JP2005156323A - Quantification method of fluoride ion - Google Patents

Quantification method of fluoride ion Download PDF

Info

Publication number
JP2005156323A
JP2005156323A JP2003394519A JP2003394519A JP2005156323A JP 2005156323 A JP2005156323 A JP 2005156323A JP 2003394519 A JP2003394519 A JP 2003394519A JP 2003394519 A JP2003394519 A JP 2003394519A JP 2005156323 A JP2005156323 A JP 2005156323A
Authority
JP
Japan
Prior art keywords
aqueous solution
zirconium
complex
color
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394519A
Other languages
Japanese (ja)
Other versions
JP4058522B2 (en
Inventor
Hideyuki Matsunaga
英之 松永
Toshishige Suzuki
敏重 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003394519A priority Critical patent/JP4058522B2/en
Publication of JP2005156323A publication Critical patent/JP2005156323A/en
Application granted granted Critical
Publication of JP4058522B2 publication Critical patent/JP4058522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitate a minute amount of fluoride ions existing in aqueous solution quickly with high sensitivity by simple operation. <P>SOLUTION: After adding (A) fluoride ion-including aqueous solution specimen sample to (B) aqueous solution including zirconium-based polynuclear complex comprising zirconium (IV), pyrocatechol violet and a multidentate ligand, pH is adjusted in the range of 3.5-5.5 to develop a color therefrom. Then, the color tone or the color depth of acquired coloring liquid to be tested is compared, or the reduced amount ratio of the absorbance in a visible absorption spectrum of the coloring liquid to be tested in a wavelength showing the peak absorbance to the peak absorbance in the visible absorption spectrum of reference coloring liquid acquired by color development by the same pH adjustment from the aqueous solution (B) including the zirconium-based polynuclear complex is determined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水溶液中に微量に存在するフッ化物イオンを、ジルコニウム系多核錯体を含む水溶液を用いて高感度かつ迅速に定量する方法に関するものである。   The present invention relates to a method for quantifying fluoride ions present in a trace amount in an aqueous solution with high sensitivity and speed using an aqueous solution containing a zirconium-based multinuclear complex.

従来、フッ化物イオンの定量方法として、アリザリンコンプレクサンのランタン(III)錯体を用いる比色法が知られ、工業用水中のフッ化物イオンを定量する公定法(工業用水試験法JIS K0101,K0102)として採用されている。この方法は、フッ化物イオンの存在下でのランタン(III)錯体の吸収スペクトルの強度変化を用いるものであるが、生成錯体種が複雑であること、発色試薬とその錯体が化学的に不安定で溶液として長期の保存が困難であること、発色反応に時間がかかるため加熱しなければならないなどの欠点を有している。   Conventionally, a colorimetric method using a lanthanum (III) complex of alizarin complex is known as a method for quantifying fluoride ions, and an official method for quantifying fluoride ions in industrial water (industrial water test method JIS K0101, K0102) Has been adopted as. This method uses the change in the intensity of the absorption spectrum of the lanthanum (III) complex in the presence of fluoride ions. However, the complex type is complex, and the coloring reagent and its complex are chemically unstable. However, it has drawbacks that it is difficult to store as a solution for a long period of time, and that the color development reaction takes time, so that it must be heated.

また、アリザリンコンプレクサンのセリウム(III)錯体も同様に比色法として用いられるが(非特許文献1)、感度及び試薬溶液の安定性の点で問題があった。さらに、ジルコニウム(IV)及びアルミニウム(III)などと有機色素化合物との錯体を利用する退色法が古くから知られているが(非特許文献2)、塩酸などの強酸性条件下で反応させなければならない上、発色が温度に著しい影響を受けるため分析精度の点で難点があった。   A cerium (III) complex of alizarin complex is also used as a colorimetric method (Non-Patent Document 1), but there are problems in terms of sensitivity and stability of the reagent solution. Furthermore, although a fading method using a complex of zirconium (IV) or aluminum (III) with an organic dye compound has been known for a long time (Non-patent Document 2), it must be reacted under strongly acidic conditions such as hydrochloric acid. In addition, since the color development is significantly affected by temperature, there is a difficulty in analysis accuracy.

アナリティカル・ケミストリー(Analytical Chemistry),第3巻,第1308ページ(1962年)Analytical Chemistry, Volume 3, page 1308 (1962) 分析化学便覧、改訂4版、第293ページAnalytical Chemistry Handbook, 4th revised edition, page 293

本発明の課題は、このような事情のもとで、水溶液中に微量に存在するフッ化物イオンを、簡単な操作で、高感度かつ迅速に定量する方法を提供することにある。   The subject of this invention is providing the method of quantifying the fluoride ion which exists in trace amount in aqueous solution with high sensitivity and quickness by simple operation under such a situation.

本発明者らは、フッ化物イオンの定量について鋭意研究を重ねた結果、特定のジルコニウム系でピロカテコールバイオレットを有する多核錯体を含む水溶液、中でも水溶性のジルコニウム(IV)錯体とピロカテコールバイオレットとを含み、多核錯体を形成する水溶液が、青紫色等に呈色すること、そしてこの水溶液にフッ化物イオンを加えると、ピロカテコールバイオレットとの配位子置換反応により、ピロカテコールバイオレットの配位結合が段階的にとれ、ついにはピロカテコールバイオレットが遊離し、その過程で紫色を経て赤紫色に変色することを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies on the determination of fluoride ions, the present inventors have determined that an aqueous solution containing a polynuclear complex having pyrocatechol violet in a specific zirconium system, particularly a water-soluble zirconium (IV) complex and pyrocatechol violet. When the aqueous solution containing the polynuclear complex is colored blue-purple, and fluoride ions are added to this aqueous solution, the coordination bond of pyrocatechol violet is caused by the ligand substitution reaction with pyrocatechol violet. It was found that pyrocatechol violet was finally released, and in the process, it was found that the color changed from purple to reddish purple, and the present invention was made based on this finding.

すなわち、本発明は、以下のとおりのものである。
(1)(A)フッ化物イオン含有水溶液検体試料を、(B)ジルコニウム(IV)とピロカテコールバイオレットと多座配位子とからなるジルコニウム系多核錯体を含む水溶液に加えたのち、pHを3.5〜5.5の範囲に調整して発色させ、得られた被検発色液の色調又は色の濃さを比色するか、あるいはジルコニウム系多核錯体を含む水溶液(B)を上記と同じpH調整に付して発色させて得た対照発色液の可視吸収スペクトルにおけるピーク吸光度に対する、このピーク吸光度を示す波長における被検発色液の可視吸収スペクトルにおける吸光度の減少量比を求めることを特徴とする検体試料(A)のフッ化物イオンの定量方法。
(2)ジルコニウム系多核錯体を含む水溶液(B)が、ジルコニウム(IV)と多座配位子とからなる水溶性のジルコニウム(IV)錯体及びピロカテコールバイオレットを含む水溶液である前記(1)記載の定量方法。
(3)多座配位子が、2個以上のカルボン酸で置換されたアミン系化合物である前記(1)又は(2)記載の定量方法。
(4)2個以上のカルボン酸で置換されたアミン系化合物がエチレンジアミン‐N,N,N′,N′‐テトラ酢酸、N‐(2‐ヒドロキシエチル)エチレンジアミン‐N,N′,N′‐トリ酢酸、ニトリロトリ酢酸である前記(3)記載の定量方法。
(5)pHを調整するのを、pH4〜5の範囲になるように行う前記(1)ないし(4)のいずれかに記載の定量方法。
That is, the present invention is as follows.
(1) (A) A fluoride ion-containing aqueous sample is added to an aqueous solution containing (B) a zirconium-based multinuclear complex composed of zirconium (IV), pyrocatechol violet and a polydentate ligand, and then the pH is adjusted to 3 Adjust the color to a range of 0.5 to 5.5 and colorize the color tone or color density of the obtained test color developing solution, or use the aqueous solution (B) containing the zirconium-based multinuclear complex as described above. It is characterized in that the ratio of the decrease in absorbance in the visible absorption spectrum of the test color developing solution at the wavelength showing the peak absorbance to the peak absorbance in the visible absorption spectrum of the control coloring solution obtained by color adjustment by pH adjustment is characterized. For determining the fluoride ion of the specimen sample (A).
(2) The above (1) description, wherein the aqueous solution (B) containing a zirconium-based multinuclear complex is an aqueous solution containing a water-soluble zirconium (IV) complex composed of zirconium (IV) and a polydentate ligand and pyrocatechol violet. Quantification method.
(3) The method according to (1) or (2), wherein the polydentate ligand is an amine compound substituted with two or more carboxylic acids.
(4) An amine compound substituted with two or more carboxylic acids is ethylenediamine-N, N, N ', N'-tetraacetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N', N'- The quantification method according to the above (3), which is triacetic acid or nitrilotriacetic acid.
(5) The quantification method according to any one of (1) to (4), wherein the pH is adjusted so as to be in a range of pH 4 to 5.

本発明方法に用いられる、ジルコニウム系多核錯体を含む水溶液(B)(以下、これを錯体水溶液(B)という)は、ジルコニウム系多核錯体を溶質とし、該錯体はZr(IV)と、その配位子としての多座配位子とピロカテコールバイオレットとを有し、該錯体の配位構造はZr(IV)の8個の配位座のうちの2座にピロカテコールバイオレットが、残余の配位座の全て又は一部に多座配位子がそれぞれ結合してなるものである。
多座配位子としては、例えば複数個のカルボキシル基をもつ、シュウ酸等のポリカルボン酸も挙げられるが、好適には2個以上のカルボン酸で置換されたアミン系化合物、中でもジルコニウム(IV)との錯生成定数が大きいもの、例えば、NTA(ニトリロトリ酢酸)、EDTA(エチレンジアミン‐N,N,N′,N′‐テトラ酢酸)、HEDTA[N‐(2‐ヒドロキシエチル)エチレンジアミン‐N,N′,N′‐トリ酢酸]や、これらに対応するプロピオン酸誘導体等が挙げられる。
The aqueous solution (B) containing a zirconium-based multinuclear complex (hereinafter referred to as complex aqueous solution (B)) used in the method of the present invention has a zirconium-based multinuclear complex as a solute, and the complex contains Zr (IV) and its distribution. Having a multidentate ligand as a ligand and pyrocatechol violet, and the coordination structure of the complex is pyrocatechol violet at two of the eight coordination sites of Zr (IV), and the remaining coordination A polydentate ligand is bonded to all or part of the locus.
Examples of the polydentate ligand include polycarboxylic acids having a plurality of carboxyl groups, such as oxalic acid, and preferably amine-based compounds substituted with two or more carboxylic acids, particularly zirconium (IV ), For example, NTA (nitrilotriacetic acid), EDTA (ethylenediamine-N, N, N ′, N′-tetraacetic acid), HEDTA [N- (2-hydroxyethyl) ethylenediamine-N, N ', N'-triacetic acid] and the corresponding propionic acid derivatives.

錯体水溶液(B)として好適には、ジルコニウム(IV)と多座配位子とからなる水溶性のジルコニウム(IV)錯体とピロカテコールバイオレットとを含む水溶液が挙げられ、この水溶液については、上記ジルコニウム(IV)錯体とピロカテコールバイオレットの割合をモル比で4:1〜10:1の範囲、中でも5:1〜8:1の範囲、特に6:1又はその付近で選ぶのが明確な変色が得られるので好ましい。
また、錯体水溶液(B)における該ジルコニウム(IV)錯体の濃度は、通常10-5〜10-4モル/リットルの範囲で選ばれる。
このジルコニウム(IV)錯体としては、例えば[Zr(H2O)2EDTA]2H2O、K2[Zr(CO3)EDTA]3H2O、[Zr(H2O)2HEDTA]Clなどがある。これらの錯体はその生成反応液から単離精製して用いるのが好ましい。Zr(IV)の配位数は8であり、6配位のEDTAなどが結合しても2個の配位座が残るので、この残余の配位サイトを用いて単座や2座の配位子との三元錯体を形成することが可能である。
Preferable examples of the aqueous complex solution (B) include an aqueous solution containing a water-soluble zirconium (IV) complex composed of zirconium (IV) and a polydentate ligand and pyrocatechol violet. (IV) A clear discoloration can be selected by selecting the molar ratio of the complex and pyrocatechol violet in the range of 4: 1 to 10: 1, particularly in the range of 5: 1 to 8: 1, particularly 6: 1 or the vicinity thereof. Since it is obtained, it is preferable.
The concentration of the zirconium (IV) complex in the complex aqueous solution (B) is usually selected in the range of 10 −5 to 10 −4 mol / liter.
Examples of the zirconium (IV) complex include [Zr (H 2 O) 2 EDTA] 2H 2 O, K 2 [Zr (CO 3 ) EDTA] 3H 2 O, and [Zr (H 2 O) 2 HEDTA] Cl. There is. These complexes are preferably used after being isolated and purified from the production reaction solution. The coordination number of Zr (IV) is 8, and even if 6-coordinate EDTA or the like is bonded, 2 coordination sites remain. Therefore, using this remaining coordination site, monodentate or bidentate coordination is possible. It is possible to form a ternary complex with a child.

このジルコニウム(IV)錯体を水溶液の状態とし、該錯体における残余の配位サイトに、2座配位のピロカテコールバイオレットを結合させて多核錯体を形成することにより、青紫色を呈し、それに相応して可視吸収スペクトルにおける所定波長領域に吸収ピークを有する。そして、該三元錯体は、フッ化物イオンによりピロカテコールバイオレットが段階的に置換され、最終的には遊離されることにより、段階的に変色する。この段階的反応の1例のスキームを示す。この例ではジルコニウム(IV)錯体としてZr(IV)−EDTAが用いられている。   By forming this zirconium (IV) complex in an aqueous solution and binding a bidentate pyrocatechol violet to the remaining coordination sites in the complex to form a polynuclear complex, a blue-purple color is formed, correspondingly. And has an absorption peak in a predetermined wavelength region in the visible absorption spectrum. The ternary complex discolors stepwise by substituting pyrocatechol violet step by step with fluoride ions and finally releasing it. An example scheme for this stepwise reaction is shown. In this example, Zr (IV) -EDTA is used as the zirconium (IV) complex.

この反応スキームに示されるように、多核錯体としてモル比2:1のZr(IV)−EDTAとピロカテコールバイオレットとからなるものが用いられ、これは水溶液にすると色相が青紫色を呈する。該錯体の水溶液にフッ化物イオンを加えると、先ず、フッ化物イオンが該錯体の一方のピロカテコールバイオレット配位個所で置換し、一方のZr(IV)−EDTA錯体と結合し、ピロカテコールバイオレットは他方のZr(IV)−EDTA錯体と単核錯体を形成するようになり、色相は紫色に変わる。次に、さらにフッ化物イオンを加えると、該錯体の残りの他方のピロカテコールバイオレット配位個所で置換し、残りの他方のZr(IV)−EDTA錯体と結合し、ピロカテコールバイオレットは遊離され、色相は赤紫色に変色する。   As shown in this reaction scheme, a polynuclear complex composed of Zr (IV) -EDTA and pyrocatechol violet in a molar ratio of 2: 1 is used, and when it is made into an aqueous solution, the hue exhibits a bluish purple color. When fluoride ion is added to the aqueous solution of the complex, first, the fluoride ion substitutes at one pyrocatechol violet coordination site of the complex, and binds to one Zr (IV) -EDTA complex. A mononuclear complex is formed with the other Zr (IV) -EDTA complex, and the hue turns purple. Next, further addition of fluoride ions displaces the other pyrocatechol violet coordination site of the complex, binds to the other Zr (IV) -EDTA complex, and pyrocatechol violet is released, The hue changes to magenta.

本発明方法においては、上記した錯体水溶液(B)、例えばジルコニウム(IV)と多座配位子とからなる水溶性のジルコニウム(IV)錯体とピロカテコールバイオレットを含む水溶液等に、検体試料(A)を加え、混合溶液にしたのち、混合溶液のpHを3.5〜5.5の範囲に調整して発色させ、被検発色液とする。pHがこの範囲を逸脱すると、変色の度合が小さくなり、感度が低下する。pH調整には、酢酸緩衝液やフタル酸緩衝液が好適に用いられる。このような条件下では、変色は室温では通常3分以内に平衡に達する。   In the method of the present invention, the sample aqueous solution (B), for example, an aqueous solution containing a water-soluble zirconium (IV) complex composed of zirconium (IV) and a polydentate ligand and pyrocatechol violet is used. ) To make a mixed solution, and then the color of the mixed solution is adjusted in the range of 3.5 to 5.5 to produce a test color solution. If the pH deviates from this range, the degree of discoloration is reduced and the sensitivity is lowered. For pH adjustment, an acetate buffer or a phthalate buffer is preferably used. Under these conditions, the color change reaches equilibrium, usually within 3 minutes at room temperature.

そして、検体試料(A)のフッ化物イオン濃度の定量は、このようにして得た被検発色液について、その色調又は色の濃さを比色するか、あるいは可視吸収スペクトルの変化を利用することにより行われる。
色調を比色する方法は、色調又は色の濃さの変化を利用するものであって、既知の各種濃度のフッ化物イオン標準溶液の色調又は色の濃さと検体試料(A)のそれとを目視で比較する方法すなわち比色定量又は比色分析の方法が挙げられ、この方法では目視に基づく検出限界は約0.3ppm(1.5×10-5モル/リットル)である。
Then, the fluoride ion concentration of the specimen sample (A) is quantified by comparing the color tone or color intensity of the test color developing solution thus obtained, or using the change in the visible absorption spectrum. Is done.
The color tone colorimetric method uses a change in color tone or color intensity, and visually checks the color tone or color density of various known concentrations of fluoride ion standard solution and that of the specimen (A). In this method, the limit of detection based on visual observation is about 0.3 ppm (1.5 × 10 −5 mol / liter).

可視吸収スペクトルの変化を利用する方法としては、錯体水溶液(B)を上記と同じpH調整に付して発色させて得た対照発色液の該スペクトルにおけるピーク吸光度に対し、このピーク吸光度を示す波長における被検発色液の該スペクトルの吸光度が減少する割合を減少量比として求めるのが好ましい。
その際、ピーク吸光度を示す波長としては、減少量比が最大となるものを利用するのが好ましい。
例えば、前記反応スキームに示されるように、多核錯体としてモル比2:1のZr(IV)−EDTAとピロカテコールバイオレットを用いた場合には、その錯体水溶液(B)を上記と同じpH調整に付して発色させて得た対照発色液の可視吸収スペクトルにおけるピーク吸光度を示す波長のうち、該波長における被検発色液の該スペクトルの吸光度の減少量比が最大であるのは628nmであるので、この波長を利用して、フッ化物イオン濃度を一定基準で順次変化させた各種フッ化物イオン標準溶液を用い、この濃度を異にする各種標準溶液をそれぞれこの錯体水溶液(B)に加えた際における可視吸収スペクトルの波長628nmにおける吸光度の減少量比に基づき検量線を作成し、この検量線を用いて、未知濃度の検体試料(A)のフッ化物イオン濃度を定量する方法が挙げられる。この方法では検量線に基づく検出限界は約0.18ppm(0.8×10-5モル/リットル)である。
As a method using the change in the visible absorption spectrum, the wavelength indicating the peak absorbance with respect to the peak absorbance in the spectrum of the control coloring solution obtained by subjecting the aqueous complex solution (B) to color development by the same pH adjustment as described above. It is preferable to obtain the ratio of the decrease in the absorbance of the spectrum of the test color developing solution as the reduction ratio.
At that time, it is preferable to use a wavelength that exhibits the maximum absorbance as the wavelength indicating the peak absorbance.
For example, as shown in the reaction scheme, when Zr (IV) -EDTA and pyrocatechol violet having a molar ratio of 2: 1 are used as the polynuclear complex, the complex aqueous solution (B) is adjusted to the same pH as described above. Among the wavelengths indicating the peak absorbance in the visible absorption spectrum of the control color solution obtained by attaching the color, the ratio of the decrease in the absorbance of the spectrum of the test color solution at that wavelength is the largest because it is 628 nm. Using various fluoride ion standard solutions in which the fluoride ion concentration was sequentially changed on a constant basis using this wavelength, and adding various standard solutions having different concentrations to the complex aqueous solution (B). A calibration curve is prepared based on the ratio of the decrease in absorbance at a wavelength of 628 nm in the visible absorption spectrum of the sample, and using this calibration curve, the specimen sample (A) of unknown concentration Method of quantifying the like to Tsu iodide ion concentration. In this method, the detection limit based on the calibration curve is about 0.18 ppm (0.8 × 10 −5 mol / liter).

本発明方法においては、フッ化物イオン1ppm(5.5×10-5モル/リットル)に対して、塩素イオン、硫酸イオン、リン酸イオン、硝酸イオンがそれぞれ1×10-3モル/リットル程度共存していても、これらの妨害を受けずにフッ化物イオンを定量できる。また、Fe(III)、Al(III)、Cu(II)などの陽イオンの共存は、フッ化物イオンの定量を妨害することがあるが、マスキング剤として、例えばEDTAを用いることにより防ぐことができる。 In the method of the present invention, about 1 × 10 −3 mol / liter of chlorine ion, sulfate ion, phosphate ion and nitrate ion coexist with 1 ppm of fluoride ion (5.5 × 10 −5 mol / liter). However, fluoride ions can be quantified without receiving these interferences. The coexistence of cations such as Fe (III), Al (III), Cu (II) may interfere with the determination of fluoride ions, but can be prevented by using, for example, EDTA as a masking agent. it can.

本発明方法においては、錯体水溶液(B)は試薬溶液として用いられ、常温で1か月間以上安定に保存可能である上に、呈色も室温下で1週間以上安定であり、試薬溶液や検量線溶液は、アリザリンコンプレクサンを用いる従来の比色システムよりも長期間にわたって極めて安定に用いることができる。   In the method of the present invention, the complex aqueous solution (B) is used as a reagent solution and can be stably stored at room temperature for one month or more, and the coloration is stable at room temperature for one week or more. The wire solution can be used much more stably over a longer period of time than conventional colorimetric systems using alizarin complex.

本発明方法によれば、水中の微量フッ化物イオンを、室温で迅速に目視判定等により定量することができる。本発明方法は、試薬系が水溶液中で長期間安定であるため、半導体工業、表面処理工程から排出されるフッ化物イオン含有排水や地下水中の微量フッ化物イオンのモニターや簡易定量に好適であり、極めて実用的価値が高い。   According to the method of the present invention, a minute amount of fluoride ions in water can be quickly quantified by visual judgment or the like at room temperature. Since the reagent system is stable in an aqueous solution for a long period of time, the method of the present invention is suitable for monitoring and simple quantification of fluoride ion-containing wastewater discharged from the semiconductor industry and surface treatment processes and trace fluoride ions in groundwater. Highly practical value.

錯体水溶液(B)としては、ジルコニウム(IV)と多座配位子とからなる水溶性のジルコニウム(IV)錯体とピロカテコールバイオレットとを含む水溶液が好ましく、該ジルコニウム(IV)錯体における多座配位子としては、2個以上のカルボン酸で置換されたアミン系化合物、中でもエチレンジアミン‐N,N,N′,N′‐テトラ酢酸、N‐(2‐ヒドロキシエチル)エチレンジアミン‐N,N′,N′‐トリ酢酸、ニトリロトリ酢酸が好ましい。
また、検体試料(A)を錯体水溶液(B)に加えてなる混合液のpH調整は、pH4〜5の範囲、特にpH4.2又はその付近になるように行うのが感度の点から好ましい。
前記した吸光度の減少量比を求める定量方法においては、ピーク吸光度を示す波長として、該減少量比が最大となるものを利用するのが好ましい。
The aqueous complex solution (B) is preferably an aqueous solution containing a water-soluble zirconium (IV) complex composed of zirconium (IV) and a multidentate ligand and pyrocatechol violet, and the polydentate in the zirconium (IV) complex. As the ligand, amine compounds substituted with two or more carboxylic acids, particularly ethylenediamine-N, N, N ′, N′-tetraacetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N ′, N'-triacetic acid and nitrilotriacetic acid are preferred.
Moreover, it is preferable from the point of sensitivity that pH adjustment of the liquid mixture formed by adding the sample sample (A) to the complex aqueous solution (B) is performed in the range of pH 4 to 5, particularly pH 4.2 or the vicinity thereof.
In the above-described quantification method for determining the absorbance reduction ratio, it is preferable to use a wavelength that exhibits the peak absorbance and that maximizes the reduction ratio.

次に、実施例により本発明をさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。なお、Mはモル濃度を示す。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. M represents the molar concentration.

25mlメスフラスコに、12ミリモル/リットル濃度の[Zr(H2O)2EDTA]水溶液5ml、0.2ミリモル/リットル濃度のピロカテコールバイオレット水溶液5ml、1M酢酸緩衝液250μlを入れ、これにフッ化物イオンを含む水溶液を検液として加え、純水を用いて全量25mlとした被検発色液を試料として得た。試料を3分室温で放置したのち、分光光度計にて可視吸収スペクトルを求めた。試料のフッ化物イオンの濃度を種々変えた場合の可視吸収スペクトルの変化を図1に示す。これより、フッ化物イオンの濃度が濃くなるに従い、波長628nmにおける吸光度が減少することが分る。 A 25 ml volumetric flask is charged with 5 ml of a 12 mmol / liter aqueous solution of [Zr (H 2 O) 2 EDTA], 5 ml of a 0.2 mmol / liter aqueous pyrocatechol violet solution, and 250 μl of 1M acetate buffer solution. An aqueous solution containing ions was added as a test solution, and a test color developing solution with a total volume of 25 ml using pure water was obtained as a sample. The sample was allowed to stand at room temperature for 3 minutes, and then a visible absorption spectrum was obtained with a spectrophotometer. FIG. 1 shows the change in the visible absorption spectrum when the fluoride ion concentration of the sample is variously changed. This shows that the absorbance at a wavelength of 628 nm decreases as the concentration of fluoride ions increases.

実施例1の試料の被検発色液について、フッ化物イオンのモル濃度と波長628nmにおける吸光度とを関数として検量線を作成した。図2にこの検量線を示す。低濃度フッ化物イオン(0.1ppm−0.5ppm)とそれ以上の濃度のフッ化物イオンに対しては、それぞれに検量線の勾配が異なるが、これは変色反応が二段階で起こることを示唆している。   For the test color developing solution of the sample of Example 1, a calibration curve was prepared using the molar concentration of fluoride ions and the absorbance at a wavelength of 628 nm as a function. FIG. 2 shows this calibration curve. For low-concentration fluoride ions (0.1 ppm-0.5 ppm) and higher concentrations of fluoride ions, the slope of the calibration curve is different, suggesting that the discoloration reaction occurs in two steps. doing.

波長628nmにおける吸光度とpHの関係をフッ化物イオンの存在下、非存在下で調べた。25mlメスフラスコに、12ミリモル/リットル濃度の[Zr(H2O)2EDTA]水溶液5ml、0.2ミリモル/リットル濃度のピロカテコールバイオレット水溶液5ml、1MのpH緩衝液250μlを入れ、さらに0.5ミリモル/リットル濃度のフッ化物イオンを加えたもの(Zr−EDTA−PV−F)と加えないもの(Zr−EDTA−PV)とを調製し、純水を用いて全量25mlとした。また、同じ濃度のピロカテコールバイオレットだけを含むpHの異なる試料(PV)を調製した。これらを3分室温で放置したのち、分光光度計にて可視吸収スペクトルを求めた。得られた吸収スペクトルの波長628nmにおける吸光度とpHの関係を図3に示す。これより、吸光度はpH依存性を示し、特にpH4〜5の範囲で吸光度が大きく変化することが分る。 The relationship between absorbance and pH at a wavelength of 628 nm was examined in the presence and absence of fluoride ions. A 25 ml volumetric flask was charged with 5 ml of a 12 mmol / l aqueous solution of [Zr (H 2 O) 2 EDTA], 5 ml of a 0.2 mmol / l aqueous pyrocatechol violet solution, and 250 μl of a 1 M pH buffer solution. What added the fluoride ion of 5 mmol / l density | concentration (Zr-EDTA-PV-F) and the thing which does not add (Zr-EDTA-PV) were prepared, and it was set as 25 ml in total using the pure water. In addition, samples (PV) having different pHs containing only pyrocatechol violet at the same concentration were prepared. These were allowed to stand at room temperature for 3 minutes, and then a visible absorption spectrum was obtained with a spectrophotometer. The relationship between absorbance and pH at a wavelength of 628 nm of the obtained absorption spectrum is shown in FIG. From this, it can be seen that the absorbance is pH-dependent, and the absorbance changes greatly particularly in the pH range of 4 to 5.

実施例1の、フッ化物イオン濃度の異なる各試料の色調の変化を図4に写真で示す。図4は、フッ化物イオンを含まない青紫色から紫色を経て3ppmのフッ化物イオンを含み赤紫色に変色する様子をフッ化物イオン濃度に従い段階的に示している。これは実施例2における場合と同様に変色反応が二段階で起こることを示唆している。   The change in color tone of each sample having a different fluoride ion concentration in Example 1 is shown in FIG. FIG. 4 shows, in a step-by-step manner, the state in which the color changes from blue-violet without fluoride ions to purple through 3 purple and containing 3 ppm fluoride ions according to the fluoride ion concentration. This suggests that the discoloration reaction occurs in two steps as in Example 2.

実施例1においてフッ化物イオンを添加した場合における可視吸収スペクトルの変化を示すグラフ。The graph which shows the change of a visible absorption spectrum at the time of adding a fluoride ion in Example 1. FIG. 実施例2において作成した検量線を示すグラフ。6 is a graph showing a calibration curve created in Example 2. 実施例3における吸光度のpH依存性を示すグラフ。6 is a graph showing the pH dependence of absorbance in Example 3. 実施例4におけるフッ化物イオン濃度による試料溶液の色調の変化を示す写真。The photograph which shows the change of the color tone of the sample solution by the fluoride ion density | concentration in Example 4. FIG.

Claims (5)

(A)フッ化物イオン含有水溶液検体試料を、(B)ジルコニウム(IV)とピロカテコールバイオレットと多座配位子とからなるジルコニウム系多核錯体を含む水溶液に加えたのち、pHを3.5〜5.5の範囲に調整して発色させ、得られた被検発色液の色調又は色の濃さを比色するか、あるいはジルコニウム系多核錯体を含む水溶液(B)を上記と同じpH調整に付して発色させて得た対照発色液の可視吸収スペクトルにおけるピーク吸光度に対する、このピーク吸光度を示す波長における被検発色液の可視吸収スペクトルにおける吸光度の減少量比を求めることを特徴とする検体試料(A)のフッ化物イオンの定量方法。   (A) After adding a fluoride ion-containing aqueous solution specimen sample to an aqueous solution containing a zirconium-based multinuclear complex consisting of (B) zirconium (IV), pyrocatechol violet and a polydentate ligand, the pH is adjusted to 3.5 to Adjust the color to the range of 5.5 to develop the color, and compare the color tone or color density of the obtained test color developing solution, or adjust the pH of the aqueous solution (B) containing the zirconium-based multinuclear complex to the same as above. A specimen sample characterized by obtaining a ratio of a decrease in absorbance in the visible absorption spectrum of the test color developing solution at a wavelength indicating the peak absorbance to a peak absorbance in the visible absorption spectrum of the control coloring solution obtained by attaching and coloring. (A) Quantification method of fluoride ion. ジルコニウム系多核錯体を含む水溶液(B)が、ジルコニウム(IV)と多座配位子とからなる水溶性のジルコニウム(IV)錯体及びピロカテコールバイオレットを含む水溶液である請求項1記載の定量方法。   The method according to claim 1, wherein the aqueous solution (B) containing a zirconium-based multinuclear complex is an aqueous solution containing a water-soluble zirconium (IV) complex composed of zirconium (IV) and a polydentate ligand and pyrocatechol violet. 多座配位子が、2個以上のカルボン酸で置換されたアミン系化合物である請求項1又は2記載の定量方法。   The method according to claim 1 or 2, wherein the polydentate ligand is an amine compound substituted with two or more carboxylic acids. 2個以上のカルボン酸で置換されたアミン系化合物がエチレンジアミン‐N,N,N′,N′‐テトラ酢酸、N‐(2‐ヒドロキシエチル)エチレンジアミン‐N,N′,N′‐トリ酢酸、ニトリロトリ酢酸である請求項3記載の定量方法。   An amine compound substituted with two or more carboxylic acids is ethylenediamine-N, N, N ′, N′-tetraacetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid, The quantification method according to claim 3, which is nitrilotriacetic acid. pHを調整するのを、pH4〜5の範囲になるように行う請求項1ないし4のいずれかに記載の定量方法。
The quantification method according to any one of claims 1 to 4, wherein the pH is adjusted so as to be in a range of pH 4-5.
JP2003394519A 2003-11-25 2003-11-25 Quantitative determination of fluoride ion Expired - Lifetime JP4058522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394519A JP4058522B2 (en) 2003-11-25 2003-11-25 Quantitative determination of fluoride ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394519A JP4058522B2 (en) 2003-11-25 2003-11-25 Quantitative determination of fluoride ion

Publications (2)

Publication Number Publication Date
JP2005156323A true JP2005156323A (en) 2005-06-16
JP4058522B2 JP4058522B2 (en) 2008-03-12

Family

ID=34720560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394519A Expired - Lifetime JP4058522B2 (en) 2003-11-25 2003-11-25 Quantitative determination of fluoride ion

Country Status (1)

Country Link
JP (1) JP4058522B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865204A (en) * 2015-01-16 2015-08-26 北京理工大学 Method for F<-> colorimetric detection
US20160146739A1 (en) * 2014-11-25 2016-05-26 Industry-Academic Cooperation Foundation Yonsei University Method for preparing hydrogel bead for detection of hydrofluoric acid and kit comprising the same
JP2021152471A (en) * 2020-03-24 2021-09-30 国立大学法人信州大学 Fluorine ion concentration detection test paper, fluorine ion concentration measuring method, and fluorine ion concentration measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466635B (en) * 2010-11-17 2013-08-21 中国科学院化学研究所 Application of oxazole compound in fluoride ion detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146739A1 (en) * 2014-11-25 2016-05-26 Industry-Academic Cooperation Foundation Yonsei University Method for preparing hydrogel bead for detection of hydrofluoric acid and kit comprising the same
KR20160062504A (en) 2014-11-25 2016-06-02 연세대학교 산학협력단 Method of making hydrogel bead for detecting of HF and the kit comprising the same
KR101630160B1 (en) * 2014-11-25 2016-06-24 연세대학교 산학협력단 Preparation method of hydrogel or hydrogel bead for detection of HF and the kit containing the same
US10067104B2 (en) 2014-11-25 2018-09-04 Industry-Academic Cooperation Foundation Yonsei University Method for preparing hydrogel bead for detection of hydrofluoric acid and kit comprising the same
CN104865204A (en) * 2015-01-16 2015-08-26 北京理工大学 Method for F<-> colorimetric detection
JP2021152471A (en) * 2020-03-24 2021-09-30 国立大学法人信州大学 Fluorine ion concentration detection test paper, fluorine ion concentration measuring method, and fluorine ion concentration measuring device
JP7002774B2 (en) 2020-03-24 2022-01-20 国立大学法人信州大学 Fluorine ion concentration detection test paper, fluorine ion concentration measuring method and fluorine ion concentration measuring device

Also Published As

Publication number Publication date
JP4058522B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US20160084809A1 (en) Simultaneous determination of multiple analytes in industrial water system
US9091674B2 (en) Means and method for determining chemical oxygen demand
Ghaedi et al. A novel polyvinyl chloride-membrane optical sensor for the determination of Cu2+ ion based on synthesized (N′ 1E, N′ 2E)-N′ 1, N′ 2-bis (pyridine-2-ylmethylene) oxalohydrazide: Experimental design and optimization
Ghaedi et al. A novel PVC-membrane optical sensor for high sensitive and selective determination of Cu2+ ion based on synthesized (E)-N′-(pyridin-2-ylmethylene) isonicotin-ohydrazide
JP4883577B2 (en) Chemical sensor material
JP5014251B2 (en) Column used for hexavalent chromium analysis
Pinto et al. A simple and very sensitive spectrophotometric method for the direct determination of copper ions
KR101534562B1 (en) chlorine detecting reagent and the detecting kit and the chlorine detecting method
JP4058522B2 (en) Quantitative determination of fluoride ion
Saito Sensing of trace copper ion by a solid phase extraction-spectrophotometry using a poly (vinyl chloride) membrane containing bathocuproine
US5556787A (en) Manganese III method for chemical oxygen demand analysis
CN109580564B (en) Method for detecting mercury ions in water
JP2007108064A (en) Specimen forming material and absorption analyzer equipped with film made of the same specimen forming material
JP4852761B2 (en) Simple determination method for environmental pollutants in water
KR102613289B1 (en) Acetate complex and acetate quantification method
JP4769940B2 (en) Method for measuring formaldehyde
Abe et al. Simultaneous determination of trace iron (II) and iron (III) based on kinetic spectrophotometry of the iron (III)-pyrocatechol violet complex in a micellar medium
JP4223981B2 (en) Formaldehyde detection material and manufacturing method thereof
CN113049573B (en) Rubidium or cesium ion detection reagent combination, kit and detection method
JP2005265474A (en) Method for determinating fluoride ions
JP3500431B2 (en) Fluoride ion determination method
Hossain et al. A Rapid Spectrofluorometric Method for the Determination of Aluminum at Nano-trace Levels in Some Real, Environmental, Biological, Hemodialysis, Food, Pharmaceutical, and Soil Samples Using 2′, 3, 4′, 5, 7-Pentahydroxyflavone
CN111380861B (en) Detection reagent combination and detection method for cesium ions
JP2005098760A (en) Lead ion selective coloring material, and lead ion simplified quantitative determining method using coloring material
RU2760002C2 (en) Method for determining mass concentration of total iron in associated waters and waters of oil and gas condensate fields by x-ray fluorescence method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

R150 Certificate of patent or registration of utility model

Ref document number: 4058522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term