によってプラズマ密度の一層の向上が期待できる。   In the above-described three-dimensional high-frequency plasma CVD apparatus of the present invention, the high-frequency power or pulse power may be supplied to each high-frequency antenna coil so that the direction of the magnetic lines of force are the same at the same point. The high frequency power or pulse power may be supplied to each high frequency antenna coil so that the direction of the magnetic lines of force is reversed at the same point. By controlling the direction of the lines of magnetic force in this way, a further improvement in plasma density can be expected due to a synergistic effect.

上記電源回路は、高周波アンテナコイルにバイアス電圧を印加する直流電源装置を備えることができる。かかるバイアス電圧の印加により、対のアンテナコイル間でプラズマ電子運動に関する相乗効果が生じてプラズマ密度を増加させることができる。さらに、このバイアス電圧を、磁力線の向きが同方向となるように各高周波アンテナコイルに印加してもよく、磁力線が対の高周波アンテナコイルの中心部に向かうように各高周波アンテナコイルに印加してもよい。   The power supply circuit may include a DC power supply device that applies a bias voltage to the high-frequency antenna coil. By applying such a bias voltage, a synergistic effect on plasma electron motion is generated between the pair of antenna coils, and the plasma density can be increased. Further, this bias voltage may be applied to each high-frequency antenna coil so that the direction of the magnetic field lines is the same direction, or applied to each high-frequency antenna coil so that the magnetic field lines are directed toward the center of the pair of high-frequency antenna coils. Also good.

上記本発明装置において、高周波アンテナコイルは2対又は3対設けてもよい。この場合、基材を取り囲むようにそれぞれの対の高周波アンテナコイルを基材に対して異なる向きに対向配置させるのが好ましい。これによれば、複数対の高周波アンテナコイルによって一層高密度のプラズマを発生させることができ、成膜の飛躍的向上と、基材の全周にわたる均一な薄膜形成とを行わせることが可能となる。なお、この場合、対の高周波アンテナコイル毎に、それぞれ原料ガス供給管並びに排気管を設けることができる。   In the device of the present invention, two or three pairs of high frequency antenna coils may be provided. In this case, it is preferable to arrange each pair of high-frequency antenna coils opposite to the substrate in different directions so as to surround the substrate. According to this, it is possible to generate a higher-density plasma by a plurality of pairs of high-frequency antenna coils, and it is possible to perform dramatic improvement in film formation and uniform thin film formation over the entire circumference of the substrate. Become. In this case, a source gas supply pipe and an exhaust pipe can be provided for each pair of high-frequency antenna coils.

また、本発明の三次元高周波プラズマCVD法は、原料ガスが導入される真空チャンバー内に少なくとも一対の高周波アンテナコイルを離間して対向配置し、該高周波アンテナコイルに高周波電力乃至パルス電力を供給することにより真空チャンバー内にプラズマを発生させるとともに、対の高周波アンテナコイルの間に表面が三次元形状を有する基材を投入して、対の高周波アンテナコイルの間に生じるプラズマ中で基材の三次元表面に薄膜を気相成長させるものである。また、本発明の三次元高周波プラズマCVD法は、原料ガスが導入される真空チャンバー内に高周波アンテナコイルを配置し、該高周波アンテナコイルに高周波電力乃至パルス電力を供給することにより真空チャンバー内にプラズマを発生させるとともに、高周波アンテナコイル内部に表面が三次元形状を有する基材を投入して、高周波アンテナコイル内部に生じるプラズマ中で基材の三次元表面に薄膜を気相成長させるものである。   In the three-dimensional high-frequency plasma CVD method of the present invention, at least a pair of high-frequency antenna coils are spaced apart from each other in a vacuum chamber into which a source gas is introduced, and high-frequency power or pulse power is supplied to the high-frequency antenna coils. In this way, plasma is generated in the vacuum chamber, and a substrate having a three-dimensional surface is inserted between the pair of high frequency antenna coils, so that the tertiary of the substrate is generated in the plasma generated between the pair of high frequency antenna coils. A thin film is vapor-phase grown on the original surface. In the three-dimensional high-frequency plasma CVD method of the present invention, a high-frequency antenna coil is disposed in a vacuum chamber into which a source gas is introduced, and plasma is generated in the vacuum chamber by supplying high-frequency power or pulse power to the high-frequency antenna coil. In addition, a substrate having a three-dimensional surface is introduced into the high-frequency antenna coil, and a thin film is vapor-phase grown on the three-dimensional surface of the substrate in plasma generated inside the high-frequency antenna coil.

上記三次元高周波プラズマCVD法において、基材を多孔性電極によって囲み、この多孔性電極に高周波電圧を印加することにより、基材表面に関与するプラズマ中のイオンエネルギーを制御することができる。   In the three-dimensional high-frequency plasma CVD method, by enclosing a base material with a porous electrode and applying a high-frequency voltage to the porous electrode, ion energy in the plasma related to the base material surface can be controlled.

また、同時点において磁力線の向きが同方向となるように前記高周波電力乃至パルス電力を各高周波アンテナコイルに供給することができる。   Further, the high frequency power or pulse power can be supplied to each high frequency antenna coil so that the direction of the magnetic lines of force are the same at the same point.

また、同時点において磁力線の向きが逆方向となるように前記高周波電力乃至パルス電力を各高周波アンテナコイルに供給することができる。   In addition, the high frequency power or pulse power can be supplied to each high frequency antenna coil so that the direction of the magnetic lines of force is reversed at the same point.

また、各高周波アンテナコイルに、磁力線の向きが同方向となるようにバイアス電圧を印加することができる。   In addition, a bias voltage can be applied to each high-frequency antenna coil so that the direction of the lines of magnetic force are the same.

また、各高周波アンテナコイルに、磁力線が対の高周波アンテナコイルの中心部に向かうようにバイアス電圧を印加してもよい。   Further, a bias voltage may be applied to each high-frequency antenna coil such that the magnetic field lines are directed toward the center of the pair of high-frequency antenna coils.

また、高周波アンテナコイルは2対又は3対設けられ、基材を取り囲むようにそれぞれの対の高周波アンテナコイルを基材に対して異なる向きに対向させ、これら高周波アンテナコイルに高周波電力乃至パルス電力を供給することにより生じるプラズマ中で基材表面に薄膜を形成することも可能である。   Two or three high frequency antenna coils are provided, and each pair of high frequency antenna coils is opposed to the base material in different directions so as to surround the base material, and high frequency power or pulse power is applied to the high frequency antenna coils. It is also possible to form a thin film on the substrate surface in the plasma generated by supplying.

また本発明は、上記三次元高周波プラズマCVD法によって表面に薄膜が成膜されてなるプラスチック容器である。本発明のプラズマCVD法は、対の高周波アンテナコイルの間の比較的大きな空間全体にわたって高密度かつ均一なプラズマ中で成膜を行うものであるから種々の薄膜を工業的に現実的な速度で成膜を行うことができる。例えば、本発明によれば、炭素系膜、酸化珪素系膜、シリコン酸化物、シリコン窒化物、シリコン酸化物とシリコン窒化膜との二層構造、SiOx−SiOn−SiNxの多層構造、SiOxの傾斜組織膜、TiOx、AlOx、並びに、DLCなどの構成元素をガス化可能な各種無機材料からなるもの若しくは含有するものを成膜できる。プラスチック容器の材質としては、PET、PE、PP、COPなどの各種プラスチックに適用できる。   The present invention also relates to a plastic container having a thin film formed on the surface thereof by the three-dimensional high-frequency plasma CVD method. Since the plasma CVD method of the present invention forms a film in a high density and uniform plasma over a relatively large space between a pair of high frequency antenna coils, various thin films can be formed at industrially realistic speeds. A film can be formed. For example, according to the present invention, a carbon-based film, a silicon oxide-based film, silicon oxide, silicon nitride, a two-layer structure of silicon oxide and silicon nitride film, a multilayer structure of SiOx-SiOn-SiNx, a gradient of SiOx A film made of or containing various inorganic materials capable of gasifying constituent elements such as a tissue film, TiOx, AlOx, and DLC can be formed. As a material of the plastic container, it can be applied to various plastics such as PET, PE, PP, and COP.

本発明によれば、高周波プラズマCVDにおいて高周波プラズマを発生させるプラズマ発生源として真空チャンバー内に設けられる対の高周波アンテナコイルを採用したので、プラズマの高密度化が図られるとともに、三次元形状の基材を収容可能な大きな空間を真空チャンバーの中央部に設けることができ、かつ、この収容空間にプラズマを集約させることが可能となり、プラズマの高密度化による成膜速度の高速化、広い範囲にわたってプラズマ密度を均一化することによる薄膜の高品質化を図ることができる。   According to the present invention, since the pair of high frequency antenna coils provided in the vacuum chamber is employed as a plasma generation source for generating high frequency plasma in high frequency plasma CVD, the plasma density can be increased and a three-dimensional shape base can be achieved. A large space that can accommodate the material can be provided in the central portion of the vacuum chamber, and it is possible to concentrate the plasma in this accommodating space, increasing the deposition rate by increasing the density of the plasma, over a wide range The quality of the thin film can be improved by making the plasma density uniform.

以下、本発明の好適な実施の形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

図1は本発明の第1実施形態に係る三次元プラズマCVD装置1を示し、該装置1は、真空チャンバー2と、該真空チャンバー2内に原料ガスを供給するガス供給管3と、真空チャンバー2内を所定圧力に保持するべく真空チャンバー2内のガスを排気する排気管4と、真空チャンバー2内に誘導結合プラズマを発生させるべく真空チャンバー2内に離間して対向配置される対の高周波アンテナコイル5,5と、該高周波アンテナコイル5,5に高周波電圧を印加する電源回路6と、高周波アンテナコイル5,5によって発生されたプラズマ中にプラスチックボトルS(基材)を支持するボトル支持部材7(三次元形状基材支持部材)と、プラズマ遮蔽板8とを備えている。   FIG. 1 shows a three-dimensional plasma CVD apparatus 1 according to a first embodiment of the present invention, which includes a vacuum chamber 2, a gas supply pipe 3 for supplying a source gas into the vacuum chamber 2, and a vacuum chamber. An exhaust pipe 4 that exhausts the gas in the vacuum chamber 2 to maintain the inside of the vacuum chamber 2 at a predetermined pressure, and a pair of high-frequency waves that are arranged opposite to each other in the vacuum chamber 2 to generate inductively coupled plasma in the vacuum chamber 2 Antenna coils 5, 5, a power supply circuit 6 that applies a high-frequency voltage to the high-frequency antenna coils 5, 5, and a bottle support that supports a plastic bottle S (base material) in the plasma generated by the high-frequency antenna coils 5, 5 A member 7 (three-dimensional shape substrate support member) and a plasma shielding plate 8 are provided.

真空チャンバー2は、例えば直径300〜500mm、高さ300mmの円筒状を呈しており、金属、例えばステンレス鋼からなり、接地されている。ガス供給管3は、真空チャンバー2に付設した原料容器、若しくは、原料ガスタンクから真空チャンバー2へメタンガスなどの原料ガスをそのまま、或いは水素や窒素などのキャリアガスと混合して導入する原料ガス供給系を構成するものであり、その管構成は適宜のものであってよい。図示実施例では、ガス供給管3は、対の高周波アンテナコイル5,5の軸方向一方側に設けられており、その反対側に排気管4が設けられている。排気管4は真空ポンプに接続されており、真空チャンバー2内を真空吸引することにより、成膜中にチャンバー内圧力を0.05Pa〜5Pa程度の真空度とすることができるようになっている。   The vacuum chamber 2 has, for example, a cylindrical shape with a diameter of 300 to 500 mm and a height of 300 mm, is made of a metal such as stainless steel, and is grounded. The gas supply pipe 3 is a raw material container attached to the vacuum chamber 2 or a raw material gas supply system for introducing a raw material gas such as methane gas from the raw material gas tank into the vacuum chamber 2 as it is or mixed with a carrier gas such as hydrogen or nitrogen. The tube configuration may be appropriate. In the illustrated embodiment, the gas supply pipe 3 is provided on one side in the axial direction of the pair of high-frequency antenna coils 5 and 5, and the exhaust pipe 4 is provided on the opposite side. The exhaust pipe 4 is connected to a vacuum pump. By vacuuming the inside of the vacuum chamber 2, the pressure in the chamber can be set to a degree of vacuum of about 0.05 Pa to 5 Pa during film formation. .

プラズマ励起用の高周波アンテナコイル5は、例えば、外径8mm、内径4mmのアルミパイプや銅パイプを用いて、直径150mm〜250mm、巻き数4〜8となるように螺旋状に曲げ加工してなるものとすることができる。パイプを用いることにより、その内部に冷媒を流通させて、コイル5の冷却を行うことができる。   The plasma excitation high-frequency antenna coil 5 is formed by, for example, using an aluminum pipe or copper pipe having an outer diameter of 8 mm and an inner diameter of 4 mm and bending it in a spiral shape so as to have a diameter of 150 mm to 250 mm and a winding number of 4 to 8. Can be. By using the pipe, it is possible to cool the coil 5 by circulating a refrigerant through the pipe.

対の高周波アンテナコイル5,5は、プラスチックボトルSをその間に投入できるように離間して対向配置されている。この対のコイル5,5の離間距離は適宜のものであってよい。この対の高周波アンテナコイル5,5の両外側にプラズマ遮蔽板8を配設している。このプラズマ遮蔽板8は、例えば、SUS製の板材やメッシュグリッド電極などからなり、高周波エネルギーによって発生するプラズマを対のアンテナコイル5,5内に閉じこめてプラズマ密度の一層の向上を図っている。   The pair of high frequency antenna coils 5 and 5 are arranged to face each other so that the plastic bottle S can be inserted therebetween. The separation distance between the pair of coils 5 and 5 may be appropriate. Plasma shielding plates 8 are disposed on both outer sides of the pair of high frequency antenna coils 5 and 5. The plasma shielding plate 8 is made of, for example, a SUS plate material or a mesh grid electrode. The plasma generated by high frequency energy is confined in the pair of antenna coils 5 and 5 to further improve the plasma density.

電源回路6は、周波数4MHzの高周波電源装置10と、高周波アンテナコイル5,5にスパッタのためのバイアス電圧を印加するための直流電源装置11と、インピーダンス整合回路12とを備えている。対の高周波アンテナコイル5,5は直列に接続され、これら高周波アンテナコイル5,5が、インピーダンス整合回路12を介して高周波電源装置10に接続されているとともに、コイル5をスパッタするときには直流電源装置11に接続されている。すなわち、本実施形態の装置は、CVD法による薄膜の気相成長と同時に、コイル材料をスパッタさせて基材表面に堆積させることができるようになっている。高周波電源装置10と直流電源装置11との相互干渉を避ける為に、直流電源装置11には、コンデンサ13とインダクター14とで構成される低域フィルター(LPF)を直列に接続してある。直流電源装置11としては、例えば、0V〜−1000Vまで可変の安定化電源を用いることができる。   The power supply circuit 6 includes a high frequency power supply device 10 having a frequency of 4 MHz, a DC power supply device 11 for applying a bias voltage for sputtering to the high frequency antenna coils 5 and 5, and an impedance matching circuit 12. The pair of high frequency antenna coils 5, 5 are connected in series, and these high frequency antenna coils 5, 5 are connected to the high frequency power supply device 10 via the impedance matching circuit 12, and when the coil 5 is sputtered, a DC power supply device 11 is connected. That is, the apparatus of this embodiment can deposit the coil material on the substrate surface by sputtering simultaneously with the vapor phase growth of the thin film by the CVD method. In order to avoid mutual interference between the high-frequency power supply device 10 and the DC power supply device 11, a low-pass filter (LPF) composed of a capacitor 13 and an inductor 14 is connected to the DC power supply device 11 in series. As the DC power supply device 11, for example, a stabilized power supply that is variable from 0 V to −1000 V can be used.

本実施形態の配線接続例によれば、高周波電源装置10から各高周波アンテナコイル5,5に供給される高周波電力の位相が同位相であるため、各高周波アンテナコイル5,5に高周波電力を供給することにより生じる磁力線の向きは、同時点においては軸方向に同方向となる。また、直流電源装置11により印加されるバイアス電圧も、各高周波アンテナコイル5に同じ方向に印加されている。   According to the wiring connection example of the present embodiment, the phase of the high-frequency power supplied from the high-frequency power supply device 10 to the high-frequency antenna coils 5 and 5 is the same, so the high-frequency power is supplied to the high-frequency antenna coils 5 and 5. The direction of the lines of magnetic force generated by doing so is the same in the axial direction at the same point. The bias voltage applied by the DC power supply device 11 is also applied to each high-frequency antenna coil 5 in the same direction.

前記ボトル支持部材7は、例えばステンレス鋼からなるロッド状部材からなり、接地されていて、プラスチックボトルSを対の高周波アンテナコイル5,5の間の空間に投入し及び該空間から離脱させるように流体圧シリンダなどの適宜の駆動装置によって往復動可能に構成されている。プラスチックボトルSを離脱させる方法は適宜のものであってよく、例えば、図示例では、真空チャンバー2の中央部に基材投入室2aを設け、この基材投入室2aに投入されたプラスチックボトルSを支持して対の高周波アンテナコイル5,5の間の空間に投入し得るように支持部材7を構成できる。なお、基材投入室2aにプラズマが逃げることを防止するため、基材投入室2aと真空チャンバー内とをプラズマ遮蔽格子などで仕切ってもよい。   The bottle support member 7 is made of, for example, a rod-shaped member made of stainless steel, and is grounded so that the plastic bottle S is inserted into and removed from the space between the pair of high frequency antenna coils 5 and 5. It is configured to be able to reciprocate by an appropriate drive device such as a fluid pressure cylinder. The method for removing the plastic bottle S may be appropriate. For example, in the illustrated example, a base material input chamber 2a is provided in the center of the vacuum chamber 2, and the plastic bottle S input into the base material input chamber 2a is provided. The supporting member 7 can be configured so that it can be inserted into the space between the pair of high-frequency antenna coils 5 and 5. In order to prevent the plasma from escaping to the base material input chamber 2a, the base material input chamber 2a and the inside of the vacuum chamber may be partitioned by a plasma shielding grid or the like.

上記実施形態の装置を用いて高周波プラズマCVD法によりプラスチックボトルSの表面に薄膜を成膜するには、真空チャンバー2内を排気した後、真空チャンバー2内にメタンガスを導入してそのガス圧力を所定圧力、例えば0.8Paとし、電源回路6により所定の高周波電力、例えば150Wの高周波電力を高周波アンテナコイル5,5に供給する。すると、真空チャンバー2内に生じる高周波エネルギーによりメタンガスの放電が始まり、発生したプラズマは、対の高周波アンテナコイル5,5内にほぼ完全に閉じこめられて、例えば1012/cm3台の高密度となって、明るく発光する。プラズマが安定した後、支持部材7を駆動してプラスチックボトルSを対の高周波アンテナコイル5,5の間の空間に投入すると、プラスチックボトルSは、対の高周波アンテナコイル5,5の間の空間の均一かつ高密度のプラズマに曝されるので、ボトルSの表面全体にわたって高速かつ均一にプラズマCVD法による薄膜の気相成長が行われる。また、プラズマが安定した後にプラスチックボトルSを投入できるので、より均質な薄膜形成を行うことができる。 In order to form a thin film on the surface of the plastic bottle S by the high frequency plasma CVD method using the apparatus of the above embodiment, after evacuating the vacuum chamber 2, methane gas is introduced into the vacuum chamber 2 and the gas pressure is adjusted. The power supply circuit 6 supplies a predetermined high-frequency power, for example, 150 W of high-frequency power to the high-frequency antenna coils 5 and 5 at a predetermined pressure, for example 0.8 Pa. Then, the discharge of methane gas starts by the high frequency energy generated in the vacuum chamber 2, and the generated plasma is almost completely confined in the pair of high frequency antenna coils 5 and 5, for example, with a high density of 10 12 / cm 3. Become brighter. After the plasma is stabilized, when the support member 7 is driven to put the plastic bottle S into the space between the pair of high frequency antenna coils 5, 5, the plastic bottle S is placed in the space between the pair of high frequency antenna coils 5, 5. Thus, the thin film is vapor-phase grown by the plasma CVD method at high speed and uniformly over the entire surface of the bottle S. Further, since the plastic bottle S can be charged after the plasma is stabilized, a more uniform thin film can be formed.

図2は本発明の第2実施形態に係る三次元高周波プラズマCVD装置1を示しており、上記第1実施形態と同様の構成については同符号を付して詳細説明を省略し、異なる構成、作用効果について説明する。   FIG. 2 shows a three-dimensional high-frequency plasma CVD apparatus 1 according to the second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and different configurations are provided. The effect will be described.

本実施形態では、各アンテナコイル5の電源配線を変更することによって、同時点において磁力線の向きが逆方向となるように高周波電源装置10による高周波電力が各高周波アンテナコイルに供給されるとともに、直流電源装置11によるバイアス電圧は逆方向に各高周波アンテナコイルに印加されるようにしている。かかる構成によれば、対のアンテナコイル5,5の間の空間では、その両側のアンテナコイル5,5からの高周波エネルギーが作用して、コイル径よりも大きく広がるようにプラズマが励起される。したがって、より大きな基材Sの三次元表面に対してプラズマCVD法による薄膜成長を均一かつ高速に行うことができる。   In the present embodiment, by changing the power supply wiring of each antenna coil 5, high-frequency power from the high-frequency power supply device 10 is supplied to each high-frequency antenna coil so that the direction of the magnetic lines of force is reversed at the same point, and direct current The bias voltage by the power supply device 11 is applied to each high-frequency antenna coil in the reverse direction. According to such a configuration, in the space between the pair of antenna coils 5 and 5, the high frequency energy from the antenna coils 5 and 5 on both sides thereof acts to excite plasma so as to spread larger than the coil diameter. Therefore, thin film growth by the plasma CVD method can be performed uniformly and at high speed on the three-dimensional surface of the larger substrate S.

また、本実施形態では、ガス供給管3を、真空チャンバー2の周方向複数箇所に設けて、周方向複数箇所から均一に原料ガスを真空チャンバー2内に導入し得るようにしている。   In the present embodiment, the gas supply pipes 3 are provided at a plurality of locations in the circumferential direction of the vacuum chamber 2 so that the source gas can be uniformly introduced into the vacuum chamber 2 from the plurality of locations in the circumferential direction.

図3は、本発明の第3実施形態に係る三次元高周波プラズマCVD装置1を示しており、本実施形態では、真空チャンバー2内の対の高周波アンテナコイル5,5の間に、プラスチックボトルSを囲む多孔性電極14を配設し、この電極14をイオンエネルギー制御用電源15に接続しており、多孔性電極14に高周波電圧乃至パルス電圧を印加し得るように構成している。なお、その他の構成は上記第1実施形態と同様であるので詳細説明を省略する。また、図3においては、高周波アンテナコイル5の電源回路は省略している。   FIG. 3 shows a three-dimensional high-frequency plasma CVD apparatus 1 according to the third embodiment of the present invention. In this embodiment, a plastic bottle S is interposed between a pair of high-frequency antenna coils 5 and 5 in the vacuum chamber 2. The electrode 14 is connected to an ion energy control power source 15 so that a high frequency voltage or a pulse voltage can be applied to the porous electrode 14. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted. In FIG. 3, the power supply circuit of the high frequency antenna coil 5 is omitted.

上記多孔性電極14は、例えば開口率50%以上のメッシュ状の金属製電極からなり、プラスチックボトルSの表面形状に合致した形状を呈していてもよく、プラスチックボトルSを収容し得る大きさの円筒形状を呈していてもよい。イオンエネルギー制御用電源15は、数kHz〜数MHzの高周波電力を電極14に供給するものであり、基材Sの表面形状に応じてプラズマ中のイオンエネルギーを制御し、成膜される薄膜の一層の高品質化を図ることが可能となる。   The porous electrode 14 is made of, for example, a mesh-like metal electrode having an opening ratio of 50% or more, may have a shape that matches the surface shape of the plastic bottle S, and has a size that can accommodate the plastic bottle S. It may have a cylindrical shape. The ion energy control power supply 15 supplies a high frequency power of several kHz to several MHz to the electrode 14, controls the ion energy in the plasma according to the surface shape of the substrate S, and forms a thin film to be formed. It becomes possible to further improve the quality.

図4は本発明の第4実施形態に係る三次元高周波プラズマCVD装置1を示しており、本実施形態では、3対の高周波アンテナコイル5,5が3軸上に直交配置されている。このように、基材Sを取り囲むようにそれぞれの対の高周波アンテナコイル5,5を基材Sに対して異なる向きに対向させることにより、一層のプラズマ密度の向上と、プラズマの三次元的な均一性の向上とが図られる。   FIG. 4 shows a three-dimensional high-frequency plasma CVD apparatus 1 according to a fourth embodiment of the present invention. In this embodiment, three pairs of high-frequency antenna coils 5 and 5 are arranged orthogonally on three axes. In this way, by making each pair of high-frequency antenna coils 5 and 5 face each other in different directions so as to surround the base material S, the plasma density can be further improved and the three-dimensional plasma can be improved. The uniformity is improved.

本発明は上記実施形態に限定されるものではなく、適宜設計変更できる。例えば、上記各実施形態において、真空チャンバーの適宜の部位に磁石を配設することによって真空チャンバー内の磁場を制御し、プラズマ密度をより一層向上させるこも可能である。さらに、高周波アンテナコイルは一つであってもよく、その場合、高周波アンテナコイルの内部にその軸方向側方から基材を投入することで、高周波アンテナコイル内部に生じた高密度プラズマ内で基材表面に高速に薄膜の気相成長を行わせることができる。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, in each of the above embodiments, it is possible to further improve the plasma density by controlling the magnetic field in the vacuum chamber by disposing a magnet at an appropriate part of the vacuum chamber. Further, there may be only one high-frequency antenna coil. In that case, the base material is introduced into the inside of the high-frequency antenna coil from the side in the axial direction so that the base is formed in the high-density plasma generated inside the high-frequency antenna coil. It is possible to perform vapor phase growth of a thin film on the material surface at high speed.

本発明は、金属やガラス製の各種立体構造物に高速に高品質な薄膜を形成できるとともに、ビールや炭酸飲料用プラスチックボトルや、薬剤容器、並びに、今後莫大な需要が期待されているバイオ新薬用容器のバリア性を飛躍的に向上し、また、加工性に優れたプラスチックその他適宜の材料からなる容器の外表面の耐湿性、耐水性を確保できる。   The present invention is capable of forming high-quality thin films at high speed on various three-dimensional structures made of metal and glass, as well as plastic bottles for beer and carbonated beverages, drug containers, and bio-new products that are expected to be in great demand in the future. The barrier property of the medicinal container can be remarkably improved, and the moisture resistance and water resistance of the outer surface of the container made of plastic or other suitable material with excellent processability can be secured.

本発明の第1実施形態に係る三次元高周波プラズマCVD装置の全体簡略断面図である。1 is an overall simplified cross-sectional view of a three-dimensional high-frequency plasma CVD apparatus according to a first embodiment of the present invention. 本発明の第2実施形態に係る三次元高周波プラズマCVD装置の全体簡略断面図である。It is the whole simplified sectional drawing of the three-dimensional high frequency plasma CVD apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る三次元高周波プラズマCVD装置の全体簡略断面図である。It is the whole simplified sectional drawing of the three-dimensional high frequency plasma CVD apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る三次元高周波プラズマCVD装置の全体簡略断面図である。It is the whole simplified sectional drawing of the three-dimensional high frequency plasma CVD apparatus which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 三次元高周波プラズマCVD装置
2 真空チャンバー
3 原料ガス供給管
4 排気管
5 高周波アンテナコイル
6 電源回路
7 基材支持部材
8 プラズマ遮蔽板
10 高周波電源装置
11 直流電源装置
DESCRIPTION OF SYMBOLS 1 Three-dimensional high frequency plasma CVD apparatus 2 Vacuum chamber 3 Source gas supply pipe 4 Exhaust pipe 5 High frequency antenna coil 6 Power supply circuit 7 Base material support member 8 Plasma shielding board 10 High frequency power supply apparatus 11 DC power supply apparatus

Claims (13)

真空チャンバーと、真空チャンバー内に原料ガスを供給するガス供給管と、真空チャンバー内を所定圧力に保持すべく真空チャンバー内のガスを排気する排気管と、真空チャンバー内にプラズマを発生させるべく真空チャンバー内に配置される高周波アンテナコイルと、該高周波アンテナコイルに高周波電力乃至パルス電力を印加する電源回路と、高周波アンテナコイルによって発生されたプラズマ中に表面が三次元形状を有する基材を支持する三次元形状基材支持部材とを備えるプラズマCVD装置において、
前記高周波アンテナコイルは少なくとも一対設けられ、該対の高周波アンテナコイルが真空チャンバー内で離間して対向配置され、前記支持部材によって支持される基材は対の高周波アンテナコイルの間の空間に投入されることを特徴とする三次元高周波プラズマCVD装置。
A vacuum chamber, a gas supply pipe for supplying a source gas into the vacuum chamber, an exhaust pipe for exhausting the gas in the vacuum chamber to keep the inside of the vacuum chamber at a predetermined pressure, and a vacuum to generate plasma in the vacuum chamber A high frequency antenna coil disposed in the chamber, a power supply circuit for applying high frequency power or pulse power to the high frequency antenna coil, and a substrate having a three-dimensional surface in plasma generated by the high frequency antenna coil In a plasma CVD apparatus comprising a three-dimensional shape substrate support member,
At least one pair of the high-frequency antenna coils is provided, the pair of high-frequency antenna coils are arranged to be opposed to each other in a vacuum chamber, and the base material supported by the support member is put into a space between the pair of high-frequency antenna coils. A three-dimensional high-frequency plasma CVD apparatus.
請求項1において、基材を囲む多孔性電極と、該多孔性電極に高周波電圧乃至パルス電圧を印加するイオンエネルギー制御用電源とをさらに備えることを特徴とする三次元高周波プラズマCVD装置。   2. The three-dimensional high-frequency plasma CVD apparatus according to claim 1, further comprising a porous electrode surrounding the substrate and an ion energy control power source for applying a high-frequency voltage or a pulse voltage to the porous electrode. 請求項1又は2において、基材を対の高周波アンテナコイルの間の空間に投入し及び該空間から離脱させるように前記支持部材は往復動可能であることを特徴とする三次元高周波プラズマCVD装置。   3. The three-dimensional high-frequency plasma CVD apparatus according to claim 1, wherein the support member is capable of reciprocating so that the base material is inserted into and separated from the space between the pair of high-frequency antenna coils. . 請求項1,2又は3において、同時点において磁力線の向きが同方向となるように前記高周波電力乃至パルス電力が各高周波アンテナコイルに印加されることを特徴とする三次元高周波プラズマCVD装置。   4. The three-dimensional high-frequency plasma CVD apparatus according to claim 1, wherein the high-frequency power or pulse power is applied to each high-frequency antenna coil so that the direction of the lines of magnetic force are the same at the same point. 請求項1,2又は3において、同時点において磁力線の向きが逆方向となるように前記高周波電力乃至パルス電力が各高周波アンテナコイルに印加されることを特徴とする三次元高周波プラズマCVD装置。   4. The three-dimensional high-frequency plasma CVD apparatus according to claim 1, wherein the high-frequency power or pulse power is applied to each high-frequency antenna coil so that the direction of the magnetic lines of force is reversed at the same point. 請求項1〜5のいずれか1項において、高周波アンテナコイルは2対又は3対設けられ、基材を取り囲むようにそれぞれの対の高周波アンテナコイルが基材に対して異なる向きに対向していることを特徴とする三次元高周波プラズマCVD装置。   The high frequency antenna coil according to any one of claims 1 to 5, wherein two or three pairs of high frequency antenna coils are provided, and each pair of the high frequency antenna coils is opposed to the base material in different directions so as to surround the base material. A three-dimensional high-frequency plasma CVD apparatus characterized by that. 原料ガスが導入される真空チャンバー内に少なくとも一対の高周波アンテナコイルを離間して対向配置し、該高周波アンテナコイルに高周波電力乃至パルス電力を供給することにより真空チャンバー内にプラズマを発生させるとともに、対の高周波アンテナコイルの間に表面が三次元形状を有する基材を投入して、対の高周波アンテナコイルの間に生じるプラズマ中で基材の三次元表面に薄膜を気相成長させる三次元高周波プラズマCVD法。   At least a pair of high frequency antenna coils are spaced apart from each other in the vacuum chamber into which the source gas is introduced, and plasma is generated in the vacuum chamber by supplying high frequency power or pulse power to the high frequency antenna coils. A three-dimensional high-frequency plasma in which a substrate having a three-dimensional surface is inserted between the high-frequency antenna coils and a thin film is vapor-phase grown on the three-dimensional surface of the substrate in the plasma generated between the pair of high-frequency antenna coils CVD method. 請求項7において、基材を多孔性電極によって囲み、この多孔性電極に高周波電圧乃至パルス電圧を印加することにより、基材表面に関与するプラズマ中のイオンエネルギーを制御することを特徴とする三次元高周波プラズマCVD法。   8. The tertiary according to claim 7, wherein ion energy in plasma related to the surface of the substrate is controlled by surrounding the substrate with a porous electrode and applying a high frequency voltage or a pulse voltage to the porous electrode. Original high-frequency plasma CVD method. 請求項7又は8において、同時点において磁力線の向きが同方向となるように前記高周波電力乃至パルス電力を各高周波アンテナコイルに供給することを特徴とする三次元高周波プラズマCVD法。   9. The three-dimensional high-frequency plasma CVD method according to claim 7, wherein the high-frequency power or pulse power is supplied to each high-frequency antenna coil so that the direction of the magnetic lines of force is the same at the same point. 請求項7又は8において、同時点において磁力線の向きが逆方向となるように前記高周波電力乃至パルス電力を各高周波アンテナコイルに印加することを特徴とする三次元高周波プラズマCVD法。   9. The three-dimensional high-frequency plasma CVD method according to claim 7, wherein the high-frequency power or pulse power is applied to each high-frequency antenna coil so that the direction of the magnetic lines of force is reversed at the same point. 請求項7〜10のいずれか1項において、高周波アンテナコイルは2対又は3対設けられ、基材を取り囲むようにそれぞれの対の高周波アンテナコイルを基材に対して異なる向きに対向させ、これら高周波アンテナコイルに高周波電力乃至パルス電力を印加することにより生じるプラズマ中で基材表面に薄膜を気相成長させることを特徴とする三次元高周波プラズマCVD法。   The high-frequency antenna coil according to any one of claims 7 to 10, wherein two or three pairs of high-frequency antenna coils are provided, and each pair of high-frequency antenna coils is opposed to the base material in different directions so as to surround the base material. A three-dimensional high-frequency plasma CVD method characterized in that a thin film is vapor-grown on a substrate surface in plasma generated by applying high-frequency power or pulse power to a high-frequency antenna coil. 原料ガスが導入される真空チャンバー内に高周波アンテナコイルを配置し、該高周波アンテナコイルに高周波電力乃至パルス電力を供給することにより真空チャンバー内にプラズマを発生させるとともに、高周波アンテナコイルの内部に表面が三次元形状を有する基材を投入して、高周波アンテナコイル内部に生じるプラズマ中で基材の三次元表面に薄膜を気相成長させる三次元高周波プラズマCVD法。   A high-frequency antenna coil is disposed in a vacuum chamber into which a source gas is introduced, and plasma is generated in the vacuum chamber by supplying high-frequency power or pulse power to the high-frequency antenna coil, and a surface is formed inside the high-frequency antenna coil. A three-dimensional high-frequency plasma CVD method in which a base material having a three-dimensional shape is introduced and a thin film is vapor-phase grown on the three-dimensional surface of the base material in plasma generated inside the high-frequency antenna coil. 請求項7〜12のいずれか1項に記載の三次元高周波プラズマCVD法によって表面に薄膜が成膜されてなるプラスチック容器。   A plastic container having a thin film formed on the surface thereof by the three-dimensional high-frequency plasma CVD method according to any one of claims 7 to 12.
JP2003406592A 2003-12-04 2003-12-04 Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method Pending JP2005163149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406592A JP2005163149A (en) 2003-12-04 2003-12-04 Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406592A JP2005163149A (en) 2003-12-04 2003-12-04 Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method

Publications (1)

Publication Number Publication Date
JP2005163149A true JP2005163149A (en) 2005-06-23

Family

ID=34728894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406592A Pending JP2005163149A (en) 2003-12-04 2003-12-04 Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method

Country Status (1)

Country Link
JP (1) JP2005163149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928970B1 (en) * 2007-08-06 2009-11-26 재단법인 포항산업과학연구원 Manufacturing method of diamond like carbon films doped with the third elements
WO2017005553A1 (en) * 2015-07-03 2017-01-12 Tetra Laval Holdings & Finance S.A. Barrier film or sheet and laminated packaging material comprising the film or sheet and packaging container made therefrom

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928970B1 (en) * 2007-08-06 2009-11-26 재단법인 포항산업과학연구원 Manufacturing method of diamond like carbon films doped with the third elements
WO2017005553A1 (en) * 2015-07-03 2017-01-12 Tetra Laval Holdings & Finance S.A. Barrier film or sheet and laminated packaging material comprising the film or sheet and packaging container made therefrom
CN107708995A (en) * 2015-07-03 2018-02-16 利乐拉瓦尔集团及财务有限公司 Obstruct membrane or piece and the laminated packaging material containing the film or piece and the packing container being made from it
JP2018528903A (en) * 2015-07-03 2018-10-04 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Barrier film or sheet, laminated packaging material comprising film or sheet, and packaging container made therefrom
US11094506B2 (en) * 2015-07-03 2021-08-17 Tetra Laval Holdings & Finance S.A. Barrier film or sheet and laminated packaging material comprising the film or sheet and packaging container made therefrom

Similar Documents

Publication Publication Date Title
US5691007A (en) Process for depositing barrier film on three-dimensional articles
TWI293855B (en) Plasma reactor coil magnet system
US5648701A (en) Electrode designs for high pressure magnetically assisted inductively coupled plasmas
US8303714B2 (en) Continuous film forming apparatus
JP2023030090A (en) Inductive coil structure and inductively coupled plasma generator
US5521351A (en) Method and apparatus for plasma surface treatment of the interior of hollow forms
US20130209704A1 (en) Power lance and plasma-enhanced coating with high frequency coupling
CN111247617B (en) Linear high-energy radio frequency plasma ion source
KR101454569B1 (en) A microwave plasma reactor for manufacturing synthetic diamond material
US5766362A (en) Apparatus for depositing barrier film on three-dimensional articles
JP2001028298A (en) Novel plasma source for material treatment
US20070224364A1 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
NZ197232A (en) Vacuum plating a substrate using rf field and dc ion accelerating potential
JP2004501277A (en) Induction plasma loop enhances magnetron sputtering
JP3069700B1 (en) Discharge vessel and plasma radical generator provided with the discharge vessel
JP6311963B2 (en) Film formation method and magnetic recording medium manufacturing method
JPWO2003085165A1 (en) Plasma CVD film forming apparatus and CVD film coated plastic container manufacturing method
CA2401220C (en) High frequency plasma beam source
JP3181473B2 (en) Plasma processing equipment
JP2006286536A (en) Plasma generation method, induction coupling type plasma source, and plasma treatment device
KR101172744B1 (en) Apparatus and method for preparing DLC coating on the inner surface of plastic container
JP2005163149A (en) Three-dimensional high-frequency plasma cvd apparatus and three-dimensional high-frequency plasma cvd method
JP3197739B2 (en) Plasma processing equipment
JP2021098876A (en) Plasma treatment apparatus
JP2005163151A (en) Three-dimensional sputter film deposition apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020