JP2005156360A - Approach detection device and approach detection method - Google Patents

Approach detection device and approach detection method Download PDF

Info

Publication number
JP2005156360A
JP2005156360A JP2003395638A JP2003395638A JP2005156360A JP 2005156360 A JP2005156360 A JP 2005156360A JP 2003395638 A JP2003395638 A JP 2003395638A JP 2003395638 A JP2003395638 A JP 2003395638A JP 2005156360 A JP2005156360 A JP 2005156360A
Authority
JP
Japan
Prior art keywords
signal
amplitude
obstacle
reflected
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003395638A
Other languages
Japanese (ja)
Other versions
JP3815684B2 (en
Inventor
Hisashi Haraguchi
久司 原口
Keigo Yokoyama
桂吾 横山
Osamu Furukawa
修 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
J Power Systems Corp
Original Assignee
Kyushu Electric Power Co Inc
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, J Power Systems Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP2003395638A priority Critical patent/JP3815684B2/en
Publication of JP2005156360A publication Critical patent/JP2005156360A/en
Application granted granted Critical
Publication of JP3815684B2 publication Critical patent/JP3815684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jib Cranes (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an approach detection device capable of detecting a detection object sufficiently at the safe separation distance between a transmission line and a crane without shortening the detection distance, even when linear body having a long and narrow shape with a narrow area or width such as an overhead transmission line is the detection object, and outputting a signal having a larger amplitude than a supply voltage from a transmitter when driven by a battery. <P>SOLUTION: A pulse signal having an amplitude on both positive side and negative side is generated at fixed time intervals by a transmission circuit 21, and amplified by an amplifying circuit 23. Then, the positive side signal and the negative side signal relative to the amplitude of the pulse signal are separated by a separation circuit 25, and the amplitude of the minus side signal is inverted by an inverting circuit 27 and added to the plus side signal by an adding circuit 29, and thereby a transmission signal having increased output is transmitted to an obstacle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に架空送電線下で作業するクレーンを対象に、送電線とクレーンが接近したときに接近を検知する接近検知装置及び接近検知方法に関するものである。   The present invention relates to an approach detection device and an approach detection method for detecting an approach when a power transmission line and a crane approach each other mainly for a crane working under an overhead power transmission line.

架空送電線下でのクレーンの接近監視は、一般には、現場に安全監視員を配置した目視監視により行われているが、目視による監視では疲労が大きく、長時間的確に監視するのは困難であるため対応に苦慮している。一方、装置を用いた接近監視法としては、現場にITVカメラを設置して画像処理により送電線等の障害物とクレーンの接近を検出する方法や、超音波センサ等の近接センサをブーム先端等に取り付けて障害物(橋梁や建物の壁等)とクレーンの接近を検出する方法等が提案されている。   Monitoring of the approach of a crane under an overhead power transmission line is generally performed by visual monitoring with safety observers on site, but visual monitoring is very fatigued and difficult to monitor accurately for a long time. Because there is, it is difficult to respond. On the other hand, as an approach monitoring method using an apparatus, an ITV camera is installed on the site and an approach such as a transmission line and an obstacle is detected by image processing, or a proximity sensor such as an ultrasonic sensor is used as a boom tip or the like. A method of detecting the approach of an obstacle (such as a bridge or a building wall) and a crane attached to the vehicle has been proposed.

超音波センサ等の近接センサを使用した検知方法として、特許文献1〜3に記載されたものがある。   As a detection method using a proximity sensor such as an ultrasonic sensor, there are methods described in Patent Documents 1 to 3.

特許文献1記載の検知方法は、超音波センサを送信器、受信器共にクレーンブームの先端に取り付け、送信器から送信信号を出力し、その反射してくる信号を受信器で受信して判定処理を行うことにより、橋梁、クレーンブームとの接近検知を行なうものである。   In the detection method described in Patent Document 1, an ultrasonic sensor is attached to the tip of a crane boom, a transmitter and a receiver are both attached, a transmission signal is output from the transmitter, and a reflected signal is received by the receiver. By doing this, the approach to the bridge and crane boom is detected.

特許文献2記載の検知方法は、2組の超音波センサを送信器、受信器共にクレーンブームの根元に取り付け、送信器から送信信号を出力して障害物から反射してくる信号を受信器で受信し、送信信号と受信信号との時間差を検知して判定処理を行い、クレーンブーム、周囲建物との接近検知を行なうものである。   In the detection method described in Patent Document 2, two sets of ultrasonic sensors are attached to the base of the crane boom together with a transmitter and a receiver, a transmission signal is output from the transmitter, and a signal reflected from an obstacle is received by the receiver. It receives, detects the time difference between the transmission signal and the reception signal, performs a determination process, and detects the approach to the crane boom and surrounding buildings.

特許文献3記載の検知方法は、複数組の超音波センサを送信器、受信器共にクレーンブームの先端に取り付け、送信器から送信信号を出力し、その反射してくる信号を受信器で受信して、該受信信号を予め設定された基準値と比較処理を行うことにより、電線やケーブル等架線との接近検知を行なうものである。
特開平11−278794号公報 特開平7−112893号公報 特開平10−279283号公報
In the detection method described in Patent Document 3, a plurality of sets of ultrasonic sensors are attached to the tip of a crane boom together with a transmitter and a receiver, a transmission signal is output from the transmitter, and the reflected signal is received by the receiver. Then, by comparing the received signal with a preset reference value, the proximity of the electric wire, cable or other overhead wire is detected.
JP-A-11-278794 Japanese Patent Laid-Open No. 7-112893 JP-A-10-279283

しかしながら、特許文献1、特許文献2記載の方法では、橋梁や建物の壁等面積の広い形状のものを対象としている。このため、対象物に反射して受信器で受ける信号のレベルも高くなり、遠方に位置する障害物とクレーンの接近を検出することが可能であるが、電線や架線等長細く面積や幅の狭い形状のものである線条体が対象である場合は、対象物の近傍付近でなければ検出できないという課題があった。   However, the methods described in Patent Literature 1 and Patent Literature 2 are intended for a wide shape such as a bridge or a wall of a building. For this reason, the level of the signal reflected on the object and received by the receiver also becomes high, and it is possible to detect the approach of the obstacle located far away and the crane. When a striate having a narrow shape is an object, there is a problem that it cannot be detected unless it is in the vicinity of the object.

また、特許文献3の方法は、架空送電線を対象としているが、クレーンは送電線に対して1方向だけでなく、あらゆる方向から接近することから、センサが複数組必要となってくる。センサを複数組使用すると、センサ1組で使用するときよりも送信器からの信号レベルが低下するため、検出距離が短くなってしまうという課題があった。   Moreover, although the method of patent document 3 is aimed at an aerial transmission line, since a crane approaches from not only one direction but a transmission line with respect to a transmission line, several sets of sensors are needed. When a plurality of sets of sensors are used, the signal level from the transmitter is lower than when a single set of sensors is used, and there is a problem that the detection distance is shortened.

また、特許文献1〜特許文献3の検知方法では、クレーンのブーム先端或いは根元にセンサや検出装置を取り付けることから、装置をバッテリーで駆動するケースがほとんどであるが、その場合、電源電圧よりも大きい振幅の信号を送信器から出力することはできないという共通の課題があった。また、特許文献1〜特許文献3の検知方法では、対象物からの信号以外に、突発的な雑音等を検知して誤動作を生じる場合があった。   Moreover, in the detection method of patent document 1-patent document 3, since a sensor and a detection apparatus are attached to the boom tip or the base of a crane, in most cases, the apparatus is driven by a battery. There is a common problem that a signal having a large amplitude cannot be output from the transmitter. Moreover, in the detection method of patent document 1-patent document 3, in addition to the signal from a target object, sudden noise etc. may be detected and a malfunction may be produced.

一方、各電力会社では、架空送電線下で作業するクレーンの作業箇所において、送電線とクレーンの安全離隔距離が定められている(電圧110kV以下の送電線において安全離隔距離4m)。   On the other hand, in each electric power company, the safe separation distance between the transmission line and the crane is determined at the work site of the crane working under the overhead transmission line (safe separation distance of 4 m in the transmission line with a voltage of 110 kV or less).

従って、本発明の目的は、架空送電線等の長細く面積や幅の狭い形状のものである線条体を検出対象物とした場合でも、検出距離が短くなることなく、送電線とクレーンとの安全離隔距離においても十分に検出対象物を検知できると共に、バッテリーで駆動する際に、電源電圧よりも大きい振幅の信号を送信器から出力することができる接近検知装置及び突発的な雑音等による誤動作を防止できる接近検知方法を提供することにある。   Therefore, the object of the present invention is to provide a transmission line and a crane without reducing the detection distance even when a linear object having a long and narrow shape such as an overhead power transmission line is used as a detection object. Due to the proximity detection device that can sufficiently detect the detection target even at a safe separation distance, and that can output a signal having a larger amplitude than the power supply voltage from the transmitter and sudden noise, etc. when driven by a battery An object of the present invention is to provide an approach detection method capable of preventing malfunction.

上記目的を達成するため、本発明の接近検知装置は、プラス側とマイナス側に振幅を有するパルス信号を一定の時間間隔で発生させ、該パルス信号の振幅のプラス側信号とマイナス側信号とを分離し、該マイナス側の信号の振幅を反転させてプラス側信号に加算することにより出力を増大させた送信信号を障害物へ送信する送信器と、前記送信信号が前記障害物に当たって反射した反射信号を受信する受信器と、が設けられたセンサを有することを特徴とする。   In order to achieve the above object, the proximity detection device of the present invention generates a pulse signal having amplitudes on the positive side and the negative side at regular time intervals, and generates a positive side signal and a negative side signal of the amplitude of the pulse signal. A transmitter for transmitting a transmission signal to the obstacle by separating and reversing the amplitude of the negative signal and adding it to the plus signal; and a reflection reflected by the transmission signal upon hitting the obstacle And a receiver for receiving a signal.

前記受信器は、前記受信した反射信号を増幅させた後、前記送信信号の中心周波数で共振させて、前記受信した信号の中から障害物で反射してくる信号の周波数成分を取り出すものとすることができる。   The receiver amplifies the received reflected signal and then resonates at the center frequency of the transmission signal to extract the frequency component of the signal reflected by the obstacle from the received signal. be able to.

また、前記受信器は、前記障害物と接近時に無線信号を送信する無線装置と接続され、更に、前記無線信号を受信して異常時に警報を発する警報装置が設けられているものとすることができる。   The receiver may be connected to a wireless device that transmits a wireless signal when approaching the obstacle, and further provided with an alarm device that receives the wireless signal and issues an alarm when an abnormality occurs. it can.

また、本発明の接近検知装置は、クレーンブームの先端に取り付けられ、送信器及び受信器が設けられた近接センサと障害物と接近時に無線信号を送信する無線装置及び異常時に前記無線装置からの信号が無線伝送されて警報出力する警報装置とを有する接近検知装置であって、前記送信器は、プラス側とマイナス側に振幅を有するパルス信号を一定の時間間隔で発生させ、該パルス信号の振幅のプラス側信号とマイナス側信号とを分離し、該マイナス側の信号の振幅を反転させてプラス側信号に加算することにより出力を増大させた送信信号を障害物へ送信し、前記受信器は、前記送信信号が前記障害物に当たって反射した反射信号を受信するものであることを特徴とする。   Further, the proximity detection device of the present invention is attached to the tip of the crane boom, a wireless device that transmits a wireless signal when approaching a proximity sensor and an obstacle provided with a transmitter and a receiver, and a wireless device from the wireless device when an abnormality occurs. An approach detection device having an alarm device for transmitting a signal by radio transmission and outputting an alarm, wherein the transmitter generates pulse signals having amplitudes on the plus side and the minus side at regular time intervals, and Transmitting a transmission signal whose output is increased by separating a positive-side signal and a negative-side signal of an amplitude, inverting the amplitude of the negative-side signal and adding the inverted signal to an obstacle, and receiving the receiver Is characterized in that the transmission signal receives a reflected signal reflected by the obstacle.

前記受信器は、前記受信した反射信号を増幅させた後、前記送信信号の中心周波数で共振させて、前記受信した信号の中から障害物で反射してくる信号の周波数成分を取り出すものとすることができる。   The receiver amplifies the received reflected signal and then resonates at the center frequency of the transmission signal to extract the frequency component of the signal reflected by the obstacle from the received signal. be able to.

更に、本発明の接近検知方法は、送信信号を障害物に送信し、該障害物に当たって反射した受信信号を受信して、該受信信号の振幅値が予め設定されたしきい値Vthを超えたか否かを判定した後、更に、前記受信信号の振幅が前記しきい値を連続して超過している時間幅を検出して、その時間幅が予め設定されたしきい値Tthを超えたか否かを判定することにより、接近の有無を検出することを特徴とする。 Furthermore, the approach detection method of the present invention transmits a transmission signal to an obstacle, receives a reception signal reflected by the obstacle, and an amplitude value of the reception signal exceeds a preset threshold value Vth . And then detecting a time width in which the amplitude of the received signal continuously exceeds the threshold value, and the time width exceeds a preset threshold value T th It is characterized by detecting the presence or absence of approach by determining whether or not.

本発明の接近検知装置は、パルス信号の振幅のプラス側信号とマイナス側信号とを分離し、該マイナス側の信号の振幅を反転させてプラス側信号に加算することにより出力を増大させた送信信号を障害物へ送信しているので、架空送電線等の長細く面積や幅の狭い形状のものである線条体を検出対象物とした場合でも、検出距離が短くなることなく、送電線とクレーンとの安全離隔距離においても十分に検出対象物を検知できる。   The proximity detection device of the present invention separates the positive signal and negative signal of the amplitude of the pulse signal, inverts the amplitude of the negative signal and adds it to the positive signal to increase the output. Since the signal is transmitted to the obstacle, even if the object to be detected is a long, narrow area or narrow shape such as an overhead power transmission line, the transmission line is not shortened. The detection object can be sufficiently detected even at a safe separation distance between the crane and the crane.

また、受信した反射信号を増幅させた後、送信信号の中心周波数で共振させて、受信した信号の中から障害物で反射してくる信号の周波数成分を取り出すことにより、障害物から反射した信号の周波数成分だけを取り出して増幅することができる。よって、送電線等の検出対象物以外の不要なものの信号を除去することでSN比を改善でき、遠方に位置する検出対象物から反射してくる信号を安定して検出することが可能となる。   In addition, after amplifying the received reflected signal, it resonates at the center frequency of the transmission signal, and by extracting the frequency component of the signal reflected by the obstacle from the received signal, the signal reflected from the obstacle It is possible to extract and amplify only the frequency component. Therefore, the signal-to-noise ratio can be improved by removing unnecessary signals other than the detection target such as a power transmission line, and the signal reflected from the detection target located far away can be stably detected. .

更に、本発明の接近検知方法は、受信信号の振幅値が予め設定されたしきい値Vthを超えたか否かだけでなく、更に、受信信号の振幅がしきい値を連続して超過している時間幅を検出して、その時間幅が予め設定されたしきい値Tthを超えたか否かをも判定しているので、検出対象物から反射した波形を的確に捉えることができ、突発的な雑音等による誤動作を低減することができる。 Furthermore, the approach detection method of the present invention not only determines whether or not the amplitude value of the received signal exceeds a preset threshold value Vth , but further, the amplitude of the received signal continuously exceeds the threshold value. Since it is also determined whether or not the time width has exceeded a preset threshold value T th , the waveform reflected from the detection target can be accurately captured, It is possible to reduce malfunctions due to sudden noise or the like.

このように、本発明の接近検知装置及び接近検知方法によれば、橋梁や建物の壁等面積の広い形状のものだけでなく、架空送電線を対象とした場合でも、クレーンとの接近を遠方の位置からでも容易に検出出来る効果がある。しかも、電力会社が定める安全離隔距離(電圧110kV以下の送電線において安全離隔距離4m)の条件を満たしており、架空送電線下で作業するクレーン監視への適用が可能となる。   As described above, according to the approach detection device and approach detection method of the present invention, the approach to the crane is far away not only in a wide shape such as a bridge or a building wall but also in an overhead power transmission line. There is an effect that it can be easily detected even from the position. Moreover, it satisfies the condition of the safe separation distance (safety separation distance of 4 m in a transmission line with a voltage of 110 kV or less) determined by the electric power company, and can be applied to crane monitoring working under an overhead transmission line.

また、センサとして、市販の開放型構造の超音波センサを使用することができるため、安価な装置をつくることが可能となる。更に、バッテリーで駆動する際に、電源電圧よりも大きい振幅の信号を送信器から出力することができると共に、バッテリー駆動等をブーム先端等に取り付けることによる制約条件を満たすため、低消費電力の装置構成が可能となる。
なお、本発明においては、上述した架空送電線等の線条体だけでなく、架空配電線等も検出対象物とすることが可能である。
Moreover, since a commercially available open-type ultrasonic sensor can be used as the sensor, an inexpensive apparatus can be manufactured. In addition, when driven by a battery, a signal having a larger amplitude than the power supply voltage can be output from the transmitter, and the battery drive etc. is attached to the tip of the boom, etc., so that the constraint condition is satisfied. Configuration is possible.
Note that in the present invention, not only the above-described wire bodies such as the overhead power transmission line but also the overhead distribution line and the like can be the detection target.

以下に、本発明の実施の形態を図面を参照しながら説明する。
図1は、本実施形態の接近検知装置の全体システムを示す模式図である。この接近検知装置1においては、送信器20及び受信器30が設けられたセンサ10が、クレーンのブーム先端に取り付けられ、送信器20から発せられた信号が送電線5で反射され、受信器30で受信できるようになっている。この受信器30には無線装置40が接続されており、異常検出したときは地上の警報装置50に無線伝送して、警報を出力できるようになっている。以下、各構成毎に詳しく説明する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing the entire system of the approach detection device of the present embodiment. In this approach detection device 1, the sensor 10 provided with the transmitter 20 and the receiver 30 is attached to the tip of the boom of the crane, the signal emitted from the transmitter 20 is reflected by the power transmission line 5, and the receiver 30. It can be received at. A radio device 40 is connected to the receiver 30. When an abnormality is detected, the radio wave is transmitted to the alarm device 50 on the ground and an alarm can be output. Hereinafter, each configuration will be described in detail.

(センサ10)
センサには開放型構造と防滴型構造のものがあり、通常、屋外使用する場合は防滴型構造のものを用いる。一方、屋外に開放型構造の超音波センサを使用する場合は、雨や埃に弱い構造のため、工事現場等では防滴や防塵の対策が必要となる。
本実施形態では、送信出力や受信感度を高くするため、開放型構造の超音波センサ11を用いるが、図2に示すように、防滴用ネット13(表面をフッ素樹脂で加工した薄紙状のもの)を超音波センサ11の開口部に装着させることにより、防滴・防塵の対策を施している。また、汚れや破損により防滴用ネット13を交換する場合、工事現場で容易に交換できるように、ゴム製オーリング15を使って防滴用ネット13を超音波センサ11の開口部に装着させている。
この超音波センサ11を用いることにより、防滴用ネット13が1枚であれば、センサの送信出力や受信感度を低下させることなく、小雨程度であれば、防止効果が十分にある。また、市販されている超音波センサ11を用いることができ、低コスト化を図ることが可能となる。
(Sensor 10)
There are two types of sensors: an open type structure and a drip-proof type structure. Usually, a sensor having a drip-proof type structure is used for outdoor use. On the other hand, when an open type ultrasonic sensor is used outdoors, since it is sensitive to rain and dust, it is necessary to take measures against drip and dust at construction sites.
In this embodiment, an ultrasonic sensor 11 having an open structure is used to increase transmission output and reception sensitivity. However, as shown in FIG. 2, a drip-proof net 13 (thin paper-like surface processed with a fluororesin) is used. Is attached to the opening of the ultrasonic sensor 11 to take measures against drip and dust. Further, when the drip-proof net 13 is replaced due to dirt or damage, the drip-proof net 13 is attached to the opening of the ultrasonic sensor 11 using a rubber O-ring 15 so that it can be easily replaced at the construction site. ing.
By using this ultrasonic sensor 11, if there is only one drip-proof net 13, there is a sufficient prevention effect if it is light rain without reducing the sensor output and reception sensitivity. In addition, a commercially available ultrasonic sensor 11 can be used, and the cost can be reduced.

(送信器20)
送信器では一定の時間間隔でパルス信号を発生させる回路が従来より用いられているが、この場合は、センサから出力される送信信号の振幅は電源電圧以下の振幅となる(例えば、送信器をDC12Vで駆動した場合、送信信号の振幅は最大12Vとなる)。
本実施形態では、電源電圧以上の振幅をもつ送信信号を出力するため、図3−1に示すように、送信器20を発振回路21、増幅回路23、分離回路25、反転回路27、加算回路29より構成し、センサ10aから送信するようにされている。以下、各回路について簡単に説明する。
(発振回路21)
センサの中心周波数(例えば、超音波センサの場合40kHz前後)のパルス信号を一定間隔で発振する。
(増幅回路23)
発信回路21により発信された送信信号の振幅を所定の倍率で増幅するものである。増幅回路23により増幅された後のA時点での波形の一例を図3−2に示す。この例は、電源電圧DC12Vにおいてセンサの中心周波数40kHzのパルスを1.8ms幅で送信信号を1サイクル36ms(距離6m相当)で出力させた波形である。
(分離回路25、反転回路27、加算回路29)
発振回路21と増幅回路23により、図3−2に示すように、センサの中心周波数のパルス信号を一定のサイクルで出力している。
しかし、これらの処理のみでは電源電圧より大きい振幅が得られないので、以下のような手法を用いている。まず、分離回路25において送信信号を振幅のプラス側の信号とマイナス側の信号に分離する。次に、反転回路27により、マイナス側の信号を反転させる。更に、加算回路29により、分離した2つの信号を再度加算することにより、電源電圧より大きい振幅の送信信号をセンサに出力する。
このように、本実施形態では、送信回路の後処理として、送信信号の振幅のプラス側信号とマイナス側の信号を分離させ、マイナス側の信号の振幅を反転して加算する回路を追加することにより、電源電圧以上の振幅をもつ送信信号を出力することを可能とし、送信器20から出力される送信信号が遠方に位置する送電線まで到達することを可能としている。
(Transmitter 20)
In a transmitter, a circuit that generates a pulse signal at a constant time interval is conventionally used. In this case, the amplitude of a transmission signal output from a sensor is an amplitude equal to or lower than a power supply voltage (for example, a transmitter is connected). When driven by DC12V, the amplitude of the transmission signal is 12V at the maximum).
In the present embodiment, in order to output a transmission signal having an amplitude equal to or higher than the power supply voltage, the transmitter 20 includes an oscillation circuit 21, an amplification circuit 23, a separation circuit 25, an inverting circuit 27, and an addition circuit as shown in FIG. 29 and is transmitted from the sensor 10a. Hereinafter, each circuit will be briefly described.
(Oscillation circuit 21)
A pulse signal having a center frequency of the sensor (for example, around 40 kHz in the case of an ultrasonic sensor) is oscillated at regular intervals.
(Amplifier circuit 23)
The amplitude of the transmission signal transmitted by the transmission circuit 21 is amplified at a predetermined magnification. An example of the waveform at time A after being amplified by the amplifier circuit 23 is shown in FIG. In this example, a pulse having a center frequency of 40 kHz of the sensor at a power supply voltage of DC 12 V is output in a width of 1.8 ms and a transmission signal is output in a cycle of 36 ms (corresponding to a distance of 6 m).
(Separation circuit 25, inversion circuit 27, addition circuit 29)
As shown in FIG. 3B, the oscillation circuit 21 and the amplification circuit 23 output a pulse signal having a center frequency of the sensor at a constant cycle.
However, since the amplitude larger than the power supply voltage cannot be obtained only by these processes, the following method is used. First, the separation circuit 25 separates the transmission signal into a positive signal and a negative signal. Next, the inverting circuit 27 inverts the negative signal. Further, the adder circuit 29 adds the two separated signals again to output a transmission signal having an amplitude larger than the power supply voltage to the sensor.
As described above, in this embodiment, as post-processing of the transmission circuit, a circuit that separates the plus signal and minus signal of the amplitude of the transmission signal and inverts and adds the amplitude of the minus signal is added. Thus, it is possible to output a transmission signal having an amplitude greater than or equal to the power supply voltage, and it is possible for the transmission signal output from the transmitter 20 to reach a transmission line located far away.

(受信器30)
受信器で受信される信号は、送電線等障害物から反射した信号(センサの中心周波数と同じ周波数成分をもつ信号)とそれ以外の雑音の信号が含まれている。反射した信号は、遠方に位置する送電線を対象とした場合減衰しており、雑音の信号レベルとほぼ同等の信号であることも想定される。このため、従来の受信器はセンサからの受信信号を増幅させる回路が用いられている。
本実施形態では、図4に示すように従来の増幅回路31に加えて、センサの中心周波数で共振させる回路を2段階で組み込むことにより、受信信号の中から必要な周波数成分を取りだすことでSN比を改善させている。
具体的には、受信器30は、増幅回路31、共振回路33、判定回路35により構成されている。
(増幅回路31)
センサ10bで受信された受信信号の振幅を所定の倍率で増幅する。
(共振回路33(2段))
センサの中心周波数で受信信号を共振させることにより、受信信号の中から障害物や送電線に当たって反射した受信信号の周波数成分を抽出して増幅する。ここでは、前段回路に入力し更に共振させることにより、2段階で信号を共振させている。
(判定回路35)
後述する判定処理方法で、障害物や送電線とクレーンの接近を判定する。
このように、本実施形態では、増幅回路により受信信号全体を増幅した後、センサの中心周波数で共振する回路を2段階で処理することにより、送電線等障害物から反射した信号の周波数成分を取り出して増幅する。
これにより、送電線以外の不要なものの信号を除去することでSN比を改善でき、遠方に位置する送電線から反射してくる信号を安定して検出することが可能となる。また、共振回路を使って2段階で信号を共振させる、即ち、前段回路に入力し更に共振させることにより、より一層の雑音除去効果が得られる。
(Receiver 30)
The signal received by the receiver includes a signal reflected from an obstacle such as a transmission line (a signal having the same frequency component as the center frequency of the sensor) and other noise signals. The reflected signal is attenuated when a transmission line located far away is targeted, and it is also assumed that the signal is substantially equivalent to the noise signal level. For this reason, the conventional receiver uses a circuit that amplifies the received signal from the sensor.
In the present embodiment, as shown in FIG. 4, in addition to the conventional amplifier circuit 31, a circuit that resonates at the center frequency of the sensor is incorporated in two stages to extract a necessary frequency component from the received signal. The ratio is improved.
Specifically, the receiver 30 includes an amplifier circuit 31, a resonance circuit 33, and a determination circuit 35.
(Amplifier circuit 31)
The amplitude of the received signal received by the sensor 10b is amplified by a predetermined magnification.
(Resonance circuit 33 (two stages))
By resonating the reception signal at the center frequency of the sensor, the frequency component of the reception signal reflected by the obstacle or the power transmission line is extracted from the reception signal and amplified. Here, the signal is resonated in two stages by being input to the preceding circuit and further resonating.
(Determination circuit 35)
The approach of an obstacle, a power transmission line, and a crane is determined by a determination processing method described later.
As described above, in this embodiment, after the entire received signal is amplified by the amplifier circuit, the circuit that resonates at the center frequency of the sensor is processed in two stages, so that the frequency component of the signal reflected from the obstacle such as the power transmission line is obtained. Remove and amplify.
Thereby, the signal-to-noise ratio can be improved by removing unnecessary signals other than the power transmission line, and the signal reflected from the power transmission line located far away can be stably detected. Further, by using the resonance circuit to resonate the signal in two stages, that is, by inputting the signal to the preceding circuit and further resonating, a further noise removal effect can be obtained.

(判定処理)
従来より、受信信号から送電線等の障害物とクレーンの接近を検出する方法して、受信信号の振幅のしきい値超過判定を行い、異常検出する方法が用いられている。
本実施形態では、振幅のしきい値超過判定に加えて、受信信号の振幅がしきい値を連続して超過している時間幅を検出して、その時間幅におけるしきい値超過判定も行い、異常検出している。これにより、突発的な騒音や雑音が入った場合の対策を施している。
具体的には、図5に示すように、受信信号の切り出し36、振幅しきい値判定37、時間幅しきい値判定38の3つの処理により送電線等の障害物とクレーンの接近を判定している。
(受信信号の切り出し36)
受信信号(1サイクル分)の波形を時間幅Tm分だけ切り出す。切り出しの範囲は検出距離に応じた時間幅を設定する。
(振幅しきい値判定37)
まず、Tmだけ切り出した波形に対して、所定の振幅のしきい値Vthを超過しているか判定する(図6)。
(時間幅しきい値判定38)
次に、受信信号の振幅がしきい値Vthを連続して超過する時間幅を検出し、所定のしきい値Tth以上連続して超過している場合、異常検出する(図6)。
これにより、振幅のしきい値超過判定のみで異常検出をした場合と比較して、送電線から反射した波形を的確に捉えることができ、突発的な雑音等による誤動作を低減することが可能となる。
(Determination process)
Conventionally, as a method of detecting an approach of an obstacle such as a power transmission line and a crane from a received signal, a method of detecting an abnormality by performing an over-threshold determination of the amplitude of the received signal has been used.
In the present embodiment, in addition to the determination that the amplitude exceeds the threshold value, the time width in which the amplitude of the received signal continuously exceeds the threshold value is detected, and the threshold value excess determination is also performed for that time width. An abnormality is detected. As a result, measures against sudden noise and noise are taken.
Specifically, as shown in FIG. 5, the approach of an obstacle such as a power transmission line and a crane is determined by three processes of receiving signal extraction 36, amplitude threshold value determination 37, and time width threshold value determination 38. ing.
(Cut out received signal 36)
The waveform of the received signal (for one cycle) is cut out by the time width Tm. The time range corresponding to the detection distance is set as the extraction range.
(Amplitude threshold judgment 37)
First, it is determined whether or not a threshold value V th having a predetermined amplitude is exceeded for a waveform cut by Tm (FIG. 6).
(Time width threshold judgment 38)
Next, the amplitude of the received signal detects a duration exceeding continuously threshold V th, if exceeded continuously for the predetermined threshold value T th or more, the abnormality detection (Figure 6).
As a result, it is possible to accurately capture the waveform reflected from the transmission line, and to reduce malfunctions due to sudden noise, etc., compared to the case where an abnormality is detected only by determining whether the amplitude exceeds the threshold value. Become.

図7及び図8に、本実施形態の接近検知装置の実際の適用例について示す。送信器20及び受信器30が設けられたセンサ10(9組の超音波センサで構成)有する接近検知装置1を、移動式クレーン3のブーム7先端に取り付ける。送電線5に対してブーム7があらゆる方向から接近することを想定して、死角をつくらないように9組のセンサの向きを変えて配置する。受信器30には無線装置40が接続されており、異常検出したときは地上の警報装置50に無線伝送して、パトライト60で警報を出力するようになっている。   7 and 8 show an actual application example of the proximity detection device of the present embodiment. An approach detection device 1 having a sensor 10 (consisting of nine ultrasonic sensors) provided with a transmitter 20 and a receiver 30 is attached to the tip of the boom 7 of the mobile crane 3. Assuming that the boom 7 approaches the power transmission line 5 from all directions, the nine sensors are arranged in different directions so as not to form a blind spot. A radio device 40 is connected to the receiver 30, and when an abnormality is detected, it is wirelessly transmitted to a ground alarm device 50 and an alarm is output by a patrol light 60.

この装置によれば、遠方に位置する送電線5を対象とした場合でも、送電線5とクレーンのブーム7の接近を検出する効果があり、直径10mmの電線を対象とした場合でも、電線とセンサの離隔距離4mまで検出可能であることが確認されている。電力会社が定める安全離隔距離の条件(電圧110kV以下の送電線において安全離隔距離4m)を満たしており、架空送電線下で作業するクレーン監視への適用が可能となる。   According to this apparatus, even when the transmission line 5 located in the distance is targeted, there is an effect of detecting the approach of the transmission line 5 and the boom 7 of the crane. It has been confirmed that the sensor can be detected up to a separation distance of 4 m. Satisfies the safety separation condition (safety separation distance of 4 m in a transmission line with a voltage of 110 kV or less) determined by the electric power company, and can be applied to crane monitoring working under an overhead transmission line.

また、本実施形態の接近検知装置により、従来よりも超音波センサの検出能力が向上するため、従来はITVカメラや赤外線センサが利用され超音波センサを用いることができなかった侵入者・侵入車輛検知装置にも適用が可能である。また、検出能力が向上することから、橋梁、杭打ち、クレーン同士の衝突等を対象にしたクレーン接近監視装置にも応用することができる。   In addition, the proximity detection device of the present embodiment improves the detection capability of the ultrasonic sensor as compared with the prior art. Therefore, an intruder / intrusion vehicle that conventionally used an ITV camera or an infrared sensor and could not use the ultrasonic sensor. The present invention can also be applied to a detection device. In addition, since the detection capability is improved, the present invention can be applied to a crane approach monitoring device for bridges, pile driving, collision between cranes, and the like.

なお、本実施形態では、センサとして超音波センサを用いたが、音波センサやレーザー等パルス信号を送信して、その反射を受信する装置に応用できることは勿論である。   In this embodiment, an ultrasonic sensor is used as a sensor. However, it is needless to say that the present invention can be applied to an apparatus that transmits a pulse signal such as a sound wave sensor or a laser and receives the reflection.

本実施形態の接近検知装置の全体システムを示す模式図である。It is a schematic diagram which shows the whole system of the proximity detection apparatus of this embodiment. 本実施形態の接近検知装置に用いられるセンサの一例を示す斜視図である。It is a perspective view which shows an example of the sensor used for the proximity detection apparatus of this embodiment. 本実施形態の接近検知装置に用いられる送信器の一例を示すブロック図である。It is a block diagram which shows an example of the transmitter used for the proximity detection apparatus of this embodiment. 図3−1の送信器における途中段階での送信波形を示す図である。It is a figure which shows the transmission waveform in the middle stage in the transmitter of FIGS. 本実施形態の接近検知装置に用いられる受信器の一例を示すブロック図である。It is a block diagram which shows an example of the receiver used for the proximity detection apparatus of this embodiment. 図4に示す受信器における判定回路の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of a determination circuit in the receiver illustrated in FIG. 4. 本実施形態の接近判定方法を説明する図である。It is a figure explaining the approach determination method of this embodiment. 本実施形態の接近検知装置を送電線の検知に適用した概略図である。It is the schematic which applied the approach detection apparatus of this embodiment to the detection of a power transmission line. 本実施形態の接近検知装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the approach detection apparatus of this embodiment.

符号の説明Explanation of symbols

1 接近検知装置
3 移動式クレーン
5 送電線
7 ブーム
10 センサ
11 超音波センサ
13 防滴用ネット
15 ゴム製オーリング
20 送信器
21 発振回路
23 増幅回路
25 分離回路
27 反転回路
29 加算回路
30 受信器
31 増幅回路
33 共振回路
35 判定回路
36 受信信号の切り出し
37 振幅しきい値判定
38 時間しきい値判定
40 無線装置
50 警報装置
DESCRIPTION OF SYMBOLS 1 Approach detection apparatus 3 Mobile crane 5 Transmission line 7 Boom 10 Sensor 11 Ultrasonic sensor 13 Drip-proof net 15 Rubber O-ring 20 Transmitter 21 Oscillator circuit 23 Amplifier circuit 25 Separation circuit 27 Inversion circuit 29 Addition circuit 30 Receiver 31 Amplification circuit 33 Resonance circuit 35 Determination circuit 36 Extraction of received signal 37 Amplitude threshold determination 38 Time threshold determination 40 Wireless device 50 Alarm device

Claims (6)

プラス側とマイナス側に振幅を有するパルス信号を一定の時間間隔で発生させ、該パルス信号の振幅のプラス側信号とマイナス側信号とを分離し、該マイナス側の信号の振幅を反転させてプラス側信号に加算することにより出力を増大させた送信信号を障害物へ送信する前記送信器と、
前記送信信号が前記障害物に当たって反射した反射信号を受信する前記受信器と、
が設けられたセンサを有することを特徴とする接近検知装置。
A pulse signal having an amplitude on the plus side and the minus side is generated at a certain time interval, the plus side signal and the minus side signal of the amplitude of the pulse signal are separated, and the amplitude of the minus side signal is inverted to be plus The transmitter for transmitting a transmission signal whose output is increased by adding to a side signal to an obstacle; and
The receiver for receiving the reflected signal reflected by the transmission signal hitting the obstacle;
An approach detection device comprising a sensor provided with a sensor.
前記受信器は、前記受信した反射信号を増幅させた後、前記送信信号の中心周波数で共振させて、前記受信した信号の中から障害物で反射してくる信号の周波数成分を取り出すことを特徴とする請求項1記載の接近検知装置。   The receiver amplifies the received reflected signal and then resonates at a center frequency of the transmission signal to extract a frequency component of the signal reflected by an obstacle from the received signal. The approach detection device according to claim 1. 前記受信器は、前記障害物と接近時に無線信号を送信する無線装置と接続され、更に、前記無線信号を受信して異常時に警報を発する警報装置が設けられていることを特徴とする請求項1記載の接近検知装置。   The receiver is connected to a wireless device that transmits a wireless signal when approaching the obstacle, and further includes an alarm device that receives the wireless signal and issues an alarm when an abnormality occurs. The approach detection apparatus according to 1. クレーンブームの先端に取り付けられ、送信器及び受信器が設けられた近接センサと障害物と接近時に無線信号を送信する無線装置及び異常時に前記無線装置からの信号が無線伝送されて警報出力する警報装置とを有する接近検知装置であって、
前記送信器は、プラス側とマイナス側に振幅を有するパルス信号を一定の時間間隔で発生させ、該パルス信号の振幅のプラス側信号とマイナス側信号とを分離し、該マイナス側の信号の振幅を反転させてプラス側信号に加算することにより出力を増大させた送信信号を障害物へ送信し、
前記受信器は、前記送信信号が前記障害物に当たって反射した反射信号を受信するものであることを特徴とする接近検知装置。
A wireless device that is attached to the tip of the crane boom and is provided with a transmitter and a receiver, and a wireless device that transmits a wireless signal when approaching an obstacle, and an alarm that outputs a wireless signal when the abnormality occurs and outputs an alarm in the event of an abnormality A proximity detection device having a device,
The transmitter generates a pulse signal having an amplitude on the plus side and the minus side at a constant time interval, separates the plus side signal and the minus side signal of the amplitude of the pulse signal, and the amplitude of the minus side signal. Is transmitted to the obstacle to increase the output by adding to the plus side signal by inverting
The proximity detector according to claim 1, wherein the receiver receives a reflected signal reflected by the transmission signal hitting the obstacle.
前記受信器は、前記受信した反射信号を増幅させた後、前記送信信号の中心周波数で共振させて、前記受信した信号の中から障害物で反射してくる信号の周波数成分を取り出すことを特徴とする請求項4記載の接近検知装置。   The receiver amplifies the received reflected signal and then resonates at a center frequency of the transmission signal to extract a frequency component of the signal reflected by an obstacle from the received signal. The approach detection device according to claim 4. 送信信号を障害物に送信し、該障害物に当たって反射した受信信号を受信して、該受信信号の振幅値が予め設定されたしきい値Vthを超えたか否かを判定した後、更に、前記受信信号の振幅が前記しきい値を連続して超過している時間幅を検出して、その時間幅が予め設定されたしきい値Tthを超えたか否かを判定することにより、接近の有無を検出することを特徴とする接近検知方法。

After transmitting the transmission signal to the obstacle, receiving the reception signal reflected by the obstacle and determining whether the amplitude value of the reception signal exceeds a preset threshold value V th , By detecting a time width in which the amplitude of the received signal continuously exceeds the threshold value, and determining whether the time width exceeds a preset threshold value T th An approach detection method characterized by detecting the presence or absence of an object.

JP2003395638A 2003-11-26 2003-11-26 Approach detection device Expired - Fee Related JP3815684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395638A JP3815684B2 (en) 2003-11-26 2003-11-26 Approach detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395638A JP3815684B2 (en) 2003-11-26 2003-11-26 Approach detection device

Publications (2)

Publication Number Publication Date
JP2005156360A true JP2005156360A (en) 2005-06-16
JP3815684B2 JP3815684B2 (en) 2006-08-30

Family

ID=34721355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395638A Expired - Fee Related JP3815684B2 (en) 2003-11-26 2003-11-26 Approach detection device

Country Status (1)

Country Link
JP (1) JP3815684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091632A (en) * 2012-10-31 2014-05-19 Manitowoc Crane Companies Llc Outrigger pad monitoring device
CN117163836A (en) * 2023-09-04 2023-12-05 国网山东省电力公司聊城市茌平区供电公司 Monitoring method for keeping safety distance between hoisting machinery and electrified line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091632A (en) * 2012-10-31 2014-05-19 Manitowoc Crane Companies Llc Outrigger pad monitoring device
CN117163836A (en) * 2023-09-04 2023-12-05 国网山东省电力公司聊城市茌平区供电公司 Monitoring method for keeping safety distance between hoisting machinery and electrified line
CN117163836B (en) * 2023-09-04 2024-04-05 国网山东省电力公司聊城市茌平区供电公司 Monitoring method for keeping safety distance between hoisting machinery and electrified line

Also Published As

Publication number Publication date
JP3815684B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US20160093187A1 (en) Sound and Temperature Sensors for Environmental Anomaly Detection
CN106502137B (en) Control system and method of telescopic equipment and telescopic equipment
WO2006137477A1 (en) Intrusion detection sensor
AU2013356869B2 (en) Device and system for and a method of monitoring a cable for a physical disturbance
MY141837A (en) Multi-sensor intrusion detection system
US20200226895A1 (en) Acoustic tamper detection for metal structures
KR102159350B1 (en) Device for improving the detection performance of ultrasonic sensors of vehicle and method thereof
KR102262384B1 (en) DRONE OPERATIN SYSTEM and METHOD for INSPECTING POWER FACILITIES
JP2009132244A (en) Train approach detection device
JPH11154291A (en) Alarming device
JP3815684B2 (en) Approach detection device
JP2014080133A (en) Apparatus and method for detecting railroad rail breakage
JP2015035979A (en) Wild animal driving system
CN111328558A (en) Mowing equipment and control method thereof
JP2010083437A (en) Device and method for determining abnormality
KR20150026636A (en) System and method for sensing invasion
KR101683652B1 (en) Method and apparatus for detecting invasion in rarge vehicl
KR102254081B1 (en) Intrusion detection apparatus and vehicle comprising the same, control method for the intrusion detection apparatus
CN213876966U (en) Railway perimeter safety precaution system
CN210923949U (en) Anti-collision system
JP2001351183A (en) Warning device
JP2006243876A (en) Intrusion alert system
JP4277676B2 (en) Monitoring system and detection means of the system
JP4879597B2 (en) Intrusion detection apparatus for vehicle, computer program used therefor, and recording medium recording the same
CN109799508A (en) Vehicle blind zone monitoring device, method and system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees