JP2005162561A - Method of manufacturing thermally tempered glass - Google Patents

Method of manufacturing thermally tempered glass Download PDF

Info

Publication number
JP2005162561A
JP2005162561A JP2003406106A JP2003406106A JP2005162561A JP 2005162561 A JP2005162561 A JP 2005162561A JP 2003406106 A JP2003406106 A JP 2003406106A JP 2003406106 A JP2003406106 A JP 2003406106A JP 2005162561 A JP2005162561 A JP 2005162561A
Authority
JP
Japan
Prior art keywords
glass
heating furnace
temperature
furnace
tempered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003406106A
Other languages
Japanese (ja)
Inventor
Kazuaki Yuki
一哲 結城
Hiroaki Kato
浩昭 加藤
Hidekazu Nakaoka
英一 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003406106A priority Critical patent/JP2005162561A/en
Priority to CN 200410097892 priority patent/CN1623943A/en
Publication of JP2005162561A publication Critical patent/JP2005162561A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing thermally tempered glass by which the deformation or the like during transportation in a heating furnace is surely suppressed even when super highly thermal tempering is carried out and relatively heavy and thick glass is thermally tempered. <P>SOLUTION: In the method of manufacturing the thermally tempered glass by heating glass G to be tempered to equal to or above the strain point and below the softening point in the heating furnace 1 and discharging the glass from the furnace and cooling the surface of the glass G to thermally temper based on the difference of a temperature between the surface and the core part of the glass in the strain point, the difference of a temperature between the surface and the core part in the strain point is secured to a fixed value by locally heating the core part of the glass G with electromagnetic wave of millimeter wave band and as a result, the glass G having the discharge temperature of the glass surface lower than that in discharging the glass G heated only with the heating furnace 1 is discharged from the heating furnace 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、強化対象ガラスを加熱炉により歪み点以上で軟化点未満にまで加熱して出炉した後、そのガラスの表面を冷却して、前記歪み点におけるガラス表面と中心部の温度差に基づいて熱強化する熱強化ガラスの製造方法に関する。   The present invention is based on the temperature difference between the glass surface and the central portion at the strain point after the glass to be tempered is heated to a temperature higher than the strain point and lower than the softening point by a heating furnace and the glass surface is cooled. It is related with the manufacturing method of the heat strengthened glass which heat-strengthens.

このようなガラスの熱強化方法において、ガラスの熱強化度は、冷却時の歪み点におけるガラス表面と中心部の温度差に依存し、その温度差が大きいほど、熱強化度も大きくなる。
この歪み点におけるガラス表面と中心部の温度差を大きくするため、従来、冷却作用を有するクラッパーで板ガラスを挟んで冷却する際、板ガラスに高周波電力を印加して中心部を加熱するように構成した強化方法が提案されている(例えば、特許文献1参照)。
In such a glass heat strengthening method, the glass heat strengthening degree depends on the temperature difference between the glass surface and the central part at the strain point during cooling, and the larger the temperature difference, the larger the heat strengthening degree.
In order to increase the temperature difference between the glass surface and the central portion at this strain point, conventionally, when the plate glass is cooled with a clapper having a cooling action, the central portion is heated by applying high-frequency power to the plate glass. A strengthening method has been proposed (see, for example, Patent Document 1).

特開昭59−227733号公報JP 59-227733 A

しかしながら、上記特許文献に記載の強化方法は、きわめて一般的な強度の熱強化を意識した技術であるため、ガラス表面と中心部の温度差を大きくするとはいえ、そこには自ずと限界がある。したがって、例えば、表面圧縮応力が160MPa以上のいわゆる超強度の熱強化を実行しようとすると、どうしても加熱炉からの出炉温度を高くする必要がある。
ところが、加熱炉からの出炉温度を高くすると、加熱炉内における板ガラスの搬送中に板ガラスが変形する可能性が大となり、また、多数の搬送用ローラにより搬送する場合には、ガラス表面の平滑度にも悪影響を及ぼして商品価値が低下するという問題があり、特に、板厚が厚くて自重の重い板ガラスほど顕著となる。
However, the strengthening method described in the above-mentioned patent document is a technique conscious of heat strengthening with a very general strength, and although there is a large temperature difference between the glass surface and the central portion, there is a limit to that. Therefore, for example, when trying to perform so-called super-strength thermal strengthening with a surface compressive stress of 160 MPa or more, it is absolutely necessary to increase the temperature at which the furnace is discharged from the heating furnace.
However, if the temperature at the furnace exit from the heating furnace is increased, the possibility that the glass sheet is deformed during the conveyance of the glass sheet in the heating furnace increases, and when the glass sheet is conveyed by a large number of conveying rollers, the smoothness of the glass surface is increased. In addition, there is a problem that the commercial value is lowered due to adverse effects, and in particular, a plate glass having a thick plate thickness and a heavy weight becomes more conspicuous.

本発明は、このような従来の問題点に着目したもので、その目的は、たとえ超強度の熱強化であっても、また、板厚が厚くて比較的重いガラスを強化対象とする場合であっても、加熱炉内での搬送中における変形などを確実に抑制し得る熱強化ガラスの製造方法を提供することにある。   The present invention pays attention to such a conventional problem, and its purpose is that even if super-strength heat strengthening is used, and a relatively heavy glass having a large thickness is targeted for strengthening. Even if it exists, it is providing the manufacturing method of the heat strengthened glass which can suppress reliably the deformation | transformation etc. during conveyance in a heating furnace.

本発明の第1の特徴構成は、強化対象ガラスを加熱炉により歪み点以上で軟化点未満にまで加熱して出炉した後、そのガラスの表面を冷却して、前記歪み点におけるガラス表面と中心部の温度差に基づいて熱強化する熱強化ガラスの製造方法であって、前記ガラスの中心部をミリ波帯の電磁波で局部的に加熱することにより、前記歪み点におけるガラス表面と中心部の温度差を所定の温度差に確保し、それによって、前記加熱炉のみによりガラスを加熱して出炉する際のガラス表面の出炉温度よりも低い表面出炉温度で前記ガラスを加熱炉から出炉するところにある。   In the first characteristic configuration of the present invention, the glass to be tempered is heated to a temperature higher than the strain point and lower than the softening point by a heating furnace, and then the surface of the glass is cooled. A method for producing a heat-strengthened glass that is heat-strengthened based on a temperature difference of a part, wherein the center part of the glass is locally heated with an electromagnetic wave in a millimeter wave band, so that the glass surface and the center part at the strain point are A temperature difference is ensured to a predetermined temperature difference, whereby the glass is removed from the heating furnace at a surface exit temperature lower than the exit temperature of the glass surface when the glass is heated only by the heating furnace. is there.

本発明の第1の特徴構成によれば、強化対象ガラスの中心部をミリ波帯の電磁波で局部的に加熱することにより、ガラス表面を冷却して熱強化する際の歪み点におけるガラス表面と中心部の温度差を所定の温度差に確保し、それによって、加熱炉のみによりガラスを加熱して出炉する際のガラス表面の出炉温度よりも低い表面出炉温度でガラスを加熱炉から出炉するので、加熱炉内におけるガラスの表面温度は、従来方法による場合よりも低くてすむ。
したがって、たとえガラス表面と中心部の温度差を大きくして、表面圧縮応力が160MPa以上の超強度の熱強化処理を行う場合であっても、さらに、自重の重い板厚の厚い板ガラスを熱強化処理の対象とする場合であっても、加熱炉内での搬送中におけるガラスの変形や平滑度への悪影響を抑制して、商品価値の高い熱強化ガラスを製造することができる。
According to the first characteristic configuration of the present invention, the glass surface at the strain point when the glass surface is cooled and thermally strengthened by locally heating the central portion of the glass to be reinforced with millimeter wave electromagnetic waves; Since the temperature difference in the center is kept at a predetermined temperature difference, the glass is discharged from the heating furnace at a surface furnace temperature lower than the furnace temperature of the glass surface when the glass is heated only by the heating furnace. The surface temperature of the glass in the heating furnace can be lower than that in the conventional method.
Therefore, even if the temperature difference between the glass surface and the central part is increased and a super-strength thermal strengthening treatment with a surface compressive stress of 160 MPa or more is performed, a thick plate glass with a heavy plate thickness is further thermally strengthened. Even in the case of processing, it is possible to suppress the adverse effects on the deformation and smoothness of the glass during conveyance in the heating furnace, and to produce a heat strengthened glass having a high commercial value.

本発明の第2の特徴構成は、前記加熱炉から出炉した後のガラスに対して、前記ミリ波帯の電磁波でその中心部を局部的に加熱するところにある。   The second characteristic configuration of the present invention resides in that the central portion is heated locally by the electromagnetic wave in the millimeter wave band with respect to the glass after being exited from the heating furnace.

本発明の第2の特徴構成によれば、加熱炉から出炉した後のガラスに対して、ミリ波帯の電磁波でその中心部を局部的に加熱するので、例えば、加熱炉に電磁波照射用の装置を組み付ける場合のように、電磁波照射装置に対する耐熱対策などを施す必要が無く、空冷式の冷却装置やクラッパーを使用するクラッピング式冷却装置を採用することにより、それら冷却装置に対して電磁波照射装置を簡単に組み付けて、ガラスの中心部を所望どおりに局部加熱することができる。   According to the second characteristic configuration of the present invention, the glass after exiting from the heating furnace is locally heated with electromagnetic waves in the millimeter wave band. There is no need to take heat-resistant measures for the electromagnetic wave irradiation device as in the case of assembling the device. By adopting an air cooling type cooling device or a clapping type cooling device using a clapper, electromagnetic wave irradiation is applied to these cooling devices. The device can be easily assembled and the center of the glass can be locally heated as desired.

本発明の第3の特徴構成は、前記加熱炉内にあるガラスに対して、前記ミリ波帯の電磁波でその中心部を局部的に加熱するところにある。   The third characteristic configuration of the present invention is that the glass in the heating furnace is locally heated by the millimeter wave band electromagnetic wave.

本発明の第3の特徴構成によれば、加熱炉内にあるガラスに対して、ミリ波帯の電磁波でその中心部を局部的に加熱するので、冷却装置に対して電磁波照射装置を組み付ける必要がなく、ガラスの中心部を所望どおりに局部加熱することができ、したがって、冷却液中に浸漬して冷却する液冷装置を含め、あらゆる種類の冷却装置を使用して熱強化することができる。   According to the third characteristic configuration of the present invention, the glass in the heating furnace is locally heated by the millimeter wave band electromagnetic wave, so the electromagnetic wave irradiation device needs to be assembled to the cooling device. The glass center can be locally heated as desired and can therefore be heat strengthened using any kind of cooling device, including liquid cooling devices that are immersed and cooled in the cooling fluid .

本発明の第4の特徴構成は、前記強化対象ガラスが、板厚5mm以上の板ガラスであるところにある。   According to a fourth characteristic configuration of the present invention, the glass to be tempered is a plate glass having a thickness of 5 mm or more.

本発明の第4の特徴構成によれば、強化対象ガラスが、板厚5mm以上の板ガラス、つまり、比較的板厚の厚い板ガラスであるから、例えば、ビルや一般住宅の窓用として、また、電車やバスなどの窓用として使用可能な熱強化ガラスを提供することができる。   According to the fourth characteristic configuration of the present invention, the glass to be strengthened is a plate glass having a thickness of 5 mm or more, that is, a relatively thick plate glass. It is possible to provide heat-tempered glass that can be used for windows of trains and buses.

本発明による熱強化ガラスの製造方法につき、その実施の形態を図面に基づいて説明する。
この製造方法における強化対象ガラスは、例えば、板厚が5mm以上の板ガラスGで、図1に示すように、加熱炉1、冷却装置2、発振装置3などを備えた熱強化装置によって強化処理される。
加熱炉1は、その内部が図外のヒータまたはバーナにより加熱されるように構成され、加熱炉1内には、多数本の加熱炉用ローラ4が配設されて、板ガラスGが加熱炉用ローラ4により矢印方向に搬送されるように構成されている。
Embodiments of the method for producing heat-strengthened glass according to the present invention will be described with reference to the drawings.
The glass to be tempered in this manufacturing method is, for example, a plate glass G having a thickness of 5 mm or more, and is tempered by a heat strengthening device including a heating furnace 1, a cooling device 2, an oscillation device 3, and the like as shown in FIG. The
The inside of the heating furnace 1 is configured to be heated by a heater or a burner (not shown). In the heating furnace 1, a large number of heating furnace rollers 4 are arranged, and the plate glass G is used for the heating furnace. It is configured to be conveyed in the direction of the arrow by the roller 4.

冷却装置2は、内部に空気室を有する上下一対の冷却ユニット5,6を備え、上方冷却ユニット5に上方ブロワー7が、下方冷却ユニット6に下方ブロワー8がそれぞれ連通接続されている。
上方冷却ユニット5には、多数の上方ノズル9が設けられ、下方冷却ユニット6には、多数の下方ノズル10が設けられて、両冷却ユニット5,6の間には、多数本の冷却装置用ローラ11が配設され、加熱炉用ローラ4により搬送されて加熱炉1から出炉された板ガラスGが、冷却装置用ローラ11により搬送されて上下のノズル9,10間を通過し、その後、別のローラ12により次の工程へと搬送されるように構成されている。
The cooling device 2 includes a pair of upper and lower cooling units 5 and 6 each having an air chamber. An upper blower 7 is connected to the upper cooling unit 5, and a lower blower 8 is connected to the lower cooling unit 6.
The upper cooling unit 5 is provided with a number of upper nozzles 9, the lower cooling unit 6 is provided with a number of lower nozzles 10, and a plurality of cooling devices are provided between the cooling units 5 and 6. A sheet glass G provided with a roller 11 and conveyed by the heating furnace roller 4 and discharged from the heating furnace 1 is conveyed by the cooling device roller 11 and passes between the upper and lower nozzles 9 and 10. This roller 12 is configured to be conveyed to the next process.

発振装置3は、例えば、従来公知のジャイロトロン、つまり、電子サイクロトロン共鳴メーザー(CRM)を発振原理として電磁波を高効率で発振する電子管により構成され、大電力のミリ波帯の電磁波を発振するように構成されている。
発振装置3からの電磁波は、例えば、周波数で表して少なくとも18GHz以上のミリ波帯の電磁波で、導波管13を介して冷却装置2へ導かれ、加熱炉1から出炉した板ガラスGを照射するように構成されている。
そのため、冷却装置2全体が金属製のチャンバー14で覆われて、チャンバー14と発振装置3が導波管13により接続されている。また、図示されていないが、ノズル9,10から排出された冷却用空気は、速やかにチャンバー14から排気される。
The oscillating device 3 is composed of, for example, a conventionally known gyrotron, that is, an electron tube that oscillates electromagnetic waves with high efficiency using an electron cyclotron resonance maser (CRM) as an oscillation principle, and oscillates electromagnetic waves in a high power millimeter wave band. It is configured.
The electromagnetic wave from the oscillation device 3 is, for example, an electromagnetic wave in the millimeter wave band of at least 18 GHz expressed in terms of frequency, and is guided to the cooling device 2 through the waveguide 13 and irradiates the plate glass G exiting from the heating furnace 1. It is configured as follows.
Therefore, the entire cooling device 2 is covered with a metal chamber 14, and the chamber 14 and the oscillation device 3 are connected by the waveguide 13. Although not shown, the cooling air discharged from the nozzles 9 and 10 is quickly exhausted from the chamber 14.

つぎに、板ガラスGが上述の装置により熱強化処理されるプロセスについて説明する。
まず、板ガラスGは、加熱炉用ローラ4により加熱炉1内を搬送されて所定の温度、つまり、歪み点以上で軟化点未満の温度にまで加熱される。
例えば、板ガラスGが厚さ6mmのフロートガラスの場合、図2を参照して、約500℃の歪み点より高く、約680℃の軟化点未満である620℃程度にまで加熱されて、加熱炉1から出炉される。
この出炉時において、板ガラスGの表面における表面温度aと板ガラスGの中心部における中心温度b,c(この中心温度b,cについては後述する)はほぼ同じ温度である。
Next, a process in which the plate glass G is heat strengthened by the above-described apparatus will be described.
First, the plate glass G is conveyed through the heating furnace 1 by the heating furnace roller 4 and heated to a predetermined temperature, that is, a temperature not lower than the strain point and lower than the softening point.
For example, when the plate glass G is a float glass having a thickness of 6 mm, referring to FIG. 2, the glass plate G is heated to about 620 ° C. which is higher than the strain point of about 500 ° C. and lower than the softening point of about 680 ° C. It is discharged from 1.
At the time of the furnace exit, the surface temperature a on the surface of the plate glass G and the center temperatures b and c (the center temperatures b and c will be described later) at the center of the plate glass G are substantially the same temperature.

その後、板ガラスGは、冷却装置用ローラ11で搬送され、その間に上下のノズル9,10から勢い良く噴出される乾燥した冷却用空気により急速に冷却されるので、表面温度aは、時間の経過に伴って急激に低下し、中心温度もbで示すように、表面温度aより多少遅れて低下する。
ただし、bで示す中心温度は、従来の方法による場合であり、本発明方法では、この冷却工程において、出炉後の板ガラスGに対し発振装置3からのミリ波帯の電磁波が照射されて板ガラスGの中心部が局部的に加熱されるので、板ガラスGの中心温度はcで示すように、従来方法による中心温度bよりも高く維持される。
Thereafter, the plate glass G is rapidly cooled by the dry cooling air that is conveyed by the cooling device roller 11 and is ejected vigorously from the upper and lower nozzles 9 and 10 during that time. As shown by b, the center temperature decreases slightly later than the surface temperature a.
However, the center temperature indicated by b is based on the conventional method. In the method of the present invention, in this cooling step, the glass plate G after the furnace is irradiated with the electromagnetic wave in the millimeter wave band from the oscillation device 3, and the plate glass G Since the central portion of the glass plate G is locally heated, the central temperature of the plate glass G is maintained higher than the central temperature b by the conventional method as indicated by c.

そして、本発明方法による場合にも、表面温度aの温度低下に伴って、中心温度cが徐々に低下するのであるが、表面温度aが約500℃の歪み点温度にまで低下した時点で、表面温度aと中心温度cとの間には、所定の温度差Tが確保される。
この温度差Tは、従来方法による場合の温度差T1よりもT2だけ高い温度差となり、したがって、従来方法よりも高い強化度を有する熱強化ガラスを得ることができる。
言い換えると、従来と同じ強化度を得る場合、加熱炉1から出炉するときの板ガラスGの表面温度aについては、従来方法による場合の表面温度よりもT2だけ低い温度で出炉することが可能となる。
And even in the case of the method of the present invention, the center temperature c gradually decreases as the surface temperature a decreases, but when the surface temperature a decreases to a strain point temperature of about 500 ° C., A predetermined temperature difference T is ensured between the surface temperature a and the center temperature c.
This temperature difference T is a temperature difference higher by T2 than the temperature difference T1 in the case of the conventional method. Therefore, a heat strengthened glass having a higher tempering degree than that of the conventional method can be obtained.
In other words, when obtaining the same degree of strengthening as in the prior art, the surface temperature a of the sheet glass G when exiting from the heating furnace 1 can be exited at a temperature lower by T2 than the surface temperature in the case of the conventional method. .

すなわち、従来の方法で、例えば、表面圧縮応力200MPa程度の超強化板ガラスを製造する場合、出炉時における板ガラスGの表面温度は、板厚6mmまたは8mmで655〜660℃、板厚10mmで645〜650℃、板厚12mmで635〜640℃程度であるが、本発明方法によれば、いずれの板厚においても概ね30℃程度低くすることができる。
このように従来よりも低い表面温度aでの出炉が可能となるので、たとえ板厚が比較的厚く、そのために自重の重い板ガラスGであっても、加熱炉1内での搬送中に変形するおそれはなく、また、加熱炉用ローラ4との接触で平滑度が阻害されることもなく、160MPa以上の超強化板ガラスGを製造することができる。
That is, for example, in the case of producing a super strengthened plate glass having a surface compressive stress of about 200 MPa by a conventional method, the surface temperature of the plate glass G at the time of leaving the furnace is 655 to 660 ° C. when the plate thickness is 6 mm or 8 mm, and 645 when the plate thickness is 10 mm. Although it is about 635-640 degreeC with 650 degreeC and plate | board thickness 12mm, according to this invention, it can be made about 30 degreeC low in any board | plate thickness.
In this way, the furnace can be discharged at a lower surface temperature a than in the prior art. Therefore, even if the plate thickness is relatively large and the plate glass G is heavy due to its own weight, it is deformed during conveyance in the heating furnace 1. There is no fear, and the super-strengthened glass sheet G of 160 MPa or more can be produced without the smoothness being disturbed by the contact with the heating furnace roller 4.

〔別実施形態〕
(1)先の実施形態では、冷却装置2に対して発振装置3を組み付けて、加熱炉1から出炉した板ガラスGに対してミリ波帯の電磁波を照射して局部加熱する方法を示したが、加熱炉1に対して発振装置3を組み付けて、加熱炉1内で加熱されている板ガラスGに対してミリ波帯の電磁波を照射し、板ガラスGの中心部を局部的に加熱することもできる。
この別の実施形態による装置については、特に図示はしないが、その熱強化プロセスを図3に示す。なお、図中における各符号は、図2において記した符号と同じものを示す。
この図3から明らかなように、別の実施形態においても、板ガラスGの表面温度aが約500℃の歪み点温度にまで低下した時点で、表面温度aと中心温度cとの間には、従来の温度差T1よりもT2だけ高い温度差Tが確保される。
[Another embodiment]
(1) In the previous embodiment, the method of assembling the oscillation device 3 to the cooling device 2 and irradiating the plate glass G exiting from the heating furnace 1 with electromagnetic waves in the millimeter wave band to locally heat the glass is shown. In addition, the oscillation device 3 is assembled to the heating furnace 1, the electromagnetic wave in the millimeter wave band is irradiated to the glass sheet G heated in the heating furnace 1, and the central part of the glass sheet G is locally heated. it can.
Although not specifically shown, the thermal strengthening process of the apparatus according to this another embodiment is shown in FIG. In addition, each code | symbol in a figure shows the same thing as the code | symbol described in FIG.
As is apparent from FIG. 3, in another embodiment, when the surface temperature a of the plate glass G is reduced to a strain point temperature of about 500 ° C., the surface temperature a and the center temperature c are A temperature difference T higher than the conventional temperature difference T1 by T2 is secured.

(2)先の実施形態では、冷却装置2として空冷式の冷却装置を使用し、加熱後の強化対象ガラスGを冷却用空気により急冷する空冷強化方法を示したが、例えば、クラッパーを使用するクラッピング強化方法に適用することも、また、冷却液中に浸漬する液冷強化方法に適用することもでき、さらに、強化対象ガラスGの一例として板ガラスを示したが、強化対象となるガラスも、特に板ガラスに限るものではなく、例えば、眼鏡や光学機器用のレンズなど、種々のガラスについても適用可能である。 (2) In the previous embodiment, an air cooling type cooling device was used as the cooling device 2, and the air cooling strengthening method in which the glass to be tempered after heating G was rapidly cooled with cooling air has been described. For example, a clapper is used. It can also be applied to a method for strengthening clapping, and it can also be applied to a liquid cooling strengthening method immersed in a cooling liquid. Further, although a plate glass is shown as an example of a glass to be strengthened G, In particular, the present invention is not limited to plate glass, and can be applied to various glasses such as glasses and lenses for optical instruments.

熱強化ガラスの製造装置の概略構成図Schematic configuration diagram of heat-strengthened glass manufacturing equipment ガラスの表面温度と中心温度の変化を示す図表Chart showing changes in surface temperature and center temperature of glass 別の実施形態によるガラスの表面温度と中心温度の変化を示す図表Chart showing changes in surface temperature and center temperature of glass according to another embodiment

符号の説明Explanation of symbols

1 加熱炉
G 強化対象ガラスとしての板ガラス
a ガラスの表面温度
c ガラスの中心温度
T ガラスの表面温度と中心温度の温度差
1 Heating furnace G Sheet glass as glass to be tempered a Surface temperature of glass c Center temperature of glass T Temperature difference between surface temperature of glass and center temperature

Claims (4)

強化対象ガラスを加熱炉により歪み点以上で軟化点未満にまで加熱して出炉した後、そのガラスの表面を冷却して、前記歪み点におけるガラス表面と中心部の温度差に基づいて熱強化する熱強化ガラスの製造方法であって、
前記ガラスの中心部をミリ波帯の電磁波で局部的に加熱することにより、前記歪み点におけるガラス表面と中心部の温度差を所定の温度差に確保し、それによって、前記加熱炉のみによりガラスを加熱して出炉する際のガラス表面の出炉温度よりも低い表面出炉温度で前記ガラスを加熱炉から出炉する熱強化ガラスの製造方法。
After heating the glass to be tempered to a temperature higher than the strain point and lower than the softening point by a heating furnace, the surface of the glass is cooled and thermally strengthened based on the temperature difference between the glass surface and the central portion at the strain point. A method for producing heat strengthened glass, comprising:
By locally heating the central portion of the glass with millimeter wave electromagnetic waves, a temperature difference between the glass surface and the central portion at the strain point is ensured to a predetermined temperature difference, and thereby the glass is heated only by the heating furnace. A method for producing thermally tempered glass, in which the glass is removed from the heating furnace at a surface furnace temperature lower than the furnace temperature of the glass surface when the glass is heated and discharged.
前記加熱炉から出炉した後のガラスに対して、前記ミリ波帯の電磁波でその中心部を局部的に加熱する請求項1に記載の熱強化ガラスの製造方法。   The manufacturing method of the heat strengthened glass of Claim 1 which heats the center part locally with the electromagnetic wave of the said millimeter wave band with respect to the glass after taking out from the said heating furnace. 前記加熱炉内にあるガラスに対して、前記ミリ波帯の電磁波でその中心部を局部的に加熱する請求項1に記載の熱強化ガラスの製造方法。   The manufacturing method of the heat strengthened glass of Claim 1 which heats the center part locally with the electromagnetic wave of the said millimeter wave band with respect to the glass in the said heating furnace. 前記強化対象ガラスが、板厚5mm以上の板ガラスである請求項1から3のいずれか1項に記載の熱強化ガラスの製造方法。   The method for producing thermally tempered glass according to any one of claims 1 to 3, wherein the glass to be tempered is a plate glass having a thickness of 5 mm or more.
JP2003406106A 2003-12-04 2003-12-04 Method of manufacturing thermally tempered glass Withdrawn JP2005162561A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003406106A JP2005162561A (en) 2003-12-04 2003-12-04 Method of manufacturing thermally tempered glass
CN 200410097892 CN1623943A (en) 2003-12-04 2004-12-06 Method for making thermal reinforced glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406106A JP2005162561A (en) 2003-12-04 2003-12-04 Method of manufacturing thermally tempered glass

Publications (1)

Publication Number Publication Date
JP2005162561A true JP2005162561A (en) 2005-06-23

Family

ID=34728582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406106A Withdrawn JP2005162561A (en) 2003-12-04 2003-12-04 Method of manufacturing thermally tempered glass

Country Status (2)

Country Link
JP (1) JP2005162561A (en)
CN (1) CN1623943A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511822A (en) * 2011-04-18 2014-05-19 リゼツク・オーストリア・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and apparatus for tempering glass
CN105442258A (en) * 2014-09-30 2016-03-30 绥中明晖工业技术有限公司 Glass bending tempering printing production line apparatus for washing machine operation display screen
WO2017146063A1 (en) * 2016-02-26 2017-08-31 旭硝子株式会社 Glass plate tempering method and tempered glass plate
CN110526560A (en) * 2018-09-21 2019-12-03 安徽恒春玻璃股份有限公司 A kind of annealing furnace contracurrent system equipment
CN111908781A (en) * 2020-07-28 2020-11-10 宣城吉鼎玻机械有限公司 Conveying method of heating furnace in continuous glass tempering furnace

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429841B (en) * 2007-11-06 2011-05-11 洛阳鑫德安全玻璃技术有限公司 2mm silk-screen strengthened glass and wood plank combined kitchen cabinet door board production technology
US9616641B2 (en) 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
US10035331B2 (en) 2011-06-24 2018-07-31 Corning Incorporated Light-weight hybrid glass laminates
CN105036563B (en) * 2015-07-30 2017-06-06 福耀集团(福建)机械制造有限公司 The toughening method and reinforcing device of a kind of glass with hole
FR3057358A1 (en) * 2016-10-10 2018-04-13 Airbus Operations (S.A.S.) DEVICE FOR MEASURING FLIGHT PARAMETERS WITH DEFORMATION OPTICAL SENSORS FITTED BY THE RADOME OF AN AIRCRAFT
CN107721147A (en) * 2017-11-14 2018-02-23 杭州精工机械有限公司 Can realize effectively reduction tempering stress spot by formula glass tempering furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511822A (en) * 2011-04-18 2014-05-19 リゼツク・オーストリア・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and apparatus for tempering glass
US9221708B2 (en) 2011-04-18 2015-12-29 Lisec Austria Gmbh Method and device for tempering glass
CN105442258A (en) * 2014-09-30 2016-03-30 绥中明晖工业技术有限公司 Glass bending tempering printing production line apparatus for washing machine operation display screen
WO2017146063A1 (en) * 2016-02-26 2017-08-31 旭硝子株式会社 Glass plate tempering method and tempered glass plate
CN108779016A (en) * 2016-02-26 2018-11-09 Agc株式会社 The intensifying method and strengthening glass sheets of glass plate
US20190002332A1 (en) * 2016-02-26 2019-01-03 AGC Inc. Method for tempering glass plate, and tempered glass plate
US10654742B2 (en) 2016-02-26 2020-05-19 AGC Inc. Method for tempering glass plate, and tempered glass plate
CN110526560A (en) * 2018-09-21 2019-12-03 安徽恒春玻璃股份有限公司 A kind of annealing furnace contracurrent system equipment
CN111908781A (en) * 2020-07-28 2020-11-10 宣城吉鼎玻机械有限公司 Conveying method of heating furnace in continuous glass tempering furnace

Also Published As

Publication number Publication date
CN1623943A (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP5821841B2 (en) Method and apparatus for strengthening glass plate
JP4703188B2 (en) System and method for producing tempered glass by simultaneously heating and cooling glass
US9975801B2 (en) High strength glass having improved mechanical characteristics
JP2003261344A (en) Method for manufacturing thermally tempered glass article and manufacturing apparatus used for the same
JP2005162561A (en) Method of manufacturing thermally tempered glass
KR20130024484A (en) Manufacture method for tempered glass and manufacture apparatus for tempered glass
EP2727890A1 (en) Apparatus for chemically toughening glass and method of chemically toughening glass using the same
US10654742B2 (en) Method for tempering glass plate, and tempered glass plate
KR20030009459A (en) A method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
WO2012002506A1 (en) Method for heightening strength of glass substrate for front plate of display device
JP5690712B2 (en) Tempered glass manufacturing apparatus and method
US7039303B2 (en) Heating method, heating apparatus, and production method of image display apparatus
US20150284283A1 (en) Method for glass tempering using microwave radiation
JP2007147264A (en) Continuous type heat treatment method and continuous type heat treat furnace
JP4400158B2 (en) Heating method for plate
WO2004058653A1 (en) Method for producing bent and toughened glass
ZA200502916B (en) System and method for simultaneously heating and cooling glass to produce tempered glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20070628

Free format text: JAPANESE INTERMEDIATE CODE: A761