JP2005162595A - Barium titanate powder and method for manufacturing the same - Google Patents
Barium titanate powder and method for manufacturing the same Download PDFInfo
- Publication number
- JP2005162595A JP2005162595A JP2004126386A JP2004126386A JP2005162595A JP 2005162595 A JP2005162595 A JP 2005162595A JP 2004126386 A JP2004126386 A JP 2004126386A JP 2004126386 A JP2004126386 A JP 2004126386A JP 2005162595 A JP2005162595 A JP 2005162595A
- Authority
- JP
- Japan
- Prior art keywords
- barium titanate
- powder
- temperature
- mixture
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、チタン酸バリウム粉末およびその製造方法に関する。 The present invention relates to a barium titanate powder and a method for producing the same.
チタン酸バリウムは高い誘電率を有するので、積層コンデンサに用いられている。 Since barium titanate has a high dielectric constant, it is used in multilayer capacitors.
チタン酸バリウムを用いた積層コンデンサは、チタン酸バリウムからなる誘電体層と、その誘電体層に電圧を印加するための電極層が交互に積層されてなる。そして、積層コンデンサは、チタン酸バリウム粉末の層と電極層の材料の粉末層を積層して焼結して製造されている。この電極層として、高価な白金族の金属が用いられているが、コスト削減のためにニッケルなどの安価な金属への変更が望まれている。しかし、ニッケルは融点が低いため、従来の焼結温度の1400℃程度よりも低い1200℃程度以下の温度で焼結させる必要があり、低温焼結性に優れ、比較的低い1200℃以下の温度で焼結しても理論密度の95%以上の高い密度を与えるチタン酸バリウム粉末が求められていた。 A multilayer capacitor using barium titanate is formed by alternately laminating dielectric layers made of barium titanate and electrode layers for applying a voltage to the dielectric layer. The multilayer capacitor is manufactured by laminating and sintering a barium titanate powder layer and a powder layer of an electrode layer material. An expensive platinum group metal is used as the electrode layer, but a change to an inexpensive metal such as nickel is desired in order to reduce costs. However, since nickel has a low melting point, it is necessary to sinter at a temperature of about 1200 ° C. or lower, which is lower than the conventional sintering temperature of about 1400 ° C., which is excellent in low-temperature sinterability and a relatively low temperature of 1200 ° C. or lower. There has been a demand for a barium titanate powder that gives a high density of 95% or more of the theoretical density even when sintered at a low temperature.
チタン酸バリウム粉末としては、平均粒径が0.88μm、BET比表面積が2.2m2/g(BET比表面積から算出されるBET比表面積相当径は0.45μmとなり、平均粒径をBET比表面積相当径で除した値は2.0となる。)、c/aが1.0105であるチタン酸バリウム粉末が知られており、その製造方法として、四塩化チタン水溶液と塩化バリウム水溶液の混合物をシュウ酸水溶液に滴下し、得られた沈澱を取り出して乾燥後、空気雰囲気中において1060℃で保持して焼成することによる製造方法が提案されている(例えば、特許文献1参照。)が、得られたチタン酸バリウムの低温焼結性は十分ではなかった。 The barium titanate powder has an average particle diameter of 0.88 μm and a BET specific surface area of 2.2 m 2 / g (the BET specific surface area equivalent diameter calculated from the BET specific surface area is 0.45 μm. The value divided by the equivalent surface area diameter is 2.0.) Barium titanate powder having a c / a of 1.0105 is known, and as its production method, a mixture of an aqueous titanium tetrachloride solution and an aqueous barium chloride solution is known. Has been proposed in which a precipitate is taken out and dried, and then dried and held at 1060 ° C. in an air atmosphere and baked (see, for example, Patent Document 1). The obtained barium titanate has not been sufficiently sintered at low temperature.
本発明の目的は、低温焼結性に優れたチタン酸バリウム粉末およびその製造方法を提供することである。 An object of the present invention is to provide a barium titanate powder excellent in low-temperature sinterability and a method for producing the same.
本発明者らは、低温焼結性に優れたチタン酸バリウム粉末およびその製造方法について鋭意検討した結果、ペロブスカイト構造のa軸とc軸の長さ比c/aが一定の範囲であり、かつ、BET比表面積から算出されるBET比表面積相当径を求め、平均粒径をBET比表面積相当径で除した値が一定の範囲であるチタン酸バリウム粉末が、低温焼結性に優れることを見出した。さらに本発明者らは、チタン化合物とバリウム化合物を含む混合物であって、焼成によりチタン酸バリウムを生ずる混合物をチタン酸バリウムが生成する温度以上で焼成することによるチタン酸バリウムの製造方法において、該混合物の焼成を、一定の温度範囲のいずれかの温度において、塩素、臭素およびヨウ素からなる群より選ばれる1種以上のハロゲンを含有する雰囲気に曝露し、その後チタン酸バリウムが生成する温度以上においては、塩素、臭素、ヨウ素およびフッ素のいずれをも実質的に含まない雰囲気中で該混合物を加熱して行うことにより、低温焼結性に優れるチタン酸バリウム粉末が製造できることを見出し、本発明を完成するに至った。 As a result of intensive studies on the barium titanate powder excellent in low-temperature sinterability and the production method thereof, the length ratio c / a of the a-axis to the c-axis of the perovskite structure is within a certain range, and The BET specific surface area equivalent diameter calculated from the BET specific surface area was determined, and the barium titanate powder having a value obtained by dividing the average particle diameter by the BET specific surface area equivalent diameter was found to be excellent in low-temperature sinterability. It was. Further, the inventors of the present invention provide a method for producing barium titanate, comprising a mixture containing a titanium compound and a barium compound, wherein the mixture that produces barium titanate by firing is fired at a temperature higher than that at which barium titanate is produced. Baking the mixture is exposed to an atmosphere containing one or more halogens selected from the group consisting of chlorine, bromine and iodine at any temperature within a certain temperature range, and then at a temperature above that at which barium titanate is formed. Found that a barium titanate powder excellent in low-temperature sinterability can be produced by heating the mixture in an atmosphere substantially free of any of chlorine, bromine, iodine and fluorine. It came to be completed.
すなわち本発明は、ペロブスカイト構造のa軸とc軸の長さ比c/aが1.008以上であり、平均粒径をBET比表面積から算出されるBET比表面積相当径で除した値が1以上1.5以下であることを特徴とするチタン酸バリウム粉末を提供する。また本発明は、チタン化合物とバリウム化合物を含む混合物であって、焼成によりチタン酸バリウムを与える混合物をチタン酸バリウムが生成する温度以上で焼成することによるチタン酸バリウムの製造方法において、該混合物の焼成を、200℃以上であってチタン酸バリウムが生成する温度未満の温度範囲において、塩素、臭素およびヨウ素からなる群より選ばれる1種以上のハロゲンを含有する雰囲気に曝露し、その後チタン酸バリウムが生成する温度以上においては、塩素、臭素、ヨウ素およびフッ素のいずれをも実質的に含まない雰囲気中で該混合物を加熱して行うことを特徴とするチタン酸バリウム粉末の製造方法を提供する。 That is, according to the present invention, the length ratio c / a between the a-axis and the c-axis of the perovskite structure is 1.008 or more, and the value obtained by dividing the average particle diameter by the BET specific surface area equivalent diameter calculated from the BET specific surface area is 1. Provided is a barium titanate powder characterized by being 1.5 or less. Further, the present invention is a mixture containing a titanium compound and a barium compound, wherein the mixture that gives barium titanate by firing is fired at a temperature higher than the temperature at which barium titanate is produced. Baking is exposed to an atmosphere containing one or more halogens selected from the group consisting of chlorine, bromine and iodine in a temperature range of 200 ° C. or higher and lower than the temperature at which barium titanate is formed, and then barium titanate The method for producing barium titanate powder is characterized in that the mixture is heated in an atmosphere substantially free of any of chlorine, bromine, iodine and fluorine at a temperature higher than the temperature at which is produced.
本発明のチタン酸バリウム粉末は、低温焼結性に優れているので、電極層にニッケルなどの融点の低い安価な金属を用いた積層コンデンサを製造することができる。そして、本発明の製造方法によれば、低温焼結性に優れた本発明のチタン酸バリウム粉末を製造することができるので、本発明は工業的に極めて有用である。 Since the barium titanate powder of the present invention is excellent in low-temperature sinterability, it is possible to produce a multilayer capacitor using an inexpensive metal having a low melting point such as nickel for the electrode layer. And according to the manufacturing method of this invention, since the barium titanate powder of this invention excellent in low-temperature sintering property can be manufactured, this invention is very useful industrially.
本発明のチタン酸バリウム粉末は、ペロブスカイト構造のa軸とc軸の長さ比c/aが1.008以上であり、粉末のBET比表面積から算出されるBET比表面積相当径で平均粒径を除した値(以下、「BET径比」ということがある。)が1以上1.5以下である。ここで、BET比表面積はBET1点法により測定することができ、平均粒径は、レーザー回折散乱法粒度分布測定装置等により測定することができる。そして、BET径比の値は、粉末を構成する粒子が完全に均一な粒径の球形であった場合に理論上1となり、粒子同士の凝集が多くなると大きくなる。また、c/aの値は結晶性が高い(結晶に欠陥が少ない)ほど高くなる。このようなc/aが1.008以上であり、かつBET径比が1.5以下の場合に、チタン酸バリウム粉末は低温での焼結性に優れる粉末となることを本発明者らは見出したのである。BET径比は1.3以下が好ましく、1.2以下がさらに好ましい。また、低温焼結性に優れる粉末となるので、c/aの値は、1.0090以上が好ましく、1.0095以上がさらに好ましい。なお、c/aの上限は1.011程度である。 In the barium titanate powder of the present invention, the length ratio c / a between the a-axis and the c-axis of the perovskite structure is 1.008 or more, the average particle diameter is equivalent to the BET specific surface area equivalent diameter calculated from the BET specific surface area of the powder. The value obtained by dividing (hereinafter also referred to as “BET diameter ratio”) is 1 or more and 1.5 or less. Here, the BET specific surface area can be measured by a BET one-point method, and the average particle diameter can be measured by a laser diffraction scattering method particle size distribution measuring device or the like. The value of the BET diameter ratio is theoretically 1 when the particles constituting the powder are spheres having a completely uniform particle diameter, and increases as the aggregation of the particles increases. Further, the value of c / a increases as the crystallinity increases (the crystal has fewer defects). The inventors have found that when such c / a is 1.008 or more and the BET diameter ratio is 1.5 or less, the barium titanate powder becomes a powder excellent in sinterability at low temperatures. I found it. The BET diameter ratio is preferably 1.3 or less, and more preferably 1.2 or less. Moreover, since it becomes a powder excellent in low-temperature sintering property, the value of c / a is preferably 1.0090 or more, more preferably 1.0095 or more. The upper limit of c / a is about 1.011.
また、平均粒径は0.3μmより小さい方が低温焼結性により優れるので好ましいが、0.05μm未満となると粒子同士の凝集が強くなり、チタン酸バリウム粉末の低温焼結性が低下する傾向がある。 Further, the average particle size is preferably smaller than 0.3 μm because it is excellent in low temperature sinterability, but when it is less than 0.05 μm, the aggregation of particles becomes strong and the low temperature sinterability of the barium titanate powder tends to decrease. There is.
さらに、一つひとつの粒子の密度の平均値が低い場合には、粒子内部に空隙を有しているか、水酸基を有している等の原因により低くなっている可能性があり、低温焼結性が低下する傾向があるので、粒子の平均密度は5.80g/cm3以上であることが好ましく、5.90g/cm3以上であることがより好ましく、5.95g/cm3以上であることがさらに好ましい。粒子の平均密度は、ヘリウム置換型の真密度測定装置や精密ピクノメータにより測定することができる。 Further, when the average value of the density of each particle is low, it may be low due to a void inside the particle or a hydroxyl group, and the low temperature sinterability is low. tends to decrease, preferably has an average density of the particles is 5.80 g / cm 3 or more, more preferably 5.90 g / cm 3 or more, it is 5.95 g / cm 3 or more Further preferred. The average density of the particles can be measured with a helium-substituted true density measuring device or a precision pycnometer.
加えて、チタン酸バリウム粉末の軽装嵩密度と重装嵩密度が高い方が、さらに低温焼結性に優れたチタン酸バリウム粉末となるので、軽装嵩密度が1.4g/cm3以上であり、かつ重装嵩密度が1.8g/cm3以上であるチタン酸バリウム粉末が好ましい。粉末の軽装嵩密度は、粉末を容器に充填し、「粉末質量/粉末体積」により算出され、重装嵩密度は、粉末を容器に充填した後、容器をタッピング(通常は3cm程度の高さから100回程度落下させて行う。)した後の「粉末質量/粉末体積」により算出される。 In addition, the lighter bulk density of the barium titanate powder and the higher bulk density of the barium titanate powder are barium titanate powders that are more excellent in low-temperature sintering, so the lighter bulk density is 1.4 g / cm 3 or more. In addition, barium titanate powder having a bulk density of 1.8 g / cm 3 or more is preferable. The light bulk density of the powder is calculated by “powder mass / powder volume” after filling the powder into the container, and the heavy bulk density is tapped (usually about 3 cm high) after filling the container with the powder. It is calculated by “powder mass / powder volume” after being dropped about 100 times.
次に、本発明の製造方法について詳細に説明する。
ペロブスカイト構造のa軸とc軸の長さ比c/aが1.008以上であり、平均粒径をBET比表面積から算出されるBET比表面積相当径で除した値が1以上1.5以下である本発明のチタン酸バリウム粉末は、チタン化合物とバリウム化合物を含む混合物であって、焼成によりチタン酸バリウムを与える混合物をチタン酸バリウムが生成する温度以上で焼成することによるチタン酸バリウムの製造方法において、該混合物の焼成を、200℃以上でチタン酸バリウムが生成する温度未満の温度範囲において、塩素、臭素およびヨウ素からなる群より選ばれる1種以上のハロゲンを含む雰囲気に曝露し、その後チタン酸バリウムが生成する温度以上においては、塩素、臭素、ヨウ素およびフッ素のいずれをも実質的に含まない雰囲気中で加熱して行うことにより製造することができることを本発明者らは見出した。
Next, the production method of the present invention will be described in detail.
The length ratio c / a between the a-axis and the c-axis of the perovskite structure is 1.008 or more, and the value obtained by dividing the average particle diameter by the BET specific surface area equivalent diameter calculated from the BET specific surface area is 1 or more and 1.5 or less. The barium titanate powder of the present invention is a mixture containing a titanium compound and a barium compound, and is produced by firing a mixture that gives barium titanate by firing at a temperature higher than that at which barium titanate is produced. In the method, the firing of the mixture is exposed to an atmosphere containing one or more halogens selected from the group consisting of chlorine, bromine and iodine in a temperature range above 200 ° C. and below the temperature at which barium titanate is formed, Above the temperature at which barium titanate is formed, it is added in an atmosphere substantially free of chlorine, bromine, iodine and fluorine. That can be produced the present inventors have found by performing with.
本発明の製造方法においては、チタン化合物とバリウム化合物を含む混合物を用いる。チタン化合物、バリウム化合物としては、酸化物、炭酸塩、水酸化物、水酸化物のゲル等を用いることができ、チタン化合物とバリウム化合物の混合物としてチタンとバリウムの複合化合物を用いることもできる。チタン化合物の具体例としては、例えば、二酸化チタン、四塩化チタン中和析出物(水酸化チタンまたは水酸化物のゲル)を挙げることができ、バリウム化合物の具体例としては、炭酸バリウム、水酸化バリウム、酢酸バリウムを挙げることができる。また、チタンとバリウムの複合化合物の具体例としては、例えば、蓚酸チタニルバリウム四水和物等を挙げるころができ、本発明においてはチタン化合物またはバリウム化合物として用いることができる。なお、チタン化合物とバリウム化合物を含む混合物には、得られるチタン酸バリウムの結晶性を向上させるため等の目的で、例えば、ホウ酸塩、アンモニウム塩からなるフラックスを含有させることができる。 In the production method of the present invention, a mixture containing a titanium compound and a barium compound is used. As the titanium compound and barium compound, oxides, carbonates, hydroxides, hydroxide gels, and the like can be used. As a mixture of the titanium compound and barium compound, a composite compound of titanium and barium can also be used. Specific examples of the titanium compound include titanium dioxide and titanium tetrachloride neutralized precipitates (titanium hydroxide or hydroxide gel). Specific examples of the barium compound include barium carbonate, hydroxide. Examples thereof include barium and barium acetate. Specific examples of the composite compound of titanium and barium include, for example, barium titanyl oxalate tetrahydrate. In the present invention, it can be used as a titanium compound or a barium compound. The mixture containing a titanium compound and a barium compound can contain, for example, a flux composed of a borate salt or an ammonium salt for the purpose of improving the crystallinity of the obtained barium titanate.
本発明の製造方法において、チタン化合物とバリウム化合物を含む混合物であって焼成によりチタン酸バリウムを与える混合物は、乾式または湿式の混合によりチタン化合物とバリウム化合物を混合して調製することができる。フラックスを同時に混合することもできる。また、該混合物を焼成前に予め粉砕することができる。混合および粉砕に用いることができる装置としては、工業的に通常用いられるボールミル、振動ミル、ヘンシェルミキサー、バーチカルグラニュレーター、ダイナミックミル等が挙げられる。微粒のチタン酸バリウムを得るためには、該混合物が微粒であることが好ましく、よって粉砕能力を有するボールミル、振動ミル等を用いることが好ましい。 In the production method of the present invention, a mixture containing a titanium compound and a barium compound and giving barium titanate by firing can be prepared by mixing the titanium compound and the barium compound by dry or wet mixing. The flux can be mixed at the same time. The mixture can be pulverized in advance before firing. Examples of apparatuses that can be used for mixing and pulverizing include industrially used ball mills, vibration mills, Henschel mixers, vertical granulators, dynamic mills, and the like. In order to obtain fine barium titanate, the mixture is preferably fine, and therefore, it is preferable to use a ball mill, a vibration mill or the like having a grinding ability.
そして、本発明の製造方法は、チタン化合物とバリウム化合物を含む混合物を該混合物がチタン酸バリウムとなる温度よりも高い温度で焼成することによるチタン酸バリウムの製造方法であり、本発明の製造方法においては、該混合物の焼成は、200℃以上であってチタン酸バリウムが生成する温度未満の温度範囲において該混合物をハロゲンを含有する雰囲気に曝露して行う。本発明の方法においては、200℃以上であってチタン酸バリウムが生成する温度未満の温度範囲において該混合物をハロゲンを含有する雰囲気に曝露すればよく、曝露する時間は通常は1分以上10時間以下であり、該温度範囲において該混合物がハロゲンに曝露されていない時間があってもよい。該混合物をハロゲン含有雰囲気に曝露する温度範囲は、300℃以上800℃以下の温度範囲が好ましく、500℃以上700℃以下の温度範囲がさらに好ましい。 And the manufacturing method of this invention is a manufacturing method of barium titanate by baking the mixture containing a titanium compound and a barium compound at temperature higher than the temperature from which this mixture turns into barium titanate, The manufacturing method of this invention In this case, the mixture is fired by exposing the mixture to an atmosphere containing halogen in a temperature range of 200 ° C. or higher and lower than the temperature at which barium titanate is generated. In the method of the present invention, the mixture may be exposed to a halogen-containing atmosphere in a temperature range of 200 ° C. or higher and lower than the temperature at which barium titanate is formed. The exposure time is usually 1 minute or longer and 10 hours. There may be times when the mixture is not exposed to halogen in the temperature range. The temperature range at which the mixture is exposed to the halogen-containing atmosphere is preferably a temperature range of 300 ° C. or higher and 800 ° C. or lower, and more preferably a temperature range of 500 ° C. or higher and 700 ° C. or lower.
なお、本発明の製造方法において、ハロゲンとは、塩素、臭素およびヨウ素であり、塩素が好ましい。ハロゲンを含有する雰囲気のハロゲンとしては、分子状ハロゲン、ハロゲン化水素、ハロゲン化物の蒸気等が挙げられ、分子状ハロゲンとハロゲン化水素が好ましく、ハロゲン化水素がより好ましく、塩化水素がさらに好ましい。雰囲気中における分子状ハロゲンおよびハロゲン化合物の含有率は、0.5体積%以上50体積%以下が好ましく、より好ましくは1体積%以上30体積%以下、さらに好ましくは3体積%以上20体積%以下である。雰囲気中の分子状ハロゲンおよびハロゲン化合物以外のガスとしては、窒素、酸素、空気、アルゴン、またはそれらの混合ガス等を用いることができる。 In the production method of the present invention, the halogens are chlorine, bromine and iodine, with chlorine being preferred. Examples of the halogen in the atmosphere containing halogen include molecular halogen, hydrogen halide, halide vapor, and the like. Molecular halogen and hydrogen halide are preferable, hydrogen halide is more preferable, and hydrogen chloride is more preferable. The content of molecular halogen and halogen compound in the atmosphere is preferably 0.5% by volume to 50% by volume, more preferably 1% by volume to 30% by volume, and even more preferably 3% by volume to 20% by volume. It is. Nitrogen, oxygen, air, argon, or a mixed gas thereof can be used as a gas other than the molecular halogen and the halogen compound in the atmosphere.
その後、該混合物がチタン酸バリウムとなる温度以上においては、該混合物を、上記ハロゲンに加えてフッ素をも実質的に含まない雰囲気中において加熱して焼成を行う。該混合物がチタン酸バリウムとなる温度以上の温度で該混合物を加熱する時間は、通常は10分以上10時間以下である。本発明の製造方法の実施態様の一つとしては、チタン化合物とバリウム化合物を含む混合物を炉に設置して加熱を開始した後、500℃以上700℃以下の温度範囲において塩化水素含有雰囲気を炉内に導入して該混合物をハロゲン含有雰囲気に曝露させた後に加熱を続けながら700℃までに雰囲気を空気に置換し、引き続き加熱を続けながら該混合物がチタン酸バリウムとなる温度以上に空気雰囲気中で加熱して焼成を行うことによるチタン酸バリウムの製造方法を例示することができる。 Thereafter, at a temperature equal to or higher than the temperature at which the mixture becomes barium titanate, the mixture is heated and fired in an atmosphere substantially not containing fluorine in addition to the halogen. The time for heating the mixture at a temperature equal to or higher than the temperature at which the mixture becomes barium titanate is usually from 10 minutes to 10 hours. As one embodiment of the production method of the present invention, a mixture containing a titanium compound and a barium compound is placed in a furnace and heating is started. Then, a hydrogen chloride-containing atmosphere is set in the furnace in a temperature range of 500 ° C. to 700 ° C. Introduced into the atmosphere, the mixture was exposed to a halogen-containing atmosphere, and then the atmosphere was replaced with air up to 700 ° C. while heating was continued, and in the air atmosphere at a temperature higher than the temperature at which the mixture became barium titanate while continuing heating. An example of the method for producing barium titanate by heating and baking at 1 is shown.
チタン化合物とバリウム化合物を含む混合物がチタン酸バリウムとなる温度は、熱分析(TG−DTA)等により求めることができる。チタン酸バリウムが生成する温度を熱分析により求める場合は、得られるチャートに現れるピーク温度を求めればよい。その温度は出発原料のバリウム化合物、チタン化合物によって異なるが、一般的には800℃を超え1000℃以下の温度範囲にある。 The temperature at which the mixture containing the titanium compound and the barium compound becomes barium titanate can be determined by thermal analysis (TG-DTA) or the like. When the temperature at which barium titanate is generated is determined by thermal analysis, the peak temperature appearing in the obtained chart may be determined. The temperature differs depending on the starting barium compound and titanium compound, but is generally in the temperature range of more than 800 ° C. and 1000 ° C. or less.
焼成により生成するチタン酸バリウム粉末は、チタン酸バリウム粉末粒子の表面に焼成雰囲気のハロゲン化合物が付着していることがあるが、水を用いた洗浄により容易に除去することができる。洗浄に用いる水には、バリウムの溶出を少なくするために、炭酸塩が含まれていることが好ましい。 The barium titanate powder generated by firing may have a halogenated compound in the firing atmosphere attached to the surface of the barium titanate powder particles, but can be easily removed by washing with water. The water used for washing preferably contains a carbonate to reduce barium elution.
焼成した後に得られた粉末を洗浄し、さらに塩素、臭素、ヨウ素およびフッ素のいずれをも実質的に含有しない雰囲気中で800℃以上1100℃以下の範囲の温度で保持して該粉末を再焼成することが好ましい。再焼成を行うときの雰囲気は、通常は空気が用いられる。
得られたチタン酸バリウム粉末を、さらに通常工業的に用いられる方法により洗浄、分級、粉砕することもできる。
The powder obtained after firing is washed, and further maintained in an atmosphere substantially free of chlorine, bromine, iodine and fluorine at a temperature in the range of 800 ° C. to 1100 ° C. to refire the powder. It is preferable to do. Air is usually used as the atmosphere when refiring.
The obtained barium titanate powder can be further washed, classified and pulverized by a method generally used industrially.
このようにして、比c/aが1.008以上であり、かつ、BET径比が1以上1.5以下であるチタン酸バリウム粉末を製造することができる。また、本発明の製造方法により製造されたチタン酸バリウム粉末は、微粒であり、かつ一次粒子に分散が容易なチタン酸バリウム粉末となる。さらに、本発明の製造方法で製造されるチタン酸バリウム粉末は、凝集粒子が少なく凝集の程度も軽いため、凝集を壊すために必要な粉砕エネルギーが小さく、短時間のボールミルや振動ミルにより凝集の除去を行うことができ、しかも、ボールミルや振動ミルのボールの欠損による粗大異物混入、およびミルパッキングによる凝集粒子発生等を防止することができる。 In this way, barium titanate powder having a ratio c / a of 1.008 or more and a BET diameter ratio of 1 or more and 1.5 or less can be produced. Further, the barium titanate powder produced by the production method of the present invention is a fine particle and becomes a barium titanate powder that can be easily dispersed in primary particles. Furthermore, since the barium titanate powder produced by the production method of the present invention has few aggregated particles and the degree of aggregation is light, the pulverization energy required for breaking the aggregation is small, and it is agglomerated by a short time ball mill or vibration mill. In addition, it is possible to prevent coarse foreign matters from being mixed due to ball defects in a ball mill or a vibration mill, and generation of aggregated particles due to mill packing.
本発明のチタン酸バリウム粉末は、低温焼結性、分散性、充填特性に優れており、得られる焼結体はポアが少なく、その表面は滑らかで、表面の1mm×1mmの範囲で大きさが0.5μm以上のポアや突起は殆どない。したがって積層コンデンサ、誘電体フィルター、PDP表示電極の絶縁体、無機ELの誘電体層等の原料として好適である。その中でも、軽装密度が1.4g/cm3以上であり、かつ重装嵩密度が1.8g/cm3以上であるチタン酸バリウム粉末は、積層コンデンサを製造するときに用いられるドクターブレード成形法において、ドクターブレード形成用のチタン酸バリウム粉末スラリーを製造するときに使用する溶媒量が少ないので、積層コンデンサ用原料としてさらに好適である。ここで用いる溶媒としては、有機溶媒ではトルエン、エタノール、アセトン等の通常の有機溶媒を使用することができ、水系溶媒では、水にはチタン酸バリウムが溶解することから、アンモニア、炭酸アンモニア、炭酸水素アンモニウム等でアルカリ性に調整してチタン酸バリウムの溶解を防止した水系溶媒を使用することができる。また分散剤としては、カチオン系、アニオン系、ポリエステル系、ポリカルボン酸アミン、ビニル系の化合物等を用いることができる。また、必要であれば、有機溶媒中で解砕することも可能であり、超音波分散、ボールミル、振動ミル、ロッドミル等を採用することができる。成形方法としては、スリップキャスト、テープ成形等を採用することができる。 The barium titanate powder of the present invention is excellent in low-temperature sinterability, dispersibility, and filling characteristics. The obtained sintered body has few pores, the surface is smooth, and the size is in the range of 1 mm × 1 mm of the surface. However, there are almost no pores or protrusions of 0.5 μm or more. Therefore, it is suitable as a raw material for multilayer capacitors, dielectric filters, PDP display electrode insulators, inorganic EL dielectric layers, and the like. Among them, a barium titanate powder having a light packaging density of 1.4 g / cm 3 or more and a heavy bulk density of 1.8 g / cm 3 or more is a doctor blade molding method used when manufacturing a multilayer capacitor. In the above, since the amount of the solvent used when producing the barium titanate powder slurry for forming the doctor blade is small, it is more suitable as a raw material for the multilayer capacitor. As the solvent used here, a normal organic solvent such as toluene, ethanol, acetone or the like can be used as the organic solvent. In the aqueous solvent, since barium titanate is dissolved in water, ammonia, ammonia carbonate, carbonate An aqueous solvent that is adjusted to be alkaline with ammonium hydrogen or the like to prevent dissolution of barium titanate can be used. As the dispersant, a cationic, anionic, polyester, polycarboxylic acid amine, vinyl compound, or the like can be used. If necessary, it can be crushed in an organic solvent, and ultrasonic dispersion, a ball mill, a vibration mill, a rod mill, or the like can be employed. As the molding method, slip casting, tape molding or the like can be employed.
また、チタン酸バリウムを用いた積層コンデンサにおいては、チタン酸バリウム焼結体からなる誘電体層の一層の厚みが薄いほど、単位体積当りのコンデンサの電気容量が高くなるため、誘電体層を薄くすることが求められている。そして、近年1μm程度にまで薄くすることが検討されており、このような薄い誘電体層を製造するために、原料となるチタン酸バリウム粉末に対しても、より微粒の平均粒径が0.3μm以下である微細な粉末が求められているので、本発明のチタン酸バリウム粉末のうち平均粒径が0.3μm以下の微粒のものは誘電体層の薄いコンデンサの製造用に好適である。さらに、近年はチタン酸バリウム粉末を樹脂と混練し、焼結せずに基板の中に充填して成形するビルドアップ基板が開発されており、本発明のチタン酸バリウム粉末の中でも、軽装密度と重装嵩密度が高い粉末は、樹脂に高密度に充填することができるので、ビルドアップ基板用の原料としても好適である。 In multilayer capacitors using barium titanate, the thinner the dielectric layer made of a barium titanate sintered body, the higher the capacitance of the capacitor per unit volume. It is requested to do. In recent years, it has been studied to reduce the thickness to about 1 μm. In order to produce such a thin dielectric layer, the average particle size of fine particles is less than that of the barium titanate powder used as a raw material. Since a fine powder having a particle size of 3 μm or less is required, a fine particle having an average particle size of 0.3 μm or less among the barium titanate powder of the present invention is suitable for manufacturing a capacitor having a thin dielectric layer. Furthermore, in recent years, build-up substrates have been developed in which barium titanate powder is kneaded with resin and filled into a substrate without being sintered, and among the barium titanate powders of the present invention, A powder having a high bulk density is suitable as a raw material for a build-up substrate because the resin can be filled with a high density.
以下、本発明を実施例を用いてより詳細に説明するが、本発明はこれらによって限定されるものではない。
以下の実施例においては、焼成は2回行った。1回目の焼成は、200℃以上でチタン酸バリウムが生成する温度未満の温度範囲において、ハロゲンを含有する雰囲気にチタン化合物とバリウム化合物を含む混合物を曝露し、その後加熱を続け、チタン酸バリウムが生成する温度以上においては、空気中で該混合物を加熱して行った。焼成した後に得られた粉末を水洗し、さらに空気中で800℃以上1100℃以下の範囲の温度で保持して2回目の焼成を行った。
1.平均粒子径の測定
平均粒子径は、粉末を0.2重量%のヘキサメタリン酸ナトリウム水溶液中に分散させ、超音波処理を実施した後に、レーザー回折散乱法粒度分布測定装置(英国マルバーン社製、マスターサイザー2000型)を用いて測定した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited by these.
In the following examples, firing was performed twice. In the first firing, the mixture containing the titanium compound and the barium compound is exposed to a halogen-containing atmosphere in a temperature range of 200 ° C. or higher and lower than the temperature at which barium titanate is generated. Above the generating temperature, the mixture was heated in air. The powder obtained after firing was washed with water, and further held in air at a temperature in the range of 800 ° C. to 1100 ° C. for second firing.
1. Measurement of average particle size The average particle size was determined by dispersing the powder in a 0.2% by weight sodium hexametaphosphate aqueous solution and carrying out ultrasonic treatment, followed by laser diffraction scattering method particle size distribution analyzer (manufactured by Malvern, UK, Master Measured using a sizer 2000).
2.BET比表面積、BET比表面積相当径の測定
粉末のBET比表面積は、BET1点法によるBET比表面積測定装置(島津製作所製、フローソーブII2300型)により測定した。BET比表面積相当径は、得られたBET比表面積の値から、6÷(チタン酸バリウムの理論密度(g/cm3))÷(BET比表面積(m2/g))により算出したBET比表面積相当径(μm)を用いた。なおチタン酸バリウムの理論密度は正方晶の6.02g/cm3を用いた。
2. Measurement of BET Specific Surface Area and BET Specific Surface Area Equivalent Diameter The BET specific surface area of the powder was measured with a BET specific surface area measuring device (manufactured by Shimadzu Corporation, Flowsorb II2300 type) by the BET one-point method. The BET specific surface area equivalent diameter is calculated from the value of the obtained BET specific surface area by 6 ÷ (theoretical density of barium titanate (g / cm 3 )) ÷ (BET specific surface area (m 2 / g)). A surface area equivalent diameter (μm) was used. The theoretical density of barium titanate was 6.02 g / cm 3 of tetragonal crystal.
3.生成相同定、c/aの測定
X線回折測定装置(リガク製、RINT型)により生成相を同定した。また得られたX線回折パターンをリートベルト法により解析し、a軸とc軸の比c/aを求めた。
3. Generation phase identification, measurement of c / a The generation phase was identified by an X-ray diffraction measurement device (Rigaku, RINT type). The obtained X-ray diffraction pattern was analyzed by the Rietveld method to determine the ratio c / a between the a axis and the c axis.
4.Ba/Ti比の測定
蛍光X線装置(フィリップス社(オランダ)製、PW1480型)を用い、BaとTiのピーク強度を測定した。化学分析で組成を求めた標準試料から検量線を作成し、それを用いてBa/Ti比を求めた。
4). Measurement of Ba / Ti ratio The peak intensities of Ba and Ti were measured using a fluorescent X-ray apparatus (manufactured by Philips (Netherlands), PW1480 type). A calibration curve was prepared from a standard sample whose composition was determined by chemical analysis, and the Ba / Ti ratio was determined using it.
5.ハロゲン含有量の測定
蛍光X線装置(フィリップス社(オランダ)製、PW1480型)を用い、ハロゲンに対応するピークの強度を測定した。また粒子を酸溶解後、化学滴定法により塩素量を測定し、標準試料のピークを用いてピーク強度比からハロゲン量を算出した。
5). Measurement of Halogen Content Using a fluorescent X-ray apparatus (manufactured by Philips (Netherlands), PW1480 type), the intensity of the peak corresponding to the halogen was measured. Further, after the particles were dissolved in acid, the amount of chlorine was measured by chemical titration, and the amount of halogen was calculated from the peak intensity ratio using the peak of the standard sample.
6.粒子密度の測定
密度測定装置(ユアサアイオニクス製、ウルトラピクノメータUPY−4型)を用い、粉末の粒子の平均密度を測定した。120℃で乾燥させた粉末を300kg/cm2の圧力で一軸成形したペレットを試料として測定した。
6). Measurement of Particle Density The average density of powder particles was measured using a density measuring device (manufactured by Yuasa Ionics, Ultrapycnometer UPY-4 type). Pellets obtained by uniaxially molding the powder dried at 120 ° C. at a pressure of 300 kg / cm 2 were measured as samples.
7.軽重装嵩密度の測定
50gの粉末を用い、ガラス製100mLのメスシリンダーに粉末を投入し、その時の体積を読みとり、質量を体積で除して軽装嵩密度を算出した。その後、5cmの高さから100回落下させてタッピングを行い、再び体積を読みとり、質量を体積で除して重装嵩密度を算出した。なお、100回のタッピングの途中で粉末の体積減少は飽和していることを確認の上で測定を行った。
7). Measurement of light heavy bulk density Using 50 g of powder, the powder was put into a 100 mL measuring cylinder made of glass, the volume at that time was read, and the light bulk density was calculated by dividing the mass by the volume. Thereafter, the sample was dropped 100 times from a height of 5 cm, tapped, the volume was read again, and the bulk density was calculated by dividing the mass by the volume. In addition, it measured after confirming that the volume reduction of the powder was saturated in the middle of 100 times of tapping.
8.成形体嵩密度、焼結体嵩密度の測定
成形体の嵩密度は、成形体のサイズを測定して得られた体積と測定した質量から算出した。焼結体の密度は、水を用いたアルキメデス法により求めた。
8). Measurement of molded body bulk density and sintered body bulk density The bulk density of the molded body was calculated from the volume obtained by measuring the size of the molded body and the measured mass. The density of the sintered body was determined by the Archimedes method using water.
9.スラリー粘度の測定
粉末にその質量の1/3倍のエタノールを加え、さらにサンノプコ社製分散剤SN−9228(商品名)を粉末の0.2重量%加えた後、撹拌ならびに超音波分散処理を施して75重量%のスラリーを作製した。B型粘度計を用い、No.4ローターで12prmの条件で粘度を測定した。
9. Measurement of slurry viscosity After adding 1/3 times the mass of ethanol to the powder, and adding 0.2% by weight of the dispersant SN-9228 (trade name) manufactured by San Nopco, stirring and ultrasonic dispersion treatment were performed. To give a 75% by weight slurry. Using a B-type viscometer, No. Viscosity was measured under the condition of 12 prm with 4 rotors.
実施例1
炭酸バリウム(日本化学製、LC−1(商品名)、BET比表面積10.2m2/g)、二酸化チタン(石原テクノ製、PT−401M(商品名)、BET比表面積20.7m2/g、ルチル化率50.7%)の強熱減量(700℃に加熱して水分や揮発成分を除去したときの重量減少)を測定し、水分等の揮発成分による重量のずれを補正して、炭酸バリウムと二酸化チタンのモル比が1:1となるように計約1.1kgの粉末を秤量した。10Lポリエチレン製ポットおよび15mmφの鉄芯入りプラスチックボールを用い、乾式ボールミルで秤量した混合粉末を20時間混合した。混合後のBET比表面積は13.8m2/gであった。混合物をTG−DTAにより分析した結果、チタン酸バリウムの生成温度は820℃であった。混合物を石英ガラス製炉芯管を有する管状炉(炉芯管体積20L)を用いて焼成した。炉内を窒素雰囲気として昇温を開始し、600℃で塩化水素3体積%−窒素97体積%の雰囲気を導入し、700℃で空気雰囲気に切り替えて950℃まで昇温し、950℃で2時間保持して1回目の焼成を行った。なお、焼成雰囲気の圧力は全て大気圧(約0.1MPa)である。焼成後、得られたチタン酸バリウム粉末を濃度0.8重量%の炭酸水素アンモニウム水溶液に分散させ、濾過し、洗浄した。洗浄後の粉末を130℃で乾燥させ、空気雰囲気中において900℃で3時間保持して2回目の焼成を行った。さらに粉末を10Lポリエチレン製ポットおよび15mmφの鉄芯入りプラスチックボールを用いたボールミルにより20時間粉砕した。
Example 1
Barium carbonate (Nippon Kagaku, LC-1 (trade name), BET specific surface area 10.2 m 2 / g), Titanium dioxide (Ishihara Techno, PT-401M (trade name), BET specific surface area 20.7 m 2 / g , Measuring the loss on ignition of rutile ratio (50.7%) (weight loss when moisture and volatile components are removed by heating to 700 ° C.), and correcting the weight shift due to volatile components such as moisture, About 1.1 kg of powder was weighed so that the molar ratio of barium carbonate to titanium dioxide was 1: 1. Using a 10 L polyethylene pot and a 15 mmφ iron core plastic ball, the mixed powder weighed by a dry ball mill was mixed for 20 hours. The BET specific surface area after mixing was 13.8 m 2 / g. As a result of analyzing the mixture by TG-DTA, the production temperature of barium titanate was 820 ° C. The mixture was fired using a tubular furnace (furnace core tube volume 20 L) having a quartz glass furnace core tube. The temperature inside the furnace was raised to a nitrogen atmosphere, and the temperature was raised. At 600 ° C., an atmosphere of 3% by volume of hydrogen chloride—97% by volume of nitrogen was introduced, switched to an air atmosphere at 700 ° C. and heated to 950 ° C. The first firing was performed while maintaining the time. The pressure in the firing atmosphere is all atmospheric pressure (about 0.1 MPa). After firing, the obtained barium titanate powder was dispersed in an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.8% by weight, filtered and washed. The washed powder was dried at 130 ° C. and held in an air atmosphere at 900 ° C. for 3 hours to perform second firing. Further, the powder was pulverized for 20 hours by a ball mill using a 10 L polyethylene pot and a plastic ball with a core of 15 mmφ.
得られた粉末はX線回折分析の結果BaTiO3単相であり、c/aは1.0095であった。平均粒子径は0.130μmであった。BET比表面積は8.57m2/gであり、BET径比は1.12であった。粒子嵩密度は5.88g/cm3、蛍光X線によるBa/Ti比は1.000、塩素含有量は26重量ppmであった。また軽装嵩密度は1.61g/cm3、重装嵩密度は2.04g/cm3であった。 As a result of X-ray diffraction analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0095. The average particle size was 0.130 μm. The BET specific surface area was 8.57 m 2 / g, and the BET diameter ratio was 1.12. The particle bulk density was 5.88 g / cm 3 , the Ba / Ti ratio by fluorescent X-ray was 1.000, and the chlorine content was 26 ppm by weight. The loosed bulk density of 1.61 g / cm 3, OmoSoTakashi density was 2.04 g / cm 3.
次にこの粉末をエタノール中に分散させ、75重量%のスラリーとして粘度を測定したところ、13160mPa・sとなった。また、粉末を一軸プレスにより13mmφの円筒形状に成形し、さらに静水圧プレス機で1.5t/cm2の圧力を加えて成形体を作製した。この成形体の嵩密度は3.65g/cm3であった。この成形体を空気中1100℃で3時間保持して焼結し、得られた焼結体の密度を測定したところ、5.82g/cm3(理論密度の96.7%)となり、空気中1200℃で3時間保持して焼結し、得られた焼結体の密度を測定したところ、5.74g/cm3(理論密度の95.3%)となった。 Next, when this powder was dispersed in ethanol and the viscosity was measured as a slurry of 75% by weight, it was 13160 mPa · s. Further, the powder was formed into a cylindrical shape of 13 mmφ by uniaxial pressing, and further a pressure of 1.5 t / cm 2 was applied by a hydrostatic press to produce a compact. The bulk density of this molded body was 3.65 g / cm 3 . This molded body was sintered in air at 1100 ° C. for 3 hours, and the density of the obtained sintered body was measured to be 5.82 g / cm 3 (96.7% of the theoretical density). Sintering was carried out at 1200 ° C. for 3 hours, and the density of the obtained sintered body was measured to be 5.74 g / cm 3 (95.3% of the theoretical density).
なお、以下の各実施例と各比較例の結果を表1に示した(ただし、焼結体密度は1100℃の焼結における結果)。 In addition, the result of each following Example and each comparative example was shown in Table 1 (however, a sintered compact density is a result in 1100 degreeC sintering).
実施例2
1回目の焼成温度を900℃に変更した以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0089であった。平均粒子径は0.130μmであった。BET比表面積は8.65m2/gであり、BET径比は1.13であった。粒子の平均密度は5.86g/cm3、蛍光X線によるBa/Ti比は1.001、塩素含有量は35重量ppmであった。また軽装嵩密度は1.55g/cm3、重装嵩密度は2.00g/cm3であった。実施例1と同様にして焼結した結果、成形体密度は3.59g/cm3、焼結体密度は1100℃の焼結で5.85g/cm3(理論密度の97.2%)、1200℃の焼結で5.76g/cm3(理論密度の95.7%)であった。
Example 2
Baking and washing were performed in the same manner as in Example 1 except that the first baking temperature was changed to 900 ° C. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0089. The average particle size was 0.130 μm. The BET specific surface area was 8.65 m 2 / g, and the BET diameter ratio was 1.13. The average density of the particles was 5.86 g / cm 3 , the Ba / Ti ratio by fluorescent X-ray was 1.001, and the chlorine content was 35 ppm by weight. The lightly loaded bulk density was 1.55 g / cm 3 and the heavyly loaded bulk density was 2.00 g / cm 3 . As a result of sintering in the same manner as in Example 1, the molded body density was 3.59 g / cm 3 , and the sintered body density was 5.85 g / cm 3 (97.2% of the theoretical density) when sintered at 1100 ° C. It was 5.76 g / cm 3 (95.7% of the theoretical density) after sintering at 1200 ° C.
実施例3
1回目の焼成温度を850℃に変更し、2回目の温度を1000℃とした以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0097であった。平均粒子径は0.145μmであった。BET比表面積は7.27m2/gであり、BET径比は1.06であった。また軽装嵩密度は1.44g/cm3、重装嵩密度は2.00g/cm3であった。蛍光X線によるBa/Ti比は0.998、塩素含有量は46重量ppmであった。また実施例1と同様にして1100℃で焼結した結果、焼結体密度は5.92g/cm3(理論密度の98.3%)であった。
Example 3
The firing and cleaning were performed in the same manner as in Example 1 except that the first firing temperature was changed to 850 ° C. and the second firing temperature was 1000 ° C. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0097. The average particle size was 0.145 μm. The BET specific surface area was 7.27 m 2 / g, and the BET diameter ratio was 1.06. The light bulk density was 1.44 g / cm 3 and the heavy bulk density was 2.00 g / cm 3 . The Ba / Ti ratio by fluorescent X-ray was 0.998, and the chlorine content was 46 ppm by weight. Further, as a result of sintering at 1100 ° C. in the same manner as in Example 1, the sintered body density was 5.92 g / cm 3 (98.3% of the theoretical density).
実施例4
2回目の焼成温度を950℃とした以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0095であった。平均粒子径は0.185μmであった。BET比表面積は6.49m2/gであり、BET径比は1.20であった。また軽装嵩密度は1.45g/cm3、重装嵩密度は1.92g/cm3であった。蛍光X線によるBa/Ti比は0.997、塩素含有量は29重量ppmであった。また実施例1と同様にして1100℃で焼結した結果、焼結体密度は5.99g/cm3(理論密度の99.5%)であった。さらに、焼結温度を下げて1050℃とし、焼結温度を1050℃とした以外は実施例1と同様にして1100℃で焼結した結果、焼結体密度は5.91g/cm3(理論密度の98.2%)であった。
Example 4
Baking and washing were performed in the same manner as in Example 1 except that the second baking temperature was 950 ° C. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0095. The average particle size was 0.185 μm. The BET specific surface area was 6.49 m 2 / g, and the BET diameter ratio was 1.20. The light bulk density was 1.45 g / cm 3 and the heavy bulk density was 1.92 g / cm 3 . The Ba / Ti ratio by fluorescent X-ray was 0.997, and the chlorine content was 29 ppm by weight. Further, as a result of sintering at 1100 ° C. in the same manner as in Example 1, the sintered body density was 5.9 g / cm 3 (99.5% of the theoretical density). Further, as a result of sintering at 1100 ° C. in the same manner as in Example 1 except that the sintering temperature was lowered to 1050 ° C. and the sintering temperature was changed to 1050 ° C., the sintered body density was 5.91 g / cm 3 (theoretical). 98.2% of the density).
実施例5
1回目の焼成温度を900℃に変更した以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0096であった。平均粒子径は0.159μmであった。BET比表面積は7.12m2/gであり、BET径比は1.14であった。また軽装嵩密度は1.47g/cm3、重装嵩密度は2.00g/cm3であった。蛍光X線によるBa/Ti比は0.998であった。
Example 5
Baking and washing were performed in the same manner as in Example 1 except that the first baking temperature was changed to 900 ° C. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0096. The average particle size was 0.159 μm. The BET specific surface area was 7.12 m 2 / g, and the BET diameter ratio was 1.14. The light bulk density was 1.47 g / cm 3 and the heavy bulk density was 2.00 g / cm 3 . The Ba / Ti ratio by fluorescent X-ray was 0.998.
実施例6
600℃で導入した雰囲気ガスを、塩化水素10体積%−窒素90体積%に変更した以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0083であった。平均粒子径は0.160μmであった。BET比表面積は7.19m2/gであり、BET径比は1.15であった。また軽装嵩密度は1.56g/cm3、重装嵩密度は2.01g/cm3であった。蛍光X線によるBa/Ti比は0.998であった。
Example 6
Firing and washing were performed in the same manner as in Example 1 except that the atmospheric gas introduced at 600 ° C. was changed to 10% by volume of hydrogen chloride and 90% by volume of nitrogen. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0083. The average particle size was 0.160 μm. The BET specific surface area was 7.19 m 2 / g, and the BET diameter ratio was 1.15. The loosed bulk density of 1.56 g / cm 3, OmoSoTakashi density was 2.01 g / cm 3. The Ba / Ti ratio by fluorescent X-ray was 0.998.
実施例7
実施例1で得られたチタン酸バリウム粉末を用い、溶媒としてトルエン/エタノールの1:9混合溶液を加えて濃度50重量%とし、サンノプコ製SN−9228(商品名)を分散剤として加え(チタン酸バリウム粉末に対して1重量%となる量を加えた。)、ハイプラボール(商品名、鉄芯入りナイロン製ボール)を用いたボールミルにより2時間粉砕・混合してスラリーを得た。該スラリーを用い、スリップキャスト法により成形を行い、成形体を乾燥した後、空気雰囲気中にて1200℃で3時間保持して焼結した。焼結体密度は5.75g/cm3(理論密度の95.6%)まで上昇した。得られた焼結体の表面の5mm×5mmの範囲を走査電子顕微鏡で観察したが0.5μm以上の大きさのポア(空孔)や突起は見られなかった。
Example 7
Using the barium titanate powder obtained in Example 1, a 1: 9 mixed solution of toluene / ethanol was added as a solvent to a concentration of 50% by weight, and SN-9228 (trade name) manufactured by San Nopco was added as a dispersant (titanium). An amount of 1% by weight with respect to the barium acid powder was added.) And pulverized and mixed for 2 hours by a ball mill using Hypra Ball (trade name, iron-made nylon ball) to obtain a slurry. Using the slurry, molding was performed by a slip casting method, and the molded body was dried and then sintered by being held at 1200 ° C. for 3 hours in an air atmosphere. The density of the sintered body increased to 5.75 g / cm 3 (95.6% of the theoretical density). A 5 mm × 5 mm range of the surface of the obtained sintered body was observed with a scanning electron microscope, but no pores (holes) or protrusions having a size of 0.5 μm or more were observed.
実施例8
実施例2で得られたとチタン酸バリウム粉末を用い、溶媒としてトルエン/エタノールの1:9混合溶液を加えて濃度50重量%とし、サンノプコ製テキサホール(商品名)を分散剤として加え(チタン酸バリウム粉末に対して1重量%となる量を加えた。)、ハイプラボール(商品名、鉄芯入りナイロン製ボール)を用いたボールミルにより2時間粉砕・混合してスラリーを得た。該スラリーを用い、スリップキャスト法により成形を行い、成形体を乾燥した後、空気雰囲気中にて1200℃で3時間保持して焼結した。焼結体密度は5.69g/cm3(理論密度の94.6%)まで上昇した。得られた焼結体の表面の5mm×5mmの範囲を走査電子顕微鏡で観察したが0.5μm以上の大きさのポアや突起は見られなかった。
Example 8
Using the barium titanate powder obtained in Example 2, a 1: 9 mixed solution of toluene / ethanol as a solvent was added to a concentration of 50% by weight, and Texahol (trade name) manufactured by San Nopco was added as a dispersant (barium titanate). An amount of 1% by weight with respect to the powder was added.) And pulverized and mixed for 2 hours by a ball mill using Hypra Ball (trade name, iron-made nylon ball) to obtain a slurry. Using the slurry, molding was performed by a slip casting method, and the molded body was dried and then sintered by being held at 1200 ° C. for 3 hours in an air atmosphere. The density of the sintered body increased to 5.69 g / cm 3 (94.6% of the theoretical density). A 5 mm × 5 mm range on the surface of the obtained sintered body was observed with a scanning electron microscope, but no pores or protrusions having a size of 0.5 μm or more were observed.
比較例1
全焼成工程を空気雰囲気で実施した以外は実施例1と同様にして焼成および洗浄を実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0073であった。平均粒子径は0.162μmであった。BET比表面積は7.30m2/gであり、BET径比は1.19であった。粒子の平均密度は5.84g/cm3、蛍光X線によるBa/Ti比は0.998であった。また軽装嵩密度は1.40g/cm3、重装嵩密度は1.78g/cm3であった。実施例1と同様にして焼結した結果、成形体密度は3.39g/cm3、1100℃の焼結体密度は4.67g/cm3(理論密度の77.6%)、1200℃の焼結体密度は4.94g/cm3(理論密度の82.1%)であった。
Comparative Example 1
Baking and washing were performed in the same manner as in Example 1 except that the entire baking process was performed in an air atmosphere. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0073. The average particle size was 0.162 μm. The BET specific surface area was 7.30 m 2 / g, and the BET diameter ratio was 1.19. The average density of the particles was 5.84 g / cm 3 and the Ba / Ti ratio by fluorescent X-ray was 0.998. The lightly loaded bulk density was 1.40 g / cm 3 and the heavyly loaded bulk density was 1.78 g / cm 3 . As a result of sintering in the same manner as in Example 1, green density 3.39 g / cm 3, 1100 sintered body density of ° C. is 4.67g / cm 3 (77.6% of theoretical density), the 1200 ° C. The sintered body density was 4.94 g / cm 3 (82.1% of the theoretical density).
比較例2
1回目の焼成温度を850℃とし、全焼成工程を空気雰囲気で実施した以外は実施例1と同様にして実施した。得られた粉末はXRD分析の結果BaTiO3に加えてBaCO3、BaO、TiO2が混在していた。
Comparative Example 2
The first baking was carried out in the same manner as in Example 1 except that the baking temperature was 850 ° C. and the entire baking process was performed in an air atmosphere. As a result of XRD analysis, the obtained powder was mixed with BaCO 3 , BaO and TiO 2 in addition to BaTiO 3 .
比較例3
1回目の焼成において、600℃で塩化水素3体積%−窒素97体積%の雰囲気を導入した後、1回目の焼成の終了まで前記雰囲気とした以外は実施例1と同様にして焼成および洗浄を実施した。1回目の焼成直後の粉末のXRD分析では塩化バリウムの生成が認められた。洗浄・再焼成後に得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0085であった。平均粒径は0.282μmであり、3μm以上の粗粒子が認められた。BET比表面積は6.69m2/gであり、BET径比は1.89であった。また軽装嵩密度は1.33g/cm3、重装嵩密度は1.88g/cm3であった。蛍光X線によるBa/Ti比は0.996、塩素含有量は260重量ppmであった。
Comparative Example 3
In the first baking, baking and cleaning were performed in the same manner as in Example 1 except that after introducing an atmosphere of 3% by volume of hydrogen chloride and 97% by volume of nitrogen at 600 ° C., the atmosphere was changed to the end of the first baking. Carried out. In the XRD analysis of the powder immediately after the first firing, the formation of barium chloride was observed. As a result of XRD analysis, the powder obtained after washing and refiring was a BaTiO 3 single phase, and c / a was 1.0085. The average particle diameter was 0.282 μm, and coarse particles of 3 μm or more were observed. The BET specific surface area was 6.69 m 2 / g, and the BET diameter ratio was 1.89. The light bulk density was 1.33 g / cm 3 and the heavy bulk density was 1.88 g / cm 3 . The Ba / Ti ratio by fluorescent X-ray was 0.996, and the chlorine content was 260 ppm by weight.
比較例4
二酸化チタンに換算して2.5mol/Lとなるよう水で希釈した四塩化チタン水溶液(住友シチックス製)と、5重量%の水酸化ナトリウム水溶液を、pHコントローラーによって中和液のpHが3.7〜4.3の範囲になるように調整しながら、氷で冷やしたイオン交換水1Lに注液した。得られた水和二酸化チタンの沈殿を吸引濾過器を用いて濾過、洗浄した。なおこの沈殿物を110℃で乾燥させた粉末のBET値は200〜240m2/gであった。二酸化チタン換算で15gの沈殿物を秤量し、イオン交換水を加えて懸濁液を作製し、さらにBa/Ti=1.4となるように水酸化バリウム8水和物(和光純薬社製)を添加し、溶液をオートクレーブで150℃で1時間水熱処理を行った。水熱処理後、溶液中の固形物を濾過、洗浄し、110℃で乾燥させ、さらに空気雰囲気で600℃で焼成した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0007であった。平均粒径は0.131μmであった。BET比表面積は11.1m2/gであり、BET径比は1.46であった。粒子の平均密度は5.76g/cm3、蛍光X線によるBa/Ti比は0.997、塩素含有量は57重量ppmであった。また軽装嵩密度は1.08g/cm3、重装嵩密度は1.45g/cm3であった。実施例1と同様にして焼結した結果、成形体密度は3.28g/cm3、1100℃の焼結体密度は4.58g/cm3(理論密度の76.1%)、1200℃の焼結体密度は5.16g/cm3(理論密度の85.7%)であった。
Comparative Example 4
An aqueous solution of titanium tetrachloride (manufactured by Sumitomo Sitix) diluted with water to 2.5 mol / L in terms of titanium dioxide and a 5% by weight sodium hydroxide aqueous solution were adjusted to pH 3. The liquid was poured into 1 L of ion-exchanged water cooled with ice while adjusting to be in the range of 7 to 4.3. The resulting precipitate of hydrated titanium dioxide was filtered and washed using a suction filter. The BET value of the powder obtained by drying the precipitate at 110 ° C. was 200 to 240 m 2 / g. Weigh 15 g of precipitate in terms of titanium dioxide, add ion-exchanged water to make a suspension, and further barium hydroxide octahydrate (Wako Pure Chemical Industries, Ltd.) so that Ba / Ti = 1.4. And the solution was hydrothermally treated in an autoclave at 150 ° C. for 1 hour. After the hydrothermal treatment, the solid in the solution was filtered, washed, dried at 110 ° C., and fired at 600 ° C. in an air atmosphere. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0007. The average particle size was 0.131 μm. The BET specific surface area was 11.1 m 2 / g, and the BET diameter ratio was 1.46. The average density of the particles was 5.76 g / cm 3 , the Ba / Ti ratio by fluorescent X-ray was 0.997, and the chlorine content was 57 ppm by weight. The light bulk density was 1.08 g / cm 3 and the heavy bulk density was 1.45 g / cm 3 . As a result of sintering in the same manner as in Example 1, the compact density was 3.28 g / cm 3 , and the sintered body density at 1100 ° C. was 4.58 g / cm 3 (76.1% of the theoretical density), 1200 ° C. The sintered body density was 5.16 g / cm 3 (85.7% of the theoretical density).
比較例5
比較例4と同条件で水熱処理を行い、焼成温度を800℃に変更した以外は比較例4と同様にして実施した。得られた粉末はXRD分析の結果BaTiO3単相であり、c/aは1.0060であった。平均粒子径は0.389μmであった。BET比表面積は7.26m2/gであり、BET径比は2.83であった。また軽装嵩密度は1.07g/cm3、重装嵩密度は1.45g/cm3であった。この粉末をエタノール中に分散させ、75重量%のスラリーとして粘度を測定したところ、26460mPa・sとなった。実施例1と同様にして焼結した結果、成形体密度は3.50g/cm3、1100℃の焼結体密度は4.33g/cm3(理論密度の71.9%)、1200℃の焼結体密度は4.98g/cm3(理論密度の82.7%)であった。
Comparative Example 5
Hydrothermal treatment was performed under the same conditions as in Comparative Example 4, and the same procedure as in Comparative Example 4 was performed except that the firing temperature was changed to 800 ° C. As a result of XRD analysis, the obtained powder was a BaTiO 3 single phase and c / a was 1.0060. The average particle size was 0.389 μm. The BET specific surface area was 7.26 m 2 / g, and the BET diameter ratio was 2.83. Further, the light bulk density was 1.07 g / cm 3 and the heavy bulk density was 1.45 g / cm 3 . When this powder was dispersed in ethanol and the viscosity was measured as a slurry of 75% by weight, it was 26460 mPa · s. As a result of sintering in the same manner as in Example 1, green density 3.50 g / cm 3, 1100 sintered body density of ° C. is 4.33g / cm 3 (71.9% of theoretical density), the 1200 ° C. The sintered compact density was 4.98 g / cm 3 (82.7% of the theoretical density).
Claims (9)
酸バリウム粉末。 The barium titanate powder according to claim 1, wherein the average density of the particles is 5.8 g / cm 3 or more.
The powder obtained after firing is washed, and further maintained in an atmosphere substantially free of chlorine, bromine, iodine and fluorine at a temperature in the range of 800 ° C. to 1100 ° C. to re-fire the powder. The manufacturing method according to claim 5, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004126386A JP4438495B2 (en) | 2003-04-25 | 2004-04-22 | Barium titanate powder |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003121284 | 2003-04-25 | ||
JP2003380777 | 2003-11-11 | ||
JP2004126386A JP4438495B2 (en) | 2003-04-25 | 2004-04-22 | Barium titanate powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005162595A true JP2005162595A (en) | 2005-06-23 |
JP4438495B2 JP4438495B2 (en) | 2010-03-24 |
Family
ID=34743392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004126386A Expired - Fee Related JP4438495B2 (en) | 2003-04-25 | 2004-04-22 | Barium titanate powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4438495B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306632A (en) * | 2005-04-26 | 2006-11-09 | Kyocera Corp | Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact |
JP2007084390A (en) * | 2005-09-26 | 2007-04-05 | Toyota Motor Corp | Perovskite type compound oxide particle and its producing method |
JP2010138068A (en) * | 2010-02-19 | 2010-06-24 | Tdk Corp | Method for producing barium titanate |
JP2011136849A (en) * | 2009-12-25 | 2011-07-14 | Samsung Electro-Mechanics Co Ltd | Method for producing dielectric ceramic material |
JP2021080113A (en) * | 2019-11-15 | 2021-05-27 | 太陽誘電株式会社 | Ceramic raw material powder, dielectric green sheet, method of making ceramic raw material powder, and method of manufacturing ceramic electronic component |
CN114195512A (en) * | 2021-12-27 | 2022-03-18 | 上海材料研究所 | Barium titanate PTC ceramic diaphragm tape-casting slurry and preparation method and application thereof |
KR20230000020A (en) * | 2021-06-23 | 2023-01-02 | 한국세라믹기술원 | Barium titanate powder and manufacturing method thereof |
-
2004
- 2004-04-22 JP JP2004126386A patent/JP4438495B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306632A (en) * | 2005-04-26 | 2006-11-09 | Kyocera Corp | Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact |
JP2007084390A (en) * | 2005-09-26 | 2007-04-05 | Toyota Motor Corp | Perovskite type compound oxide particle and its producing method |
JP4708943B2 (en) * | 2005-09-26 | 2011-06-22 | トヨタ自動車株式会社 | Perovskite complex oxide particles and method for producing the same |
JP2011136849A (en) * | 2009-12-25 | 2011-07-14 | Samsung Electro-Mechanics Co Ltd | Method for producing dielectric ceramic material |
JP2010138068A (en) * | 2010-02-19 | 2010-06-24 | Tdk Corp | Method for producing barium titanate |
JP2021080113A (en) * | 2019-11-15 | 2021-05-27 | 太陽誘電株式会社 | Ceramic raw material powder, dielectric green sheet, method of making ceramic raw material powder, and method of manufacturing ceramic electronic component |
KR20230000020A (en) * | 2021-06-23 | 2023-01-02 | 한국세라믹기술원 | Barium titanate powder and manufacturing method thereof |
KR102555686B1 (en) * | 2021-06-23 | 2023-07-14 | 한국세라믹기술원 | Manufacturing method of barium titanate powder |
CN114195512A (en) * | 2021-12-27 | 2022-03-18 | 上海材料研究所 | Barium titanate PTC ceramic diaphragm tape-casting slurry and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4438495B2 (en) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4310318B2 (en) | Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder | |
JP3963962B2 (en) | Method for synthesizing crystalline ceramic powder of perovskite compound | |
US20070202036A1 (en) | Production Of Barium Titanate Compounds | |
JP2002255552A (en) | Barium titanate powder and method for producing the same | |
KR101904579B1 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP4438495B2 (en) | Barium titanate powder | |
JP4766910B2 (en) | Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered body | |
US8715614B2 (en) | High-gravity reactive precipitation process for the preparation of barium titanate powders | |
JP2004339040A (en) | Dielectric material and its manufacturing method | |
JP2005314153A (en) | Method of manufacturing barium titanate powder | |
JP2015003835A (en) | Surface-treated calcium carbonate, method of producing the same and ceramic composition blended with the same | |
JP2012211058A (en) | Barium titanate powder, method for manufacturing barium titanate powder, and ceramic electronic component using the same | |
JP2006206363A (en) | Barium titanate powder and method for manufacturing the same | |
KR100771796B1 (en) | Method for manufacturing dielectric ceramic powder | |
US8084014B2 (en) | Barium titanate powder and method for producing same | |
JP4534001B2 (en) | Calcium zirconate powder | |
JP4806893B2 (en) | Method for producing oxide powder having perovskite structure | |
JP6573653B2 (en) | Method for producing perovskite-type barium titanate powder | |
JP2009126772A (en) | Dielectric ceramic and capacitor | |
JP2004247719A (en) | Layered ceramic capacitor | |
JP2004299916A (en) | Method for manufacturing oxide powder having perovskite structure | |
KR101751070B1 (en) | Method of preparing barium titanate using acid-base reaction | |
JP4144209B2 (en) | Method for producing composite metal oxide powder | |
JP2024130630A (en) | Dispersion of barium titanate particles and method for producing same | |
JP2024095438A (en) | Zirconate compound powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070320 |
|
RD05 | Notification of revocation of power of attorney |
Effective date: 20080130 Free format text: JAPANESE INTERMEDIATE CODE: A7425 |
|
RD05 | Notification of revocation of power of attorney |
Effective date: 20080513 Free format text: JAPANESE INTERMEDIATE CODE: A7425 |
|
A977 | Report on retrieval |
Effective date: 20090828 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091228 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130115 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130115 |
|
LAPS | Cancellation because of no payment of annual fees |