JP2005160215A - Power multiplier - Google Patents

Power multiplier Download PDF

Info

Publication number
JP2005160215A
JP2005160215A JP2003395366A JP2003395366A JP2005160215A JP 2005160215 A JP2005160215 A JP 2005160215A JP 2003395366 A JP2003395366 A JP 2003395366A JP 2003395366 A JP2003395366 A JP 2003395366A JP 2005160215 A JP2005160215 A JP 2005160215A
Authority
JP
Japan
Prior art keywords
power
current
transformer
load
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395366A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003395366A priority Critical patent/JP2005160215A/en
Publication of JP2005160215A publication Critical patent/JP2005160215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain new power by obtaining output power larger than input power. <P>SOLUTION: This power multiplier is characterized in that: a capacitor, an inductance and a load are connected to a secondary circuit of a power supply transformer in an AC electric circuit; and a large phase-advance current is made to flow by generating a resonance phenomenon by the effective inductance of a secondary coil of the transformer and the capacitor; thus making load power larger than input effective power. A power generating unit returns part of an output of the power amplifier to an input, and does not necessitates energy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電力の増倍により入力電力より大きい電力発生に関するものである。 The present invention relates to power generation greater than input power due to power multiplication.

誘導コイルによるインダクタンス並びにキャパシタは一般にその流れる電流が電圧に比して90度遅れ、並びに90度進みの関係にある。このインダクタンスとキャパシタによる同調作用、または共振現象は極めて一般的な周知の従来技術であるがこれらを組み合わせ本発明を成立させた。 The inductance and the capacitor by the induction coil are generally in a relationship that the flowing current is delayed by 90 degrees and advanced by 90 degrees compared to the voltage. The tuning action by the inductance and the capacitor or the resonance phenomenon is a very general well-known conventional technique, but these are combined to establish the present invention.

電力は水力、石油、原子力などを燃料とし得られるのが主であった。これらエネルギー資源の枯渇はもはや時間の問題であり地球環境にあたえる影響は計り知れない。そこで燃料等一切使用しない全く新たな原理にもとずく電力発生器の提案が待ち望まれていた。太陽電池、風力発電などはそれが目的のため発展途上であるがまだまだ使用量が微少である。本発明はこれらを大きく解決できる要素をもつ提案である。また本電力増倍器の出力の一部電力を入力に還元し永久発電機とすることも可能なことは理の当然である。 Electricity was mainly obtained from fuels such as hydropower, oil, and nuclear power. The depletion of these energy resources is no longer a matter of time and the impact on the global environment is immeasurable. Therefore, there has been a long-awaited proposal for a power generator based on a completely new principle that does not use any fuel. Solar cells, wind power generation, etc. are still under development for the purpose, but their usage is still very small. The present invention is a proposal having elements that can greatly solve these problems. In addition, it is natural that a part of the output of the power multiplier can be reduced to the input to make a permanent generator.

本発明は電源トランスの二次線輪の実効インダクタンスと並列キャパシタにより電源周波数に共振させ非常に大なる共振電流を流すことによる。 The present invention relies on the effective inductance of the secondary wire ring of the power transformer and the parallel capacitor to resonate with the power frequency and allow a very large resonance current to flow.

従来「もらったエネルギーよりも多くの仕事は出来ない」と云う極めて単純な言葉からこの種の発明は無かった。
本発明の効果について述べる。
本発明は入力電力より大なる出力電力を得る。その量は入力電力の2倍ないし数倍程度になる。勿論回路の改善ならびにトランスやインダクタを超伝導状態にすることにより効率倍数は大きく上昇するものである。仮に負荷がありながらインダクタと負荷の合成電流位相が丁度90度に位相調整がなされたなら効率は無限大になる。つまりインダクタと負荷の合成電流位相が丁度90度遅れ電流になるならば、キャパシタにより90度進み電流でキャンセル相殺することで合成電流を殆ど零にすることが可能である。合成電流が零であることは通過電力が零である。負荷電力を供給しているにもかかわらず入力電力がゼロ(に近い)と云うきわめて特異な現象を呈する。
従って、入力電力より大なる出力電力を容易に得られる。前述したが共振回路の改善で効率は向上する。
たとえば効率5倍に成ったとすれば1に相当する電力を入力電力にフィードバックし4に相当する電気量は外部にて任意に使用できることは理の当然である。
本発明の電力は無公害、無振動、無雑音であることは当然ですが、なによりも特記すべきは燃料等のエネルギー補給が必要ないことである。
Previously, there was no invention of this kind based on the very simple word “you can't do more work than the energy you get”.
The effect of the present invention will be described.
The present invention obtains output power greater than input power. The amount is about twice or several times the input power. Of course, the efficiency factor greatly increases by improving the circuit and setting the transformer and inductor to the superconducting state. If the phase of the combined current of the inductor and the load is adjusted to just 90 degrees while there is a load, the efficiency becomes infinite. In other words, if the combined current phase of the inductor and the load is just 90 degrees behind, the combined current can be made almost zero by canceling and canceling with the current 90 degrees by the capacitor. If the combined current is zero, the passing power is zero. It exhibits a very unique phenomenon that the input power is zero (close to) despite supplying load power.
Therefore, output power larger than input power can be easily obtained. As described above, the efficiency is improved by improving the resonance circuit.
For example, if the efficiency is 5 times, it is natural that the power corresponding to 1 is fed back to the input power and the amount of electricity corresponding to 4 can be arbitrarily used outside.
Naturally, the electric power of the present invention is pollution-free, vibration-free, and noise-free, but above all, it should be noted that energy supply such as fuel is not necessary.

本発明は従来存在しなかったものであるからどのような実施も最良の形態になるだろう。大きく分けて2つの実施形態がある。
第一は単純に電力増倍として実施するもので例えば小電力の電源設備で大電力の機器を駆動する形態である。
第二は発電機として利用するものである。一般家庭用電源として5kw程度のもの。ビル用として500kw程度のもの。工場用として5000kw程度のものが代表となろう。そして自動車用として駆動エンジンにかわる20KWから50kw程度の小型軽量の発電器が期待される。微小発電でバッテリーにかわるなども大いに期待されるであろう。
本発明の実用化で危険負担の多い原子力発電は縮小または廃棄可能である。
Since the present invention did not exist in the past, any implementation would be the best mode. There are roughly two embodiments.
The first is implemented simply as power multiplication. For example, a high-power device is driven by a low-power power supply facility.
The second is used as a generator. About 5kw as a general household power source. About 500kw for buildings. For factory use, about 5000kw will be representative. A compact and lightweight generator of about 20 KW to 50 kw, which replaces the drive engine for automobiles, is expected. It is highly expected that the battery will be replaced by micro power generation.
Nuclear power generation, which has a high risk burden due to the practical application of the present invention, can be reduced or discarded.

図1は本発明の一例を示す原理図である。図1について説明する。
Fなる周波数をもつ交流電源G1からE0なる電圧によりトランスT2の線輪Lpを励磁し2次線輪LsにE1なる電圧を誘起する。
トランスT2の2次線輪Lsに誘起したE1なる電圧はコンダンサC4に接続される。
トランスT2の2次線輪Lsには漏洩インダクタンスを含む実効インダクタンスが存在する。トランスT2の二次線輪Lsインダクタンスは一般にはトランスT2の一次、二次線輪がオープン時に比して非常に少量のインダクタンス値となる。この実効インダクタンスは線輪に流れる電流と漏洩磁界による漏洩インダクタンスにより支配されるが一般的である。
このインダクタンスLsとコンデンサCが直列共振する事により大なる90度進み電流iCが図1の4のキャパシタCに流れる。キャパシタ電流iCは回路のQによりその大きさが決定されるのでQの高い回路ほど非常に大きい電流となる。また装置を超伝導環境にすることで無限に大きな電流となる。
かかる状態で負荷抵抗R6を接続するとキャパシタ電流iCは90度より0度方向に、つまり同位相の方向に移相する。
しかしながら前述のようにキャパシタ電流iCが極めて大きいため合成電流は非共振時に比較して角度が余り下がらない。つまり90度進みに近い位相角を保つ。これが本発明の重要な事項である。
FIG. 1 is a principle view showing an example of the present invention. With reference to FIG.
An AC power supply G1 having a frequency of F excites the wire ring Lp of the transformer T2 with a voltage of E0 to induce a voltage of E1 on the secondary wire ring Ls.
The voltage E1 induced in the secondary ring Ls of the transformer T2 is connected to the capacitor C4.
An effective inductance including a leakage inductance exists in the secondary wire Ls of the transformer T2. The secondary wire Ls inductance of the transformer T2 generally has a very small inductance value compared to when the primary and secondary wires of the transformer T2 are open. This effective inductance is generally controlled by the leakage inductance caused by the current flowing through the wire ring and the leakage magnetic field.
Due to the series resonance of the inductance Ls and the capacitor C, a large 90 degree advance current iC flows to the capacitor C of 4 in FIG. Since the magnitude of the capacitor current iC is determined by the Q of the circuit, the circuit having a higher Q has a very large current. Moreover, it becomes an infinitely large electric current by making a device into a superconductive environment.
When the load resistor R6 is connected in this state, the capacitor current iC shifts from 90 degrees to 0 degrees, that is, in the same phase direction.
However, since the capacitor current iC is extremely large as described above, the angle of the combined current does not decrease much compared to the case of non-resonance. That is, the phase angle close to 90 degrees is maintained. This is an important matter of the present invention.

図1の3を通過する電力は次のようになる。
通過電力をPinとし電流位相角をφ1とすれば
Pin=E1 × i1 × COSφ1 となる。
図1の負荷R 6の電力をPoutとし電流位相角をφ2とすれば
Pout=E2 × i2 × COSφ2 となる。
Pin と Pout との関係はCOSφ1が非常に小さな値なので
Pin<Pout の関係が維持される。
よって入力電力より大なる出力電力が得られる特徴がある。
COSφ1が小さな値であることは力率が極めて悪いことを意味する。よってその改善を図1の8Lなるインダクタンスで行う。キャパシタ電流iCと逆相関係にあるインダクタンス電流iLが互いにキャンセルし力率を改善することにより図1の3の電流i1を最小化する。
一般にトランスの線輪、インダクタは内部抵抗が存在するがこの内部抵抗が効率を著しく阻害する。内部抵抗は零であるのが望ましくこれが為に低温環境または超伝導環境におくことを良とする。
The power passing through 3 in FIG. 1 is as follows.
If the passing power is Pin and the current phase angle is φ1,
Pin = E1 × i1 × COSφ1.
If the power of the load R6 in FIG. 1 is Pout and the current phase angle is φ2,
Pout = E2 × i2 × COSφ2.
The relationship between Pin and Pout is that COSφ1 is a very small value.
The relationship Pin <Pout is maintained.
Therefore, there is a feature that output power larger than input power can be obtained.
A small value of COSφ1 means that the power factor is extremely bad. Therefore, the improvement is performed with the inductance of 8L in FIG. The inductance current iL having a reverse phase relationship with the capacitor current iC cancels each other to improve the power factor, thereby minimizing the current i1 in FIG.
Generally, transformer wires and inductors have internal resistance, but this internal resistance significantly impedes efficiency. The internal resistance is preferably zero, so that it is good to place in a low temperature environment or a superconducting environment.

本発明を永久発電機に構成した場合ついて図2で説明する。電力増倍作用はすでに述べた通りである。
図2のP1は交流変換器G11により発生した入力電力である。電力増倍作用により発生した電力P2の一部をP1に相当する電力P3を入力電力P1に還元し整流器D17により直流となしバッテリーB18を充電せしめる。バッテリーB18は装置の初期スタートならびに電圧変動等を抑える。しかる後、負荷電力P4を任意の負荷に使用できる。P4の電気量は次による。
P4=P2−P3 となる。
P2>P1
P2=P3+P4 であるから電力を外部に供給し続けることが理解されよう。
The case where the present invention is configured as a permanent generator will be described with reference to FIG. The power multiplication effect is as already described.
P1 in FIG. 2 is input power generated by the AC converter G11. A part of the electric power P2 generated by the electric power multiplication action is reduced to electric power P3 corresponding to P1 to the input electric power P1, and the rectifier D17 charges the direct current battery B18. The battery B18 suppresses the initial start of the apparatus and voltage fluctuation. Thereafter, the load power P4 can be used for an arbitrary load. The amount of electricity of P4 is as follows.
P4 = P2-P3.
P2> P1
It will be understood that power is continuously supplied to the outside because P2 = P3 + P4.

本発明は人類の夢の実現化である。本発明で発生せられる電力は無公害であり地球上どこでも安定して供給出来る電力であり、基本的には電力コストは無料である。
したがって産業上の利用可能性は無限にある。
The present invention is the realization of human dreams. The power generated in the present invention is pollution-free and can be stably supplied anywhere on the earth. Basically, the power cost is free.
Therefore, the industrial applicability is infinite.

本発明の電力増倍の一実施例を示す。1 shows an embodiment of power multiplication according to the present invention. 電力増倍を用いて発電機として構成した一実施例を示す、An embodiment configured as a generator using power multiplication is shown.

符号の説明Explanation of symbols

図1
1は交流電源G
2は電源トランスT
3は合成電流通過点i1
4はキャパシタC
5はキャパシタに流れる電流iC
6は負荷R
7は負荷Rに流れる電流iR
8はインダクタンスL
9はインダクタンスLに流れる電流iL
図2
11は交流変換器G
12は電源トランスT
13はキャパシタC
14はインダクタンスL
15は電力増倍された電力のP2通過点
16は負荷R
17は整流器D
18はバッテリーB
FIG.
1 is AC power supply G
2 is a power transformer T
3 is a composite current passing point i1.
4 is a capacitor C
5 is the current iC flowing in the capacitor
6 is load R
7 is a current iR flowing through the load R
8 is the inductance L
9 is the current iL flowing through the inductance L
FIG.
11 is an AC converter G
12 is a power transformer T
13 is a capacitor C
14 is an inductance L
15 is the power multiplied P2 passing point 16 is the load R
17 is a rectifier D
18 is battery B

Claims (2)

交流電力回路において電源トランスがあり当該トランスの二次回路に並列キャパシタと並列インダクタ並びに負荷を接続するようになされた回路において、
上記電源トランスの二次線輪の漏洩インダクタンスを含む実効インダクタンスと上記並列キャパシタが直列共振またはそれと等価な共振回路とし、充分大なる90度進みの共振電流を上記並列キャパシタに流すように構成される。負荷を接続してもキャパシタに流れる共振電流より小さな負荷電流とすることにより並列キャバシタと負荷の合成電流位相が大きく同相方向に移相しないため、(90度に近い高い角度の位相を保つため)トランス二次電力が電流位相により支配されるので入力電力が僅少化される。これによりトランス二次電力、即ち並列キャパシタ、負荷の入力電力より大なる出力電力を得ることが出来る。
上記電源トランスの二次出力にある並列インダクタンスは上記電流の力率を改善しトランス二次回路の小電流化するもので、合成電流は並列キャパシタ電流と並列インダクタンス電流が互いにキャンセルし小さな電流となす。これらの結果として上記電源トランスから供給される電力より大なる負荷電力を上記負荷抵抗に消費出来ることを特徴とする電力増倍器。
In a circuit in which there is a power transformer in an AC power circuit and a parallel capacitor, a parallel inductor and a load are connected to a secondary circuit of the transformer,
The effective inductance including the leakage inductance of the secondary wire ring of the power transformer and the parallel capacitor form a series resonance or equivalent resonance circuit, and a sufficiently large resonance current of 90 degrees is passed through the parallel capacitor. . Even if the load is connected, the combined current phase of the parallel capacitor and the load is large and does not shift in the same phase direction by setting the load current to be smaller than the resonance current flowing in the capacitor (to maintain a high angle phase close to 90 degrees). Since the transformer secondary power is dominated by the current phase, the input power is reduced. Thereby, transformer secondary power, that is, output power larger than the input power of the parallel capacitor and the load can be obtained.
The parallel inductance at the secondary output of the power transformer improves the power factor of the current and reduces the current of the transformer secondary circuit. The combined current cancels the parallel capacitor current and the parallel inductance current to make a small current. . As a result of these, a power multiplier that can consume a load power larger than the power supplied from the power transformer in the load resistor.
バッテリがありバッテリ電源を交流変換し交流電力(P1)とし、本発明請求項1の電力増倍器により増倍された電力(P2)を得て、当該増倍電力P2の一部を上記バッテリ電源(P1)に還元し余剰電力(P3=P2−P1)を任意の電力として使用できるように構成した電力増倍器による発電器。

There is a battery, and the battery power supply is AC converted to AC power (P1) to obtain power (P2) multiplied by the power multiplier of claim 1, and a part of the multiplied power P2 is used as the battery. A power generator by a power multiplier configured so as to return to the power source (P1) and use surplus power (P3 = P2-P1) as arbitrary power.

JP2003395366A 2003-11-26 2003-11-26 Power multiplier Pending JP2005160215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395366A JP2005160215A (en) 2003-11-26 2003-11-26 Power multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395366A JP2005160215A (en) 2003-11-26 2003-11-26 Power multiplier

Publications (1)

Publication Number Publication Date
JP2005160215A true JP2005160215A (en) 2005-06-16

Family

ID=34721159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395366A Pending JP2005160215A (en) 2003-11-26 2003-11-26 Power multiplier

Country Status (1)

Country Link
JP (1) JP2005160215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077485B2 (en) 2005-12-29 2011-12-13 Kwang-Jeek Lee Circuit for transmitting an amplified resonant power to load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077485B2 (en) 2005-12-29 2011-12-13 Kwang-Jeek Lee Circuit for transmitting an amplified resonant power to load

Similar Documents

Publication Publication Date Title
Tytelmaier et al. A review of non-isolated bidirectional dc-dc converters for energy storage systems
Tseng et al. High step-up interleaved boost converter for distributed generation using renewable and alternative power sources
Wu et al. Full-bridge three-port converters with wide input voltage range for renewable power systems
Pan et al. A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications
US20100208498A1 (en) Ultra-low voltage boost circuit
JP2003333861A (en) Power supply and its designing method and power generating device
Son et al. High step-up resonant DC/DC converter with balanced capacitor voltage for distributed generation systems
US20040085046A1 (en) Power conditioning system for turbine motor/generator
CN114337308B (en) Double half-bridge resonant converter topology structure and minimum current path control system thereof
Addula et al. Coupled inductor based soft switched interleaved dc-dc converter for pv applications
CN102498648A (en) A non-moving part or static electric generator
JP2005160215A (en) Power multiplier
Sathyan et al. Soft switched coupled inductor based high step up converter for distributed energy resources
JP2005130682A (en) Electric power multiplication device
JP2004056987A (en) Electric power multiplier
Crescimbini et al. Electrical equipment for a combined wind/PV isolated generating system
Siota et al. Matching between straight‐wing nonarticulated vertical axis wind turbine and a new wind turbine generator
Kannan et al. Solar powered Modified Coupled Inductor, Capacitor Multiplier boost converter operated three‐phase small power inverter
JP2005261097A (en) Power amplifier
US20200044556A1 (en) High-frequency half-wave rectifier system of low-harmonicity and high-efficiency
Kumar et al. Bidirectional converter and energy storage system
Al-Omari Contributions to Converters in Single Phase Distributed Photovoltaic Systems
Kollati et al. Interleaved DC-DC Boost Converter with Coupled Inductors
JP2011125175A (en) Power conversion apparatus
Cheng et al. Study and implementation of a four-phase interleaved 10-kW boost DC-to-DC converter for fuel cell applications