JP2005160640A - Biological state detector - Google Patents

Biological state detector Download PDF

Info

Publication number
JP2005160640A
JP2005160640A JP2003401927A JP2003401927A JP2005160640A JP 2005160640 A JP2005160640 A JP 2005160640A JP 2003401927 A JP2003401927 A JP 2003401927A JP 2003401927 A JP2003401927 A JP 2003401927A JP 2005160640 A JP2005160640 A JP 2005160640A
Authority
JP
Japan
Prior art keywords
pulse
component
detection signal
body motion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003401927A
Other languages
Japanese (ja)
Other versions
JP4345459B2 (en
Inventor
Kazuyasu Sakai
一泰 酒井
Sadasuke Kimura
禎祐 木村
Katsumasa Nishii
克昌 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003401927A priority Critical patent/JP4345459B2/en
Priority to US10/957,663 priority patent/US7507207B2/en
Publication of JP2005160640A publication Critical patent/JP2005160640A/en
Application granted granted Critical
Publication of JP4345459B2 publication Critical patent/JP4345459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological state detector surely detecting a pulse even if a body moves, and highly sensitively detecting a pulse wave and the body motion even if being worn on a portion except for a peripheral part such as a finger. <P>SOLUTION: When subjecting a pulse wave detection signal including pulse components and body motion components and a body motion detection signal more intensified with the body components compared with the pulse wave detecting signal to an FFT, the biological state detector determines the presence/absence of the body motion based on the amplitude of the body motion detection signal and the analytical results of both detecting signals (S200), and when the body moves (S210-Y), determines the constancy of the body motion based on the analytical results of both detecting signals (S240). Based on the determination results, when the body moves (S210-Y), when the body moves and has homeostasis (S240-Y), and when the body moves but has no homeostasis (S240-N), the pulse components are specified (S220, S250 and S260) by methods according to the respective states. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脈拍数や脈拍間隔等の生体状態を検出する生体状態検出装置に関する。   The present invention relates to a biological state detection device that detects a biological state such as a pulse rate and a pulse interval.

近年、健康管理の用途で、日常生活やジョギング等運動時での心臓拍動数(心拍数)をモニターするニーズが高まっている。心拍数を検出するには、心電計により、心拍に伴って発生する活動電位を胸部より計測し、その計測結果(心電図)に現れるR波の間隔時間から算出する方法が一般的である。しかし、心電計による計測では、被験者の身体に電極を貼り付ける必要があり、被験者を煩わせるだけでなく、被験者の動きも制約されることになる。   In recent years, there has been an increasing need for monitoring the heart rate (heart rate) during exercise such as daily life and jogging for health management applications. In order to detect the heart rate, an electrocardiograph generally measures an action potential generated with a heartbeat from the chest, and calculates from an R wave interval time appearing in the measurement result (electrocardiogram). However, in measurement with an electrocardiograph, it is necessary to attach electrodes to the body of the subject, which not only bothers the subject but also restricts the movement of the subject.

そこで、心電計の代わりに、指やこめかみ等に簡便に装着可能な光学式の脈波センサを用いる方法が提案されている。脈波とは、心拍に従って発生する動脈内の圧力変動が、末梢動脈に波動として伝わったものであり、光学式脈波センサでは、血液中のヘモグロビンの光吸収特性を利用して末梢動脈の血液の波動的な容積変化を計測する。   Therefore, a method using an optical pulse wave sensor that can be easily mounted on a finger, a temple, or the like instead of an electrocardiograph has been proposed. A pulse wave is a change in pressure in the artery that occurs according to the heart rate, and is transmitted to the peripheral artery as a wave. The optical pulse wave sensor uses the light absorption characteristics of hemoglobin in the blood to blood in the peripheral artery. Measure the wave volume change.

ところで、脈波センサを用いた場合、図19に示すように、脈拍数Nは、脈波のピークの出現間隔Wから算出される。しかし、脈波センサの装着部位に体動が生じると、末梢動脈の血流に乱れが生じることにより、検出される脈波には、脈拍(心拍)とは無関係に、体動に同期したピークが出現し、脈波センサを用いて算出される脈拍数と、実際の脈拍数とが一致しなくなる。しかも、この体動に基づくピーク(体動成分)は、脈拍に基づくピーク(脈拍成分)と重複した周波数領域に出現する場合があり、フィルタ等によって単純には除去することができない。   When the pulse wave sensor is used, the pulse rate N is calculated from the pulse wave appearance interval W as shown in FIG. However, when body motion occurs at the site where the pulse wave sensor is attached, the blood flow in the peripheral artery is disturbed, and the detected pulse wave has a peak synchronized with the body motion, regardless of the pulse (heart rate). Appears, and the pulse rate calculated using the pulse wave sensor does not match the actual pulse rate. Moreover, the peak (body motion component) based on the body motion may appear in a frequency region overlapping with the peak based on the pulse (pulse component), and cannot be simply removed by a filter or the like.

このような問題を解決するものとして、例えば、脈波センサとは別に、体動を検出する体動センサ(加速度センサ)を設け、体動センサにより体動が検出された時には、脈波センサから得られる検出信号の周波数解析結果(スペクトル)から、体動センサの検出信号から特定される体動成分を除去して脈拍成分を抽出する装置が知られている(例えば、特許文献1参照。)。   In order to solve such a problem, for example, a body motion sensor (acceleration sensor) for detecting body motion is provided separately from the pulse wave sensor, and when the body motion is detected by the body motion sensor, the pulse wave sensor An apparatus is known that extracts a pulse component by removing a body motion component specified from a detection signal of a body motion sensor from a frequency analysis result (spectrum) of an obtained detection signal (see, for example, Patent Document 1). .

また、波長の異なる2種類の光を放射する光学式脈波センサを用い、血液成分の吸光特性が光の波長に応じて変化すること、及び、生体の運動が血液の流量に影響を与えることを利用して、波長の異なる光のそれぞれについて検出される検出信号に基づき、各検出信号に含まれるピーク周波数成分の振幅の比や、その変化から、脈拍成分と体動成分との識別や、生体の運動強度などを検出する装置も知られている(例えば、特許文献2参照。)。
特許第2816944号公報 特開平7−88092号公報
In addition, optical pulse wave sensors that emit two types of light with different wavelengths are used, the light absorption characteristics of blood components change according to the wavelength of light, and the movement of a living body affects the blood flow rate. Based on the detection signal detected for each of the light with different wavelengths, the ratio of the amplitude of the peak frequency component included in each detection signal and the change thereof, the discrimination between the pulse component and the body motion component, An apparatus for detecting the exercise intensity of a living body is also known (for example, see Patent Document 2).
Japanese Patent No. 2816944 JP-A-7-88092

しかし、特許文献1に記載の従来装置では、計測時に被験者の動きが制約されないようにするために小型の光学式脈波センサを用いるにも関わらず、この脈波センサとは別体の体動センサを併せて用いなければならないため、装置の構成部品が増加してしまうという問題があった。   However, in the conventional apparatus described in Patent Document 1, although a small optical pulse wave sensor is used in order to prevent the movement of the subject from being restricted at the time of measurement, the body motion is separate from the pulse wave sensor. Since the sensor must be used together, there is a problem that the number of components of the apparatus increases.

一方、特許文献2に記載の従来装置では、別体の体動センサを必要としないため、装置を小型に構成することができる。しかし、体動成分と脈拍成分との関係は、センサの装着状態や個人差(例えば心肺機能の強さや皮下脂肪の厚さ等)によって様々であり、しかも、この従来装置では、体動の影響を強く受ける皮膚の表面からの反射光の影響が考慮されていないため、この従来装置に用いられている一意的な演算処理では、脈拍や運動量を正確に求めることができないという問題があった。   On the other hand, the conventional device described in Patent Document 2 does not require a separate body motion sensor, so that the device can be made compact. However, the relationship between the body motion component and the pulse component varies depending on the sensor wearing state and individual differences (for example, the strength of cardiopulmonary function, the thickness of subcutaneous fat, etc.). Since the influence of the reflected light from the surface of the skin that is strongly subjected to the above is not taken into consideration, there is a problem that the pulse and the momentum cannot be accurately obtained by the unique arithmetic processing used in this conventional apparatus.

特に、被験者の利便性を考慮して、腕や脚などに脈波センサを取り付けた場合、指等の抹消部位に取り付けた場合と比較して、皮下脂肪の影響により脈波の検出感度が低下するため、脈波成分が体動成分に埋もれてしまい、検出精度が低下するという問題もあった。   In particular, in consideration of the convenience of the subject, when a pulse wave sensor is attached to an arm, leg, etc., the detection sensitivity of the pulse wave is reduced due to the influence of subcutaneous fat compared to the case where it is attached to a peripheral part such as a finger. Therefore, the pulse wave component is buried in the body motion component, and there is a problem that the detection accuracy is lowered.

本発明は、上記問題点を解決するために、体動があっても脈拍を正確に検出し、更には、指等の抹消部位以外に装着しても、感度良く脈波や体動を検出する生体状態検出装置を提供することを目的とする。   In order to solve the above problems, the present invention accurately detects the pulse even when there is body movement, and also detects the pulse wave and body movement with high sensitivity even when worn on other than a peripheral part such as a finger. An object of the present invention is to provide a living body state detection device.

上記目的を達成するためになされた本発明の生体状態検出装置において、脈波センサは、被験者に照射する光を発生させる発光部、及び被験者からの反射光を受光する受光部を有し、脈拍に同期した脈拍成分と体動に同期した体動成分とを含む脈波検出信号、及び脈波検出信号と比較して体動成分が強調された体動検出信号を出力する。   In the biological state detection device of the present invention made to achieve the above object, the pulse wave sensor has a light emitting unit that generates light to be irradiated to the subject, and a light receiving unit that receives reflected light from the subject, A pulse wave detection signal including a pulse component synchronized with the body motion component and a body motion component synchronized with the body motion, and a body motion detection signal in which the body motion component is emphasized compared to the pulse wave detection signal.

すると、解析手段が、脈波センサからの検出信号(脈波検出信号,体動検出信号)を周波数解析し、また、体動判定手段が、少なくとも脈波センサからの検出信号または解析手段での解析結果のいずれかに基づいて体動の有無を判定し、更に、体動判定手段にて体動ありと判定された場合には、定常性判定手段が、解析手段での解析結果に基づいて体動の定常性を判定する。   Then, the analysis means performs frequency analysis on the detection signal (pulse wave detection signal, body motion detection signal) from the pulse wave sensor, and the body motion determination means at least detects the signal from the pulse wave sensor or the analysis means. Based on one of the analysis results, the presence / absence of body movement is determined. Further, when the body movement determination means determines that there is body movement, the stationarity determination means determines whether the body movement is based on the analysis result of the analysis means. Determine the steadiness of body movement.

そして、脈拍成分抽出手段が、これら解析手段での解析結果、体動判定手段及び定常性判定手段での判定結果に基づいて、脈波検出信号から脈拍成分を抽出する。
このように、本発明では、脈波センサに、脈拍成分と体動成分とを含む脈波検出信号だけでなく、体動成分が強調された体動検出信号も出力させているため、加速度センサ等を利用した脈波センサとは別体の体動センサを設けることなく、被験者の体動を精度良く検出することができる。
Then, the pulse component extraction means extracts a pulse component from the pulse wave detection signal based on the analysis results of these analysis means and the determination results of the body motion determination means and the continuity determination means.
As described above, in the present invention, the pulse wave sensor outputs not only the pulse wave detection signal including the pulse component and the body motion component but also the body motion detection signal in which the body motion component is emphasized. The body motion of the subject can be detected with high accuracy without providing a body motion sensor separate from the pulse wave sensor using the above.

そして、脈波検出信号から脈拍成分を抽出する際には、体動の有無だけでなく、体動の状態(定常性の有無)も考慮しているため、脈波検出信号に含まれる体動成分を正しく特定でき、脈拍成分の抽出、ひいては脈拍数や脈拍間隔等の生体状態の検出を精度良く行うことができる。   When extracting the pulse component from the pulse wave detection signal, not only the presence / absence of body movement, but also the state of body movement (presence / absence of steadiness) is taken into consideration. The component can be correctly identified, and the extraction of the pulse component and the detection of the biological state such as the pulse rate and the pulse interval can be performed with high accuracy.

ところで、脈波センサから脈波検出信号と体動検出信号とを出力させるために、具体的には、例えば、発光部を、脈波センサが脈波検出信号を出力する際に発光させる第1発光素子と、脈波センサが前記体動検出信号を出力する際に発光させる第2発光素子とを備えるように構成し、第1発光素子は第2発光素子より血液成分(例えば、ヘモグロビン)での吸光度が大きい波長にて発光するものを用いることが考えられる。   By the way, in order to output the pulse wave detection signal and the body motion detection signal from the pulse wave sensor, specifically, for example, the first light emitting unit emits light when the pulse wave sensor outputs the pulse wave detection signal. The light-emitting element includes a second light-emitting element that emits light when the pulse wave sensor outputs the body movement detection signal, and the first light-emitting element is a blood component (for example, hemoglobin) than the second light-emitting element. It is conceivable to use one that emits light at a wavelength having a large absorbance.

この場合、第1発光素子を用いて検出される脈波検出信号に含まれる脈拍成分は強調され、逆に、第2発光素子を用いて検出される体動検出信号に含まれる脈拍成分は小さくなり、相対的に体動成分が強調されることになる。   In this case, the pulse component included in the pulse wave detection signal detected using the first light emitting element is emphasized, and conversely, the pulse component included in the body motion detection signal detected using the second light emitting element is small. Thus, the body motion component is relatively emphasized.

具体的には、第1発光素子として、例えば緑色領域(概ね520nm)にて発光するものを、一方、第2発光素子として、例えば赤外領域(概ね950nm)にて発光するものを用いることができる。   Specifically, for example, a device that emits light in the green region (approximately 520 nm) is used as the first light-emitting device, while a device that emits light in the infrared region (approximately 950 nm) is used as the second light-emitting device. it can.

また、脈波センサを、発光部(第1発光素子,第2発光素子)と受光部とが筐体に収納されるように構成すると共に、発光部からの放射光及び受光部への反射光を通過させる開口部に透光板が配置されるように構成した場合、透光板は、第1発光素子に基づく放射光を透過させる第1部位が、第2発光素子に基づく放射光を透過させる第2部位より、筐体の外部に向けて突出した形状を有するように構成してもよい。   Further, the pulse wave sensor is configured such that the light emitting unit (first light emitting element, second light emitting element) and the light receiving unit are housed in the housing, and the emitted light from the light emitting unit and the reflected light to the light receiving unit. When the translucent plate is arranged in the opening that allows the light to pass through, the translucent plate transmits the radiated light based on the second light emitting element at the first portion that transmits the radiated light based on the first light emitting element. You may comprise so that it may have the shape which protruded toward the exterior of the housing | casing from the 2nd site | part made.

この場合、透光板の第1部位は第2部位と比較してより被験者に密着するため、第1発光素子を発光させた時には、第2発光素子を発光させた時より、その放射光は血管に到達し易くなり、また、血管からの反射光も受光部にて受光され易くなる。またノイズとなりうる皮膚の反射を軽減することができ、S/Nが向上できる。   In this case, since the first part of the translucent plate is more closely attached to the subject than the second part, when the first light emitting element emits light, the emitted light is more emitted than when the second light emitting element emits light. It becomes easy to reach the blood vessel, and reflected light from the blood vessel is also easily received by the light receiving unit. Further, the reflection of the skin that can be noise can be reduced, and the S / N can be improved.

つまり、第1発光素子を発光させた時には、第2発光素子を発光させた時より、反射光に含まれる脈拍成分が大きくなり、逆に言えば、第2発光素子を発光させた時には、第1発光素子を発光させた時より、反射光に含まれる脈拍成分が小さくなり、相対的に体動成分が強調されることになる。   That is, when the first light emitting element is caused to emit light, the pulse component contained in the reflected light is larger than when the second light emitting element is caused to emit light. Conversely, when the second light emitting element is caused to emit light, The pulse component included in the reflected light becomes smaller than when the one light emitting element is caused to emit light, and the body motion component is relatively emphasized.

そして、透光板は、少なくとも第1部位が筐体より外部に向けて突出していることが望ましく、更に、筐体は、開口部の周縁が開口部が形成された面の他の部位より外部に向けて突出した形状を有することが望ましい。   The translucent plate preferably has at least a first portion protruding outward from the housing. Further, the housing has an outer periphery that is outside the other portion of the surface where the opening is formed. It is desirable to have a shape protruding toward

前者の場合、透光板の第1部位を、筐体に邪魔されることなく、確実に被験者に密着させることができ、また、後者の場合、透光板の取付部位全体が筐体の他の部分より突出するため、部第1部位だけでなく、透光板全体を、確実に被験者に密着させることができる。   In the former case, the first part of the translucent plate can be reliably brought into close contact with the subject without being obstructed by the casing. Since it protrudes from this part, not only a part 1st site | part but the whole translucent board can be reliably stuck to a test subject.

そして、このように脈波センサ(の透光板)が被験者に密着する構成を有することにより、本発明の生体状態検出装置は、指等の抹消部位以外の部位(例えば、腕,脚,胴等)に装着しても、感度よく脈波や体動を検出することができる。   Since the pulse wave sensor (translucent plate) is in close contact with the subject as described above, the biological state detection device of the present invention can be used for parts other than the peripheral part such as a finger (for example, arms, legs, torso). Etc.), it is possible to detect pulse waves and body movements with high sensitivity.

なお、受光部は、第1発光素子及び第2発光素子のそれぞれに一つずつ設けられた一対の受光素子により構成してもよいが、両発光素子で共用される単一の受光素子により構成してもよい。この場合、脈波センサの構成要素を削減することができセンサの小型化を図ることができる。   The light receiving portion may be configured by a pair of light receiving elements provided for each of the first light emitting element and the second light emitting element, but is configured by a single light receiving element shared by both light emitting elements. May be. In this case, the components of the pulse wave sensor can be reduced, and the sensor can be downsized.

ところで、被験者に体動がある場合、脈波センサからの検出信号(脈波検出信号,体動検出信号)の振幅は、その体動に応じて変化する。また、脈拍は正常時には急激に大きく変化することがないため、脈波センサからの検出信号(特に脈波検出信号)に含まれる脈拍成分は大きな高調波を持たず、被験者に体動がない場合、脈波検出信号から十分な強度にて検出されるピーク周波数成分は、脈拍成分に基づく一つだけとなる。更に、体動検出信号にも脈拍成分が含まれるが、体動成分が強調された体動検出信号では、抽出されるピーク周波数成分が脈拍成分に基づくものである場合、そのピーク周波数成分の強度は、脈波検出信号にて検出される同一周波数のピーク周波数成分の強度より小さくなる。   By the way, when the subject has body movement, the amplitude of the detection signal (pulse wave detection signal, body movement detection signal) from the pulse wave sensor changes according to the body movement. In addition, since the pulse does not change drastically when normal, the pulse component included in the detection signal from the pulse wave sensor (especially the pulse wave detection signal) does not have a large harmonic and the subject does not move. The peak frequency component detected with sufficient intensity from the pulse wave detection signal is only one based on the pulse component. Furthermore, the body motion detection signal also includes a pulse component, but in the body motion detection signal in which the body motion component is emphasized, if the extracted peak frequency component is based on the pulse component, the intensity of the peak frequency component Is smaller than the intensity of the peak frequency component of the same frequency detected by the pulse wave detection signal.

これらの事実に基づき、体動判定手段として、具体的には、体動検出信号の振幅、又は該体動検出信号の差分値が予め設定されたしきい値より大きい場合に体動ありと判定する第1体動判定手段や、脈拍成分の基本波が存在し得る周波数領域内での脈波検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が、予め設定された比率(例えば、3〜10程度)以下である場合、即ち、最大ピーク周波数成分以外のピーク周波数成分も無視できない程度の強度を有している場合に、体動ありと判定する第2体動判定手段や、脈拍成分の基本波が存在し得る周波数領域内での脈波検出信号の最大ピーク周波数成分の強度が、この最大ピーク周波数成分と同じ周波数を有する体動検出信号のピーク周波数成分の強度以下である場合に体動ありと判定する第3体動判定手段などが考えられ、これら第1〜第3体動判定手段は、いずれか一つだけを備えていてもよいが、いずれか二つ又は全てを備えていることが望ましい。   Based on these facts, as the body motion determination means, specifically, it is determined that there is body motion when the amplitude of the body motion detection signal or the difference value of the body motion detection signal is larger than a preset threshold value. The intensity ratio between the first peak motion component and the second largest peak frequency component of the pulse wave detection signal in the frequency region where the fundamental wave of the pulse component can exist is set in advance. Second body motion determination for determining that there is body motion when the ratio is less than or equal to the ratio (for example, about 3 to 10), that is, when the peak frequency component other than the maximum peak frequency component has an intensity that cannot be ignored. The intensity of the peak frequency component of the body motion detection signal in which the intensity of the maximum peak frequency component of the pulse wave detection signal in the frequency region where the fundamental wave of the pulse component can exist is the same frequency as this maximum peak frequency component Is In some cases, there may be a third body motion determining means for determining that there is a body motion, and these first to third body motion determining means may include only one, but any two or all of them. It is desirable to have.

また、体動に定常性がある場合には、体動成分の基本波や高調波が明確に出現することが知られており、これらがピーク周波数成分として検出される。
そこで、定常性判定手段として、具体的には、体動検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が、予め設定された比率より大きい場合に定常性ありと判定する第1定常性判定手段や、体動検出信号の最大ピーク周波数成分と2番目又は3番目に大きいピーク周波数成分とが、一方が基本波となり他方が第2高調波となる関係にある場合に定常性ありと判定する第2定常性判定手段などが考えられ、これら第1及び第2定常性判定手段は、いずれか一つだけを備えていてもよいが、両方を備えていることが望ましい。
In addition, it is known that when the body motion is stationary, the fundamental wave and harmonics of the body motion component appear clearly, and these are detected as peak frequency components.
Therefore, as the stationarity determination means, specifically, when the intensity ratio between the maximum peak frequency component of the body motion detection signal and the second largest peak frequency component is larger than a preset ratio, it is determined that stationarity exists. The first stationary state determination means or the maximum peak frequency component of the body motion detection signal and the second or third largest peak frequency component are in a relationship in which one is a fundamental wave and the other is a second harmonic. A second stationarity determining unit for determining that there is stationarity is conceivable. These first and second stationarity determining units may include only one of them, but it is desirable to include both. .

また、脈拍成分抽出手段として、具体的には、体動判定手段にて体動なしと判定された場合に脈波検出信号の最大ピーク周波数成分を脈拍成分として抽出する第1脈拍成分抽出手段、脈拍成分の基本波が存在し得る周波数領域内において、体動成分特定手段にて特定される基本波及び高調波と周波数が一致するものを除いた中での脈波検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が予め設定された比率より大きい場合に、その最大ピーク周波数成分を脈拍成分として抽出する第2脈拍成分抽出手段、重なり推定手段にて重なりなしと推定された場合に、探索範囲内での脈波検出信号の最大ピーク周波数成分を脈拍成分として抽出する第3脈拍成分抽出手段、重なり推定手段にて重なりありと推定された場合に、探索範囲内での脈波検出信号の最大ピーク周波数成分を中心とする予め設定された所定範囲内における解析手段での解析結果から、脈拍成分に対応する周波数成分を推定する第4脈拍成分抽出手段などが考えられる。但し、これら第1〜第4脈拍成分抽出手段の中では、最低限、第1脈拍成分抽出手段を備えていればよく、これに加えて、第2〜第4脈拍成分抽出手段を備えると、体動時の脈拍数検出までより正確にすることができる。   Further, as the pulse component extraction means, specifically, a first pulse component extraction means for extracting the maximum peak frequency component of the pulse wave detection signal as a pulse component when the body movement determination means determines that there is no body movement, The maximum peak frequency component of the pulse wave detection signal within the frequency range where the fundamental wave of the pulse component can exist, excluding the fundamental wave and harmonics specified by the body motion component specifying means, except those whose frequency matches. When the intensity ratio between the second peak frequency component and the second largest peak frequency component is larger than a preset ratio, the second pulse component extraction means for extracting the maximum peak frequency component as a pulse component, and the overlap estimation means estimate that there is no overlap In the case where it is estimated that there is an overlap by the third pulse component extraction means for extracting the maximum peak frequency component of the pulse wave detection signal within the search range as a pulse component, and the overlap estimation means Extracting the fourth pulse component for estimating the frequency component corresponding to the pulse component from the analysis result of the analyzing means within the predetermined range centered on the maximum peak frequency component of the pulse wave detection signal within the search range Means can be considered. However, among these first to fourth pulse component extracting means, it is sufficient that at least the first pulse component extracting means is provided, and in addition to this, with the second to fourth pulse component extracting means, It can be made more accurate up to pulse rate detection during body movement.

なお、体動成分特定手段では、定常性判定手段にて定常性ありと判定された場合に体動成分の基本波及び高調波を特定し、重なり推定手段では、前回の測定で特定された脈拍成分の周波数を中心とする予め設定された探索範囲内での脈波検出信号の最大ピーク周波数成分と、体動成分特定手段にて特定される体動成分の基本波及び高調波とに基づき、脈拍成分と体動成分との重なり合いの有無を推定する。   The body motion component specifying unit specifies the fundamental wave and the harmonic of the body motion component when the stationarity determining unit determines that the stationarity is present, and the overlap estimation unit determines the pulse specified by the previous measurement. Based on the maximum peak frequency component of the pulse wave detection signal within a preset search range centered on the frequency of the component, and the fundamental wave and harmonics of the body motion component specified by the body motion component specifying means, Presence or absence of overlap between the pulse component and the body motion component is estimated.

即ち、第1脈拍成分抽出手段を備えていれば、被験者に体動がない場合に脈拍成分を抽出でき、第2脈拍成分抽出手段を備えていれば、被験者に体動があり且つその体動に定常性がある場合にも脈拍成分を抽出することができる。また、第3及び第4脈拍成分抽出手段を備えていれば、脈拍成分であると明確に特定できるピーク周波数成分がない場合でも、前回の測定で特定された脈拍成分の周波数から推定することで、脈拍成分を抽出することができる。   That is, if the first pulse component extraction means is provided, the pulse component can be extracted when the subject has no body movement, and if the second pulse component extraction means is provided, the subject has body movement and the body movement. The pulse component can also be extracted even when there is continuity. Further, if the third and fourth pulse component extraction means are provided, even if there is no peak frequency component that can be clearly specified as the pulse component, it is estimated from the frequency of the pulse component specified in the previous measurement. The pulse component can be extracted.

そして、特に、第4脈拍成分抽出手段では、具体的には、脈波検出信号及び前記体動検出信号の解析結果を強度について規格化し、両者の差分が最大となる周波数成分を脈拍成分と推定する、いわゆるFFT減算法がある。これは、周波数分解能が小さい場合には、脈拍成分と体動成分が重なりにくいが、周波数分解能が大きい場合には、両成分が重なりやすいため、単純にピークを検出する方法よりもFFT減算法の方が精度良く脈拍数を検出することができる。
また、第2〜4の脈拍成分抽出手段において、脈波検出信号の解析結果と体動検出信号の解析結果との相関値を予め設定された分割区間毎に算出し、この相関値が最小となる分割区間における最大強度の周波数成分を脈拍成分と推定する、いわゆる相関係数法を用いてもよい。
In particular, in the fourth pulse component extracting means, specifically, the analysis result of the pulse wave detection signal and the body motion detection signal is normalized with respect to intensity, and the frequency component that maximizes the difference between the two is estimated as the pulse component. There is a so-called FFT subtraction method. This is because when the frequency resolution is small, the pulse component and the body motion component are difficult to overlap, but when the frequency resolution is large, both components are likely to overlap, so the FFT subtraction method is more than the method of simply detecting the peak. The pulse rate can be detected with higher accuracy.
Further, in the second to fourth pulse component extraction means, a correlation value between the analysis result of the pulse wave detection signal and the analysis result of the body motion detection signal is calculated for each preset divided section, and the correlation value is minimum. A so-called correlation coefficient method may be used in which a frequency component having the maximum intensity in a divided section is estimated as a pulse component.

ところで、本発明の生体状態検出装置は、脈拍成分抽出手段が抽出した脈拍成分に基づいて、指標算出手段が、脈拍数及び脈拍間隔のうち少なくとも一方からなる指標を算出するように構成してもよい。   By the way, the living body state detection apparatus of the present invention may be configured such that the index calculation means calculates an index consisting of at least one of the pulse rate and the pulse interval based on the pulse component extracted by the pulse component extraction means. Good.

そして、この指標算出手段を、脈拍成分抽出手段が抽出した脈拍成分を中心とする予め設定された周波数範囲内に含まれる脈波検出信号の周波数成分に基づき、該周波数成分の強度を重みとした加重平均周波数を求め、その加重平均周波数から指標を算出するようにすれば、解析手段での解析結果の周波数分解能より、みかけ上の分解能を向上させることができる。   Then, the index calculation means is based on the frequency component of the pulse wave detection signal included in a preset frequency range centered on the pulse component extracted by the pulse component extraction means, and the intensity of the frequency component is used as a weight. If the weighted average frequency is obtained and the index is calculated from the weighted average frequency, the apparent resolution can be improved over the frequency resolution of the analysis result obtained by the analyzing means.

また、本発明の生体状態検出装置は、受光部から出力される脈波検出信号の振幅に基づいて、発光強度調整手段が、発光部での発光強度を調整するように構成してもよい。
即ち、身体の表面から血管に至るまでの光の減衰量は、皮下脂肪等の影響を受け、脈波センサの取付位置や個人差によって大きく変化するため、このような発光強度調整手段を備えることにより、常に、最適な状態で検出を行うことができる。
Moreover, the biological state detection device of the present invention may be configured such that the light emission intensity adjusting means adjusts the light emission intensity at the light emitting unit based on the amplitude of the pulse wave detection signal output from the light receiving unit.
That is, the amount of attenuation of light from the body surface to the blood vessel is affected by subcutaneous fat and the like, and varies greatly depending on the mounting position of the pulse wave sensor and individual differences. Thus, detection can always be performed in an optimum state.

以下に本発明の実施形態を図面と共に説明する。
図1は、本発明が適用された生体状態検出装置1の外観、及びその使用状態を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory diagram showing an appearance of a living body state detection apparatus 1 to which the present invention is applied and a use state thereof.

図1に示すように、本実施形態の生体状態検出装置1は、腕時計程度の大きさに形成された本体3と、本体3と一体に形成されたベルト状の取付部5とからなる。
そして、本体3の表側には、表示パネル3aが設けられ、裏側には、生体情報の検出に用いる光を通過させるための検出窓を構成する透光板3b,外部装置との通信や当該装置1の充電に使用するケーブルを接続するためのコネクタ3cが設けられている。
As shown in FIG. 1, the biological state detection device 1 according to the present embodiment includes a main body 3 that is formed in the size of a wristwatch and a belt-like attachment portion 5 that is formed integrally with the main body 3.
A display panel 3a is provided on the front side of the main body 3, and a light transmitting plate 3b that constitutes a detection window for allowing light used for detection of biological information to pass therethrough is communicated with an external device or the device. A connector 3c for connecting a cable used for charging 1 is provided.

この生体状態検出装置1は、その使用時には、図1(b)に示すように、透光板3bが形成された本体3の裏側を被験者の皮膚に接触させるようにして、取付部5により被験者の手首や足首などに固定される。但し、取付位置は、手首や足首に限らず、四肢(腕脚)の指先から付け根までのどこであってもよい。また、取付部5は、ベルトの代わりにサポータなどを用いて構成してもよい。   As shown in FIG. 1 (b), the living body state detection device 1 is configured so that the back side of the main body 3 on which the light-transmitting plate 3b is formed is brought into contact with the skin of the subject so that the attachment portion 5 can contact the subject. It is fixed to the wrist and ankle. However, the attachment position is not limited to the wrist or ankle, but may be anywhere from the fingertips to the roots of the extremities (arm legs). Moreover, you may comprise the attaching part 5 using a supporter etc. instead of a belt.

また、本体3を構成する筐体は、当該装置1を被験者に取り付けた時に、透光板3bが被験者の皮膚に密着するように、透光板3bの周縁部3dが他の部位より突出(本実施形態では、0.2mm程度)した構造(図3参照)を有している。更に、本体3には、被験者が生体状態検出装置1を装着したままでの入浴が可能なように防水加工が施されている。   Moreover, the housing | casing which comprises the main body 3 has the peripheral part 3d of the translucent plate 3b protruded from another site | part so that the translucent plate 3b may contact | adhere to a test subject's skin, when the said apparatus 1 is attached to a test subject. In the present embodiment, it has a structure (refer to FIG. 3) of about 0.2 mm. Furthermore, the body 3 is waterproofed so that the subject can take a bath while wearing the living body state detection device 1.

次に、図2は、生体状態検出装置1の内部構成を示すブロック図である。
図2に示すように、生体状態検出装置1は、透光板3bを介して光を照射し、その反射光を受光することで生体情報を検出する情報検出部10と、情報検出部10にて検出される生体情報を処理する情報処理部20と、コネクタ3cに接続されるケーブルを介して充電可能に構成され、当該装置の各部に電源供給を行うバッテリ15とを備えている。
Next, FIG. 2 is a block diagram showing an internal configuration of the biological state detection device 1.
As shown in FIG. 2, the biological state detection device 1 irradiates light through a light transmitting plate 3 b and receives biological light information by receiving reflected light. The information processing unit 20 that processes biological information detected in this way and the battery 15 that is configured to be rechargeable via a cable connected to the connector 3c and that supplies power to each unit of the apparatus.

このうち、情報検出部10は、緑色光(本実施形態では波長が約520nm)を放射する緑色LED11a、赤外光(本実施形態では波長が約950nm)を放射する赤外LED11b、これらLED11a,11bの間に配置され、LED11a,11bから放射された光の反射光を受光するフォトダイオード(PD)11cからなる光学式の脈波センサ11と、情報処理部20からの指示に従って、LED11a,11bを駆動する駆動回路12と、PD11cを駆動して反射光の強度に応じた検出信号を生成する検出回路13と、検出回路13からの検出信号をデジタルデータに変換するA/Dコンバータ14とからなる。   Among them, the information detection unit 10 includes a green LED 11a that emits green light (wavelength is about 520 nm in the present embodiment), an infrared LED 11b that emits infrared light (wavelength is about 950 nm in the present embodiment), and the LEDs 11a, 11b, an optical pulse wave sensor 11 including a photodiode (PD) 11c that receives reflected light emitted from the LEDs 11a and 11b, and the LEDs 11a and 11b according to instructions from the information processing unit 20. A driving circuit 12 that drives the PD 11, a detection circuit 13 that generates a detection signal corresponding to the intensity of the reflected light, and an A / D converter 14 that converts the detection signal from the detection circuit 13 into digital data. Become.

また、透光板3bは、緑色LED11a及びフォトダイオード11cと対向する部位(以下「第1部位」と称する。)、即ち緑色LED11aからの放射光及びその反射光の通過経路となる部位が、透光板3bの周縁部3dより突出し(本実施形態では0.2mm)、且つ赤外LED11bと対向する部位(以下「第2部位」と称する。)、即ち赤外LED11bからの放射光の通過経路となる部位が、透光板3bの周縁部3dより凹んだ(本実施形態では0.2mm)形状を有している。つまり、図3に示すように、当該装置1を被験者に取り付けた時に、緑色LED11aからの放射光(緑色光)及び反射光の通過経路となる部分は、被験者の皮膚との密着度が高く、赤外LED11bからの放射光(赤外光)の通過経路となる部分は、被験者の皮膚との密着度が低くなる(又は密着しない)ようにされている。   The translucent plate 3b has a portion facing the green LED 11a and the photodiode 11c (hereinafter referred to as “first portion”), that is, a portion serving as a passage path for the emitted light from the green LED 11a and its reflected light. A portion that projects from the peripheral edge 3d of the light plate 3b (0.2 mm in the present embodiment) and faces the infrared LED 11b (hereinafter referred to as “second portion”), that is, a path through which the emitted light from the infrared LED 11b passes. The part which becomes will have a shape (0.2 mm in this embodiment) dented from the peripheral part 3d of the translucent plate 3b. That is, as shown in FIG. 3, when the device 1 is attached to the subject, the portion that becomes the passage path of the emitted light (green light) and the reflected light from the green LED 11 a has a high degree of adhesion with the subject's skin, The part which becomes the passage route of the radiated light (infrared light) from the infrared LED 11b is configured such that the degree of adhesion with the skin of the subject is reduced (or not adhered).

そして、LED11a,11bから被験者に向けて放射された光は、被験者の体内を通る毛細動脈に到達すると、その一部が毛細動脈を流れる血液中のヘモグロビンに吸収され、残りは毛細動脈で反射して散乱する。また、その散乱光の一部が反射光としてPD11cに入射する。   Then, when the light emitted from the LEDs 11a and 11b toward the subject reaches the capillary artery passing through the subject's body, a part of the light is absorbed by hemoglobin in the blood flowing through the capillary artery, and the rest is reflected by the capillary artery. Scattered. A part of the scattered light enters the PD 11c as reflected light.

この時、血液の脈動により毛細動脈にあるヘモグロビンの量が波動的に変化するため、ヘモグロビンに吸収される光量も波動的に変化する。これに従って、毛細動脈で反射しPD11cで検出される受光量(検出信号の信号レベル)も変化するため、その検出信号から脈波に関する情報が得られる。   At this time, since the amount of hemoglobin in the capillary artery changes in a wave manner due to blood pulsation, the amount of light absorbed by the hemoglobin also changes in a wave manner. Accordingly, the amount of received light (signal level of the detection signal) reflected by the capillary artery and detected by the PD 11c also changes, so that information on the pulse wave can be obtained from the detection signal.

なお、血流は、体動の影響も受けるため、PD11cからの検出信号には、脈拍に同期する脈拍成分だけでなく、体動に同期する体動成分も含まれることになる(図19参照)。また、放射光の全てが毛細動脈に到達するわけではなく、身体の表面等で反射した反射光(表面反射光)もPD11cにて受光され、この表面反射光にも、体動成分が多く含まれる。   Since the blood flow is also affected by body movement, the detection signal from the PD 11c includes not only the pulse component synchronized with the pulse but also the body movement component synchronized with the body movement (see FIG. 19). ). Also, not all of the emitted light reaches the capillaries, and reflected light (surface reflected light) reflected by the surface of the body is also received by the PD 11c, and this surface reflected light also contains many body movement components. It is.

但し、赤外光は緑色光と比較して吸光特性が低いため、赤外LED11bを発光させた時にPD11cにて検出される検出信号(体動検出信号)は、緑色LED11aを発光させた時にPD11cにて検出される検出信号(脈波検出信号)と比較して、脈拍に同期した脈拍成分が小さく、相対的に体動に同期した体動成分が強調されたものとなる。   However, since infrared light has lower light absorption characteristics than green light, the detection signal (body motion detection signal) detected by the PD 11c when the infrared LED 11b is caused to emit is the PD 11c when the green LED 11a is caused to emit light. Compared with the detection signal (pulse wave detection signal) detected at, the pulse component synchronized with the pulse is small, and the body motion component relatively synchronized with the body motion is emphasized.

しかも、透光板3bの第1部位を介して照射される緑色光は、被験者の体内を通る毛細動脈に到達し易く、且つ毛細動脈からの反射光が受光され易くなるため、脈波検出信号における脈拍成分の検出感度が向上し、一方、透光板3bの第2部位を介して照射される赤外光は、皮膚の表面にて反射され易く、且つその照射位置が体動に伴って揺れ易くなるため、体動検出信号における脈拍成分の検出感度が低下すると共に、体動成分の検出感度が向上する。   In addition, since the green light emitted through the first part of the translucent plate 3b easily reaches the capillary artery passing through the body of the subject and the reflected light from the capillary artery is easily received, the pulse wave detection signal On the other hand, the infrared light irradiated through the second part of the translucent plate 3b is easily reflected on the surface of the skin, and the irradiation position is accompanied by body movement. Since it becomes easy to shake, the detection sensitivity of the pulse component in the body motion detection signal is lowered and the detection sensitivity of the body motion component is improved.

その結果、脈波検出信号では、図4(a)に示すように、脈拍成分と体動成分とは大差のない信号レベル(本実施形態では1:5程度)にて検出され、これに対して、体動検出信号では、図4(b)に示すように、脈拍成分が体動成分と比較して非常に小さな信号レベル(本実施形態では1:50程度)にて検出されることになる。なお、図4は、被験者に体動がある場合に検出される脈波検出信号及び体動検出信号の周波数スペクトルの概要を示す模式図である。   As a result, in the pulse wave detection signal, as shown in FIG. 4A, the pulse component and the body motion component are detected at a signal level (about 1: 5 in this embodiment) that is not significantly different, In the body motion detection signal, as shown in FIG. 4B, the pulse component is detected at a very small signal level (about 1:50 in this embodiment) compared to the body motion component. Become. FIG. 4 is a schematic diagram showing an outline of a pulse wave detection signal and a frequency spectrum of the body motion detection signal detected when the subject has body motion.

そして、駆動回路12は、情報処理部20からの指令によって起動すると、予め設定されたサンプリング間隔(本実施形態では50msec)毎に、両LED11a,11bを、それぞれ1回ずつ異なるタイミングで交互に発光させると共に、情報処理部20からの指令に従って、各LED11a,11bの発光強度を調整できるように構成されている。   Then, when the drive circuit 12 is activated by a command from the information processing unit 20, the LEDs 11a and 11b alternately emit light at different timings once every preset sampling interval (50 msec in the present embodiment). In addition, the light emission intensity of each LED 11a, 11b can be adjusted in accordance with a command from the information processing unit 20.

また、A/Dコンバータ14は、駆動回路12の発光タイミングに同期して動作することにより、緑色LED11aの発光時に検出される脈波検出信号、赤外LED11bの発光時に検出される体動検出信号を、それぞれデジタルデータに変換し、このデジタルデータを生体情報として情報処理部20に供給するように構成されている。   The A / D converter 14 operates in synchronization with the light emission timing of the drive circuit 12 to thereby detect a pulse wave detection signal detected when the green LED 11a emits light and a body motion detection signal detected when the infrared LED 11b emits light. Are converted into digital data, and the digital data is supplied to the information processing unit 20 as biological information.

更に、検出回路13では、体動検出信号の検出時(赤外LED11bの発光時)には、脈波検出信号の検出時(緑色LED11aの発光時)より、PD11cからの受光信号を大きな増幅率で増幅し、体動成分がより強調されるように設定されている。   Further, in the detection circuit 13, when detecting the body movement detection signal (when the infrared LED 11b emits light), the light reception signal from the PD 11c is larger than when detecting the pulse wave detection signal (when emitting the green LED 11a). The body motion component is set to be more emphasized.

次に、情報処理部20は、コネクタ3cへのケーブル接続の有無を検出すると共に、コネクタ3cに接続されたケーブルを介して外部装置との通信を制御する通信制御部22と、バッテリ15の電圧を検出する電圧検出部23と、CPU,ROM,RAMを中心に構成され、当該装置各部の制御や、情報検出部10にて検出される生体情報の解析等を実行するマイクロコンピュータ(マイコン)24と、情報検出部10にて検出される生体情報や、その生体情報に基づいてマイコン24が生成する各種情報を記憶する記憶部25と、マイコン24からの指示に従って表示パネル3aに文字や図形を表示する表示制御部26とを備えている。   Next, the information processing unit 20 detects the presence or absence of the cable connection to the connector 3c, and controls the communication control unit 22 that controls communication with an external device via the cable connected to the connector 3c, and the voltage of the battery 15 And a microcomputer (microcomputer) 24 that is configured around a CPU, a ROM, and a RAM and that performs control of each part of the device, analysis of biological information detected by the information detection unit 10, and the like. And a storage unit 25 that stores biological information detected by the information detection unit 10 and various information generated by the microcomputer 24 based on the biological information, and characters and figures on the display panel 3a according to instructions from the microcomputer 24. And a display control unit 26 for displaying.

なお、記憶部25には、少なくとも、情報検出部10から供給される生体情報を記憶するバッファ領域が確保されている。このバッファ領域は、予め設定されたFFT対象期間分(本実施形態では過去13秒分(=260個))以上のデータを格納可能な容量を有している。   Note that at least a buffer area for storing biological information supplied from the information detection unit 10 is secured in the storage unit 25. This buffer area has a capacity capable of storing data for a preset FFT target period (in the present embodiment, the past 13 seconds (= 260)) or more.

そして、マイコン24は、当該装置1に電源が投入されると、情報検出部10を起動し、情報検出部10から生体情報の供給がある毎に、記憶部25に確保されたバッファ領域のデータを更新するデータ更新処理、記憶部25に記憶されたデータを解析する解析処理、解析処理での解析結果に従って生体状態を評価するための指標となる脈拍数や脈拍間隔を求める指標生成処理、指標生成処理にて生成された指標やバッテリ15の充電状態を表示制御部26を介して表示パネル3aに表示する表示処理、コネクタ3cに接続されたケーブルを介して外部装置との通信を行い、外部装置から入力されるコマンドに従って、記憶部25に記憶された各種データの転送や、当該装置1各部の設定の変更、マイコン24が実行するプログラムの更新等を行う通信処理等を実行する。   Then, the microcomputer 24 activates the information detection unit 10 when the device 1 is turned on, and every time biometric information is supplied from the information detection unit 10, data in the buffer area secured in the storage unit 25. Update processing for updating the data, analysis processing for analyzing the data stored in the storage unit 25, index generation processing for obtaining a pulse rate and a pulse interval as an index for evaluating the biological state according to an analysis result in the analysis processing, and an index Display processing for displaying the indicator generated in the generation processing and the state of charge of the battery 15 on the display panel 3a via the display control unit 26, communication with an external device via a cable connected to the connector 3c, In accordance with commands input from the apparatus, various data stored in the storage unit 25 are transferred, settings of each unit of the apparatus 1 are changed, a program executed by the microcomputer 24 is updated, etc. Executing the communication processing for performing.

以下では、本発明に関わる解析処理及び指標生成処理の詳細について説明する。
図5は、解析処理の内容を示すフローチャートである。なお、解析処理は、情報検出部10の起動後、予め設定された時間間隔(本実施形態では1秒)毎に起動される。また、情報検出部10の起動時に、駆動回路12は、LED11a,11bを最大強度にて発光させる設定に初期化される。
Details of the analysis processing and index generation processing according to the present invention will be described below.
FIG. 5 is a flowchart showing the contents of the analysis process. The analysis process is started every preset time interval (1 second in the present embodiment) after the information detection unit 10 is started. Further, when the information detection unit 10 is activated, the drive circuit 12 is initialized to a setting for causing the LEDs 11a and 11b to emit light at the maximum intensity.

本処理が起動すると、脈波検出信号及び体動検出信号のそれぞれについて、前回の起動時から現時点までの単位区間(即ち1秒間)の間に取得されたデジタルデータ(本実施形態ではそれぞれ20個)に基づいて、脈波検出信号の振幅Vg及び体動検出信号の振幅Virをそれぞれ算出する(S100)。具体的には、図6(a)に示すように、単位区間の間に取得されたデジタルデータの中の最大値と最小値とを抽出し、その差を振幅Vg,Virとすればよい。   When this processing is activated, digital data (20 in this embodiment, respectively) acquired during the unit interval (that is, 1 second) from the previous activation to the present time for each of the pulse wave detection signal and the body motion detection signal. ), The amplitude Vg of the pulse wave detection signal and the amplitude Vir of the body motion detection signal are calculated (S100). Specifically, as shown in FIG. 6A, the maximum value and the minimum value in the digital data acquired during the unit interval may be extracted, and the difference between them may be the amplitudes Vg and Vir.

次に、脈波検出信号が検出される電圧範囲をVRとして(図6(b)参照)、過去、規定時間(本実施形態では20秒)内に、Vg/VRが下限値VL(本実施形態では0.1)以下となる単位区間が、一定割合(本実施形態では80%)以上あるか否かを判断し(S110)、一定割合以上あれば、LED11a,11bの光量が不足しているものとして、駆動回路12に対して発光強度を増大させる指令を出力する(S120)。   Next, assuming that the voltage range in which the pulse wave detection signal is detected is VR (see FIG. 6B), Vg / VR is the lower limit value VL (this embodiment) within the past and specified time (20 seconds in this embodiment). In the embodiment, it is determined whether or not the unit interval of 0.1) or less is equal to or greater than a certain ratio (80% in the present embodiment) (S110). As a result, a command to increase the emission intensity is output to the drive circuit 12 (S120).

一方、S110にて否定判定された場合には、過去、規定時間内にVg/VRが上限値(本実施形態では0.7)以上となる単位区間が、一定割合(本実施形態では80%)以上あるか否かを判断し(S130)、一定割合以上あれば、LED11a,11bの光量が過剰であるものとして、駆動回路12に対して発光強度を減少させる指令を出力する(S140)。   On the other hand, if a negative determination is made in S110, unit intervals in which Vg / VR is equal to or higher than the upper limit value (0.7 in the present embodiment) within a specified time in the past are a certain percentage (80% in the present embodiment). ) Is judged (S130), and if it is above a certain ratio, the LED 11a, 11b is assumed to have an excessive amount of light, and a command to reduce the light emission intensity is output to the drive circuit 12 (S140).

次に、FFT処理を実行するタイミングであるか否かを判断し(S150)、FFT実行タイミングでなければ、そのまま本処理を終了する。なお、本実施形態においてFFT実行タイミングは13秒間隔に設定されている。但し、FFT実行タイミングは、13秒より短い間隔、例えば、1秒間隔(即ち本処理が起動される毎に毎回)であってもよいし、13秒より長い間隔であってもよい。   Next, it is determined whether or not it is time to execute the FFT process (S150). If it is not the FFT execution timing, this process ends. In the present embodiment, the FFT execution timing is set at an interval of 13 seconds. However, the FFT execution timing may be an interval shorter than 13 seconds, for example, an interval of 1 second (that is, every time this process is started), or an interval longer than 13 seconds.

そして、S150にて肯定判定された場合、脈波検出信号及び体動検出信号のそれぞれについてFFT処理を実行する(S160)。但し、本実施形態では、記憶部25のバッファ領域に格納されたFFT対象期間分(即ち260個)のデジタルデータがFFT処理の対象となり、FFT処理の際には、図6(c)に示すように、FFT処理されるデータ数が2のべき乗(本実施形態では29 =512)個となるように補間データが付加される。つまり、実際のデータ数より高い周波数分解能で解析されるように設定されている。 If an affirmative determination is made in S150, an FFT process is executed for each of the pulse wave detection signal and the body motion detection signal (S160). However, in the present embodiment, the digital data for the FFT target period (that is, 260) stored in the buffer area of the storage unit 25 is the target of the FFT processing, and the FFT processing is shown in FIG. As described above, the interpolation data is added so that the number of data to be subjected to the FFT processing is a power of 2 (2 9 = 512 in the present embodiment). That is, it is set so that the analysis is performed with a frequency resolution higher than the actual number of data.

このFFT処理が終了すると、その解析結果に基づいて脈拍成分を抽出し、脈拍数や脈拍間隔等の生体状態を示す指標を生成する指標生成処理を起動して(S170)、本処理を終了する。   When this FFT process is completed, a pulse component is extracted based on the analysis result, an index generation process for generating an index indicating a biological state such as a pulse rate and a pulse interval is started (S170), and this process ends. .

つまり、解析処理では、本処理が起動される(即ち1秒)毎に、脈波検出信号及び体動検出信号のそれぞれについて過去単位区間(即ち1秒)の間に検出された波形に基づく振幅Vg,Virが求められ、また、FFT実行タイミング(即ち13秒)毎に、過去FFT対象期間(即ち13秒)の間に検出された波形に基づくFFT処理結果が得られることになる。   That is, in the analysis process, every time this process is started (ie, 1 second), the amplitude based on the waveform detected during the past unit interval (ie, 1 second) for each of the pulse wave detection signal and the body motion detection signal. Vg and Vir are obtained, and an FFT processing result based on a waveform detected during the past FFT target period (ie, 13 seconds) is obtained at every FFT execution timing (ie, 13 seconds).

次に、先のS170にて起動される指標生成処理を、図7に示すフローチャートに沿って説明する。
本処理が起動すると、まず、被験者の体動の有無を判定する体動判定処理を実行する(S200)。
Next, the index generation process started in S170 will be described with reference to the flowchart shown in FIG.
When this process is started, first, a body movement determination process for determining the presence or absence of body movement of the subject is executed (S200).

この体動判定処理では、図8に示すように、まず、脈波検出信号の解析結果から、脈波の基本波が存在する周波数範囲(本実施形態では0.5〜3.3Hz)内において、強度が最大となるピーク周波数成分G1と、強度が次に大きいピーク周波数成分G2とを抽出する(S300)と共に、体動検出信号の解析結果から、ピーク周波数成分G1と同じ周波数の周波数成分IR1を抽出する(S310)。   In this body motion determination process, as shown in FIG. 8, first, from the analysis result of the pulse wave detection signal, within the frequency range where the fundamental wave of the pulse wave exists (in this embodiment, 0.5 to 3.3 Hz). The peak frequency component G1 having the maximum intensity and the peak frequency component G2 having the next highest intensity are extracted (S300), and the frequency component IR1 having the same frequency as the peak frequency component G1 is obtained from the analysis result of the body motion detection signal. Is extracted (S310).

そして、先のS180にて体動検出信号のFFT処理に使用したFFT対象期間(過去13秒)の各単位区間のそれぞれについて、その単位区間での振幅Virが予め設定されたしきい値より小さいか否かを判定し(S320)、いずれか一つでもしきい値以上のものがあれば、体動ありとの判定をして(S360)、本処理を終了する。   Then, for each unit section of the FFT target period (past 13 seconds) used for the FFT processing of the body motion detection signal in the previous S180, the amplitude Vir in the unit section is smaller than a preset threshold value. (S320), and if any one exceeds the threshold value, it is determined that there is a body motion (S360), and this process is terminated.

また、各単位区間での振幅Virがいずれもしきい値より小さければ、脈波検出信号のピーク周波数成分G1,G2の強度比[G1]/[G2]([X]は、周波数成分Xの強度を表すものとする。)が、所定値H1(本実施形態では10)より大きいか否かを判断し(S330)、所定値H1以下であれば、無視することのできない十分な強度を有したピーク周波数成分が複数存在し、脈拍以外に基づくピーク周波数成分、即ち体動に基づくピーク周波数成分が重畳されているものとして、体動ありとの判定をして(S360)、本処理を終了する。   If the amplitude Vir in each unit section is smaller than the threshold value, the intensity ratio [G1] / [G2] ([X] is the intensity of the frequency component X) of the peak frequency components G1 and G2 of the pulse wave detection signal. Is greater than a predetermined value H1 (10 in the present embodiment) (S330), and if it is equal to or less than the predetermined value H1, it has sufficient strength that cannot be ignored. It is determined that there is a body motion on the assumption that there are a plurality of peak frequency components and the peak frequency component based on other than the pulse, that is, the peak frequency component based on body motion is superimposed (S360), and this processing is terminated. .

また、ピーク周波数成分G1,G2の強度比[G1]/[G2]が所定値H1より大きければ、S300にて抽出した脈波検出信号のピーク周波数成分G1の強度が、S310にて抽出した体動検出信号の周波数成分IR1の強度より大きいか否かを判断し(S340)、ピーク周波数成分G1の強度が周波数成分IR1の強度以下であれば、ピーク周波数成分G1は体動に基づくものであるものとして、体動ありとの判定をして(S360)、本処理を終了する。   If the intensity ratio [G1] / [G2] of the peak frequency components G1 and G2 is larger than the predetermined value H1, the intensity of the peak frequency component G1 of the pulse wave detection signal extracted in S300 is extracted in S310. It is determined whether or not the intensity of the frequency component IR1 of the motion detection signal is greater than the intensity of the frequency component IR1 (S340). If the intensity of the peak frequency component G1 is less than or equal to the intensity of the frequency component IR1, the peak frequency component G1 is based on body movement. As a matter of fact, it is determined that there is a body motion (S360), and this process is terminated.

一方、ピーク周波数成分G1の強度が周波数成分IRの強度より大きければ、体動なしとの判定をして(S350)、本処理を終了する。
つまり、FFT対象期間内における体動検出信号の単位区間毎の振幅が、全区間でしきい値より大きく、且つ、脈波検出信号の解析結果において、十分な強度を有したピーク周波数成分が一つしか存在せず([G1]/[G2]>H1)、しかも、体動検出信号にて同じ周波数の周波数成分より大きい([G1]>[IR1])場合にのみ、体動なしと判定し、それ以外の場合は体動ありと判定するようにされている。
On the other hand, if the intensity of the peak frequency component G1 is greater than the intensity of the frequency component IR, it is determined that there is no body movement (S350), and this process is terminated.
That is, the amplitude for each unit interval of the body motion detection signal within the FFT target period is larger than the threshold value in all the intervals, and the peak frequency component having sufficient strength is one in the analysis result of the pulse wave detection signal. Only when there is only one ([G1] / [G2]> H1) and the body motion detection signal is larger than the frequency component of the same frequency ([G1]> [IR1]), it is determined that there is no body motion. In other cases, it is determined that there is a body movement.

図7に戻り、体動判定処理(S200)での判定結果が、体動なしであるか否かを判定し(S210)、判定結果が体動なしであれば、安静時脈拍成分特定処理を実行する(S220)。この処理では、体動判定処理のS300にて抽出された脈波検出信号のピーク周波数成分G1を、脈拍成分として特定する。   Returning to FIG. 7, it is determined whether the determination result in the body movement determination process (S200) is no body movement (S210). If the determination result is no body movement, a resting pulse component specifying process is performed. Execute (S220). In this process, the peak frequency component G1 of the pulse wave detection signal extracted in S300 of the body movement determination process is specified as a pulse component.

一方、体動判定処理での判定結果が体動ありであれば、その体動の定常性の有無を判定する定常性判定処理を実行する(S230)。
この定常性判定処理では、図9に示すように、まず、体動検出信号の解析結果から、強度の大きい順に四つのピーク周波数成分IR1〜IR4を抽出する(S400)。そして、最も強度が大きいピーク周波数成分IR1と次に強度が大きいピーク周波数成分IR2との強度比[IR1]/[IR2]が、所定値H2(本実施形態では10)より大きいか否かを判断し(S410)、強度比[IR1]/[IR2]が所定値H2以下であれば、2番目に強度が大きいピーク周波数成分IR2又は3番目に強度が大きいピーク周波数成分IR3と、最も強度が大きいピーク周波数成分IR1とが、一方が基本波、他方が第2高調波となる関係にあるか否かを判断する(S420)。
On the other hand, if the determination result in the body movement determination process is that there is a body movement, a continuity determination process for determining whether or not the body movement is stationary is executed (S230).
In this continuity determination process, as shown in FIG. 9, first, four peak frequency components IR1 to IR4 are extracted in descending order from the analysis result of the body motion detection signal (S400). Then, it is determined whether or not the intensity ratio [IR1] / [IR2] of the peak frequency component IR1 having the highest intensity and the peak frequency component IR2 having the next highest intensity is greater than a predetermined value H2 (10 in the present embodiment). (S410) If the intensity ratio [IR1] / [IR2] is equal to or less than the predetermined value H2, the second highest intensity peak frequency component IR2 or the third highest intensity peak frequency component IR3 and the highest intensity. It is determined whether or not the peak frequency component IR1 has a relationship in which one is a fundamental wave and the other is a second harmonic (S420).

そして、S410にてピーク周波数成分IR1,IR2の強度比[IR1]/[IR2]が所定値H2より大きいと判定されるか、或いはS420にてピーク周波数成分IR2,IR3とピーク周波数成分IR1との間に、基本波,第2高調波の関係があると判定された場合には、体動に定常性ありとの判定をする(S430)と共に、ピーク周波数成分IR1〜IR4から、体動成分の基本波MF1及び第2〜第4高調波MF2〜MF4を特定して(S440)、本処理を終了する。   In S410, it is determined that the intensity ratio [IR1] / [IR2] of the peak frequency components IR1 and IR2 is larger than the predetermined value H2, or in S420, the peak frequency components IR2 and IR3 and the peak frequency component IR1 If it is determined that there is a relationship between the fundamental wave and the second harmonic, the body motion is determined to be stationary (S430), and the body motion component is determined from the peak frequency components IR1 to IR4. The fundamental wave MF1 and the second to fourth harmonics MF2 to MF4 are specified (S440), and this process ends.

なお、S440では、S410にて肯定判定された場合には、ピーク周波数成分IR1が直ちに基本波MF1として特定され、一方、S420にて肯定判定された場合には、図10(a)に示すように、ピーク周波数成分IR1が基本波MF1となる場合もあるが、図10(b)に示すように、2番目又は3番目に大きいピーク周波数成分IR2,IR3(図ではピーク周波数成分IR2)が基本波MF1となり、最も大きいピーク周波数成分IR1が第2高調波となる場合もある。   In S440, if an affirmative determination is made in S410, the peak frequency component IR1 is immediately identified as the fundamental wave MF1, whereas if an affirmative determination is made in S420, as shown in FIG. In some cases, the peak frequency component IR1 may become the fundamental wave MF1, but as shown in FIG. 10B, the second or third largest peak frequency component IR2, IR3 (the peak frequency component IR2 in the figure) is fundamental. There is a case where the wave MF1 is reached and the largest peak frequency component IR1 becomes the second harmonic.

また、先のS420にてピーク周波数成分IR2,IR3とピーク周波数成分IR1との間に、基本波,第2高調波の関係がないと判定された場合には、体動に定常性なしとの判定をして(S450)、本処理を終了する。   Also, if it is determined in S420 that there is no relationship between the fundamental wave and the second harmonic between the peak frequency components IR2 and IR3 and the peak frequency component IR1, the body motion is not stationary. A determination is made (S450), and this process ends.

つまり、本処理では、体動検出信号の解析結果において、十分な強度を有したピーク周波数成分が一つしか存在しないか([IR1]/[IR2]>H2)、或いは、ピーク周波数成分IR1〜IR4が基本波,高調波の関係にあり且つピーク周波数成分IR1が基本波又は第2高調波である場合に、定常性ありと判定するようにされている。   That is, in this process, there is only one peak frequency component with sufficient intensity in the analysis result of the body motion detection signal ([IR1] / [IR2]> H2), or the peak frequency components IR1 to IR1 When IR4 is in the relationship between the fundamental wave and the harmonic wave and the peak frequency component IR1 is the fundamental wave or the second harmonic wave, it is determined that the stationarity exists.

図7に戻り、定常性判定手段(S230)での判定結果が、定常性ありであるか否かを判断し(S240)、判定結果が定常性ありであれば、定常運動時脈拍成分特定処理を実行し(S250)、判定結果が定常性なしであれば、非定常運動時脈拍成分特定処理を実行する(S260)。   Returning to FIG. 7, it is determined whether or not the determination result in the stationarity determination means (S230) is stationarity (S240). Is executed (S250), and if the determination result is not stationary, a pulse component specifying process during unsteady motion is executed (S260).

このうち、定常運動時脈拍成分特定処理では、図11に示すように、まず、脈波検出信号の解析結果から、脈波の基本波が存在する周波数範囲内において、強度の大きい順に五つのピーク周波数成分G1〜G5を抽出し(S500)、その抽出したピーク周波数成分G1〜G5の中で、体動成分MF1〜MF4とは重ならないものを非重複ピーク周波数成分PM1,PM2,…として抽出する(S510)。   Among these, in the steady-state pulse component specifying process, as shown in FIG. 11, first, from the analysis result of the pulse wave detection signal, five peaks in descending order of intensity within the frequency range where the fundamental wave of the pulse wave exists. The frequency components G1 to G5 are extracted (S500), and the extracted peak frequency components G1 to G5 that do not overlap with the body motion components MF1 to MF4 are extracted as non-overlapping peak frequency components PM1, PM2,. (S510).

そして、最も強度が大きい非重複ピーク周波数成分PM1と次に強度が大きい非重複ピーク周波数成分PM2との強度比[PM1]/[PM2]が所定値H3(本実施形態では3)より大きいか否かを判断し(S520)、強度比[PM1]/[PM2]が所定値H3より大きいか、或いはPM1以外の非重複ピーク周波数成分が存在しなければ、非重複ピーク周波数成分PM1を脈拍成分として特定して(S530)、本処理を終了する(図12(a)参照)。   Whether the intensity ratio [PM1] / [PM2] between the non-overlapping peak frequency component PM1 having the highest intensity and the non-overlapping peak frequency component PM2 having the next highest intensity is greater than a predetermined value H3 (3 in the present embodiment). If the intensity ratio [PM1] / [PM2] is greater than the predetermined value H3 or there is no non-overlapping peak frequency component other than PM1, the non-overlapping peak frequency component PM1 is used as the pulse component. After specifying (S530), this process is terminated (see FIG. 12A).

一方、強度比[PM1]/[PM2]が所定値H3以下であれば、前回の測定時に算出された脈拍数に対応する周波数を中心とする探索範囲(本実施形態では±10拍分に相当する周波数範囲)内に、ピーク周波数成分G1〜G5が存在するか否かを判定し(S540)、探索範囲内にピーク周波数成分G1〜G5がいずれも存在しなければ、前回の測定結果を、そのまま今回の測定結果(脈拍成分)として(S550)、本処理を終了する。   On the other hand, if the intensity ratio [PM1] / [PM2] is equal to or less than the predetermined value H3, the search range centering on the frequency corresponding to the pulse rate calculated during the previous measurement (corresponding to ± 10 beats in this embodiment) Frequency range) is determined whether or not the peak frequency components G1 to G5 are present (S540). If none of the peak frequency components G1 to G5 are present in the search range, the previous measurement result is The current measurement result (pulse component) is used as it is (S550), and this process is terminated.

また、探索範囲内にピーク周波数成分G1〜G5がいずれか一つでも存在すれば、その中で最大のものを候補ピーク周波数成分GMとして抽出し(S560)、その候補ピーク周波数成分GMが、体動成分MF1〜MF4のいずれかと一致するか否かを判定する(S570)。   If any one of the peak frequency components G1 to G5 exists in the search range, the largest one is extracted as a candidate peak frequency component GM (S560), and the candidate peak frequency component GM It is determined whether or not any of the dynamic components MF1 to MF4 matches (S570).

そして、候補ピーク周波数成分GMが、体動成分MF1〜MF4のいずれとも一致しない場合には、候補ピーク周波数成分GMを脈拍成分として特定して(S580)本処理を終了する。また、候補ピーク周波数成分GMが、体動成分MF1〜MF4のいずれかと一致する場合(図12(b)参照)には、FFT減算処理による脈拍成分の特定を行って(S590)、本処理を終了する。   If the candidate peak frequency component GM does not coincide with any of the body motion components MF1 to MF4, the candidate peak frequency component GM is specified as a pulse component (S580), and this process is terminated. If the candidate peak frequency component GM matches any of the body motion components MF1 to MF4 (see FIG. 12B), the pulse component is specified by the FFT subtraction process (S590), and this process is performed. finish.

ここで、S590のFFT減算処理では、図13に示すように、まず、脈波検出信号の解析結果から、先のS560にて抽出した候補ピーク周波数成分GMを中心とする所定範囲内(本実施形態では、両側各5ポイントの合計11ポイント)の周波数成分を、候補ピーク周波数成分GMの強度が1となるように規格化(以下「規格化脈波スペクトルGs」と称する。)する(S600)と共に、体動検出信号の解析結果から、候補ピーク周波数成分GMと同じ周波数を有する周波数成分を中心とする上記所定範囲内の周波数成分を、その中心周波数成分の強度が1となるように規格化(以下「規格化体動スペクトルIRs」と称する。)する(S610)。なお、両規格化スペクトルGs,IRsについては、図14を参照。   Here, in the FFT subtraction process in S590, as shown in FIG. 13, first, from the analysis result of the pulse wave detection signal, within a predetermined range centered on the candidate peak frequency component GM extracted in the previous S560 (this embodiment) In the embodiment, the frequency components of 5 points on each side (11 points in total) are normalized so that the intensity of the candidate peak frequency component GM is 1 (hereinafter referred to as “normalized pulse wave spectrum Gs”) (S600). At the same time, based on the analysis result of the body motion detection signal, the frequency component within the predetermined range centered on the frequency component having the same frequency as the candidate peak frequency component GM is normalized so that the intensity of the center frequency component becomes 1. (Hereinafter referred to as “normalized body motion spectrum IRs”) (S610). For both normalized spectra Gs and IRs, see FIG.

これら規格化脈波スペクトルGsから規格化体動スペクトルIRsを減算することにより、差分スペクトルGIRs(=Gs−IR)を求め(S620)、その差分スペクトルGIRsでのピーク周波数成分GIRs1(図14(b)参照)を抽出する(S630)。   By subtracting the normalized body motion spectrum IRs from the normalized pulse wave spectrum Gs, a difference spectrum GIRs (= Gs-IR) is obtained (S620), and the peak frequency component GIRs1 in the difference spectrum GIRs (FIG. 14 (b) )) Is extracted (S630).

そして、抽出したピーク周波数成分GIRs1が、予め設定された所定値H4(本実施形態では、0.2)以上であるか否かを判断し、ピーク周波数成分GIRs1が所定値H4以上であれば、差分スペクトルから抽出したピーク周波数成分GIRs1を脈拍成分として特定して(S650)、本処理を終了する。   Then, it is determined whether or not the extracted peak frequency component GIRs1 is equal to or greater than a predetermined value H4 set in advance (0.2 in the present embodiment). If the peak frequency component GIRs1 is equal to or greater than the predetermined value H4, The peak frequency component GIRs1 extracted from the difference spectrum is specified as the pulse component (S650), and this process is terminated.

一方、ピーク周波数成分GIRs1が所定値H4より小さければ、候補ピーク周波数成分GMを脈拍ピークとして特定して(S660)、本処理を終了する。
つまり、体動に定常性がある時(定常運動時)には、脈波検出信号の解析結果から抽出されるピーク周波数成分の中に、体動成分MF1〜MF4と重複せず、且つ十分に強度の大きなものが存在すれば、そのピーク周波数成分を脈拍成分として特定し、そのようなピーク周波数成分が存在しなければ、前回の測定結果に基づき脈拍成分が存在すると推定される探索範囲内に存在するピーク周波数成分の中で最大のもの(候補ピーク周波数成分GM)に基づいて、脈拍成分を特定するようにされている。特に、候補ピーク周波数成分GMが体動成分MF1〜MF4のいずれかと重なっていれば、候補ピーク周波数成分GMの近傍の周波数成分に対してFFT減算法を適用して、脈拍成分を抽出するようにされている。また、脈拍成分を特定することができなければ、前回の測定結果を用いるようにされている。
On the other hand, if the peak frequency component GIRs1 is smaller than the predetermined value H4, the candidate peak frequency component GM is specified as a pulse peak (S660), and this process is terminated.
That is, when the body motion is stationary (during steady motion), the peak frequency component extracted from the analysis result of the pulse wave detection signal does not overlap with the body motion components MF1 to MF4 and is sufficiently If there is something with high intensity, the peak frequency component is specified as a pulse component, and if there is no such peak frequency component, it is within the search range where it is estimated that the pulse component exists based on the previous measurement result. The pulse component is specified based on the maximum peak frequency component (candidate peak frequency component GM). In particular, if the candidate peak frequency component GM overlaps any of the body motion components MF1 to MF4, the pulse subtraction component is extracted by applying the FFT subtraction method to the frequency component in the vicinity of the candidate peak frequency component GM. Has been. If the pulse component cannot be specified, the previous measurement result is used.

次に、非定常運動時脈拍成分特定処理では、図15に示すように、まず、脈波検出信号の解析結果から、脈波の基本波が存在する周波数範囲内において、強度の大きい順に九つのピーク周波数成分G1〜G9を抽出し(S700)、最も強度が大きいピーク周波数成分G1と9番目に大きいピーク周波数成分G9との強度比[G1]/[G9]が所定値H5(本実施形態では10)より大きいか否かを判断する(S710)。そして、強度比[G1]/[G9]が所定値H3より大きければ、無視することのできない十分な強度を有したピーク周波数成分が多数(9点以上)存在し、誤判定を招き易いものとして、前回の測定結果(脈拍成分)をそのまま今回の測定結果として(S760)、本処理を終了する。   Next, in the unsteady motion pulse component identification process, as shown in FIG. 15, first, from the analysis result of the pulse wave detection signal, the nine in descending order of the intensity within the frequency range where the fundamental wave of the pulse wave exists. Peak frequency components G1 to G9 are extracted (S700), and the intensity ratio [G1] / [G9] between the peak frequency component G1 having the highest intensity and the ninth highest peak frequency component G9 is a predetermined value H5 (in this embodiment). 10) It is determined whether or not it is larger (S710). If the intensity ratio [G1] / [G9] is larger than the predetermined value H3, there are many peak frequency components (nine points or more) having sufficient intensity that cannot be ignored, and misjudgment is likely to occur. The previous measurement result (pulse component) is used as the current measurement result as it is (S760), and this process is terminated.

また、強度比[G1]/[G9]が所定値H3以下であれば、前回の測定で得られた脈拍数に対応する周波数を中心とする探索範囲(本実施形態では±10拍に相当する周波数範囲)内にピークが一つだけであるか否かを判断し(S720)、探索範囲内に複数のピークが存在すれば(図16(b)参照)、前回の測定結果をそのまま今回の測定結果として(S760)、本処理を終了する。   If the intensity ratio [G1] / [G9] is equal to or less than the predetermined value H3, the search range centering on the frequency corresponding to the pulse rate obtained in the previous measurement (corresponding to ± 10 beats in this embodiment). Frequency range) is determined whether there is only one peak (S720), and if there are a plurality of peaks in the search range (see FIG. 16B), the previous measurement result is used as it is. As a measurement result (S760), this process is terminated.

探索範囲内にピークが一つだけであれば(図16(a)参照)、その探索範囲内のピーク周波数成分P1を中心とする所定範囲(本実施形態では、両側各2ポイントの合計5ポイント)内の他の周波数成分の強度が、いずれも[P1]/2以下であるか否かを判断し(S730)、いずれか一つでも[P1]/2より大きい周波数成分があれば、ピーク周波数成分P1は、明確なピークであるとは言えないものとして、前記の測定結果をそのまま今回の測定結果として(S760)、本処理を終了する。   If there is only one peak in the search range (see FIG. 16A), a predetermined range centering on the peak frequency component P1 in the search range (in this embodiment, a total of 5 points, 2 points on each side) ) Determines whether or not the intensities of the other frequency components in [] are less than or equal to [P1] / 2 (S730), and if any one of them has a frequency component greater than [P1] / 2, the peak Assuming that the frequency component P1 cannot be said to be a clear peak, the above measurement result is used as it is as the current measurement result (S760), and this process is terminated.

他の周波数成分の強度がいずれも[P1]/2以下であれば、ピーク周波数成分P1は、先のS400にて抽出された体動成分IR1〜IR4のいずれかと重なるか否かを判断し(S740)、体動成分IR1〜IR4のいずれかと重なれば、ピーク周波数成分P1は脈拍成分である可能性が低いものとして、前回の測定結果をそのまま今回の測定結果として(S760)、本処理を終了する。   If the intensities of the other frequency components are all [P1] / 2 or less, it is determined whether or not the peak frequency component P1 overlaps any of the body motion components IR1 to IR4 extracted in the previous S400 ( S740) If it overlaps with any of the body motion components IR1 to IR4, it is assumed that the peak frequency component P1 is unlikely to be a pulse component, and the previous measurement result is used as the current measurement result as it is (S760). finish.

また、ピーク周波数成分P1が体動成分IR1〜IR4のいずれとも重ならなければ、ピーク周波数成分P1を脈拍成分として特定して(S750)、本処理を終了する。
つまり、体動に定常性がない時(非定常運動時)には、脈波検出信号の解析結果から抽出される十分な強度を有したピーク周波数成分の数が比較的少なく、且つ前回の測定結果に基づき脈拍成分が存在すると推定される探索範囲内に、明確なピークを形成するピーク周波数成分が一つだけ存在し、しかも、そのピーク周波数成分P1が体動成分IR1〜IR4と重ならない場合にのみ、そのピーク周波数成分P1を脈拍成分として特定するようにされている。
If the peak frequency component P1 does not overlap with any of the body motion components IR1 to IR4, the peak frequency component P1 is specified as the pulse component (S750), and this process is terminated.
In other words, when the body motion is not stationary (unsteady motion), the number of peak frequency components with sufficient intensity extracted from the analysis result of the pulse wave detection signal is relatively small, and the previous measurement When there is only one peak frequency component that forms a clear peak within the search range in which the pulse component is estimated to exist based on the result, and the peak frequency component P1 does not overlap with the body motion components IR1 to IR4 Only the peak frequency component P1 is specified as the pulse component.

図7に戻り、S220,S250,S260での処理により、脈拍成分が特定されると、脈拍数や脈拍間隔等の指標を求める指標演算処理(S270)を実行して、本処理を終了する。   Returning to FIG. 7, when a pulse component is specified by the processing in S220, S250, and S260, an index calculation process (S270) for obtaining an index such as a pulse rate and a pulse interval is executed, and this process is terminated.

この指標演算処理では、図17に示すように、まず、特定された脈拍成分を中心とする所定範囲(本実施形態では、両側各1ポイントの合計3ポイント)内の周波数成分に基づき、強度を重みとした加重平均周波数fmを算出し(S800)、その加重平均周波数fmに60[sec]を乗ずることにより、1分当たりの脈拍数Nを算出する(S810)と共に、加重平均周波数fmの逆数1/fmを求めることで、脈拍間隔Wを算出して(S820)、本処理を終了する(図18参照)。   In this index calculation process, as shown in FIG. 17, first, the intensity is calculated based on frequency components within a predetermined range centered on the identified pulse component (in this embodiment, one point on each side for a total of three points). The weighted average frequency fm is calculated as the weight (S800), and the weighted average frequency fm is multiplied by 60 [sec] to calculate the pulse rate N per minute (S810) and the inverse of the weighted average frequency fm. By calculating 1 / fm, the pulse interval W is calculated (S820), and this process is terminated (see FIG. 18).

なお、ここでは、指標として脈拍数Nと脈拍間隔Wとを求めているが、例えば、体動に定常性があると判定された場合には、その体動成分の基本波から、運動のピッチを求めるようにしてもよい。   Here, although the pulse rate N and the pulse interval W are obtained as indices, for example, when it is determined that the body motion is stationary, the motion pitch is determined from the fundamental wave of the body motion component. May be requested.

以上説明したように、本実施形態の生体状態検出装置1においては、脈波検出信号として、ヘモグロビンでの吸収量の大きい緑色光の受光信号が用いられ、体動検出信号として、緑色光と比較してヘモグロビンでの吸収量の小さい赤外光の受光信号が用いられていると共に、透光板3bとして、当該装置を被験者に装着した時に、緑色光を透過させる部位(第1部位)では皮膚との密着性が高く、赤外光を透過させる部位(第2部位)では皮膚との密着性が低くなるような形状を有するものが用いられている。つまり、脈波検出信号では脈拍成分が感度よく検出され、一方、体動検出信号では体動成分が感度よく検出されると共に、脈拍成分の検出が抑制されるようにされている。   As described above, in the biological state detection device 1 of the present embodiment, a green light reception signal having a large amount of absorption by hemoglobin is used as a pulse wave detection signal, and compared with green light as a body motion detection signal. In addition, a light reception signal of infrared light with a small amount of absorption by hemoglobin is used, and as a translucent plate 3b, when the device is attached to a subject, skin is transmitted in a portion that transmits green light (first portion). In the part (second part) through which infrared light is transmitted and having a high adhesion to the skin, a part having a shape that reduces the adhesion to the skin is used. That is, the pulse wave detection signal detects the pulse component with high sensitivity, while the body movement detection signal detects the body movement component with high sensitivity and suppresses the detection of the pulse component.

また、緑色光及び赤外光を発生させるLED11a,11bは、脈波検出信号の振幅に応じて光量が調整されるようにされている。
従って、本実施形態の生体状態検出装置1によれば、指等の抹消部位と比較して、脈波の検出感度が劣る部位に当該装置1が装着されたとしても、感度良く脈波や体動を検出することができ、また、その装着状態(装着対象や装着位置)が変化したとしても、常に、最適な状態で検出を行うことができる。
The LEDs 11a and 11b that generate green light and infrared light are adjusted in light amount according to the amplitude of the pulse wave detection signal.
Therefore, according to the living body state detection device 1 of the present embodiment, even if the device 1 is attached to a site where the detection sensitivity of the pulse wave is inferior to that of a peripheral part such as a finger, the pulse wave and body are sensitive. The movement can be detected, and even when the mounting state (mounting target or mounting position) changes, the detection can always be performed in an optimal state.

しかも、本実施形態の生体状態検出装置1では、計測開始時には、光量が最大に設定されているため、測定の開始直後から確実に測定結果を得ることができる。
また、本実施形態の生体状態検出装置1では、脈波センサ11が脈波検出信号だけでなく体動検出信号も検出するようにされているため、脈波センサ11とは別体の体動センサを設けることなく、被験者の体動を精度良く検出することができる。
In addition, in the living body state detection device 1 of the present embodiment, the light amount is set to the maximum at the start of measurement, so that the measurement result can be reliably obtained immediately after the start of measurement.
Further, in the living body state detection device 1 of the present embodiment, the pulse wave sensor 11 detects not only the pulse wave detection signal but also the body movement detection signal, and thus the body movement separate from the pulse wave sensor 11. The body movement of the subject can be detected with high accuracy without providing a sensor.

そして、脈波検出信号から脈拍成分を抽出する際には、体動の有無だけでなく、体動の状態(定常性の有無)も判定するようにされているため、その判定結果に従って、脈波検出信号に含まれる体動成分を正しく特定することができ、その結果、被験者に体動があったとしても、精度良く脈拍成分を抽出でき、ひいては脈拍数Nや脈拍間隔W等といった指標を精度良く求めることができる。   When extracting a pulse component from the pulse wave detection signal, not only the presence / absence of body movement but also the state of body movement (presence / absence of steadiness) are determined. The body motion component included in the wave detection signal can be correctly specified. As a result, even if the subject has body motion, the pulse component can be extracted with high accuracy, and an index such as the pulse rate N and the pulse interval W can be obtained. It can be obtained with high accuracy.

しかも、本実施形態の生体状態検出装置1では、脈波検出信号の解析結果から抽出した脈拍成分を中心とする所定範囲内の周波数成分に基づいて加重平均周波数を求め、その加重平均周波数から脈拍数Nや脈拍間隔Wを求めるようにされているため、見かけ上、FFT処理の解析結果の分解能より高い分解能で脈拍数Nや脈拍間隔Wを求めることができる。   Moreover, in the biological state detection device 1 of the present embodiment, the weighted average frequency is obtained based on the frequency component within a predetermined range centered on the pulse component extracted from the analysis result of the pulse wave detection signal, and the pulse is calculated from the weighted average frequency. Since the number N and the pulse interval W are obtained, the pulse rate N and the pulse interval W can be obtained with a resolution higher than the resolution of the analysis result of the FFT process.

また、本実施形態の生体状態検出装置1では、体動の有無を、体動検出信号の振幅だけでなく、脈拍成分においては基本波と比較して高調波が非常に小さいことや、脈波検出信号と体動検出信号とでは脈拍成分と体動成分との検出比が異なること等を利用して、脈波検出信号や体動検出信号の解析結果に基づいて判定しているため、精度よく体動を検出することができる。   Further, in the biological state detection device 1 of the present embodiment, the presence or absence of body motion is not only the amplitude of the body motion detection signal, but the pulse component has very small harmonics compared to the fundamental wave, and the pulse wave Since the detection signal and the body motion detection signal are determined based on the analysis result of the pulse wave detection signal and the body motion detection signal using the difference in the detection ratio between the pulse component and the body motion component, etc. Body motion can be detected well.

更に、脈拍成分と体動成分とが重なっていると推定される場合、その近傍の周波数帯についてのみFFT減算法を適用して、脈拍成分を抽出するようにされているため、全周波数範囲に渡ってFFT減算法を用いる従来装置と比較して、処理量を大幅に削減することができる。   Furthermore, when it is estimated that the pulse component and the body motion component overlap, the FFT subtraction method is applied only to the frequency band in the vicinity thereof to extract the pulse component. Compared with the conventional apparatus using the FFT subtraction method, the processing amount can be greatly reduced.

なお、本実施形態において、緑色LED11aが第1発光素子、赤外LED11bが第2発光素子、S160が解析手段、S200が体動判定手段、S230が定常性判定手段、S220,S250,S260が脈拍成分抽出手段に相当する。また、S320が第1体動判定手段、S330が第2体動判定手段、S340が第3体動判定手段、S410が第1定常性判定手段、S420が第2定常性判定手段、S220が第1脈拍成分抽出手段、S440が体動成分特定手段、S500〜S530が第2脈拍成分抽出手段、S540,S560,S570が重なり推定手段、S580が第3脈拍成分抽出手段、S590が第4脈拍成分抽出手段、S270が指標算出手段、S110〜S140が発光強度調整手段に相当する。   In the present embodiment, the green LED 11a is the first light emitting element, the infrared LED 11b is the second light emitting element, S160 is the analyzing means, S200 is the body motion determining means, S230 is the stationaryity determining means, and S220, S250, and S260 are the pulse. It corresponds to a component extraction means. Also, S320 is the first body motion determining means, S330 is the second body motion determining means, S340 is the third body motion determining means, S410 is the first stationaryity determining means, S420 is the second stationaryity determining means, and S220 is the first. 1 pulse component extracting means, S440 is body motion component specifying means, S500 to S530 are second pulse component extracting means, S540, S560 and S570 are overlapping estimation means, S580 is third pulse component extracting means, and S590 is the fourth pulse component. Extraction means, S270 corresponds to index calculation means, and S110 to S140 correspond to emission intensity adjustment means.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な態様にて実施することが可能である。
例えば、上記実施形態では、FFT対象区間での検出データに補間データを付加したものを、FFT処理の処理対象データとしているが、体動がない時には、周波数分解能を低下させてもピーク周波数成分の抽出が容易であるため、補間データを付加せず検出データのみを用いてFFT処理を行うようにしてもよい。この場合、マイコン24での処理量を大幅に削減することができる。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, It is possible to implement in various aspects.
For example, in the above-described embodiment, the data obtained by adding the interpolation data to the detection data in the FFT target section is used as the processing target data of the FFT processing. Since extraction is easy, FFT processing may be performed using only detected data without adding interpolation data. In this case, the processing amount in the microcomputer 24 can be greatly reduced.

また、上記実施形態では、FFT減算法を用いた処理(S590)の際に、ピーク周波数成分の強度が1となるように規格化しているが、例えば、低周波成分(例えば、0.25〜0.5Hz)の平均強度が互いに等しくなるように規格化してもよい。   In the above embodiment, the peak frequency component is normalized so that the intensity of the peak frequency component becomes 1 in the process using the FFT subtraction method (S590). For example, the low frequency component (for example, 0.25 to 0.25) is used. You may normalize so that the average intensity | strength of 0.5 Hz may become equal mutually.

また、上記実施形態では、脈拍成分と体動成分とが重なり合っていると推定される場合に、FFT減算法を用いて脈拍成分を抽出するようにされているが、例えば、相関係数法を用いて抽出するように構成してもよい。   In the above embodiment, when it is estimated that the pulse component and the body motion component overlap, the pulse component is extracted using the FFT subtraction method. You may comprise so that it may extract using.

この相関係数法では、脈波検出信号の解析結果及び体動検出信号の解析結果を、それぞれ所定周波数幅(例えば0.5Hz)を有する区間に分割し、各分割区間毎に両信号の解析結果の相関係数を算出する。そして、相関係数が最小となる分割区間を抽出し、その分割区間内で強度が最大となる周波数成分を、脈拍成分として抽出すればよい。   In this correlation coefficient method, the analysis result of the pulse wave detection signal and the analysis result of the body motion detection signal are divided into sections each having a predetermined frequency width (for example, 0.5 Hz), and both signals are analyzed for each divided section. Calculate the resulting correlation coefficient. Then, a divided section where the correlation coefficient is minimum may be extracted, and a frequency component having the maximum intensity in the divided section may be extracted as a pulse component.

また、相関係数が最小となる分割区間に対してFFT減算法を適用する等、複数の手法を組み合わせて脈拍成分を抽出するように構成してもよい。
更に、定常性のない体動がある場合に実行する非定常運動時脈拍成分特定処理にて、FFT減算法や相関係数法を用いるように構成してもよい。
Moreover, you may comprise so that a pulse component may be extracted combining several methods, such as applying the FFT subtraction method with respect to the division area where a correlation coefficient becomes the minimum.
Further, the FFT subtraction method or the correlation coefficient method may be used in the unsteady motion pulse component specifying process that is executed when there is a body motion that is not stationary.

また、当該生体状態検出装置1を被験者に装着した直後は、被験者に対して安静を促す表示を表示パネル3aにて行い、脈拍数が安定するのを待ってから、測定を開始するように構成してもよい。この場合、装着初期に正確な脈拍数を検出することができるため、その後、脈拍成分を抽出できなかった時の脈拍数の追従性能を向上させることができる。   Further, immediately after the biological state detection device 1 is mounted on the subject, a display for prompting the subject to rest is displayed on the display panel 3a, and the measurement is started after the pulse rate is stabilized. May be. In this case, since an accurate pulse rate can be detected at the initial stage of wearing, it is possible to improve the follow-up performance of the pulse rate when the pulse component cannot be extracted thereafter.

生体状態検出装置の外観及び使用状態を示す説明図である。It is explanatory drawing which shows the external appearance and use condition of a biological condition detection apparatus. 生体状態検出装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a biological condition detection apparatus. 脈波センサを構成する筐体及び透光板の構造,使用状態を示す説明図である。It is explanatory drawing which shows the structure and use condition of the housing | casing which comprise a pulse wave sensor, and a translucent board. 被験者に体動がある場合に検出される脈波検出信号及び体動検出信号の周波数スペクトルの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the frequency spectrum of the pulse wave detection signal detected when a test subject has a body motion, and a body motion detection signal. 解析処理の内容を示すフローチャートである。It is a flowchart which shows the content of the analysis process. 解析処理にて使用されるパラメータ等を明示するための説明図である。It is explanatory drawing for demonstrating the parameter etc. which are used in an analysis process. 指標生成処理の内容を示すフローチャートである。It is a flowchart which shows the content of the parameter | index production | generation process. 体動判定処理の内容を示すフローチャートである。It is a flowchart which shows the content of the body movement determination process. 定常性判定処理の内容を示すフローチャートである。It is a flowchart which shows the content of the continuity determination process. 定常性判定処理に関わる動作を説明するためのグラフである。It is a graph for demonstrating the operation | movement regarding a continuity determination process. 定常運動時脈拍成分特定処理の内容を示すフローチャートである。It is a flowchart which shows the content of the pulse component specific process at the time of steady motion. 定常運動時脈拍成分特定処理に関わる動作を説明するためのグラフである。It is a graph for demonstrating the operation | movement in connection with the pulse component specific process at the time of steady motion. FFT減算処理の内容を示すフローチャートである。It is a flowchart which shows the content of a FFT subtraction process. FFT減算処理に関わる動作を説明するためのグラフである。It is a graph for demonstrating the operation | movement in connection with a FFT subtraction process. 非定常運動時脈拍成分特定処理の内容を示すフローチャートである。It is a flowchart which shows the content of the pulse component specific process at the time of unsteady motion. 非定常運動時脈拍成分特定処理に関わる動作を説明するためのグラフである。It is a graph for demonstrating the operation | movement in connection with the pulse component specific process at the time of unsteady motion. 指標演算処理の内容を示すフローチャートである。It is a flowchart which shows the content of an index calculation process. 指標演算処理に関わる動作を説明するためのグラフである。It is a graph for demonstrating the operation | movement in connection with parameter | index calculation processing. 脈波波形の例を示すグラフである。It is a graph which shows the example of a pulse wave waveform.

符号の説明Explanation of symbols

1…生体状態検出装置、3…本体、3a…表示パネル、3b…透光板、3c…コネクタ、3d…周縁部、5…取付部、10…情報検出部、11…脈波センサ、11a…緑色LED、11b…赤外LED、11c…フォトダイオード(PD)、12…駆動回路、13…検出回路、14…A/Dコンバータ、15…バッテリ、20…情報処理部、22…通信制御部、23…電圧検出部、24…マイクロコンピュータ(マイコン)、25…記憶部、26…表示制御部。   DESCRIPTION OF SYMBOLS 1 ... Living body state detection apparatus, 3 ... Main body, 3a ... Display panel, 3b ... Translucent board, 3c ... Connector, 3d ... Peripheral part, 5 ... Mounting part, 10 ... Information detection part, 11 ... Pulse wave sensor, 11a ... Green LED, 11b ... Infrared LED, 11c ... Photodiode (PD), 12 ... Drive circuit, 13 ... Detection circuit, 14 ... A / D converter, 15 ... Battery, 20 ... Information processing unit, 22 ... Communication control unit, 23 ... Voltage detection unit, 24 ... Microcomputer (microcomputer), 25 ... Storage unit, 26 ... Display control unit.

Claims (22)

被験者に照射する光を発生させる発光部、及び被験者からの反射光を受光する受光部を有し、脈拍に同期した脈拍成分と体動に同期した体動成分とを含む脈波検出信号、及び該脈波検出信号と比較して前記体動成分が強調された体動検出信号を出力する脈波センサと、
該脈波センサが出力する脈波検出信号及び体動検出信号を周波数解析する解析手段と、
少なくとも前記脈波センサからの検出信号または前記解析手段での解析結果のいずれかに基づいて、体動の有無を判定する体動判定手段と、
該体動判定手段にて体動ありと判定された場合、前記解析手段での解析結果に基づいて前記体動の定常性を判定する定常性判定手段と、
前記解析手段での解析結果、前記体動判定手段及び定常性判定手段での判定結果に基づいて、前記脈波検出信号から脈拍成分を抽出する脈拍成分抽出手段と、
を備えることを特徴とする生体状態検出装置。
A pulse wave detection signal including a light emitting unit that generates light to be irradiated to the subject, and a light receiving unit that receives reflected light from the subject, and includes a pulse component synchronized with the pulse and a body motion component synchronized with the body motion, and A pulse wave sensor that outputs a body motion detection signal in which the body motion component is emphasized compared to the pulse wave detection signal;
Analyzing means for frequency analysis of the pulse wave detection signal and the body motion detection signal output by the pulse wave sensor;
Body movement determination means for determining the presence or absence of body movement based on at least a detection signal from the pulse wave sensor or an analysis result in the analysis means;
When it is determined that there is body movement by the body movement determination unit, continuity determination unit that determines the continuity of the body movement based on the analysis result of the analysis unit;
A pulse component extracting means for extracting a pulse component from the pulse wave detection signal based on the analysis result in the analyzing means, the determination result in the body motion determining means and the continuity determining means;
A biological state detection device comprising:
前記発光部は、
前記脈波センサが前記脈波検出信号を出力する際に発光させる第1発光素子と、
前記脈波センサが前記体動検出信号を出力する際に発光させる第2発光素子と、
を備えることを特徴とする請求項1に記載の生体状態検出装置。
The light emitting unit
A first light emitting element that emits light when the pulse wave sensor outputs the pulse wave detection signal;
A second light emitting element that emits light when the pulse wave sensor outputs the body motion detection signal;
The biological state detection device according to claim 1, comprising:
前記第1発光素子は前記第2発光素子より血液成分での吸光度が大きい波長にて発光することを特徴とする請求項2に記載の生体状態検出装置。   The biological state detection device according to claim 2, wherein the first light emitting element emits light at a wavelength where the absorbance of the blood component is larger than that of the second light emitting element. 前記第1発光素子は緑色領域にて発光し、前記第2発光素子は赤外領域にて発光する
ことを特徴とする請求項3に記載の生体状態検出装置。
The biological state detection device according to claim 3, wherein the first light emitting element emits light in a green region, and the second light emitting element emits light in an infrared region.
前記脈波センサは、
前記発光部及び前記受光部を収納し、前記発光部からの放射光及び前記受光部への反射光が通過する部位に開口部を有する筐体と、
該筐体の開口部に設けられ、光を透過する透光板と、
を備え、
前記透光板は、少なくとも前記第1発光素子に基づく放射光を透過させる第1部位が前記筐体より外部に向けて突出していることを特徴とする請求項2〜4いずれかに記載の生体状態検出装置。
The pulse wave sensor is
A housing that houses the light emitting unit and the light receiving unit, and that has an opening at a site through which radiated light from the light emitting unit and reflected light to the light receiving unit pass,
A translucent plate provided at the opening of the housing and transmitting light;
With
5. The living body according to claim 2, wherein the translucent plate has at least a first portion that transmits radiated light based on the first light emitting element protruding outward from the housing. State detection device.
前記脈波センサは、
前記発光部及び前記受光部を収納し、前記発光部からの放射光及び前記受光部への反射光が通過する部位に開口部を有する筐体と、
該筐体の開口部に設けられ、光を透過する透光板と、
を備え、
前記透光板は、前記第1発光素子に基づく放射光を透過させる第1部位が、前記第2発光素子に基づく放射光を透過させる第2部位より、前記筐体の外部に向けて突出した形状を有することを特徴とする請求項2〜4いずれかに記載の生体状態検出装置。
The pulse wave sensor is
A housing that houses the light emitting unit and the light receiving unit, and that has an opening at a site through which radiated light from the light emitting unit and reflected light to the light receiving unit pass,
A translucent plate provided at the opening of the housing and transmitting light;
With
In the translucent plate, a first part that transmits radiated light based on the first light emitting element protrudes outward from the second part that transmits radiated light based on the second light emitting element. It has a shape, The biological condition detection apparatus in any one of Claims 2-4 characterized by the above-mentioned.
前記筐体は、前記開口部の周縁が該開口部が形成された面の他の部位より外部に向けて突出した形状を有することを特徴とする請求項5又は6に記載の生体状態検出装置。   The biological state detection device according to claim 5 or 6, wherein the casing has a shape in which a peripheral edge of the opening protrudes outward from another portion of the surface on which the opening is formed. . 前記受光部は、単一の受光素子からなることを特徴とする請求項2〜7のいずれかに記載の生体状態検出装置。   The living body state detection device according to claim 2, wherein the light receiving unit includes a single light receiving element. 前記体動判定手段は、
前記体動検出信号の振幅、又は該体動検出信号の差分値が予め設定されたしきい値より大きい場合に体動ありと判定する第1体動判定手段を備えることを特徴とする請求項1〜8のいずれかに記載の生体状態検出装置。
The body movement determination means includes
The first body motion determining means for determining that there is a body motion when the amplitude of the body motion detection signal or the difference value of the body motion detection signal is larger than a preset threshold value. The biological state detection apparatus in any one of 1-8.
前記体動判定手段は、
前記脈拍成分の基本波が存在し得る周波数領域内での前記脈波検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が、予め設定された比率以下である場合に体動ありと判定する第2体動判定手段を備えることを特徴とする請求項1〜9のいずれかに記載の生体状態検出装置。
The body movement determination means includes
When the intensity ratio between the maximum peak frequency component of the pulse wave detection signal and the second largest peak frequency component in the frequency region where the fundamental wave of the pulse component can exist is less than or equal to a preset ratio The biological state detection device according to claim 1, further comprising a second body movement determination unit that determines that there is a movement.
前記体動判定手段は、
前記脈拍成分の基本波が存在し得る周波数領域内での前記脈波検出信号の最大ピーク周波数成分の強度が、該最大ピーク周波数成分と同じ周波数を有する前記体動検出信号のピーク周波数成分の強度以下である場合に体動ありと判定する第3体動判定手段を備えることを特徴とする請求項1〜10のいずれかに記載の生体状態検出装置。
The body movement determination means includes
The intensity of the peak frequency component of the body motion detection signal in which the intensity of the maximum peak frequency component of the pulse wave detection signal in the frequency region where the fundamental wave of the pulse component can exist has the same frequency as the maximum peak frequency component The biological state detection device according to claim 1, further comprising a third body motion determination unit that determines that there is a body motion in the following cases.
前記定常性判定手段は、
前記体動検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が、予め設定された比率より大きい場合に定常性ありと判定する第1定常性判定手段を備えることを特徴とする請求項1〜11のいずれかに記載の生体状態検出装置。
The stationarity determining means includes
1st stationarity determination means which determines that there is stationarity when the intensity ratio between the maximum peak frequency component and the second largest peak frequency component of the body motion detection signal is larger than a preset ratio. The biological state detection device according to claim 1.
前記定常性判定手段は、
前記体動検出信号の最大ピーク周波数成分と2番目又は3番目に大きいピーク周波数成分とが、一方が基本波となり他方が第2高調波となる関係にある場合に定常性ありと判定する第2定常性判定手段を備えることを特徴とする請求項1〜12のいずれかに記載の生体状態検出装置。
The stationarity determining means includes
The second peak is determined to be stationary when the maximum peak frequency component and the second or third largest peak frequency component of the body motion detection signal are in a relationship in which one is a fundamental wave and the other is a second harmonic. The living body state detection apparatus according to claim 1, further comprising a continuity determination unit.
前記脈拍成分抽出手段は、
前記体動判定手段にて体動なしと判定された場合に前記脈波検出信号の最大ピーク周波数成分を脈拍成分として抽出する第1脈拍成分抽出手段を備えることを特徴とする請求項1〜13のいずれかに記載の生体状態検出装置。
The pulse component extraction means includes
14. A first pulse component extraction unit that extracts a maximum peak frequency component of the pulse wave detection signal as a pulse component when the body movement determination unit determines that there is no body movement. The biological state detection device according to any one of the above.
前記脈拍成分抽出手段は、
前記定常性判定手段にて定常性ありと判定された場合に前記体動成分の基本波及び高調波を特定する体動成分特定手段と、
前記脈拍成分の基本波が存在し得る周波数領域内において、前記体動成分特定手段にて特定される基本波及び高調波と周波数が一致するものを除いた中での前記脈波検出信号の最大ピーク周波数成分と2番目に大きいピーク周波数成分との強度比が予め設定された比率より大きい場合に、該最大ピーク周波数成分を脈拍成分として抽出する第2脈拍成分抽出手段と、
を備えることを特徴とする請求項1〜14のいずれかに記載の生体状態検出装置。
The pulse component extraction means includes
Body motion component specifying means for specifying the fundamental wave and harmonics of the body motion component when the stationarity determining means determines that there is stationarity;
In the frequency region where the fundamental wave of the pulse component can exist, the maximum of the pulse wave detection signal within the frequency range that does not coincide with the fundamental wave and harmonics specified by the body motion component specifying means Second pulse component extraction means for extracting the maximum peak frequency component as a pulse component when the intensity ratio between the peak frequency component and the second largest peak frequency component is greater than a preset ratio;
The biological state detection device according to claim 1, comprising:
前記脈拍成分抽出手段は、
前回の測定で特定された脈拍成分の周波数を中心とする予め設定された探索範囲内での前記脈波検出信号の最大ピーク周波数成分と、前記体動成分特定手段にて特定される体動成分の基本波及び高調波とに基づき、前記脈拍成分と前記体動成分との重なり合いの有無を推定する重なり推定手段と、
該重なり推定手段にて重なりなしと推定された場合に、前記探索範囲内での前記脈波検出信号の最大ピーク周波数成分を脈拍成分として抽出する第3脈拍成分抽出手段と、
を備えることを特徴とする請求項15に記載の生体状態検出装置。
The pulse component extraction means includes
The maximum peak frequency component of the pulse wave detection signal within a preset search range centered on the frequency of the pulse component specified in the previous measurement, and the body motion component specified by the body motion component specifying means Based on the fundamental wave and the harmonics of, the overlap estimation means for estimating the presence or absence of overlap between the pulse component and the body motion component,
Third pulse component extraction means for extracting, as a pulse component, a maximum peak frequency component of the pulse wave detection signal within the search range when the overlap estimation means estimates that there is no overlap;
The biological state detection device according to claim 15, comprising:
前記脈拍成分抽出手段は、
前記重なり推定手段にて重なりありと推定された場合に、前記探索範囲内での前記脈波検出信号の最大ピーク周波数成分を中心とする予め設定された所定範囲内における前記解析手段での解析結果から脈拍成分に対応する周波数成分を推定する第4脈拍成分抽出手段を備えることを特徴とする請求項16に記載の生体状態検出装置。
The pulse component extraction means includes
When the overlap estimation unit estimates that there is an overlap, the analysis result of the analysis unit within a predetermined range centered on the maximum peak frequency component of the pulse wave detection signal within the search range The biological state detection device according to claim 16, further comprising a fourth pulse component extraction unit that estimates a frequency component corresponding to the pulse component from the pulse rate component.
前記第4脈拍成分抽出手段は、
前記脈波検出信号及び前記体動検出信号の解析結果を強度について規格化し、両者の差分が最大となる周波数成分を脈拍成分と推定することを特徴とする請求項17に記載の生体状態検出装置。
The fourth pulse component extracting means includes
18. The biological state detection device according to claim 17, wherein the analysis results of the pulse wave detection signal and the body motion detection signal are normalized with respect to intensity, and a frequency component having a maximum difference between the two is estimated as a pulse component. .
前記第4脈拍成分抽出手段は、
前記脈波検出信号の解析結果と前記体動検出信号の解析結果との相関値を予め設定された分割区間毎に算出し、該相関値が最小となる分割区間における最大強度の周波数成分を脈拍成分と推定することを特徴とする請求項17に記載の生体状態検出装置。
The fourth pulse component extracting means includes
The correlation value between the analysis result of the pulse wave detection signal and the analysis result of the body motion detection signal is calculated for each preset divided section, and the frequency component having the maximum intensity in the divided section where the correlation value is minimum is calculated as a pulse. The biological state detection apparatus according to claim 17, wherein the biological state detection apparatus estimates the component.
前記脈拍成分抽出手段が抽出した脈拍成分に基づいて、脈拍数及び脈拍間隔のうち少なくとも一方からなる指標を算出する指標算出手段を備えることを特徴とする請求項1〜19のいずれかに記載の生体状態検出装置。   The index calculation means which calculates the index which consists of at least one among a pulse rate and a pulse interval based on the pulse component which the said pulse component extraction means extracted. Biological state detection device. 前記指標算出手段は、
前記脈拍成分抽出手段が抽出した脈拍成分を中心とする予め設定された周波数範囲内に含まれる前記脈波検出信号の周波数成分に基づき、該周波数成分の強度を重みとした加重平均周波数を求め、該加重平均周波数から前記指標を算出することを特徴とする請求項20に記載の生体状態検出装置。
The index calculating means includes
Based on the frequency component of the pulse wave detection signal included in a preset frequency range centered on the pulse component extracted by the pulse component extraction means, obtain a weighted average frequency weighted by the intensity of the frequency component, The biological condition detection apparatus according to claim 20, wherein the index is calculated from the weighted average frequency.
前記受光部から出力される前記脈波検出信号の振幅に基づいて、前記発光部での発光強度を調整する発光強度調整手段を備えることを特徴とする請求項1〜21のいずれかに記載の生体状態検出装置。   The light emission intensity adjusting means for adjusting the light emission intensity at the light emitting unit based on the amplitude of the pulse wave detection signal output from the light receiving unit. Biological state detection device.
JP2003401927A 2003-10-07 2003-12-01 Biological condition detection device Expired - Fee Related JP4345459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003401927A JP4345459B2 (en) 2003-12-01 2003-12-01 Biological condition detection device
US10/957,663 US7507207B2 (en) 2003-10-07 2004-10-05 Portable biological information monitor apparatus and information management apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401927A JP4345459B2 (en) 2003-12-01 2003-12-01 Biological condition detection device

Publications (2)

Publication Number Publication Date
JP2005160640A true JP2005160640A (en) 2005-06-23
JP4345459B2 JP4345459B2 (en) 2009-10-14

Family

ID=34725700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401927A Expired - Fee Related JP4345459B2 (en) 2003-10-07 2003-12-01 Biological condition detection device

Country Status (1)

Country Link
JP (1) JP4345459B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086450A (en) * 2006-09-29 2008-04-17 Sysmex Corp Noninvasive living body measuring apparatus
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing
JP2010220947A (en) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd Biological signal measuring apparatus
KR101030170B1 (en) 2009-08-28 2011-04-18 성균관대학교산학협력단 Peak heart beat detection system for low-power consumption and method therefor
JP2011087838A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Pulsation detector and pulsation detecting method
JP2012170702A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pulsation detector
JP2012170703A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pulsation detector
WO2014038077A1 (en) * 2012-09-07 2014-03-13 富士通株式会社 Pulse wave detection method, pulse wave detection device and pulse wave detection program
WO2014041913A1 (en) * 2012-09-13 2014-03-20 オムロンヘルスケア株式会社 Pulse measurement device, pulse measurement method, and pulse measurement program
JP2014054448A (en) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd Pulse measuring device, pulse measuring method and pulse measuring program
JP2014507985A (en) * 2011-01-19 2014-04-03 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Apparatus, system, and method for tissue oxygen saturation measurement and perfusion imaging
JP2014150869A (en) * 2013-02-06 2014-08-25 Casio Comput Co Ltd Biological information detection device, biological information detection method, and biological information detection program
JP2015002930A (en) * 2013-06-21 2015-01-08 拓則 島崎 Pulse detector
WO2015004915A1 (en) * 2013-07-12 2015-01-15 セイコーエプソン株式会社 Biometric information processing device and biometric information processing method
JP2015039542A (en) * 2013-08-22 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
JP2015039421A (en) * 2013-08-20 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
WO2015098977A1 (en) * 2013-12-25 2015-07-02 旭化成株式会社 Cardiac pulse waveform measurement device, portable device, medical device system, and vital sign information communication system
WO2015129557A1 (en) * 2014-02-25 2015-09-03 ローム株式会社 Heart rate detection device
JP2016104224A (en) * 2016-02-04 2016-06-09 セイコーエプソン株式会社 Biological information detector
JP2016104086A (en) * 2014-12-01 2016-06-09 ソニー株式会社 Measurement device and measurement method
WO2016088307A1 (en) * 2014-12-01 2016-06-09 セイコーエプソン株式会社 Biological information analyzing device, biological information analyzing system, and biological information analyzing method
WO2016143489A1 (en) * 2015-03-12 2016-09-15 株式会社メガチップス Pulse measuring device
JP2016198554A (en) * 2016-08-01 2016-12-01 カシオ計算機株式会社 Biological information detector, and biological information detection method and biological information detection program
JP2016220815A (en) * 2015-05-28 2016-12-28 国立大学法人東北大学 Pulse measuring device
JP6067077B1 (en) * 2015-08-31 2017-01-25 国立大学法人九州大学 Biological information detection sensor and measuring apparatus
JP2017018569A (en) * 2015-07-07 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for measuring biosignal
JP2017522054A (en) * 2014-12-31 2017-08-10 ゴーアテック インコーポレイテッドGoertek Inc Photoelectric pulse signal measuring method and measuring instrument
JP2018166883A (en) * 2017-03-30 2018-11-01 ルネサスエレクトロニクス株式会社 Pulse measurement device, pulse measurement method, and program
JP2019088892A (en) * 2019-02-15 2019-06-13 セイコーエプソン株式会社 Pulse wave analysis device and pulse wave analysis method
JP2019126407A (en) * 2018-01-22 2019-08-01 クラリオン株式会社 Biological information detector
JP2019129996A (en) * 2018-01-31 2019-08-08 学校法人慶應義塾 Heartbeat detection system and heartbeat detection method
JP2020195709A (en) * 2019-06-05 2020-12-10 富士通コネクテッドテクノロジーズ株式会社 Pulse wave analyzer, pulse wave analysis method, and pulse wave analysis program
WO2021157026A1 (en) * 2020-02-06 2021-08-12 株式会社竹中土木 Determination device and posture control device
JP7327692B2 (en) 2020-12-22 2023-08-16 株式会社村田製作所 Sensors, helmets and measurement methods

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086450A (en) * 2006-09-29 2008-04-17 Sysmex Corp Noninvasive living body measuring apparatus
JP2008264302A (en) * 2007-04-23 2008-11-06 Denso Corp Biological state detector
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing
US8167800B2 (en) 2007-07-05 2012-05-01 Kabushiki Kaisha Toshiba Apparatus and method for processing pulse waves
JP2010220947A (en) * 2009-03-25 2010-10-07 Citizen Holdings Co Ltd Biological signal measuring apparatus
KR101030170B1 (en) 2009-08-28 2011-04-18 성균관대학교산학협력단 Peak heart beat detection system for low-power consumption and method therefor
JP2011087838A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Pulsation detector and pulsation detecting method
JP2014507985A (en) * 2011-01-19 2014-04-03 ザ レジェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Apparatus, system, and method for tissue oxygen saturation measurement and perfusion imaging
JP2012170703A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pulsation detector
US9402551B2 (en) 2011-02-23 2016-08-02 Seiko Epson Corporation Pulse detector with unworn-state detection
JP2012170702A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Pulsation detector
WO2014038077A1 (en) * 2012-09-07 2014-03-13 富士通株式会社 Pulse wave detection method, pulse wave detection device and pulse wave detection program
US9986922B2 (en) 2012-09-07 2018-06-05 Fujitsu Limited Pulse wave detection method, pulse wave detection apparatus, and recording medium
JP5915757B2 (en) * 2012-09-07 2016-05-11 富士通株式会社 Pulse wave detection method, pulse wave detection device, and pulse wave detection program
WO2014041913A1 (en) * 2012-09-13 2014-03-20 オムロンヘルスケア株式会社 Pulse measurement device, pulse measurement method, and pulse measurement program
JP2014054447A (en) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd Pulse measuring device, pulse measuring method and pulse measuring program
JP2014054448A (en) * 2012-09-13 2014-03-27 Omron Healthcare Co Ltd Pulse measuring device, pulse measuring method and pulse measuring program
CN104602595A (en) * 2012-09-13 2015-05-06 欧姆龙健康医疗事业株式会社 Pulse measurement device, pulse measurement method, and pulse measurement program
JP2014150869A (en) * 2013-02-06 2014-08-25 Casio Comput Co Ltd Biological information detection device, biological information detection method, and biological information detection program
US10039458B2 (en) 2013-06-21 2018-08-07 Takunori Shimazaki Pulsation detector
JP2015002930A (en) * 2013-06-21 2015-01-08 拓則 島崎 Pulse detector
JP2015016188A (en) * 2013-07-12 2015-01-29 セイコーエプソン株式会社 Biological information processor, and biological information processing method
WO2015004915A1 (en) * 2013-07-12 2015-01-15 セイコーエプソン株式会社 Biometric information processing device and biometric information processing method
JP2015039421A (en) * 2013-08-20 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
JP2015039542A (en) * 2013-08-22 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
WO2015098977A1 (en) * 2013-12-25 2015-07-02 旭化成株式会社 Cardiac pulse waveform measurement device, portable device, medical device system, and vital sign information communication system
US10624586B2 (en) 2013-12-25 2020-04-21 Asahi Kasei Kabushiki Kaisha Pulse wave measuring device, mobile device, medical equipment system and biological information communication system
JPWO2015098977A1 (en) * 2013-12-25 2017-03-23 旭化成株式会社 Pulse wave measuring device, portable device, medical device system, and biological information communication system
JPWO2015129557A1 (en) * 2014-02-25 2017-03-30 ローム株式会社 Heart rate detector
WO2015129557A1 (en) * 2014-02-25 2015-09-03 ローム株式会社 Heart rate detection device
JP2016106639A (en) * 2014-12-01 2016-06-20 セイコーエプソン株式会社 Biological information analysis device, biological information analysis system, and biological information analysis method
WO2016088307A1 (en) * 2014-12-01 2016-06-09 セイコーエプソン株式会社 Biological information analyzing device, biological information analyzing system, and biological information analyzing method
WO2016088564A1 (en) * 2014-12-01 2016-06-09 ソニー株式会社 Measurement device and measurement method
JP2016104086A (en) * 2014-12-01 2016-06-09 ソニー株式会社 Measurement device and measurement method
JP2017522054A (en) * 2014-12-31 2017-08-10 ゴーアテック インコーポレイテッドGoertek Inc Photoelectric pulse signal measuring method and measuring instrument
WO2016143489A1 (en) * 2015-03-12 2016-09-15 株式会社メガチップス Pulse measuring device
JP2016168149A (en) * 2015-03-12 2016-09-23 株式会社メガチップス Pulse measuring device
JP2016220815A (en) * 2015-05-28 2016-12-28 国立大学法人東北大学 Pulse measuring device
JP2017018569A (en) * 2015-07-07 2017-01-26 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for measuring biosignal
JP6067077B1 (en) * 2015-08-31 2017-01-25 国立大学法人九州大学 Biological information detection sensor and measuring apparatus
JP2017046802A (en) * 2015-08-31 2017-03-09 国立大学法人九州大学 Biological information detection sensor and measurement device
JP2016104224A (en) * 2016-02-04 2016-06-09 セイコーエプソン株式会社 Biological information detector
JP2016198554A (en) * 2016-08-01 2016-12-01 カシオ計算機株式会社 Biological information detector, and biological information detection method and biological information detection program
JP2018166883A (en) * 2017-03-30 2018-11-01 ルネサスエレクトロニクス株式会社 Pulse measurement device, pulse measurement method, and program
JP2019126407A (en) * 2018-01-22 2019-08-01 クラリオン株式会社 Biological information detector
JP2019129996A (en) * 2018-01-31 2019-08-08 学校法人慶應義塾 Heartbeat detection system and heartbeat detection method
JP7064893B2 (en) 2018-01-31 2022-05-11 データソリューションズ株式会社 Heart rate detection system, heart rate detection method
JP2019088892A (en) * 2019-02-15 2019-06-13 セイコーエプソン株式会社 Pulse wave analysis device and pulse wave analysis method
JP2020195709A (en) * 2019-06-05 2020-12-10 富士通コネクテッドテクノロジーズ株式会社 Pulse wave analyzer, pulse wave analysis method, and pulse wave analysis program
WO2021157026A1 (en) * 2020-02-06 2021-08-12 株式会社竹中土木 Determination device and posture control device
EP4101376A4 (en) * 2020-02-06 2023-06-21 Takenaka Civil Engineering&Construction Co., Ltd. Determination device and posture control device
JP7370021B2 (en) 2020-02-06 2023-10-27 株式会社竹中土木 Determination device and attitude control device
JP7327692B2 (en) 2020-12-22 2023-08-16 株式会社村田製作所 Sensors, helmets and measurement methods

Also Published As

Publication number Publication date
JP4345459B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4345459B2 (en) Biological condition detection device
EP3456251B1 (en) Bio-information measuring apparatus and bio-information measuring method
US7252639B2 (en) Method and apparatus for measuring biological condition
US20160081630A1 (en) Biological information processing device and biological information processing method
CN105640491B (en) Optical sensing device and measuring method thereof
JP6813024B2 (en) Biometric information processing equipment, biometric information processing methods, and information processing equipment
US20130296673A1 (en) Optical measurement device and a method for an optical measurement
EP3692895A1 (en) Apparatus and method for estimating bio-information
JPH08289876A (en) Pulse meter
US10244953B2 (en) Biological information detecting device and electronic apparatus
WO1999012469A1 (en) Reflection photodetector and biological information measuring instrument
JP2016016203A (en) Biological information detection device
US20030032887A1 (en) Heartbeat synchronous information acquiring apparatus and pulse wave propagation velocity related information acquiring apparatus, blood pressure monitoring apparatus and preejection period measuring apparatus utilizing heartbeat synchronous information
KR20180031484A (en) Apparatus and method for extracting bio-signal feature, apparatus for detecting bio-information and weareable device
US11717177B2 (en) Blood pressure measurement
EP3878352A1 (en) Apparatus and method for estimating bio-information
US20220346722A1 (en) Apparatus and method for estimating bio-information
KR20210007368A (en) Apparatus and method for estimating bio-information
JP2002017694A (en) Pulse rate sensor
JP2014236774A (en) Organism information processing device and organism information processing method
KR20210004376A (en) Apparatus and method for calibrating bio-information estimation model and, apparatus for estimating bio-information
EP3815602A1 (en) Apparatus and method for monitoring health, and mobile device
JP2016015978A (en) Biological information detector
GB2600126A (en) Improvements in or relating to wearable sensor apparatus
KR20210061595A (en) Apparatus and method for detecting characacteristic point of oscillometric envelope and, apparatus for estimating bio-information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R151 Written notification of patent or utility model registration

Ref document number: 4345459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees