JP2005156198A - Reactor building - Google Patents

Reactor building Download PDF

Info

Publication number
JP2005156198A
JP2005156198A JP2003391586A JP2003391586A JP2005156198A JP 2005156198 A JP2005156198 A JP 2005156198A JP 2003391586 A JP2003391586 A JP 2003391586A JP 2003391586 A JP2003391586 A JP 2003391586A JP 2005156198 A JP2005156198 A JP 2005156198A
Authority
JP
Japan
Prior art keywords
pool
containment vessel
cooling system
water
spent fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003391586A
Other languages
Japanese (ja)
Other versions
JP4340521B2 (en
Inventor
Yuji Nemoto
裕二 根本
Shizuka Hirako
静 平子
Yoshinori Iimura
芳則 飯村
Kinji Nakano
欣治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003391586A priority Critical patent/JP4340521B2/en
Publication of JP2005156198A publication Critical patent/JP2005156198A/en
Application granted granted Critical
Publication of JP4340521B2 publication Critical patent/JP4340521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of a reactor building which enables reduction in the physical quantities of a framework and which is highly economical. <P>SOLUTION: A communication tube 10 allows a spent fuel pool 2 in the reactor building 9 to communicate with a pool 1 inside a static containment vessel cooling system. The communication tube 10 is positioned at the height, which can secure a depth 12 of water required for the shielding from radiation above a fuel storage rack 13. The pool 1 in the static containment vessel cooling system filled with less water is replenished with pool water in the spent fuel pool 2 by way of the communication tube 10, by operating a heat exchanger 3 in the static containment vessel cooling system in the pool 1, in the static containment vessel cooling system. The replenishment can be stopped at a water level which can secure the depth 12 of water required for the shielding from radiation above the fuel storage rack 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子力プラントの原子炉建屋に関し、特に軽水冷却型原子炉の原子炉建屋に係る。   The present invention relates to a nuclear power plant nuclear reactor building, and more particularly to a light water cooled nuclear reactor nuclear reactor building.

原子力プラントである原子力発電所には原子炉建屋が存在する。その原子炉建屋内には、原子炉を格納する原子炉格納容器が構築されていて、その原子炉格納容器には、想定事故発生後も長期にわたって原子炉の炉心から発生する崩壊熱を原子炉格納容器外へ除去するための原子炉格納容器の冷却装置が設けられている。   A nuclear power plant, which is a nuclear power plant, has a reactor building. In the reactor building, there is a reactor containment vessel that houses the reactor. In the reactor containment vessel, the decay heat generated from the reactor core over a long period of time after the occurrence of the accident A reactor containment vessel cooling device is provided for removal outside the containment vessel.

従来の原子炉格納容器の冷却装置としては、事故発生時にポンプを起動して冷却水を冷却対象領域に供給するものが主流であるが、さらに安全性と信頼性を目指しポンプ等の動的機器を必要とせず静的に原子炉格納容器を冷却する静的格納容器冷却系(以下、PCCSとも言う。)が考えられている。   Conventional reactor containment vessel cooling devices are mainly used to start the pump and supply cooling water to the cooling target area when an accident occurs. However, dynamic devices such as pumps are aimed at further safety and reliability. A static containment vessel cooling system (hereinafter also referred to as PCCS) that cools the reactor containment vessel statically without the need for a reactor is considered.

PCCSは、原子炉冷却材喪失事故(以下、LOCAとも言う。)時等に、原子炉格納容器内に原子炉から放出された炉蒸気を冷却凝縮して、原子炉格納容器の圧力を設計圧力以下に維持する目的で設けられており、原子炉格納容器内の雰囲気を重力差による自然循環という自然力を利用して静的に冷却することができる。   PCCS cools and condenses the reactor steam released from the reactor in the reactor containment in the event of a reactor coolant loss accident (hereinafter also referred to as LOCA), etc., and sets the reactor containment pressure to the design pressure. It is provided for the purpose of maintaining the following, and the atmosphere in the reactor containment vessel can be statically cooled by utilizing the natural force of natural circulation caused by the difference in gravity.

主なPCCSの設備としては、原子炉から放出された炉蒸気とプール水との間で熱交換するための熱交換器、そのプール水を貯蔵する大規模な静的格納容器冷却系プール(以下、PCCSプールとも言う。)が必要である。そのプールと使用中の燃料を一時的に貯蔵するプールとを大形プールに一体化して共通のプールとした技術が公知である(例えば、特許文献2参照)。   Major PCCS facilities include a heat exchanger for exchanging heat between the reactor steam discharged from the reactor and the pool water, and a large-scale static containment cooling system pool (hereinafter referred to as the pool water storage pool). , Also referred to as PCCS pool). A technique is known in which the pool and a pool for temporarily storing fuel in use are integrated into a large pool to form a common pool (see, for example, Patent Document 2).

また、原子炉の炉心から出された使用済燃料の代わりに炉心に装荷する新燃料を一時的に貯蔵する新燃料貯蔵プールとPCCSプールと連通及び流通遮断自在とし、連通時には両プール間でプール水がプールの底部で往来できるように構成し、新燃料貯蔵プールのプール水をPCCSプールのプール水に流用する技術が公知である(例えば、特許文献1参照)。   In addition, the new fuel storage pool that temporarily stores new fuel loaded in the core instead of the spent fuel delivered from the core of the reactor and the PCCS pool can be freely connected and shut off, and the pool can be connected between both pools when communicating. A technique is known in which water is allowed to come and go at the bottom of the pool, and the pool water of the new fuel storage pool is diverted to the pool water of the PCCS pool (for example, see Patent Document 1).

特開平6−265673号公報JP-A-6-265673 特開2000−180582号公報JP 2000-180582 A

原子力発電所においても、安全性を確保することはもちろんのこと、これまで以上に原子力発電所の建設コスト削減及び経済性向上に対する要求も高まっている。また、環境への配慮から廃炉時の廃棄物量を低減させることも重要になっている。   In nuclear power plants, as well as ensuring safety, demands for reducing construction costs and improving economic efficiency of nuclear power plants are increasing. It is also important to reduce the amount of waste at the time of decommissioning due to environmental considerations.

以上の観点から原子炉建屋の建物の躯体物量を低減することが希望されているが、静的格納容器冷却系(以下、PCCSとも言う。)の設備を設置する場合、静的格納容器冷却系プール(以下、PCCSプールとも言う。)等の大規模な配置スペースが原子炉建屋内に必要となり、原子炉建屋の建物の躯体物量を増加させる要因となっている。   From the above viewpoint, it is hoped to reduce the amount of enclosure in the reactor building, but when installing the equipment of static containment cooling system (hereinafter also referred to as PCCS), static containment cooling system A large-scale arrangement space such as a pool (hereinafter also referred to as a PCCS pool) is required in the reactor building, which increases the amount of building materials in the reactor building.

そのため、背景技術の欄で述べた従来例のように、PCCSプールと新燃料貯蔵プールや使用中の燃料の一時貯蔵のプールとを相互にプール水を流用し合うような構造とすることで、これらの設備を原子炉建屋内に独立したシステムとして設置する場合に比べて、配置スペースが縮小できる。   Therefore, as in the conventional example described in the background art section, the PCCS pool, the new fuel storage pool, and the temporary storage pool for the fuel in use are configured to mutually reuse pool water. Compared with the case where these facilities are installed as an independent system in the reactor building, the arrangement space can be reduced.

しかし、そのように両プール水を流用化する従来例では、PCCSが作動した際に、プール水の蒸発等により、使用済燃料プールのプール水面下に貯蔵されていた燃料が水面より上に露出し、燃料からの放射線をプール水で遮蔽できなくなる懸念がある。特に、その燃料が、新燃料よりも放射線レベルの高い使用済燃料の場合には深刻な状態になる。そのため、PCCSプールと使用済燃料プールのプール水を流用し合う場合、PCCS作動時におけるPCCSプール内のプール水の蒸発により水位が低下しても、放射線遮蔽上必要となる最低限の水深を確保する必要があるし、貯蔵中の使用済燃料が使用済燃料プールのプール水に浸されて核燃料の反応抑制及び冷却されている必要がある。   However, in the conventional example in which both pool waters are diverted in this way, when the PCCS is activated, the fuel stored below the pool surface of the spent fuel pool is exposed above the water surface due to evaporation of the pool water, etc. However, there is a concern that radiation from fuel cannot be shielded by pool water. In particular, when the fuel is a spent fuel having a higher radiation level than the new fuel, the situation becomes serious. Therefore, when using the pool water of the PCCS pool and the spent fuel pool, even if the water level drops due to evaporation of the pool water in the PCCS pool during PCCS operation, the minimum water depth required for radiation shielding is secured. It is necessary that the spent fuel being stored is immersed in the pool water of the spent fuel pool and the reaction of the nuclear fuel is suppressed and cooled.

本発明は以上の課題に鑑み、貯蔵中の使用済燃料の冷却が可能で、PCCSプール容積の低減を図ることを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to reduce the PCCS pool volume by allowing the spent fuel being stored to be cooled.

本発明の課題を解決するための手段は、内部に静的格納容器冷却系プール及び使用済燃料プールを設け、前記使用済燃料プール内の水を前記静的格納容器冷却系プールに導く流路を設け、前記流路の前記使用済燃料プール側の開口部を、前記使用済燃料プール内の燃料貯蔵ラックの上端よりも上の位置に設けてある原子炉建屋である。   Means for solving the problems of the present invention include a static containment vessel cooling system pool and a spent fuel pool provided therein, and a flow path for guiding water in the spent fuel pool to the static containment vessel cooling system pool. And the opening on the spent fuel pool side of the flow path is provided at a position above the upper end of the fuel storage rack in the spent fuel pool.

使用済燃料プール内で貯蔵中の使用済燃料をプール水で浸し続けることと、使用済燃料プール水の一部をPCCSの冷却水として使用することとが両立するので、安全に使用済燃料を貯蔵することと、PCCSプール容量の低減との効果を達成できる。その効果は、安全な使用済燃料の貯蔵及びPCCSプールの配置エリア削減並びに原子炉建屋寸法の縮小をもたらす。   Keeping the spent fuel stored in the spent fuel pool soaked in the pool water and using part of the spent fuel pool water as PCCS cooling water are compatible. The effects of storing and reducing the PCCS pool capacity can be achieved. The effect results in safe spent fuel storage and PCCS pool placement area reduction and reactor building size reduction.

使用済燃料プール2の使用済燃料からの放射線を遮蔽する上で必要な水深を使用済燃料プール2に確保出来る高さ位置、即ち使用済燃料を貯蔵する燃料貯蔵ラック13の上端から上方に放射線遮蔽上必要な水深12の高さを足した位置、に静的格納容器冷却系プール(以下、PCCSプールとも言う。)1との連絡管10入口を設け、その連絡管10を通じて使用済燃料プール2のプール水の一部をPCCSプール1へ供給して静的格納容器冷却系(以下、PCCSとも言う。)の冷却水として流用することにより、PCCSプール1の配置エリアを削減した原子炉建屋とした。   Radiation from the upper position of the fuel storage rack 13 for storing spent fuel to a height position where the water depth necessary for shielding the radiation from the spent fuel in the spent fuel pool 2 can be secured in the spent fuel pool 2 A connecting pipe 10 inlet with a static containment vessel cooling system pool (hereinafter also referred to as a PCCS pool) 1 is provided at a position where the depth of water depth 12 necessary for shielding is added, and the spent fuel pool is provided through the connecting pipe 10. A part of the pool water of No. 2 is supplied to the PCCS pool 1 and used as cooling water for the static containment vessel cooling system (hereinafter also referred to as PCCS), thereby reducing the arrangement area of the PCCS pool 1 It was.

以下、本発明の実施例を各図に基づいて詳細に説明する。原子力プラントの一つとして原子力発電所が知られている。その原子力発電所には図2に示す原子炉建屋9が存在する。その原子炉建屋9内の中央領域には、点線で示した領域の原子炉格納容器5が構築されている。その原子炉格納容器5は原子炉建屋9の鉄筋コンクリートや鋼板で囲われて放射線漏れの無いように遮蔽されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A nuclear power plant is known as one of nuclear plants. The nuclear power plant has a reactor building 9 shown in FIG. In the central region of the reactor building 9, the reactor containment vessel 5 in the region indicated by the dotted line is constructed. The reactor containment vessel 5 is surrounded by reinforced concrete or steel plate of the reactor building 9 and shielded so as not to leak radiation.

その原子炉格納容器5の内側には、原子炉として、核燃料を装荷した炉心を内蔵している圧力容器20が、架台21に設置されている。その架台21の外周囲は圧力抑制プール8とされ、圧力抑制プール8にプール水として冷却水が蓄えられている。   Inside the reactor containment vessel 5, a pressure vessel 20 containing a core loaded with nuclear fuel is installed on a gantry 21 as a nuclear reactor. The outer periphery of the pedestal 21 is a pressure suppression pool 8, and cooling water is stored in the pressure suppression pool 8 as pool water.

その原子炉格納容器5の上側であって原子炉建屋9内には、使用済燃料プール2と静的格納容器冷却系プール(以下、PCCSプールとも言う。)1とが鉄筋コンクリート製の共通な壁22を挟んで、且つ同じ高さで、隣接し合って設けられている。   In the reactor building 9 above the reactor containment vessel 5, a spent fuel pool 2 and a static containment vessel cooling system pool (hereinafter also referred to as PCCS pool) 1 are a common wall made of reinforced concrete. 22 and adjacent to each other at the same height.

静的格納容器冷却系(以下、PCCSとも言う。)はPCCSプール1を含んで以下のような系統構成を有する。即ち、PCCSプール1内の底部にはPCCS熱交換器3が設置される。そのPCCS熱交換器3の流体取入れ口にはPCCS蒸気供給管6の一端が接続され、PCCS蒸気供給管6の他端は原子炉格納容器5内のドライウェル23内に開口している。また、PCCS熱交換器3の流体出口にはPCCS凝縮水排出管7の一端が接続され、PCCS凝縮水排出管7の他端は原子炉格納容器内の圧力抑制プール8のプール水中に開口している。   The static containment vessel cooling system (hereinafter also referred to as PCCS) includes the PCCS pool 1 and has the following system configuration. That is, the PCCS heat exchanger 3 is installed at the bottom of the PCCS pool 1. One end of a PCCS steam supply pipe 6 is connected to the fluid intake port of the PCCS heat exchanger 3, and the other end of the PCCS steam supply pipe 6 opens into a dry well 23 in the reactor containment vessel 5. One end of the PCCS condensate discharge pipe 7 is connected to the fluid outlet of the PCCS heat exchanger 3, and the other end of the PCCS condensate discharge pipe 7 opens into the pool water of the pressure suppression pool 8 in the reactor containment vessel. ing.

一方、使用済燃料プール2には、底部に燃料貯蔵ラック13が設置されて、その燃料貯蔵ラック13の設置空間のエリアが使用済燃料貯蔵エリアとされる。その燃料貯蔵ラック13内には、炉心から取り出された使用済燃料14が垂直姿勢で入れられて燃料貯蔵ラック13の内側で保管貯蔵されている。その燃料貯蔵ラック13の上側には、使用済燃料
14を図示していない燃料交換機でプール内を移送させる際に、その使用済燃料14からの放射線を遮蔽するに必要な水面からの水深、即ち燃料移送時の遮蔽上必要な水深15と、使用済燃料の高さ16、即ち使用済燃料14の移送中における上下長さとを足した水深が得られるように、使用済燃料プール2の深さやそのプール水面高さが設定されている。
On the other hand, in the spent fuel pool 2, a fuel storage rack 13 is installed at the bottom, and an area of the installation space of the fuel storage rack 13 is a spent fuel storage area. In the fuel storage rack 13, spent fuel 14 taken out from the core is put in a vertical posture and stored and stored inside the fuel storage rack 13. Above the fuel storage rack 13, when the spent fuel 14 is transferred into the pool by a refueling machine (not shown), the water depth from the water surface necessary to shield the radiation from the spent fuel 14, that is, The depth of the spent fuel pool 2 can be obtained so as to obtain a depth obtained by adding the depth 15 necessary for shielding at the time of fuel transfer and the height 16 of the spent fuel, that is, the vertical length during the spent fuel 14 transfer. The pool surface height is set.

したがって、使用済燃料プール2のプール水面24の高さ位置からの下方への水深は、燃料貯蔵ラックの高さ4と使用済燃料の高さ16と燃料移送時の遮蔽上必要な水深15とを足した寸法を超える深さとされる。PCCSプール内のプール水面の高さ位置は、使用済燃料プールのプール水面24と同じ高さとされている。   Therefore, the water depth downward from the height position of the pool water surface 24 of the spent fuel pool 2 is the height 4 of the fuel storage rack, the height 16 of the spent fuel, and the water depth 15 necessary for shielding during fuel transfer. It is the depth exceeding the dimension added. The height position of the pool water surface in the PCCS pool is the same height as the pool water surface 24 of the spent fuel pool.

使用済燃料プール2とPCCSプール1との間の壁22には、両プールを連通する水平な管が連絡管10として設置される。その連絡管10の設置高さは、燃料貯蔵ラック13の上方に貯蔵中の使用済燃料からの放射線を遮蔽する上で必要な水深、即ち遮蔽上必要な水深12が確保できる高さとされる。その連絡管10は図1のように全部で三箇所に設置され、各連絡管10の右側の開口端は使用済燃料プール2からPCCSプール1へプール水を通す入口としてその連絡管10の設置高さで使用済燃料プールに開口している。同じく各連絡管10の左側の開口端は使用済燃料プール2からPCCSプール1へプール水を通す出口としてその連絡管10の設置高さでPCCSプール1に開口している。   On the wall 22 between the spent fuel pool 2 and the PCCS pool 1, a horizontal pipe communicating with both pools is installed as the connecting pipe 10. The installation height of the communication pipe 10 is set to a height that can secure a water depth necessary for shielding radiation from spent fuel being stored above the fuel storage rack 13, that is, a water depth 12 necessary for shielding. The connecting pipes 10 are installed in three places as shown in FIG. 1, and the open end on the right side of each connecting pipe 10 is installed as an inlet for passing pool water from the spent fuel pool 2 to the PCCS pool 1. Open to the spent fuel pool at a height. Similarly, the open end on the left side of each connecting pipe 10 opens to the PCCS pool 1 at the installation height of the connecting pipe 10 as an outlet for passing pool water from the spent fuel pool 2 to the PCCS pool 1.

この原子力発電所では、炉心で圧力容器20内の冷却水が加熱されて生じた高温高圧な蒸気が、圧力容器20から図示していない配管を通じて原子炉建屋9外に設置されている図示していない発電機の駆動タービンに供給され、その高温高圧の蒸気を受けたタービンが回転して発電機を駆動し、発電作用を成す。   In this nuclear power plant, the high-temperature and high-pressure steam generated by heating the cooling water in the pressure vessel 20 in the reactor core is installed outside the reactor building 9 through piping not shown from the pressure vessel 20. The turbine that receives the high-temperature and high-pressure steam rotates to drive the generator and generate power.

この発電所の原子炉格納容器5内で圧力容器20や圧力容器20に通じる配管から高温高圧な蒸気がドライウェル23内に漏洩して原子炉冷却材漏洩事故(以下、LOCAとも言う。)が生じた場合には、原子炉格納容器5内が通常よりも高温且つ高圧になる。この場合には、ドライウェル23内の高温高圧な蒸気を含む雰囲気はPCCS蒸気供給管6を通ってPCCS熱交換器3内に入り、PCCS熱交換器3に接しているPCCSプール1内のプール水で冷却されて凝縮する。PCCS熱交換器3内で凝縮した蒸気は凝縮水となって圧力抑制プール8内へPCCS凝縮水排出管7を通じて排出される。これによって、原子炉格納容器5内の高温高圧状態は緩和されて安全が維持される。   In the reactor containment vessel 5 of the power plant, high-temperature and high-pressure steam leaks from the pressure vessel 20 and the piping leading to the pressure vessel 20 into the dry well 23 to cause a reactor coolant leakage accident (hereinafter also referred to as LOCA). If it occurs, the temperature in the reactor containment vessel 5 becomes higher and higher than usual. In this case, the atmosphere containing high-temperature and high-pressure steam in the dry well 23 enters the PCCS heat exchanger 3 through the PCCS steam supply pipe 6, and the pool in the PCCS pool 1 that is in contact with the PCCS heat exchanger 3. Cooled with water and condensed. The steam condensed in the PCCS heat exchanger 3 becomes condensed water and is discharged into the pressure suppression pool 8 through the PCCS condensed water discharge pipe 7. As a result, the high temperature and high pressure state in the reactor containment vessel 5 is relaxed and safety is maintained.

このようなPCCS熱交換器3による高温高圧蒸気の凝縮を繰り返すうちに、PCCSプール1内のプール水はPCCS熱交換器3で加熱され、PCCSプール1内のプール水は蒸発してそのプール水の水位が低下する。PCCSプール1内のプール水の水位が低下すると、使用済燃料プール2内のプール水がPCCSプール1へ連絡管10を通じて流入し、PCCSプール1内のプール水の水位の低下が遅くなる。そのため、PCCS熱交換器3を利用しての原子炉格納容器5内の高温高圧状況の緩和作用が長期に渡って維持され、安全が長期に渡って維持される。   While the condensation of the high-temperature and high-pressure steam by the PCCS heat exchanger 3 is repeated, the pool water in the PCCS pool 1 is heated by the PCCS heat exchanger 3, and the pool water in the PCCS pool 1 is evaporated and the pool water is evaporated. The water level of the water drops. When the pool water level in the PCCS pool 1 decreases, the pool water in the spent fuel pool 2 flows into the PCCS pool 1 through the connecting pipe 10, and the decrease in the pool water level in the PCCS pool 1 is delayed. Therefore, the mitigating action of the high-temperature and high-pressure state in the reactor containment vessel 5 using the PCCS heat exchanger 3 is maintained for a long time, and safety is maintained for a long time.

使用済燃料プール2内のプール水がPCCSプール1へ連絡管10を通じて流入すると、使用済燃料プール2内のプール水の水位も低下し、その水位が連絡管10の開口位置以下になる。このように成ると、使用済燃料プール2内のプール水がPCCSプール1へ連絡管10を通じて流入する作用が停止し、使用済燃料プール2内のプール水の水位降下が、図2の点線で示した水位25で止まって維持される。この水位25の位置は、図2のように、燃料貯蔵ラック13の上方に放射線の遮蔽上必要な水深12を確保できる位置である。そのため、燃料貯蔵ラック13に貯蔵されている使用済燃料からの放射線のプール水面から上方への漏洩は、遮蔽上必要な水深12の水の層で遮蔽され、原子炉建屋9内での危険な状態の放射線漏れを防止できる。   When the pool water in the spent fuel pool 2 flows into the PCCS pool 1 through the connecting pipe 10, the pool water level in the spent fuel pool 2 also decreases, and the water level becomes lower than the opening position of the connecting pipe 10. As a result, the action of the pool water in the spent fuel pool 2 flowing into the PCCS pool 1 through the connecting pipe 10 stops, and the water level drop in the spent fuel pool 2 is indicated by the dotted line in FIG. Stops and maintains at the indicated water level 25. As shown in FIG. 2, the position of the water level 25 is a position where a water depth 12 necessary for shielding radiation can be secured above the fuel storage rack 13. Therefore, the upward leakage of the radiation from the spent fuel stored in the fuel storage rack 13 from the pool water surface is shielded by a water layer having a depth of 12 necessary for shielding, which is dangerous in the reactor building 9. The radiation leakage of the state can be prevented.

このように、使用済燃料プール2からの放射線漏れを達成しながらも、使用済燃料プール2内のプール水をPCCSプール1へ自動的に注ぎ足すことが出来るので、PCCSプール1の大型化を企てなくともLOCA時における長期の安全を確保できる。   As described above, the pool water in the spent fuel pool 2 can be automatically added to the PCCS pool 1 while achieving radiation leakage from the spent fuel pool 2, so that the size of the PCCS pool 1 can be increased. Long-term safety at the time of LOCA can be ensured without planning.

そのため、本来ならば、図1の点線で示した領域にまで拡大されなければならないPCCSプール1の大型化を、図1の点線で示したPCCSプールの配置スペース削減範囲11からPCCSプール1を削除して原子炉建屋9の建設物量を低減できる。   Therefore, if the PCCS pool 1 should be enlarged to the area shown by the dotted line in FIG. 1, the PCCS pool 1 is deleted from the PCCS pool placement space reduction range 11 shown by the dotted line in FIG. As a result, the amount of the building in the reactor building 9 can be reduced.

また、燃料貯蔵ラック13からPCCSプール1の方向へ放射された放射線は、使用済燃料プール2に隣接するPCCSプール1のプール水でも遮蔽されることから、壁22による放射線遮蔽の機能を大きく期待する必要が無くなり、その分、壁22の水平方向の厚み26が薄く出来る。そのため、一層のこと原子炉建屋9の建設物量が低減される。   Further, the radiation radiated from the fuel storage rack 13 toward the PCCS pool 1 is also shielded by the pool water of the PCCS pool 1 adjacent to the spent fuel pool 2, so that the radiation shielding function by the wall 22 is greatly expected. Therefore, the horizontal thickness 26 of the wall 22 can be reduced accordingly. Therefore, the construction amount of the reactor building 9 is further reduced.

本実施例では、図2に示すPCCSプール1が設置される原子炉建屋9において、PCCSプール1と使用済燃料プール2の間を放射線の遮蔽上必要な水深12を確保する位置以上に連絡管10で連絡することで、PCCSの作動時の使用済燃料プール2の水位低下に対する安全性を確保することができ、かつ、使用済燃料プール水の一部をPCCSプール冷却水として使用することで、PCCSプール1の容量を低減できた。これによって、図1のPCCSプールの配置スペース削除範囲11に示すとおりPCCSプール1配置エリアの削減化を図ることができる。   In the present embodiment, in the reactor building 9 in which the PCCS pool 1 shown in FIG. 2 is installed, the connecting pipe is more than the position where the water depth 12 necessary for shielding radiation is secured between the PCCS pool 1 and the spent fuel pool 2. By connecting at 10, it is possible to ensure the safety against the water level drop of the spent fuel pool 2 during the operation of the PCCS, and by using a part of the spent fuel pool water as PCCS pool cooling water. The capacity of the PCCS pool 1 could be reduced. As a result, the PCCS pool 1 arrangement area can be reduced as shown in the PCCS pool arrangement space deletion range 11 in FIG.

更なるPCCSプール1配置エリアの削減を達成するためには、図2の水位25の状態に使用済燃料プール2内のプール水が低下した後に、放射線の遮蔽上必要な水深12の使用済燃料プール2内のプール水をPCCSプール1内へ連通管10を通じて補給できるようにすることが必要である。そのためには、図2で示した連通管10の高さ位置を遮蔽上必要な水深12だけ下方に下げた位置とし、燃料貯蔵ラック13の上端高さに使用済燃料プール2内のプール水の水位が一致して維持されるるように連通管10の高さを変更する。   In order to achieve further reduction in the area where the PCCS pool 1 is arranged, after the pool water in the spent fuel pool 2 drops to the state of the water level 25 in FIG. It is necessary to replenish the pool water in the pool 2 into the PCCS pool 1 through the communication pipe 10. For this purpose, the height of the communication pipe 10 shown in FIG. 2 is set to a position where the water depth 12 necessary for shielding is lowered downward, and the pool water in the spent fuel pool 2 is set at the upper end height of the fuel storage rack 13. The height of the communication pipe 10 is changed so that the water level is maintained in agreement.

このように、燃料貯蔵ラック13の上端高さに使用済燃料プール2内のプール水の水位が維持されるようにすれば、燃料貯蔵ラック13内の貯蔵中の燃料はプール水に浸されて冷却される状態が維持できる上、その燃料から放射された中性子も減速されて燃料の核反応が臨界に達することを抑制できる状態も維持できる。そのため、PCCSプール1の小型化によってもPCCS作動期間を極力長く維持しつつ、燃料の貯蔵状態を極力安全に維持できる。   Thus, if the water level of the pool water in the spent fuel pool 2 is maintained at the upper end height of the fuel storage rack 13, the fuel being stored in the fuel storage rack 13 is immersed in the pool water. In addition to maintaining the cooled state, the neutron emitted from the fuel is also decelerated, and the state in which the nuclear reaction of the fuel can be prevented from reaching a critical state can be maintained. Therefore, even when the PCCS pool 1 is downsized, the fuel storage state can be maintained as safely as possible while maintaining the PCCS operation period as long as possible.

本発明は、原子力発電所の原子炉建屋に利用分野が存在している。   The field of application of the present invention is in a reactor building of a nuclear power plant.

本発明の実施例による原子炉建屋内の使用済燃料プールとPCCSプールの平面配置を示した図である。It is the figure which showed the planar arrangement | positioning of the spent fuel pool and the PCCS pool in the reactor building by the Example of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG.

符号の説明Explanation of symbols

1…PCCSプール、2…使用済燃料プール、3…PCCS熱交換器、4…燃料貯蔵ラックの高さ、5…原子炉格納容器、6…PCCS蒸気供給管、7…PCCS凝縮水排出管、8…圧力抑制プール、9…原子炉建屋、10…連絡管、11…PCCSプールの配置スペース削減範囲、12…遮蔽上必要な水深、13…燃料貯蔵ラック、14…使用済燃料、15…燃料移送時の遮蔽上必要な水深、16…使用済燃料の高さ。
DESCRIPTION OF SYMBOLS 1 ... PCCS pool, 2 ... Spent fuel pool, 3 ... PCCS heat exchanger, 4 ... Fuel storage rack height, 5 ... Reactor containment vessel, 6 ... PCCS steam supply pipe, 7 ... PCCS condensate discharge pipe, DESCRIPTION OF SYMBOLS 8 ... Pressure suppression pool, 9 ... Reactor building, 10 ... Connecting pipe, 11 ... Arrangement space reduction range of PCCS pool, 12 ... Water depth required for shielding, 13 ... Fuel storage rack, 14 ... Spent fuel, 15 ... Fuel Depth required for shielding during transportation, 16 ... height of spent fuel.

Claims (6)

内部に静的格納容器冷却系プール及び使用済燃料プールを設け、前記使用済燃料プール内の水を前記静的格納容器冷却系プールに導く流路を設け、前記流路の前記使用済燃料プール側の開口部を、前記使用済燃料プール内の燃料貯蔵ラックの上端のレベルよりも上の位置に設けてある原子炉建屋。   A static containment vessel cooling system pool and a spent fuel pool are provided therein, a flow path for guiding water in the spent fuel pool to the static containment vessel cooling system pool is provided, and the spent fuel pool in the flow path is provided. A reactor building in which a side opening is provided at a position above the level of the upper end of the fuel storage rack in the spent fuel pool. 請求項1において、前記開口部を、前記燃料貯蔵ラックに貯蔵した燃料からの放射線を遮蔽する上で必要な最低のプール水面の位置よりも上の位置に設けてある原子炉建屋。   The reactor building according to claim 1, wherein the opening is provided at a position higher than a minimum pool water surface necessary for shielding radiation from fuel stored in the fuel storage rack. 請求項1又は請求項2において、前記静的格納容器冷却系プールと前記使用済燃料プールとが共通の壁を挟んで水平方向に重なる配置にて隣接し合うように設けられている原子炉建屋。   3. The reactor building according to claim 1, wherein the static containment vessel cooling system pool and the spent fuel pool are adjacent to each other in a horizontally overlapping arrangement with a common wall in between. . 請求項3において、前記流路は前記壁を貫通した貫通孔である原子炉建屋。   The reactor building according to claim 3, wherein the flow path is a through-hole penetrating the wall. 請求項1又は請求項2において、前記流路は、前記静的格納容器冷却系プール内の水面の位置が前記使用済燃料プール内の水面の位置よりも低下したときに、前記水を導く流路である原子炉建屋。   3. The flow path according to claim 1, wherein the flow path guides the water when a position of a water surface in the static containment vessel cooling system pool is lower than a position of a water surface in the spent fuel pool. Reactor building that is the road. 請求項1において、前記静的格納容器冷却系プール内にプール水面下となる位置で設置された静的格納容器冷却系熱交換器と、
前記静的格納容器冷却系熱交換器へドライウェル内の蒸気を供給するように前記静的格納容器冷却系熱交換器と前記ドライウェル内とを連通する静的格納容器冷却系蒸気供給管と、
前記静的格納容器冷却系熱交換器内の凝縮水を圧力抑制プール内に排出するように前記静的格納容器冷却系熱交換器と前記圧力抑制プール内とを連通する静的格納容器冷却系凝縮水排出管とを備えた原子炉建屋。
In Claim 1, the static containment vessel cooling system heat exchanger installed in the static containment vessel cooling system pool at a position below the pool water surface,
A static containment vessel cooling system steam supply pipe that communicates the static containment vessel cooling system heat exchanger and the dry well so as to supply steam in the dry well to the static containment vessel cooling system heat exchanger; ,
A static containment vessel cooling system that communicates the static containment vessel cooling system heat exchanger and the pressure suppression pool so as to discharge condensed water in the static containment vessel cooling system heat exchanger into the pressure suppression pool. Reactor building with condensate discharge pipe.
JP2003391586A 2003-11-21 2003-11-21 Reactor building Expired - Fee Related JP4340521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391586A JP4340521B2 (en) 2003-11-21 2003-11-21 Reactor building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391586A JP4340521B2 (en) 2003-11-21 2003-11-21 Reactor building

Publications (2)

Publication Number Publication Date
JP2005156198A true JP2005156198A (en) 2005-06-16
JP4340521B2 JP4340521B2 (en) 2009-10-07

Family

ID=34718552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391586A Expired - Fee Related JP4340521B2 (en) 2003-11-21 2003-11-21 Reactor building

Country Status (1)

Country Link
JP (1) JP4340521B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210283A (en) * 2008-02-29 2009-09-17 Toshiba Corp Static cooling depressurization system and pressurized water nuclear power plant
US20120250813A1 (en) * 2011-03-30 2012-10-04 Westinghouse Electric Company Llc Self-contained emergency spent nuclear fuel pool cooling system
WO2013035917A1 (en) * 2011-09-08 2013-03-14 한전원자력연료 주식회사 Passive apparatus for cooling spent fuel storage tub
JP2014010080A (en) * 2012-06-29 2014-01-20 Toshiba Corp Nuclear power plant and static containment vessel cooling system
JP2014081219A (en) * 2012-10-12 2014-05-08 Toshiba Corp Nuclear power plant and static containment vessel cooling system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210283A (en) * 2008-02-29 2009-09-17 Toshiba Corp Static cooling depressurization system and pressurized water nuclear power plant
JP4592773B2 (en) * 2008-02-29 2010-12-08 株式会社東芝 Static cooling decompression system and pressurized water nuclear plant
US20120250813A1 (en) * 2011-03-30 2012-10-04 Westinghouse Electric Company Llc Self-contained emergency spent nuclear fuel pool cooling system
US9847148B2 (en) * 2011-03-30 2017-12-19 Westinghouse Electric Company Llc Self-contained emergency spent nuclear fuel pool cooling system
WO2013035917A1 (en) * 2011-09-08 2013-03-14 한전원자력연료 주식회사 Passive apparatus for cooling spent fuel storage tub
US9640286B2 (en) 2011-09-08 2017-05-02 Kepco Nuclear Fuel Co., Ltd. Passive cooling apparatus of spent fuel pool
JP2014010080A (en) * 2012-06-29 2014-01-20 Toshiba Corp Nuclear power plant and static containment vessel cooling system
EP2680272A3 (en) * 2012-06-29 2016-06-01 Kabushiki Kaisha Toshiba Nuclear power plant and passive containment cooling system
US9697914B2 (en) 2012-06-29 2017-07-04 Kabushiki Kaisha Toshiba Nuclear power plant and passive containment cooling system
JP2014081219A (en) * 2012-10-12 2014-05-08 Toshiba Corp Nuclear power plant and static containment vessel cooling system

Also Published As

Publication number Publication date
JP4340521B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
KR950009881B1 (en) Neclear power facilities
JP4592773B2 (en) Static cooling decompression system and pressurized water nuclear plant
JP5517357B2 (en) Passive emergency water supply system
US5087408A (en) Nuclear power facilities
TWI559328B (en) Static storage container cooling filter exhaust system and nuclear power plant
JP5429715B2 (en) Immersion containment for nuclear reactors
JP6315618B2 (en) Alternative passive cooling system and method for spent fuel pool
JP5911762B2 (en) Nuclear plant and static containment cooling system
EP2791943B1 (en) Emergency core cooling system (eccs) for nuclear reactor employing closed heat transfer pathways
CN108461163B (en) Emergency core cooling system and boiling water reactor device using same
KR101889580B1 (en) Self-contained emergency spent nuclear fuel pool cooling system
JP2014526053A (en) Pressurized water reactor with small passive safety system
JP2012230079A (en) Nuclear power plant, fuel pool water cooling apparatus, and fuel pool water cooling method
JP6402171B2 (en) Passive cooling system for coolant storage area of nuclear power plant
CA2150275C (en) Passive emergency water system for water-cooled nuclear reactors
JP2014081219A (en) Nuclear power plant and static containment vessel cooling system
JP2010032526A (en) Reactor containment vessel and nuclear power plant using it
KR20130000572A (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and method for heat transfer-function improvement using thereof
US20180322967A1 (en) Conformal core cooling and containment structure
KR101528223B1 (en) Passive safety facility and nuclear power plant having the same
JP4340521B2 (en) Reactor building
EP2608214B1 (en) Method and apparatus for an alternative remote spent fuel pool cooling system for light water reactors
JP7399405B2 (en) nuclear power plant
KR20220162537A (en) Atomic reactor passive cooling installation
JP2018063197A (en) Nuclear power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees