JP2005156481A - Sample-positioning apparatus and sample-measuring apparatus - Google Patents

Sample-positioning apparatus and sample-measuring apparatus Download PDF

Info

Publication number
JP2005156481A
JP2005156481A JP2003398518A JP2003398518A JP2005156481A JP 2005156481 A JP2005156481 A JP 2005156481A JP 2003398518 A JP2003398518 A JP 2003398518A JP 2003398518 A JP2003398518 A JP 2003398518A JP 2005156481 A JP2005156481 A JP 2005156481A
Authority
JP
Japan
Prior art keywords
sample
axis
positioning device
vacuum vessel
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003398518A
Other languages
Japanese (ja)
Other versions
JP4087780B2 (en
Inventor
Masaaki Maehara
正明 前原
Takahiro Yuki
隆裕 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003398518A priority Critical patent/JP4087780B2/en
Publication of JP2005156481A publication Critical patent/JP2005156481A/en
Application granted granted Critical
Publication of JP4087780B2 publication Critical patent/JP4087780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample-positioning apparatus for compactly integrating a mechanism for receiving/transferring a sample irradiated with an ion beam or an electron beam, and a mechanism for positioning in a vacuum chamber having severe spatial constraints. <P>SOLUTION: The plate sample 21 is carried into the vacuum chamber 11, received within the vacuum chamber, and positioned at a predetermined position within the vacuum chamber. The positioned sample 21 is irradiated with the ion beam or the electron beam. A ϕ-axis motor 34 is provided, receives the sample 21 at a position opposite to a side for introducing the beam into the vacuum chamber 11, makes the received sample 21 flip and orients the received sample 21 to the beam. The sample 21 is positioned so as to be aligned with the axis line of the beam. An axis line matching means comprises a ω-axis motor 28 and a Y-axis motor 32 and is rotated about the ω-axis, and is moved horizontally along Y-axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,イオンビームまたは電子ビームを試料に照射して,試料を分析または処理する分析装置または照射装置に用いられる試料位置決め装置に関し,特に試料の搬入,ビーム照射などの分析,搬出といったハンドリングに適した構造を有する試料位置決め装置に関するものである。   TECHNICAL FIELD The present invention relates to a sample positioning device used in an analyzer or an irradiation device for analyzing or processing a sample by irradiating the sample with an ion beam or an electron beam, and particularly for handling such as sample loading, analysis such as beam irradiation, and carrying out. The present invention relates to a sample positioning device having a suitable structure.

イオンビームまたは電子ビームを試料に照射して試料を分析または処理する分析装置または照射装置として,ラザフォード後方散乱分析装置などがある。   Rutherford backscattering analyzers and the like are examples of analyzers or irradiation devices that analyze or process a sample by irradiating the sample with an ion beam or an electron beam.

一般に,上記ラザフォード後方散乱分析装置などの真空容器内で試料にイオンビームまたは電子ビームを照射する装置においては,これらのビームを試料の所定位置に照射する必要があるため,ビームの軸線に対して鉛直な面状の任意の位置に試料を位置決めし,ビームの軸線と試料位置を合致させなければならない。また,ビームの焦点に試料を位置決めする必要があるため,ビームの軸線に沿った任意の位置に試料を位置決めし,ビームの焦点で試料にイオンビームまたは電子ビームを照射する必要がある。更に,試料を分析したり処理したりするにあたって試料の結晶構造とビームの照射方向を調整するために,ビームの軸線に対して試料を傾斜させる必要がある。このように,試料位置決め装置には,回転移動や水平移動など,多くの自由度を持たせる必要がある。   In general, in an apparatus that irradiates a sample with an ion beam or an electron beam in a vacuum vessel such as the Rutherford backscattering analyzer, it is necessary to irradiate a predetermined position on the sample with respect to the axis of the beam. The sample must be positioned at an arbitrary position on the vertical plane, and the beam axis should match the sample position. Further, since it is necessary to position the sample at the focal point of the beam, it is necessary to position the sample at an arbitrary position along the axis of the beam and to irradiate the sample with an ion beam or an electron beam at the focal point of the beam. Furthermore, in order to analyze and process the sample, it is necessary to incline the sample with respect to the axis of the beam in order to adjust the crystal structure of the sample and the irradiation direction of the beam. Thus, the sample positioning device needs to have many degrees of freedom such as rotational movement and horizontal movement.

また,当然のことながら試料は真空容器の外部から搬入されてくるので,搬入されてきた試料を真空容器の内部で受け取ったり,分析または処理後の試料を真空容器外に搬出するために,真空容器内で試料搬出装置に受け渡す必要があり,この受取・受渡に便利な構造でなければならない。   Naturally, since the sample is carried in from the outside of the vacuum container, a vacuum is used to receive the loaded sample inside the vacuum container or to carry the sample after analysis or processing out of the vacuum container. It must be delivered to the sample unloading device inside the container, and the structure must be convenient for this receipt and delivery.

さらに,真空容器は,できるだけ小型にした方が真空排気の観点から好ましいため,真空容器内には無駄なスペースが殆どなく,上述した多くの位置決め機構と受取機構とをコンパクトにまとめる必要がある。   Furthermore, since it is preferable to make the vacuum vessel as small as possible from the viewpoint of evacuation, there is almost no wasted space in the vacuum vessel, and it is necessary to compact the above-described many positioning mechanisms and receiving mechanisms.

図5を用いて,イオンビームまたは電子ビームを試料に照射して試料を分析または処理する装置にとって,真空容器の内部のスペース的制約が厳しいことを説明する。図5において,11が真空容器であり,この真空容器11では,イオンビームまたは電子ビームが上方から照射される。分析または処理される試料12は,真空弁13を介して接続されたトランスファーロッド14によって真空容器11の内部に搬出入される。図5において,ビームが上方から照射されるので,当然のことながら試料12が位置すべき場所より上方部Pには何も配置することができない。また,真空容器の両側面部Mには,通常電磁石が配置されているので,この方向にも何も配置することができない。更に,真空容器の底面部Nには,真空容器11内の磁場を撹乱しないように磁性体の蓋を取りつける必要があり,この方向にも何も配置することができない。以上のことから,このような分析装置または照射装置に用いられる位置決め装置としては,真空容器のビームが導入される側に対して反対側の底部で試料を受け渡しするとともに,その受け取った試料を真空容器内の分析位置まで運び,さらに上記分析位置で正確に位置決めする必要がある。しかしながら,上記図5を用いて説明したように,試料の受け渡しのための空間は極めて限られたものでしかなく,きわめて高度の受け渡しと,位置決めのための機構を採用する必要がある。   With reference to FIG. 5, it will be explained that the space restriction inside the vacuum vessel is severe for an apparatus for analyzing or processing a sample by irradiating the sample with an ion beam or an electron beam. In FIG. 5, reference numeral 11 denotes a vacuum vessel. In this vacuum vessel 11, an ion beam or an electron beam is irradiated from above. A sample 12 to be analyzed or processed is carried into and out of the vacuum vessel 11 by a transfer rod 14 connected via a vacuum valve 13. In FIG. 5, since the beam is irradiated from above, of course, nothing can be arranged in the upper portion P from the place where the sample 12 should be located. Moreover, since the electromagnet is normally arrange | positioned at the both sides M of a vacuum vessel, nothing can be arrange | positioned also in this direction. Furthermore, it is necessary to attach a magnetic lid to the bottom N of the vacuum vessel so as not to disturb the magnetic field in the vacuum vessel 11, and nothing can be arranged in this direction. From the above, as a positioning device used in such an analyzer or irradiation device, the sample is delivered at the bottom on the opposite side to the side where the beam of the vacuum vessel is introduced, and the received sample is vacuumed. It is necessary to carry it to the analysis position in the container and to position it accurately at the analysis position. However, as described with reference to FIG. 5 above, the space for sample transfer is very limited, and it is necessary to employ a very high level transfer and positioning mechanism.

このような位置決め機構の一例として,特許文献1に記載された技術がある。この特許文献1に記載された技術は,少なくとも試料取り付け部を水平方向に直線移動及び垂直軸周りに回転移動を行うR−θステージ9と,当該R−θステージ9を支持すると共に,分析位置を通る垂直軸周りにおいて90度をなす2つの角度位置で位置決め可能に回転する回転移動ステージを備えたものである。
特開2002−131250号公報
As an example of such a positioning mechanism, there is a technique described in Patent Document 1. The technique described in Patent Document 1 supports at least an R-θ stage 9 that linearly moves in a horizontal direction and rotationally moves around a vertical axis, and supports the R-θ stage 9 and also an analysis position. Is provided with a rotationally moving stage that rotates so as to be positioned at two angular positions of 90 degrees around a vertical axis passing through.
JP 2002-131250 A

しかしながら,上記特許文献1に記載された構造では,試料の受け渡しが,位置決め装置のビーム照射空間側で行われる構造となっていることが前提である。このように特許文献1においては,試料の位置決め装置の上部で試料の受け渡しが行われることになっているので,真空容器の底部から少なくとも位置決め装置の分だけは高い場所で試料の受け渡しを行うことになる。ところが,試料は装置の底部に接続された搬送通路を通って真空室に搬送されるので,上記試料の搬送通路の幅を上記試料の位置決め装置の高さ分の上下幅に形成する必要があり,結果的に,真空容器の体積が大きくなる問題を内蔵するものであった。この場合,もちろんながら,真空容器の大きさがその分大きくなり,真空容器のコストが上昇するだけでなく,真空排気に要する時間も長くなっていた。   However, the structure described in Patent Document 1 is based on the premise that the sample is delivered on the beam irradiation space side of the positioning device. As described above, in Patent Document 1, since the sample is transferred at the upper portion of the sample positioning device, the sample is transferred at a location at least as high as the positioning device from the bottom of the vacuum vessel. become. However, since the sample is transported to the vacuum chamber through the transport path connected to the bottom of the apparatus, the width of the sample transport path needs to be formed to be the vertical width corresponding to the height of the sample positioning device. As a result, the problem that the volume of the vacuum vessel becomes large was incorporated. In this case, as a matter of course, the size of the vacuum vessel is increased accordingly, which not only increases the cost of the vacuum vessel, but also increases the time required for evacuation.

本発明は,上記の事情に鑑みてなされたものであって,その目的とするところは,スペース的な制約が厳しい真空容器内で,イオンビームまたは電子ビームを照射する試料を受け渡しする機構とビームに対して位置決めする機構をコンパクトにまとめると共に,上記真空容器の体積を実質的に狭くすることができる試料位置決め装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a mechanism and a beam for delivering a sample to be irradiated with an ion beam or an electron beam in a vacuum container having severe space restrictions. It is an object of the present invention to provide a sample positioning device capable of reducing the volume of the vacuum vessel substantially in a compact manner with respect to a mechanism for positioning with respect to the vacuum vessel.

上記目的を達成するために本発明は,真空容器の内部に搬入された試料を受け取って,前記真空容器の内部の測定個所近傍まで搬送すると共に,上記試料の位置及び方向を適宜位置決めするための試料位置決め装置において,
前記試料を真空容器の底部で試料搬入装置から受け取った後,該試料を反転させると共に,試料を測定個所近傍まで搬送し,少なくとも試料の位置については,該搬送動作の後に調整することを特徴とする試料位置決め装置として構成されている。これにより,試料の搬入通路を狭くすることが出来,真空容器全体の体積を小さくすることができる。また,スペース的制約の厳しい真空容器内において試料の搬入・搬出をするのに好適な箇所で受け取って,真空容器内の所定位置に位置決めできる機構をコンパクトにまとめることができる。
In order to achieve the above object, the present invention is to receive a sample carried into a vacuum vessel and transport it to the vicinity of a measurement location inside the vacuum vessel and to appropriately position and position the sample. In the sample positioning device,
After the sample is received from the sample loading device at the bottom of the vacuum vessel, the sample is reversed and the sample is transported to the vicinity of the measurement location, and at least the position of the sample is adjusted after the transport operation. It is configured as a sample positioning device. Thereby, the sample carrying-in passage can be narrowed, and the volume of the entire vacuum vessel can be reduced. In addition, a mechanism that can receive a sample at a position suitable for loading and unloading the sample in a vacuum container with severe space restrictions and position it at a predetermined position in the vacuum container can be compactly assembled.

また,前記試料の方向を調整する機構として,前記試料の結晶構造を分析するために前記イオンビームまたは電子ビームの軸線に対して前記試料を傾斜させる傾斜手段を有することが望ましい。これにより,試料の結晶構造の分析などを容易に実施することができる。   In addition, as a mechanism for adjusting the direction of the sample, it is desirable to have a tilting unit that tilts the sample with respect to the axis of the ion beam or electron beam in order to analyze the crystal structure of the sample. Thereby, analysis of the crystal structure of the sample can be easily performed.

この前記傾斜手段が,少なくとも2軸の回転機構からなり,各回転機構が同軸状に配置された少なくとも2つのリングに付設され,外側のリングに付設された回転機構が内側のリングを傾斜させるものであるようにすれば更に望ましい。このように構成することによって,この傾斜手段をコンパクトにまとめることができる。   The tilting means is composed of at least two-axis rotating mechanisms, and each rotating mechanism is attached to at least two rings arranged coaxially, and the rotating mechanism attached to the outer ring tilts the inner ring. It is more desirable if it is. By constituting in this way, this tilting means can be put together compactly.

なお,前記試料を反転させる機構を,前記内側のリングを傾斜させる機構と共用させることができれば,重複する機構を共用して一軸省略することができるので,装置全体を一層コンパクトにまとめることができる。   If the mechanism that inverts the sample can be shared with the mechanism that tilts the inner ring, the overlapping mechanism can be shared and one axis can be omitted, so that the entire apparatus can be integrated more compactly. .

また,前記試料の位置を調整する機構として,前記試料を前記イオンビームまたは電子ビームの軸線に合致させる軸線合致手段を有し,該軸線合致手段が前記傾斜手段に載置された状態で反転させるように駆動されることが望ましい。これにより,ビームの軸線に対する試料の位置決めが簡単になり,試料の分析または処理を効率よくおこなうことができるようになる。また,全体を極めてコンパクトにまとめることができる。   Further, as a mechanism for adjusting the position of the sample, there is an axis matching means for matching the sample with the axis of the ion beam or electron beam, and the axis matching means is reversed while being placed on the tilting means. It is desirable to be driven as follows. This simplifies the positioning of the sample with respect to the axis of the beam, and allows the sample to be analyzed or processed efficiently. Moreover, the whole can be summarized in an extremely compact manner.

前記軸線合致手段は,少なくとも一つのスライド機構と少なくとも一つの回転機構とからなることが望ましい。このようにスライド機構と回転機構を組み合わせることで,軸線を合致させる手段がコンパクトになり,傾斜手段で反転させる際に他の障害物との干渉を抑えることができる。   Preferably, the axis line matching means comprises at least one slide mechanism and at least one rotation mechanism. By combining the slide mechanism and the rotation mechanism in this way, the means for matching the axis becomes compact, and interference with other obstacles can be suppressed when the tilting means is reversed.

更に,前記試料の位置を調整する機構として,前記試料を前記イオンビームまたは電子ビームの軸線に沿って移動させる焦点合せ手段を更に有し,該焦点合せ手段が,前記軸線合致手段及び前記傾斜手段を一体的に移動させるものであることが望ましい。これにより,焦点合わせが容易にできるようになるとともに,全体をコンパクトにすることができる。   Further, as a mechanism for adjusting the position of the sample, it further comprises focusing means for moving the sample along the axis of the ion beam or electron beam, and the focusing means includes the axis matching means and the tilting means. It is desirable to move them integrally. As a result, focusing can be easily performed, and the whole can be made compact.

上記のような試料位置決め装置を用いた試料測定装置としては,真空容器の内部に搬入された試料を受け取って,前記真空容器の内部の測定個所近傍まで搬送すると共に,上記試料の位置及び方向を適宜位置決めするための試料位置決め装置を備えた試料測定装置において,
前記試料を真空容器の底部で試料搬入装置から受け取った後,該試料を反転させると共に,試料を測定個所近傍まで搬送し,少なくとも試料の位置については該搬送動作の後に調整する試料位置決め装置を備えたことを特徴とする試料測定装置が提供される。
As a sample measuring apparatus using the sample positioning apparatus as described above, a sample carried into the vacuum vessel is received and transported to the vicinity of the measurement location inside the vacuum vessel, and the position and direction of the sample are determined. In a sample measuring device equipped with a sample positioning device for positioning appropriately,
After receiving the sample from the sample carry-in device at the bottom of the vacuum vessel, the sample is reversed, and the sample is transported to the vicinity of the measurement location, and at least the position of the sample is adjusted after the transport operation. There is provided a sample measuring apparatus characterized by the above.

以上説明したように,本発明によれば,真空容器全体をコンパクトにまとめることができる。また,イオンビームまたは電子ビームが照射される試料を受取り・受け渡しする機構と,試料をイオンビームまたは電子ビームに対して位置決めする機構をコンパクトにまとめることができる。このため,高価な真空容器を小型化することができ,全体のコストダウンに寄与することに加え,真空排気に要する時間を短縮することができ,試料分析又は試料処理を効率的におこなうことができる。   As described above, according to the present invention, the entire vacuum container can be compactly collected. In addition, a mechanism for receiving and delivering a sample irradiated with an ion beam or an electron beam and a mechanism for positioning the sample with respect to the ion beam or the electron beam can be compactly integrated. Therefore, it is possible to reduce the size of an expensive vacuum vessel, contribute to the overall cost reduction, reduce the time required for evacuation, and perform sample analysis or sample processing efficiently. it can.

以下添付図面を参照しながら,本発明の一実施形態について説明する。なお,以下の実施形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the following embodiment is an example which actualized this invention, Comprising: It is not the thing of the character which limits the technical scope of this invention.

ここに,図1は,本発明の実施形態に係る位置決め装置の正断面図であり,図2は,本発明の実施形態に係る位置決め装置の側断面図であり,図3は,本発明の実施形態に係る位置決め装置を試料受け取りのために反転させた状態を示す側断面図であり,図4は,本発明の実施形態に係る位置決め装置の動作を説明する動作説明連続図である。なお,図1は図2のB−B矢視断面図であり,図2は図1のA−A矢視断面図,図3は図1のC−C矢視断面図であるが,機構説明のために一部簡略化したり切断位置をずらしたりした箇所がある。   1 is a front sectional view of the positioning device according to the embodiment of the present invention, FIG. 2 is a side sectional view of the positioning device according to the embodiment of the present invention, and FIG. FIG. 4 is a side sectional view showing a state in which the positioning device according to the embodiment is inverted for sample reception, and FIG. 4 is an operation explanation continuous view for explaining the operation of the positioning device according to the embodiment of the present invention. 1 is a cross-sectional view taken along the line BB in FIG. 2, FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line CC in FIG. For the sake of explanation, some parts are simplified or the cutting position is shifted.

まず,図1と図2を用いて,本発明の実施形態について説明する。この実施形態は,本発明の試料位置決め装置をラザフォード後方散乱分析装置(RBS分析装置)に用いた例である。なお,言うまでもないが,RBS分析装置は本発明の試料分析装置が使用できる分析装置の単なる一例に過ぎない。本発明の試料分析装置は,他のイオンビームまたは電子ビームを試料に照射して分析または処理をおこなう分析装置または照射装置にも使用できる。   First, an embodiment of the present invention will be described with reference to FIGS. This embodiment is an example in which the sample positioning device of the present invention is used in a Rutherford backscattering analyzer (RBS analyzer). Needless to say, the RBS analyzer is merely an example of an analyzer that can use the sample analyzer of the present invention. The sample analyzer of the present invention can also be used in an analyzer or an irradiation apparatus that performs analysis or processing by irradiating a sample with another ion beam or electron beam.

図1と図2に図示された試料位置決め装置は,図示されていない真空容器内に配置される。図において,21がイオンビームが照射される円盤状の試料(例えば6インチまたは8インチのウェハ)であり,この試料21は,4本の把持爪22によって四方からその周辺部を把持される。この4本の把持爪22は,各々試料の半径方向に進退するロッド23によって試料中心から放射方向(試料中心方向)に進退可能に支持されており,各々の把持爪22はバネ24によって試料21を把持する方向に弾性的に付勢されている。また,試料21の後面には,保持ローラ25が当接されるようになっており,把持爪22と協働して試料21を把持する。これらの機構により,試料21は,真空容器の内部でトランスファーロッド14(図5)から試料位置決め装置に受け取られたり,試料位置決め装置からトランスファーロッドに受け渡されたりする。   The sample positioning device shown in FIGS. 1 and 2 is disposed in a vacuum vessel (not shown). In the figure, reference numeral 21 denotes a disk-shaped sample (for example, a 6-inch or 8-inch wafer) irradiated with an ion beam, and this sample 21 is gripped by the four gripping claws 22 from the four sides. Each of the four gripping claws 22 is supported by a rod 23 that advances and retreats in the radial direction of the sample so as to be able to advance and retract in the radial direction (sample center direction) from the sample center. Is elastically biased in the direction of gripping. Further, a holding roller 25 is brought into contact with the rear surface of the sample 21, and the sample 21 is gripped in cooperation with the gripping claws 22. By these mechanisms, the sample 21 is received from the transfer rod 14 (FIG. 5) to the sample positioning device inside the vacuum vessel, and is transferred from the sample positioning device to the transfer rod.

なお,把持爪22の本数は四本に限定されず,三本であっても五本であってもよい。また,把持爪による固定ではなく吸引固定によることも考えられる。   Note that the number of the gripping claws 22 is not limited to four, and may be three or five. In addition, it may be due to suction fixation rather than fixation with gripping claws.

これらの試料受け取り・受け渡し機構は,回転テーブル26の上に配置されている。この回転テーブル26は,ベアリング27によって支持されており,この回転テーブル26の軸心上に配置されたω軸モータ28によってω軸(図2)回りに360度回転可能とされている。また,回転テーブル26を支持しているベアリング27は,スライドテーブル29の上に載置されており,このスライドテーブル29は,スライドテーブル29の下面から突出しているL字部材30を介してボールネジ31に接続されている。このスライドテーブル29は,ボールネジ31に接続されたY軸モータ32によってY軸方向に6cm〜8cm程度の範囲で水平移動可能とされている。なお,本実施形態の場合,図1に示すようにボールネジ31がスライドテーブル29の中心線から偏移(偏移量δ)した位置に配置されているので,中心線に対してボールネジ31に対称な位置にリニアガイド33が配置されており,このリニアガイド33とボールネジ31によってY軸方向にスライドテーブル29をガイドしている。本実施形態の場合,これらの機構によって,試料21がイオンビームの軸線に対して鉛直な面上の任意の位置に正確に位置決めされることができ,これにより,試料21の位置をイオンビームの軸線に合致させることができる。すなわち,これらの機構により軸線合致手段が構成されている。   These sample receiving / delivery mechanisms are arranged on the rotary table 26. The rotary table 26 is supported by a bearing 27, and can be rotated 360 degrees around the ω axis (FIG. 2) by a ω axis motor 28 disposed on the axis of the rotary table 26. A bearing 27 supporting the rotary table 26 is placed on a slide table 29. The slide table 29 is a ball screw 31 via an L-shaped member 30 protruding from the lower surface of the slide table 29. It is connected to the. The slide table 29 can be horizontally moved in a range of about 6 cm to 8 cm in the Y axis direction by a Y axis motor 32 connected to the ball screw 31. In the case of the present embodiment, as shown in FIG. 1, since the ball screw 31 is arranged at a position shifted from the center line of the slide table 29 (deviation amount δ), the ball screw 31 is symmetric with respect to the center line. A linear guide 33 is arranged at a certain position, and the slide table 29 is guided in the Y-axis direction by the linear guide 33 and the ball screw 31. In the case of the present embodiment, these mechanisms allow the sample 21 to be accurately positioned at an arbitrary position on a plane perpendicular to the axis of the ion beam. Can match the axis. That is, the axis line matching means is constituted by these mechanisms.

なお,本実施形態では,ω軸回りの回転とY軸方向の水平移動により軸線合致手段が構成されているが,イオンビームの軸線に対して鉛直な面上の任意の位置に位置決めすることができればよく,2軸とも回転であってもよいし,2軸とも水平移動であってもよい。さらに,第三の軸を付加してもよい。   In this embodiment, the axis coincidence means is constituted by the rotation around the ω axis and the horizontal movement in the Y axis direction. However, positioning at an arbitrary position on a plane perpendicular to the axis of the ion beam is possible. As long as it is possible, both the two axes may be rotated, or both the two axes may be moved horizontally. Furthermore, a third axis may be added.

これらの軸線合致手段を構成する機構は,対向する2箇所のφ軸取付部35によって内側リング36に回動可能に取り付けられており,φ軸モータ34によって全体をプラスマイナス10度程度の範囲で傾斜可能とされているとともに,図3に示すように180度反転可能とされている。つまり,図3に示すようにイオンビームが導入される側と反対側の位置に回転された状態で試料21を受け取り,この受け取った試料21を,軸線合致手段と一体的に反転させてイオンビームに対向可能とできるようになっている。本実施形態の場合,これらの機構によって試料を受け取り位置とビーム照射位置との間で反転させるようにしている。   The mechanism that constitutes these axis matching means is rotatably attached to the inner ring 36 by two opposing φ-axis mounting portions 35, and is entirely within a range of about plus or minus 10 degrees by the φ-axis motor 34. It can be tilted and can be inverted 180 degrees as shown in FIG. That is, as shown in FIG. 3, the sample 21 is received while being rotated to a position opposite to the side where the ion beam is introduced, and the received sample 21 is inverted integrally with the axis line matching means so as to be ion beam. It can be opposed to. In the present embodiment, the sample is reversed between the receiving position and the beam irradiation position by these mechanisms.

次いで,前記内側リング36は,この内側リング36と同軸上に配置された外側リング39の内部に配置されている。この外側リング39には,θ軸モータ37が取り付けられており,θ軸モータ37は,対向する2箇所のθ軸取付部38によって内側リング36をプラスマイナス10度程度の範囲で傾斜させて試料の方向を調整することができる。なお,内側リング36と外側リング39には,上述した反転動作や傾斜動作の際にモータ34との干渉を防止するために複数の切欠部40が設けられている。本実施形態の場合,これらの外側リング39と内側リング36,θ軸モータ37とφ軸モータ34などにより,傾斜手段が構成されている。   Next, the inner ring 36 is arranged inside an outer ring 39 arranged coaxially with the inner ring 36. A θ-axis motor 37 is attached to the outer ring 39, and the θ-axis motor 37 tilts the inner ring 36 within a range of about plus or minus 10 degrees by two opposing θ-axis mounting portions 38. Can be adjusted. The inner ring 36 and the outer ring 39 are provided with a plurality of cutout portions 40 to prevent interference with the motor 34 during the reversing operation and the tilting operation described above. In the present embodiment, the outer ring 39, the inner ring 36, the θ-axis motor 37, the φ-axis motor 34, and the like constitute the tilting means.

なお,本実施形態の場合,試料を反転させる機構と内側リングを傾斜させる機構とでφ軸軸モータ34を共用したが,これらを別個に設けてもよい。また,傾斜手段として更に第三の軸を設けて三重構造としてもよいし,逆に1軸省略してもかまわない。   In this embodiment, the φ-axis motor 34 is shared by the mechanism for inverting the sample and the mechanism for tilting the inner ring, but these may be provided separately. Further, a third axis may be provided as a tilting means to form a triple structure, or conversely, one axis may be omitted.

また,本実施形態の場合,反転時の干渉を考慮してθ軸モータ37とφ軸モータ34を約135度の角度で交差させるようにしているが,これらの軸を直交させてもよいし,更に交差角度を大きくしてもよい。   In the present embodiment, the θ-axis motor 37 and the φ-axis motor 34 are intersected at an angle of about 135 degrees in consideration of reversal interference. However, these axes may be orthogonal. , The crossing angle may be further increased.

さらにまた,本実施形態の場合,180度反転させているが,サイドからイオンビームを導入するような場合,90度反転させることでイオンビームに対向させるようにしてもよい。   Furthermore, in the case of this embodiment, it is inverted 180 degrees, but when the ion beam is introduced from the side, it may be opposed to the ion beam by reversing it 90 degrees.

次ぎに,図4を用いて本発明の実施形態の焦点合せ手段とその動作を説明する。図4において,51が真空容器であり,この真空容器51内に試料52がトランスファーロッド53によって搬入される。図4において,54はシャフトであって,真空容器51の上下方向に3本立設されており,各シャフト54にリニアブッシュ55を介して上述した図1および図2に図示された機構が接続されている。シャフト54の一本の上方に図示されていないZ軸モータが接続されており,このZ軸モータによって図外のボールネジが回転駆動されることで,Z軸方向に30〜50cm程度上下移動可能とされている。これにより,試料をイオンビームの軸線に沿って移動させて焦点合せをすることができる。本実施形態の場合,これらの機構によって焦点合せ手段が構成されている。   Next, the focusing means and its operation according to the embodiment of the present invention will be described with reference to FIG. In FIG. 4, reference numeral 51 denotes a vacuum vessel, and a sample 52 is carried into the vacuum vessel 51 by a transfer rod 53. In FIG. 4, reference numeral 54 denotes a shaft, and three shafts are erected in the vertical direction of the vacuum vessel 51, and the mechanism shown in FIGS. 1 and 2 is connected to each shaft 54 via a linear bush 55. ing. A Z-axis motor (not shown) is connected above one of the shafts 54, and a ball screw (not shown) is rotationally driven by the Z-axis motor, so that it can move up and down about 30 to 50 cm in the Z-axis direction. Has been. Thereby, the sample can be focused along the axis of the ion beam. In the case of this embodiment, the focusing means is constituted by these mechanisms.

なお,本実施形態の場合,焦点合せ手段が真空容器の内部を上下方向に移動させるようにしているが,横型の分析装置の場合であれば,水平方向に移動させるようになる。   In the case of the present embodiment, the focusing means moves in the vertical direction inside the vacuum vessel, but in the case of a horizontal analyzer, it moves in the horizontal direction.

次ぎに,本実施形態の動作を説明する。図4Aに示すように,まず試料52がトランスファーロッド53によって真空容器内51の内部に搬入され,本実施形態に係る位置決め機構の下方に位置決めされる。この状態にて,把持爪22を閉じて試料52を四方から把持すると共に,保持ローラ25が,試料52に当接して,把持爪22と保持ローラ25によって試料52が確実に把持される。その後,図4Bに示すように,トランスファーロッド53を後退させるとともに,位置決め機構を焦点合わせ手段54,55によって上方に移動させる。この状態で,図4Cに示すように,180度反転させてイオンビームに対向させる。イオンビームと試料の軸線は,軸線合致手段によってビームに対する位置が調整され,ウェハである試料の表面全面に亘って所定の分析がおこなわれる。なお,この際には,試料は傾斜手段によって必要に応じて傾斜してビームに対する方向が調整される。所定の分析が終了した後,上述と逆の流れで試料52は真空容器51から搬出される。   Next, the operation of this embodiment will be described. As shown in FIG. 4A, the sample 52 is first carried into the inside of the vacuum vessel 51 by the transfer rod 53 and positioned below the positioning mechanism according to the present embodiment. In this state, the gripping claw 22 is closed and the sample 52 is gripped from four directions, and the holding roller 25 comes into contact with the sample 52, and the sample 52 is securely gripped by the gripping claw 22 and the holding roller 25. Thereafter, as shown in FIG. 4B, the transfer rod 53 is retracted and the positioning mechanism is moved upward by the focusing means 54 and 55. In this state, as shown in FIG. 4C, it is inverted 180 degrees to face the ion beam. The positions of the ion beam and the sample axis are adjusted with respect to the beam by the axis matching means, and a predetermined analysis is performed over the entire surface of the sample as a wafer. At this time, the sample is tilted as necessary by the tilting means to adjust the direction with respect to the beam. After the predetermined analysis is completed, the sample 52 is carried out of the vacuum vessel 51 in the reverse flow as described above.

上の実施形態では,試料が測定個所近傍にたどり着いた後に試料の正確は傾斜(方向)や位置決めを行っているが,試料の傾斜などについては,測定個所への搬送の前,或いは搬送の途中で調整することも可能である。このような事前調整により,処理に要する時間の短縮を図ることが可能である。     In the above embodiment, the sample is accurately tilted (direction) and positioned after the sample has reached the vicinity of the measurement location. However, the sample tilt is measured before or during conveyance to the measurement location. It is also possible to adjust with. Such pre-adjustment can reduce the time required for processing.

本発明の実施形態に係る位置決め装置の正断面図。The front sectional view of the positioning device concerning the embodiment of the present invention. 本発明の実施形態に係る位置決め装置の側断面図。The side sectional view of the positioning device concerning the embodiment of the present invention. 本発明の実施形態に係る位置決め装置を試料受取のために反転させた状態を示す側断面図。The side sectional view showing the state where the positioning device concerning the embodiment of the present invention was reversed for sample receipt. 本発明の実施形態に係る位置決め装置の動作を説明する動作説明連続図。Operation | movement description continuous figure explaining operation | movement of the positioning device which concerns on embodiment of this invention. 真空容器内のスペース的制約を説明する説明図。Explanatory drawing explaining the space restrictions in a vacuum vessel.

符号の説明Explanation of symbols

11 真空容器
21 試料
26 回転テーブル(軸線合致手段)
28 ω軸モータ(軸線合致手段)
29 スライドテーブル(軸線合致手段)
32 Y軸モータ(軸線合致手段)
34 φ軸モータ(反転手段,傾斜手段)
36 内側リング(傾斜手段)
37 θ軸モータ(傾斜手段)
39 外側リング(焦点合せ手段)
54 シャフト(焦点合せ手段)
55 リニアブッシュ(焦点合せ手段)
11 Vacuum container 21 Sample 26 Rotary table (Axis matching means)
28 ω-axis motor (axis matching means)
29 Slide table (Axis matching means)
32 Y-axis motor (Axis matching means)
34 φ axis motor (reversing means, tilting means)
36 Inner ring (tilting means)
37 θ-axis motor (tilting means)
39 Outer ring (focusing means)
54 Shaft (focusing means)
55 Linear bushing (focusing means)

Claims (8)

真空容器の内部に搬入された試料を受け取って,前記真空容器の内部の測定個所近傍まで搬送すると共に,上記試料の位置及び方向を適宜位置決めするための試料位置決め装置において,
前記試料を真空容器の底部で試料搬入装置から受け取った後,該試料位置決め装置ごと反転させると共に,試料を測定個所近傍まで搬送し,少なくとも試料位置については,該搬送動作の後に調整することを特徴とする試料位置決め装置。
In a sample positioning apparatus for receiving a sample carried into a vacuum vessel and transporting it to the vicinity of a measurement location inside the vacuum vessel, and appropriately positioning the position and direction of the sample,
After the sample is received from the sample carry-in device at the bottom of the vacuum vessel, the sample positioning device is reversed and the sample is transported to the vicinity of the measurement location, and at least the sample position is adjusted after the transport operation. Sample positioning device.
前記試料の方向を調整する機構として,前記試料の結晶構造を分析するために前記イオンビームまたは電子ビームの軸線に対して前記試料を傾斜させる傾斜手段を有する請求項1記載の試料位置決め装置。   2. The sample positioning apparatus according to claim 1, further comprising: tilting means for tilting the sample with respect to an axis of the ion beam or electron beam in order to analyze a crystal structure of the sample as a mechanism for adjusting the direction of the sample. 前記傾斜手段が,少なくとも2軸の回転機構からなり,各回転機構が同軸状に配置された少なくとも2つのリングに付設され,外側のリングに付設された回転機構が内側のリングを傾斜させるものである請求項2記載の試料位置決め装置。   The tilting means comprises at least two-axis rotating mechanisms, each rotating mechanism is attached to at least two rings arranged coaxially, and the rotating mechanism attached to the outer ring tilts the inner ring. The sample positioning device according to claim 2. 前記試料を反転させる機構が,前記内側のリングを傾斜させる機構と共用されている請求項3記載の試料位置決め装置。   The sample positioning device according to claim 3, wherein a mechanism for inverting the sample is shared with a mechanism for tilting the inner ring. 前記試料の位置を調整する機構として,前記試料を前記イオンビームまたは電子ビームの軸線に合致させる軸線合致手段を有し,該軸線合致手段が前記傾斜手段に載置された状態で反転させるように駆動される請求項2乃至4のいずれか一に記載の試料位置決め装置。   As a mechanism for adjusting the position of the sample, it has axis matching means for matching the sample with the axis of the ion beam or electron beam, and the axis matching means is reversed while being placed on the tilting means. The sample positioning device according to any one of claims 2 to 4, which is driven. 前記軸線合致手段が,少なくとも一つのスライド機構と少なくとも一つの回転機構とからなる請求項5記載の試料位置決め装置。   6. The sample positioning device according to claim 5, wherein the axis line matching means comprises at least one slide mechanism and at least one rotation mechanism. 前記試料の位置を調整する機構として,前記試料を前記イオンビームまたは電子ビームの軸線に沿って移動させる焦点合せ手段を更に有し,該焦点合せ手段が,前記軸線合致手段及び前記傾斜手段を一体的に移動させるものである請求項5又は6に記載の試料位置決め装置。   The mechanism for adjusting the position of the sample further includes a focusing means for moving the sample along the axis of the ion beam or the electron beam, and the focusing means integrates the axis matching means and the tilting means. The sample positioning device according to claim 5 or 6, wherein the sample positioning device is moved in a moving manner. 真空容器の内部に搬入された試料を受け取って,前記真空容器の内部の測定個所近傍まで搬送すると共に,上記試料の位置及び方向を適宜位置決めするための試料位置決め装置を備えた試料測定装置において,
前記試料を真空容器の底部で試料搬入装置から受け取った後,該試料を反転させると共に,試料を測定個所近傍まで搬送し,少なくとも試料の位置については,該搬送動作の後に調整する試料位置決め装置を備えたことを特徴とする試料測定装置。
In a sample measuring apparatus comprising a sample positioning device for receiving a sample carried into the vacuum vessel and transporting it to the vicinity of a measurement location inside the vacuum vessel and appropriately positioning the position and direction of the sample,
After receiving the sample from the sample carry-in device at the bottom of the vacuum vessel, the sample is reversed and the sample is transported to the vicinity of the measurement location, and at least the position of the sample is adjusted after the transport operation. A sample measuring apparatus comprising:
JP2003398518A 2003-11-28 2003-11-28 Sample measuring device Expired - Fee Related JP4087780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398518A JP4087780B2 (en) 2003-11-28 2003-11-28 Sample measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398518A JP4087780B2 (en) 2003-11-28 2003-11-28 Sample measuring device

Publications (2)

Publication Number Publication Date
JP2005156481A true JP2005156481A (en) 2005-06-16
JP4087780B2 JP4087780B2 (en) 2008-05-21

Family

ID=34723344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398518A Expired - Fee Related JP4087780B2 (en) 2003-11-28 2003-11-28 Sample measuring device

Country Status (1)

Country Link
JP (1) JP4087780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777803B1 (en) 2006-02-27 2007-11-22 한국생산기술연구원 Hybrid Machining Center using Focused Ion Beam and Its Processing Technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213616A (en) * 1984-04-09 1985-10-25 Ulvac Corp Device for reversing sample in vacuum
JPH06116715A (en) * 1992-09-30 1994-04-26 Mitsubishi Electric Corp Vacuum vapor deposition device
JPH0933453A (en) * 1995-07-24 1997-02-07 Rigaku Corp Method and apparatus for inspecting cut face
JPH10329943A (en) * 1997-05-30 1998-12-15 Nikon Corp Conveying device
JPH11354059A (en) * 1998-06-08 1999-12-24 Hitachi Ltd Charged particle beam irradiating apparatus and scanning electron microscope using the same
JP2001273861A (en) * 2000-03-28 2001-10-05 Toshiba Corp Charged beam apparatus and pattern incline observation method
JP2003177108A (en) * 2001-12-12 2003-06-27 Toshiba Ceramics Co Ltd Disease diagnosis apparatus and sample stage for sample of organism, and detection method of element contained in organism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213616A (en) * 1984-04-09 1985-10-25 Ulvac Corp Device for reversing sample in vacuum
JPH06116715A (en) * 1992-09-30 1994-04-26 Mitsubishi Electric Corp Vacuum vapor deposition device
JPH0933453A (en) * 1995-07-24 1997-02-07 Rigaku Corp Method and apparatus for inspecting cut face
JPH10329943A (en) * 1997-05-30 1998-12-15 Nikon Corp Conveying device
JPH11354059A (en) * 1998-06-08 1999-12-24 Hitachi Ltd Charged particle beam irradiating apparatus and scanning electron microscope using the same
JP2001273861A (en) * 2000-03-28 2001-10-05 Toshiba Corp Charged beam apparatus and pattern incline observation method
JP2003177108A (en) * 2001-12-12 2003-06-27 Toshiba Ceramics Co Ltd Disease diagnosis apparatus and sample stage for sample of organism, and detection method of element contained in organism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777803B1 (en) 2006-02-27 2007-11-22 한국생산기술연구원 Hybrid Machining Center using Focused Ion Beam and Its Processing Technology

Also Published As

Publication number Publication date
JP4087780B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
CN108666195B (en) Charged particle beam device
TWI405291B (en) Wafer processing system, wafer processing method, and ion implantation system
US6326755B1 (en) System for parallel processing of workpieces
US7777203B2 (en) Substrate holding apparatus
TWI326888B (en) Adjustable implantation angle workpiece support structure for an ion beam implanter utilizing a linear scan motor and method of implanting ions in a workpiece using an ion beam implanter
JPH02278643A (en) Ion implantation equipment
JP2004289036A (en) Vacuum processing apparatus
JP5363559B2 (en) X-ray inspection apparatus and X-ray inspection method
US6555825B1 (en) Ion implanter
JP4087780B2 (en) Sample measuring device
JP4049168B2 (en) Ion beam irradiation equipment
US6900444B2 (en) Adjustable implantation angle workpiece support structure for an ion beam implanter
US20040021092A1 (en) Adjustable implantation angle workpiece support structure for an ion beam implanter
JP7401130B2 (en) Transmission type small angle scattering device
KR101885124B1 (en) Substrate processing apparatus
US7276712B2 (en) Method and apparatus for scanning a workpiece in a vacuum chamber of an ion beam implanter
KR20140142800A (en) Substrate processing system, and tray tilting apparatus, and tray therefor
JP2006236811A (en) Ion beam irradiation device
JPH0754688B2 (en) Ion implanting apparatus and ion implanting method
JP3729811B2 (en) Ion implantation apparatus and ion implantation method
JPS63162867A (en) Ion treatment device
KR20210033410A (en) Transfer robot and work transfer system comprising the same
KR20090071702A (en) Apparatus for treating substrate and method for transferring substrate using the same
JPH11149897A (en) Sample device in charged particle beam apparatus
JP2000200577A (en) Charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees