JP2005155777A - Sound absorption thermal insulation material for hose - Google Patents
Sound absorption thermal insulation material for hose Download PDFInfo
- Publication number
- JP2005155777A JP2005155777A JP2003395131A JP2003395131A JP2005155777A JP 2005155777 A JP2005155777 A JP 2005155777A JP 2003395131 A JP2003395131 A JP 2003395131A JP 2003395131 A JP2003395131 A JP 2003395131A JP 2005155777 A JP2005155777 A JP 2005155777A
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- sound
- heat
- sound absorption
- hose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 15
- 239000012774 insulation material Substances 0.000 title claims abstract description 7
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 56
- 239000000835 fiber Substances 0.000 claims abstract description 50
- 238000009413 insulation Methods 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 239000011810 insulating material Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000004744 fabric Substances 0.000 abstract 4
- 238000005452 bending Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 27
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- -1 for example Polymers 0.000 description 17
- 229920000139 polyethylene terephthalate Polymers 0.000 description 15
- 239000005020 polyethylene terephthalate Substances 0.000 description 15
- 239000006260 foam Substances 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 229920002994 synthetic fiber Polymers 0.000 description 5
- 239000012209 synthetic fiber Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000011162 core material Substances 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 238000004049 embossing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920006257 Heat-shrinkable film Polymers 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920001986 Vinylidene chloride-vinyl chloride copolymer Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920005670 poly(ethylene-vinyl chloride) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Pipe Accessories (AREA)
- Thermal Insulation (AREA)
Abstract
Description
本発明は、気体移送用のホース(チューブやダクトも含む)、例えば、常温と異なる温度とした冷暖房用空気の移送用ダクトホースに適した断熱作用と吸音作用を備えた気体移送用のホース用吸音断熱材に関する。 The present invention relates to a gas transfer hose (including a tube and a duct), for example, a gas transfer hose having a heat insulating action and a sound absorbing action suitable for a duct hose for air conditioning heating at a temperature different from room temperature. It relates to a sound-absorbing heat insulating material.
従来のこの種の一般的な気体移送用のダクトは、ダクト本体の外周面に、断熱用発泡材を隙間なく螺旋状に巻き付け、その外周面に薄膜状の樹脂テープを巻き付けたもので、ダクト本体がダクトの内周面を形成するものであった。また、これらの吸音材としては、ウレタン等の連続気泡樹脂帯を使用しており、巻きつけ時に切れ易く作業性が良くなかった。 A conventional general gas transfer duct of this type is a duct in which a foam for heat insulation is spirally wound around the outer peripheral surface of the duct body, and a thin film-like resin tape is wound around the outer peripheral surface. The main body formed the inner peripheral surface of the duct. Moreover, as these sound-absorbing materials, an open-cell resin band such as urethane is used, and it is easy to cut at the time of winding and the workability is not good.
特許文献1には、管の周囲に設けた防音層と、この防音層の外表面を覆うフィルム(熱収縮性フィルム)とを備えた防音管部材が開示されている。この文献には、遮音層は塩化ビニル系樹脂よりなる。塩化ビニル系樹脂としては、例えば塩化ビニル単独で重合した樹脂のほか、塩化ビニル単量体と共重合し得る単量体のうちの少なくとも1種以上とランダム共重合またはブロック共重合して得られる塩化ビニル共重合樹脂、例えば酢酸ビニル−塩化ビニル共重合体、エチレン−塩化ビニル共重合体、塩化ビニリデン−塩化ビニル共重合体、あるいは塩化ビニル単量体とグラフト共重合し得る樹脂とグラフト共重合して得られる塩化ビニルグラフト共重合樹脂、例えばエチレン−酢酸ビニル−塩化ビニルグラフト共重合体、ポリウレタン−塩化ビニルグラフト共重合体なども好適に使用でき、吸音層は、ウレタン、クロロプレン、スチレンブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル、スチレンなどの樹脂を単独で又は併用したものであり、連続気泡構造となっている。しかし、これらの連続気泡構造体は、強度が弱く巻きつけ加工時には、補強材を使用したり遮音層と吸音層を積層したりする必要があった。 Patent Document 1 discloses a soundproof tube member including a soundproof layer provided around a tube and a film (heat-shrinkable film) that covers the outer surface of the soundproof layer. In this document, the sound insulation layer is made of a vinyl chloride resin. As the vinyl chloride resin, for example, it is obtained by random copolymerization or block copolymerization with at least one monomer copolymerizable with vinyl chloride monomer in addition to resin polymerized with vinyl chloride alone. Vinyl chloride copolymer resin, for example, vinyl acetate-vinyl chloride copolymer, ethylene-vinyl chloride copolymer, vinylidene chloride-vinyl chloride copolymer, or a graft copolymer with a resin that can be graft copolymerized with a vinyl chloride monomer The vinyl chloride graft copolymer resin obtained, for example, ethylene-vinyl acetate-vinyl chloride graft copolymer, polyurethane-vinyl chloride graft copolymer, etc. can be suitably used, and the sound absorbing layer is made of urethane, chloroprene, styrene butadiene copolymer. Polymer, polyethylene, polypropylene, ethylene vinyl acetate, styrene resin alone Or are those combination with, and has a continuous pore structure. However, these open cell structures have low strength, and it is necessary to use a reinforcing material or to laminate a sound insulation layer and a sound absorption layer at the time of winding.
また、特許文献2には、従来のダクトにあっては、送風機等の送風源から発生する騒音を、ダクトが案内筒となって気体の移送とともにダクトの開口部に案内して気体とともに吐き出し、人に不快感を与える。この騒音は、ダクトの使用中即ち送風作動中継続して発生するため人の神経にも障るという課題を有していた。解決する手段の一つとして、所定幅の繊維質帯(例えばポリプロピレン(PP)の連続長繊維を積層し熱エンボス加工を施して接着形成した不織布)を螺旋状に巻き付けその接続縁間を硬質樹脂帯材で接着させてダクトの内面層を形成させ、その外周面上に連続気泡の発泡体帯をその側縁どうしを接当させながら螺旋巻きした連続気泡層と、その外周面上に薄膜シート状帯を螺旋巻きして形成した中間シート層と、その外周面上に独立気泡の発泡体帯を螺旋巻きした独立気泡層とを形成し、最外周を樹脂テープの螺旋巻きによって形成した外面層で包み込んである構造としたものを開発し提案している。この商品の課題は、所定幅の繊維質帯(例えばポリプロピレン(PP)の連続長繊維を積層し熱エンボス加工を施して接着形成した不織布)だけでは、吸音性能、断熱性能を満足できないため、連続気泡の発泡体を使わねばならず、製造工程が複雑でコスト的にも満足のいくものではなかった。 Further, in Patent Document 2, in a conventional duct, noise generated from a blower source such as a blower is guided to the opening of the duct as the duct becomes a guide cylinder and is discharged together with the gas. Gives people discomfort. Since this noise is continuously generated during the use of the duct, that is, during the air blowing operation, there is a problem that it also disturbs human nerves. As one of the means to solve the problem, a fibrous band having a predetermined width (for example, a nonwoven fabric formed by laminating continuous long fibers of polypropylene (PP) and bonded by hot embossing) is spirally wound and a hard resin is formed between the connection edges. Adhering with a band material to form an inner surface layer of the duct, an open cell foam layer spirally wound on the outer peripheral surface of the open cell foam band with the side edges contacting each other, and a thin film sheet on the outer peripheral surface An outer sheet layer formed by spirally winding a resin band, and forming an intermediate sheet layer formed by spirally winding a strip and a closed cell layer spirally wound by a closed cell foam band on its outer peripheral surface We have developed and proposed a structure that is wrapped in. The problem with this product is that it is not possible to satisfy sound absorption performance and heat insulation performance only with a fiber band of a predetermined width (for example, a nonwoven fabric formed by laminating continuous long fibers of polypropylene (PP) and applying heat embossing). Cellular foam had to be used, the manufacturing process was complicated and the cost was not satisfactory.
また、特許文献3には、所定幅の不織布がその側縁部が接当または重合されながら螺旋状に巻回されて筒状に形成された不織布層と、硬質合成樹脂製の線材であって前記不織布の接合部上において螺旋状に巻回され、その重合面が不織布と融着または接着された補強芯材と、前記不織布とほぼ同幅の帯状に形成された発泡樹脂帯材が、その両側縁部が隣り合う二つの補強芯材上に位置する状態で螺旋状に巻回されてなる発泡帯材層と、該発泡帯材の未巻回側の側面と前記補強芯材の未巻回側の側面とに亙って接着された接着用樹脂と
、前記発泡帯材層の外周面上を被覆する樹脂被覆膜層とによって構成された吸音断熱ダクトが開示されている。この吸音断熱ダクトは、予定通りのほぼ完全な消音作用と断熱作用とを果たすことができる優れた効果を備えており、送風ダクトとして使用するのに理想的な好適商品である。しかし、この商品の課題は、吸音材としては帯状に形成された発泡樹脂帯材を主としており、不織布層と発泡帯材層との2層で吸音作用と断熱作用とを持たせており、未だに製造工程がやや繁雑であることである。
Patent Document 3 discloses a non-woven fabric layer formed into a cylindrical shape by winding a non-woven fabric of a predetermined width in a spiral shape while the side edges are abutted or polymerized, and a wire made of a hard synthetic resin. A reinforcing core material that is spirally wound on the joint portion of the nonwoven fabric, the polymerization surface of which is fused or bonded to the nonwoven fabric, and a foamed resin belt material that is formed in a strip shape having substantially the same width as the nonwoven fabric, Foam strip layer wound spirally in a state in which both side edge portions are positioned on adjacent two reinforcing core members, a side surface on the unwrapped side of the foam strip member, and unwinding of the reinforcing core member There is disclosed a sound-absorbing and heat-insulating duct composed of an adhesive resin bonded over the side surface on the rotation side and a resin-coated film layer covering the outer peripheral surface of the foamed strip layer. This sound-absorbing and heat-insulating duct has an excellent effect of being able to achieve almost perfect silencing and heat-insulating functions as planned, and is an ideal suitable product for use as a blower duct. However, the problem with this product is that the sound absorbing material is mainly a foamed resin band formed in a strip shape, and the two layers of the non-woven fabric layer and the foamed band material layer have a sound absorbing function and a heat insulating function. The manufacturing process is somewhat complicated.
本発明の目的は、上記問題点を解決し、屈曲性又は可撓性を備え、配管作業性を改善できるとともに、防音性に優れ、断熱性共に大きく向上でき、製造に当たっては、連続生産するのに適していて低コストで量産が可能で、新規な設備を必要としない構造とし、更には、環境にやさしい吸音断熱ダクトを提供しようとするものである。 The object of the present invention is to solve the above-mentioned problems, have flexibility or flexibility, improve piping workability, have excellent soundproofing properties and greatly improve both heat insulation properties, and continuously produce in production. Therefore, it is intended to provide a sound-absorbing and heat-insulating duct that is suitable for the above-mentioned, can be mass-produced at low cost, does not require new equipment, and is environmentally friendly.
上記目的は、(1)マトリックス繊維と熱融着繊維からなる不織布吸音断熱材であって、マトリックス繊維が30〜95wt%、熱融着繊維が5〜70wt%であることを特徴とするダクト用吸音断熱材によって達成される。また、(2)該不織布吸音材の密度が5kg/m3〜100kg/m3で、厚さが1mm〜100mmで、巾が10mm〜1000mmが好ましく、(3)該マトリックス繊維のうち少なくとも1種類が異型構造であることが好ましく、(4)該不織布の引張り強度のMD方向が5N/cm2〜50N/cm2、CD方向が3N/cm2〜40N/cm2であることが好ましく、(5)不織布の表面硬度が、15〜60であることを特徴とするホース(チューブ、ダクトを含む)用吸音断熱材によって達成される。 The object is (1) a nonwoven fabric sound-absorbing heat insulating material composed of matrix fibers and heat-sealing fibers, wherein the matrix fibers are 30 to 95 wt% and the heat-sealing fibers are 5 to 70 wt%. Achieved by sound absorbing insulation. Further, (2) at a density of the nonwoven fabric sound absorbing material 5kg / m 3 ~100kg / m 3 , a thickness of 1 mm to 100 mm, width is preferably 10Mm~1000mm, (3) at least one of said matrix fibers There is preferably a different structure, (4) it is preferred that the MD direction of the tensile strength of the nonwoven fabric is 5N / cm 2 ~50N / cm 2 , CD direction is 3N / cm 2 ~40N / cm 2 , ( 5) Achieved by a sound-absorbing heat insulating material for hoses (including tubes and ducts), wherein the nonwoven fabric has a surface hardness of 15-60.
本発明により、発泡樹脂帯材を使用せずとも防音性に優れ、断熱性共に大きく向上でき、配管作業性を改善できるとともに、製造に当たっては、連続生産するのに適していて低コストで量産が可能で、新規な設備を必要としない構造とし、更には、環境にやさしい吸音断熱ダクトが提供できる。 According to the present invention, it is excellent in soundproofing without using a foamed resin band material, both heat insulation can be greatly improved, piping workability can be improved, and in production, it is suitable for continuous production and can be mass-produced at low cost. It is possible to provide a structure that does not require a new facility, and can provide an environment-friendly sound-absorbing and heat-insulating duct.
本発明のホース用吸音断熱材は、マトリックス繊維と熱融着繊維からなり、マトリックス繊維が30wt%〜95wt%、熱融着繊維が5〜70wt%で構成され不織布である。 The sound-absorbing heat insulating material for a hose of the present invention is made of a matrix fiber and a heat-sealing fiber, and is a non-woven fabric composed of 30 wt% to 95 wt% of the matrix fiber and 5 to 70 wt% of the heat sealing fiber.
また、以下の特性を有することが好ましい。、該不織布の密度が5kg/m3〜100kg/m3で、厚さが1mm〜100mmで、巾が10mm〜1000mmであることが好ましい。また、該マトリックス繊維のうち少なくとも1種類が異型構造繊維で構成されることが好ましい。また、不織布の引張り強度がMD方向が5N/cm2〜50N/cm2、CD方向が3N/cm2〜40N/cm2で有ることが好ましい。また、上記不織布の表面硬度が、15〜60であることが好ましい。また、熱処理により表面が膜状になっている不織布が好ましい。 Moreover, it is preferable to have the following characteristics. , A density of the nonwoven fabric is 5kg / m 3 ~100kg / m 3 , a thickness of 1 mm to 100 mm, it is preferable width is 10Mm~1000mm. Moreover, it is preferable that at least one of the matrix fibers is composed of atypical structural fibers. Further, it is preferable that the tensile strength of the nonwoven fabric MD direction 5N / cm 2 ~50N / cm 2 , CD direction is 3N / cm 2 ~40N / cm 2 . Moreover, it is preferable that the surface hardness of the said nonwoven fabric is 15-60. A nonwoven fabric whose surface is formed into a film by heat treatment is preferred.
本発明に好ましく用いられる熱融着性繊維の例として、鞘部分がポリオレフィン又はイソフタル酸やε−カプロラクトン共重合ポリエステルからなり、芯部分がポリエチレンテレフタレートである芯鞘型熱融着性繊維が挙げられる。 Examples of the heat-fusible fibers preferably used in the present invention include core-sheath type heat-fusible fibers in which the sheath part is made of polyolefin or isophthalic acid or ε-caprolactone copolymer polyester and the core part is polyethylene terephthalate. .
融点110℃〜130℃の共重合ポリエステルからなる芯鞘型熱融着性繊維は、熱処理が低温で加工し易い。また、鞘部分がポリオレフィンからなる芯鞘型熱融着性繊維は、柔軟性があるので曲率の小さいダクト配管用途に適している。また、ε−カプロラクトン共重合ポリエステルを鞘成分とする芯鞘型熱融着性繊維は、融点が高いので耐熱性を必要とする部位に適している。 A core-sheath type heat-fusible fiber made of a copolyester having a melting point of 110 ° C. to 130 ° C. is easily processed at a low temperature by heat treatment. Moreover, the core-sheath type heat-fusible fiber whose sheath part is made of polyolefin is flexible and therefore suitable for duct piping applications having a small curvature. Further, the core-sheath type heat-fusible fiber having ε-caprolactone copolymer polyester as a sheath component is suitable for a portion requiring heat resistance because of its high melting point.
上記不織布吸音断熱材の熱融着性繊維の含有量は、5wt%〜70wt%が好ましい。この範囲であれば、接着性に乏しいために不織布の強度低下の恐れがなく、不織布の風合いが硬くなりすぎるのでダクトホースへの不織布吸音断熱材の取り付け作業の効率を損ねたり、不織布吸音断熱材のホースへのフィット性が悪くなることがない。 As for content of the heat-fusible fiber of the said nonwoven fabric sound-absorbing heat insulating material, 5 wt%-70 wt% are preferable. If it is within this range, the adhesive strength is poor, so there is no risk of the nonwoven fabric's strength being lowered, and the nonwoven fabric's texture becomes too hard. The fit to the hose will not deteriorate.
本発明に好ましく用いられるマトリクス繊維は、天然繊維、合成繊維いずれでも良い。天然繊維を使用する場合、例えば羊毛、コットン、シルクなどを使用することができる。また、天然繊維素より再生したレーヨンでも構わない。また、これらの二種以上を混合しても構わない。 The matrix fibers preferably used in the present invention may be natural fibers or synthetic fibers. When natural fibers are used, for example, wool, cotton, silk and the like can be used. Also, rayon regenerated from natural fiber may be used. Moreover, you may mix these 2 or more types.
合成繊維としては、例えばアクリル、モダクリルあるいはポリエチレンテレフタレートやポリブチレンテレフタレート、ポリ乳酸のようなポリエステル、ナイロン6やナイロン66のなどのポリアミドおよびこれらの共重合体、ポリエチレンナフタレート、ポリトリメチレンテレフタレートなどを使用することができる。また、これらの二種以上を混合しても構わない。 Examples of synthetic fibers include acrylic, modacrylic, polyethylene terephthalate, polybutylene terephthalate, polyesters such as polylactic acid, polyamides such as nylon 6 and nylon 66, and copolymers thereof, polyethylene naphthalate, polytrimethylene terephthalate, and the like. Can be used. Moreover, you may mix these 2 or more types.
合成繊維はそのままでも利用できるが、後加工により各種性能を付与したものを用いてもよい。例えば、撥水処理、難燃処理等を施したものが挙げられる。 Synthetic fibers can be used as they are, but those provided with various performances by post-processing may be used. For example, those subjected to water repellent treatment, flame retardant treatment and the like can be mentioned.
一方、ポリエステル系の合成繊維100%で構成すれば、燃焼発生ガスや汎用性から環境にやさしく、作業性も良好で好ましい。また、ペットボトルからのリサイクル繊維を使用することもリサイクルという観点から好ましい。 On the other hand, if it is composed of 100% polyester-based synthetic fiber, it is preferable because it is environmentally friendly due to combustion generated gas and versatility, and workability is also good. It is also preferable from the viewpoint of recycling to use recycled fibers from PET bottles.
これらの合成繊維の繊度は特には問わないが、1dtexから30dtexが好ましい。汎用的には2dtexから15dtexがより好ましい。1dtex以下では、加工性が悪く、コストも高くなる。また、30dtex以上では吸音性能や断熱性能が悪くなる。 The fineness of these synthetic fibers is not particularly limited, but 1 dtex to 30 dtex is preferable. For general purposes, 2 to 15 dtex is more preferable. Below 1 dtex, processability is poor and costs are high. On the other hand, at 30 dtex or more, the sound absorption performance and heat insulation performance deteriorate.
本発明の不織布吸音断熱材の密度は5kg/m3〜100kg/m3が好ましい。この範囲であれば、吸音性能、断熱性能が十分で強度も適当であり、剛性が高くなりすぎて加工、作業性が悪くなり、コストも高くなることもない。同様に、本発明の不織布吸音断熱材の厚みは1mm〜100mmが好ましい。ホース(チューブ、ダクトを含む)の大きさにより適宜選択すれば良い。この範囲であれば、吸音性能、断熱性能が十分で、強度も作業性、加工性に適当である。また、同様に巾については10mm〜1000mmが好ましい。ホースの直径により適宜不織布の巾を選定すれば良いが、作業性、ハンドリングの面からこの範囲が好ましい。 Density of the nonwoven acoustical insulation material of the present invention is 5kg / m 3 ~100kg / m 3 is preferred. Within this range, the sound absorption performance and heat insulation performance are sufficient and the strength is appropriate, the rigidity becomes too high, the processing and workability deteriorate, and the cost does not increase. Similarly, the thickness of the nonwoven fabric sound-absorbing heat insulating material of the present invention is preferably 1 mm to 100 mm. What is necessary is just to select suitably according to the magnitude | size of a hose (a tube and a duct are included). Within this range, sound absorption performance and heat insulation performance are sufficient, and strength is suitable for workability and workability. Similarly, the width is preferably 10 mm to 1000 mm. The width of the nonwoven fabric may be appropriately selected depending on the diameter of the hose, but this range is preferable from the viewpoint of workability and handling.
マトリックス繊維のうち少なくとも1種類が異型断面繊維を用いることが好ましい。特に中空断面繊維は、不織布に嵩高性を持たせ、断熱性能も良好となるので好ましい。 It is preferable that at least one of the matrix fibers is a modified cross-section fiber. In particular, hollow cross-section fibers are preferred because they give the nonwoven fabric bulkiness and good heat insulation performance.
また、不織布吸音断熱材の引っ張り強度はMD方向が5N/cm2〜50N/cm2、CD方向が3N/cm2〜40N/cm2で有ることが好ましい。MD方向の引っ張り強度が5N/cm2以下の場合は、不織布のスリットや巻き返し、また、不織布吸音断熱材のホースへの巻きつけ作業時等に切れたり、伸びたりする。50N/cm2以上は剛性が高くなりすぎて加工、作業性が悪くなる。同様に、CD方向の引っ張り強度が3N/cm2以下の場合は、不織布のスリットや巻き返し、また、不織布吸音断熱材のホースへの巻きつけ作業時等に巾の変動が起こりやすい。また、40N/cm2以上は剛性が高くなりすぎて加工、作業性が悪くなる。 Further, the tensile strength of the nonwoven fabric acoustic insulation material is preferably the MD direction is at a 5N / cm 2 ~50N / cm 2 , CD direction 3N / cm 2 ~40N / cm 2 . When the tensile strength in the MD direction is 5 N / cm 2 or less, the nonwoven fabric is cut or stretched during slitting or rewinding of the nonwoven fabric or when the nonwoven fabric sound-absorbing heat insulating material is wound around the hose. If it is 50 N / cm 2 or more, the rigidity becomes too high and the workability and workability deteriorate. Similarly, when the tensile strength in the CD direction is 3 N / cm 2 or less, the width of the nonwoven fabric tends to fluctuate during slitting or rewinding of the nonwoven fabric or when the nonwoven fabric sound-absorbing heat insulating material is wound around the hose. Further, if it is 40 N / cm 2 or more, the rigidity becomes too high and the workability and workability deteriorate.
また、不織布の表面硬度が、15〜60であることが好ましい。15以下の場合は柔らかすぎて厚みの変動が起こり、60以上ではホースへのフィット性が悪く吸音性能、断熱性能が不十分になる。また、作業性も悪くなる。 Moreover, it is preferable that the surface hardness of a nonwoven fabric is 15-60. If it is 15 or less, it is too soft and the thickness varies, and if it is 60 or more, the fit to the hose is poor and the sound absorption performance and heat insulation performance are insufficient. Moreover, workability | operativity also worsens.
また、不織布が、熱処理により表面が膜状になっていることが好ましい。表面が熱処理により膜状にすることにより平滑性があがり、また、引張り強度が上がり伸度を抑制できるので、ホースへのフィット性が良くなり作業性、性能も良くなる。 Moreover, it is preferable that the nonwoven fabric has a film-like surface by heat treatment. When the surface is made into a film by heat treatment, the smoothness is improved, and the tensile strength is increased and the elongation can be suppressed, so that the fit to the hose is improved and the workability and performance are also improved.
これらの熱処理は、例えば、連続的に熱風循環式乾燥機で加熱融着させたり、遠赤外線加熱機で融着させても良い。これらの加熱処理は、不織布の片面のみを加熱するか、もしくは片面側を他の面よりもより高温で加熱処理することにより不織布表面が膜状に得られる。または、熱風循環式乾燥機、遠赤外線加熱機で通常に融着させて後に不織布の片面を熱プレートに接触させて、不織布表面を膜状にしても良い。 For example, these heat treatments may be continuously heat-sealed with a hot-air circulating dryer or with a far-infrared heater. In these heat treatments, only the one surface of the nonwoven fabric is heated, or the surface of the nonwoven fabric is obtained in a film form by heat-treating one surface side at a higher temperature than the other surface. Alternatively, the surface of the nonwoven fabric may be formed into a film by fusing it normally with a hot air circulation dryer or far-infrared heater and then bringing one side of the nonwoven fabric into contact with the heat plate.
以下、実施例を挙げて本発明を説明するが、本発明はこの実施例に限定されない。特に断りがない場合「%」は「wt%」を示す。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to this Example. Unless otherwise specified, “%” indicates “wt%”.
ホース用不織布吸音断熱材の評価方法について
1)表面硬度測定方法
高分子計器(株)製「アスカーゴム硬度計F型」目盛り=0〜100を使用し、水平に置いた試料の上面と計器の加圧面がほぼ平行になるように保ちながら、試料面に計器を静かに置き目盛り板の指針を読み取る。
About evaluation method of nonwoven fabric sound-absorbing heat insulating material for hose 1) Surface hardness measurement method "Asker rubber hardness meter F type" scale = 0-100 made by Kobunshi Keiki Co., Ltd. Gently place the instrument on the sample surface while keeping the pressure surface almost parallel, and read the pointer on the scale plate.
2)引っ張り強度
試料から幅20mm、長さ150mmにカットした試験片を作製し、定速伸長型引張試験機で、JIS L 1913に準拠して測定する。結果は、厚みと巾より不織布の単位断面積あたりの強度(N/cm2)を計算し、n=5の平均値をとる。
2) Tensile strength A test piece cut to a width of 20 mm and a length of 150 mm is prepared from the sample, and measured according to JIS L 1913 with a constant speed extension type tensile tester. As a result, the strength (N / cm 2 ) per unit cross-sectional area of the nonwoven fabric is calculated from the thickness and width, and an average value of n = 5 is taken.
[実施例1]
カネボウ合繊(株)製ポリエチレンテレフタレート(PET)中空短繊維H588(15dtex×51mm)を70%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)30%を開繊、混綿し、カード機、クロスレイヤー処理後ニードルパンチを行った。引続き試料の両面側から140℃〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節して密度が20kg/m3、厚さ10mmの不織布構造体を得た。この不織布を巾300mmにスライスし、更に50mmにスライスした。この不織布は、MD方向の引張り強度が20N/cm2、CD方向の引張り強度が15N/cm2、表面硬度が25であり、この不織布は、連続気泡の発泡体を使わなくても、ホース用吸音断熱材として吸音、断熱性能が良く、また、適度な弾力性と引張り強度を持っているので、作業性も良好なもので
あった。
[Example 1]
Kanebo Synthetic Co., Ltd. polyethylene terephthalate (PET) hollow short fiber H588 (15 dtex × 51 mm) 70%, heat-bonded fiber unitized copolymer short fiber 4080 (2.2 dtex × 51 mm) 30% Was opened, blended, and card punched and punched after cross layer treatment. Subsequently, 140 ° C. to 200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed with a roller at the exit of the heat treatment zone to adjust the thickness to a density of 20 kg / m 3 and a thickness of 10 mm. Got. This nonwoven fabric was sliced to a width of 300 mm and further sliced to 50 mm. This nonwoven fabric has a tensile strength in the MD direction of 20 N / cm 2 , a tensile strength in the CD direction of 15 N / cm 2 , and a surface hardness of 25. This nonwoven fabric can be used for hoses without using open-cell foams. As a sound-absorbing heat insulating material, sound absorption and heat insulating performance are good, and since it has appropriate elasticity and tensile strength, workability is also good.
[実施例2]
カネボウ合繊(株)製ポリエチレンテレフタレート(PET)中空短繊維H588(15dtex×51mm)を60%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)40%を開繊、混綿し、カード機、クロスレイヤー処理後ニードルパンチを行った。引続き試料の両面側から140℃〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にてローラで不織布を圧縮して厚さを調節して密度が80kg/m3、厚さ25mmの不織布構造体を得た。この不織布を巾500mmにスライスした。この不織布は、MD方向の引張り強度が40N/cm2、CD方向の引張り強度が35N/cm2、表面硬度が50であり、この不織布は、連続気泡の発泡体を使わなくても、大口径のダクトホース用吸音断熱材として吸音、断熱性能が良く、また、適度な弾力性と引張り強度を持っているので、作業性も良好なものであった。
[Example 2]
60% of polyethylene terephthalate (PET) hollow short fiber H588 (15 dtex × 51 mm) manufactured by Kanebo Synthetic Co., Ltd., 40% of copolymerized PET short fiber 4080 (2.2 dtex × 51 mm) manufactured by Unitika Fiber Co., Ltd. as heat-bonding fiber Was opened, blended, and card punched and punched after cross layer treatment. Subsequently, 140 ° C. to 200 ° C. heat treatment is performed from both sides of the sample, and the nonwoven fabric is compressed with a roller at the exit of the heat treatment zone to adjust the thickness to a density of 80 kg / m 3 and a thickness of 25 mm. Got. This nonwoven fabric was sliced to a width of 500 mm. This nonwoven fabric has a tensile strength in the MD direction of 40 N / cm 2 , a tensile strength in the CD direction of 35 N / cm 2 , and a surface hardness of 50, and this nonwoven fabric has a large diameter without using open cell foam. As a sound absorbing and heat insulating material for duct hoses, the sound absorbing and insulating performance is good, and since it has appropriate elasticity and tensile strength, workability is also good.
[実施例3]
小島産業(株)製Y断面ポリエチレンテレフタレート(PET)短繊維SP8805(5.5dtex×51mm)を30%、ユニチカファイバー(株)製シリコーン表面加工したポリエチレンテレフタレート(PET)短繊維38Y(3.3dtex×51mm)を30%、カネボウ合繊(株)製ポリエチレンテレフタレート(PET)短繊維310(2.2dtex×51mm)を20%、熱融着繊維としてユニチカファイバー(株)製共重合PET短繊維4080(2.2dtex×51mm)20%を開繊、混綿し、カード機、クロスレイヤー処理後ニードルパンチを行った。引続き試料の両面側から140℃〜200℃加熱処理を施し、さらに加熱処理ゾーン出口にて片側加熱ローラ、他方を非加熱ローラーで圧縮し、厚さを調節して、片面が溶融して薄い膜状となった不織布を得た。この不織布を巾20mmにスライスした。この不織布は、密度が5kg/m3、厚さ5mm、MD方向の引張り強度が10N/cm2、CD方向の引張り強度が10N/cm2、表面硬度が15であり、この不織布は、連続気泡の発泡体を使わなくても、小口径のホース用吸音断熱材として吸音、断熱性能が良く、また、適度な弾力性と引張り強度を持っているので、作業性も良好なものであった。
[Example 3]
Polyethylene terephthalate (PET) short fiber 38Y (3.3 dtex ×) with 30% Y cross-section polyethylene terephthalate (PET) short fiber SP8805 (5.5 dtex × 51 mm) manufactured by Kojima Sangyo Co., Ltd. 51%), 20% of Kanebo Gosei Co., Ltd. polyethylene terephthalate (PET) short fiber 310 (2.2 dtex × 51 mm), 20% of heat-bonded fiber, Copolymerized PET short fiber 4080 (2) .2 dtex × 51 mm) 20% was opened and blended, and after carding and cross-layer treatment, needle punching was performed. Subsequently, 140 ° C to 200 ° C heat treatment is performed from both sides of the sample, and further, the one side heated roller is compressed at the outlet of the heat treatment zone, the other is compressed by a non-heated roller, the thickness is adjusted, and one side is melted to form a thin film A nonwoven fabric was obtained. This nonwoven fabric was sliced to a width of 20 mm. This nonwoven fabric has a density of 5 kg / m 3 , a thickness of 5 mm, a tensile strength in the MD direction of 10 N / cm 2 , a tensile strength in the CD direction of 10 N / cm 2 , and a surface hardness of 15. Even if no foam is used, it has good sound absorption and heat insulation performance as a small-diameter hose sound-absorbing heat insulating material, and it has good elasticity and tensile strength, so it has good workability.
[比較例1]
塩化ビニル樹脂よりなる遮音シート(厚さ2mm)と発泡倍率が30倍の連続気泡型ポリエチレン発泡シート(イノアックコーポレーション製)よりなる吸音シート(厚さ4mm)とを積層一体化し、これを管の周りに吸音シートを内側として取り付けると共に、遮音シートの外表面に塩ビフィルムを積層し、加熱することで、防音層とフィルムとを一体化して防音管部材を作製した。このものは工程が複雑で、作業性は良くなかった。
[Comparative Example 1]
A sound insulation sheet (thickness 2 mm) made of vinyl chloride resin and a sound absorbing sheet (thickness 4 mm) made of open cell polyethylene foam sheet (made by INOAC Corporation) with a foaming ratio of 30 times are laminated and integrated. The sound-absorbing sheet was attached to the inside, and a polyvinyl chloride film was laminated on the outer surface of the sound-insulating sheet and heated, so that the sound-insulating layer and the film were integrated to produce a sound-insulating tube member. The process was complicated and the workability was not good.
[比較例2]
ポリプロピレン(PP)の連続長繊維を積層し、熱エンボス加工を施して接着形成した平帯状形成の繊維質帯を螺旋状に巻き回し、その隣接接合部間の外周を樹脂補強帯により接着一体化し平滑円筒状に形成した内面層と、これと相異なる樹脂補強体間に繊維質体と接着させた複数本の樹脂線状体と、内面層の外周面上において連続発泡の樹脂帯をその側縁どうし突き合わせ状としながら螺旋状に形成の連続気泡層と、該層の外周面上において樹脂製薄シート状帯をその一部を重合させながら重合部間を接着一体化して螺旋状形成の中間シート層と、該層の外周面上において独立気泡樹脂体を側縁どうし突き合わせ状とし螺旋状とした独立気泡層と、その外周面上に樹脂性薄シート状帯をその一部を重合させながら一体形成した外面層を備える断熱消音部材を作製した。このものは工程が複雑で、作業性は良くなかった。
[Comparative Example 2]
A continuous strip of polypropylene (PP) is laminated, a flat strip-shaped fiber strip formed by heat embossing is wound spirally, and the outer periphery between adjacent joints is bonded and integrated with a resin reinforcing strip. An inner surface layer formed in a smooth cylindrical shape, a plurality of resin linear bodies bonded to a fibrous body between different resin reinforcement bodies, and a continuous foamed resin band on the outer peripheral surface of the inner surface layer An open-cell layer formed in a spiral shape with the edges butting together, and an intermediate portion of the spiral formation by polymerizing a part of the thin sheet-like belt made of resin on the outer peripheral surface of the layer while polymerizing a part thereof A sheet layer, a closed cell layer in which the closed cell resin body is abutted between the side edges on the outer peripheral surface of the layer, and a spirally closed cell layer, while polymerizing a part of the resinous thin sheet band on the outer peripheral surface With an integrally formed outer surface layer To prepare a heat-insulating sound deadening member. The process was complicated and the workability was not good.
本発明は、気体移送用のホース(チューブやダクトも含む)、例えば、常温と異なる温度とした冷暖房用空気の移送用ダクトホースに適した断熱作用と吸音作用を備えた気体移送用のホース用吸音断熱材として適する。 The present invention relates to a gas transfer hose (including a tube and a duct), for example, a gas transfer hose having a heat insulating action and a sound absorbing action suitable for a duct hose for air conditioning heating at a temperature different from room temperature. Suitable as a sound absorbing heat insulating material.
Claims (6)
The sound absorbing heat insulating material for hoses according to any one of claims 1 to 5, wherein the nonwoven fabric has a film-like surface formed by heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003395131A JP4502250B2 (en) | 2003-11-26 | 2003-11-26 | Sound insulation for hose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003395131A JP4502250B2 (en) | 2003-11-26 | 2003-11-26 | Sound insulation for hose |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005155777A true JP2005155777A (en) | 2005-06-16 |
JP4502250B2 JP4502250B2 (en) | 2010-07-14 |
Family
ID=34720976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003395131A Expired - Lifetime JP4502250B2 (en) | 2003-11-26 | 2003-11-26 | Sound insulation for hose |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4502250B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021167657A (en) * | 2020-04-13 | 2021-10-21 | 株式会社ブリヂストン | Multiple tube |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3782843A4 (en) | 2018-07-23 | 2021-12-08 | Toyo Electric MFG. Co., Ltd. | Pantograph |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611096A (en) * | 1992-06-19 | 1994-01-21 | Nippon Steel Chem Co Ltd | Heat insulating mold and manufacture thereof |
JPH08170783A (en) * | 1994-12-19 | 1996-07-02 | Tokyu Koken Kk | Surrounding body for fluid piping and member for joining surrounding body for fluid piping |
JPH10244864A (en) * | 1997-03-03 | 1998-09-14 | Kanebo Ltd | Sound insulating structure |
JP2000199161A (en) * | 1999-01-11 | 2000-07-18 | Kanebo Ltd | Sound-absorbing nonwoven fabric and its production |
JP2002061792A (en) * | 2000-08-24 | 2002-02-28 | Kanebo Ltd | Heat insulating material |
JP2002302858A (en) * | 2001-04-02 | 2002-10-18 | Kanebo Ltd | Cylindrical nonwoven fabric |
JP2002339217A (en) * | 2001-05-09 | 2002-11-27 | Kanebo Ltd | Heat insulating material |
-
2003
- 2003-11-26 JP JP2003395131A patent/JP4502250B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611096A (en) * | 1992-06-19 | 1994-01-21 | Nippon Steel Chem Co Ltd | Heat insulating mold and manufacture thereof |
JPH08170783A (en) * | 1994-12-19 | 1996-07-02 | Tokyu Koken Kk | Surrounding body for fluid piping and member for joining surrounding body for fluid piping |
JPH10244864A (en) * | 1997-03-03 | 1998-09-14 | Kanebo Ltd | Sound insulating structure |
JP2000199161A (en) * | 1999-01-11 | 2000-07-18 | Kanebo Ltd | Sound-absorbing nonwoven fabric and its production |
JP2002061792A (en) * | 2000-08-24 | 2002-02-28 | Kanebo Ltd | Heat insulating material |
JP2002302858A (en) * | 2001-04-02 | 2002-10-18 | Kanebo Ltd | Cylindrical nonwoven fabric |
JP2002339217A (en) * | 2001-05-09 | 2002-11-27 | Kanebo Ltd | Heat insulating material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021167657A (en) * | 2020-04-13 | 2021-10-21 | 株式会社ブリヂストン | Multiple tube |
JP7458233B2 (en) | 2020-04-13 | 2024-03-29 | 株式会社ブリヂストン | composite pipe |
Also Published As
Publication number | Publication date |
---|---|
JP4502250B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070243366A1 (en) | Multidensity liner/ insulator formed from multidimensional pieces of polymer fiber blanket insulation | |
JPH0989357A (en) | Thermal insulating muffling duct | |
JP2008068799A (en) | Sound absorber and vehicular floor sheet | |
US9528261B2 (en) | Synthetic fiber insulation with facing | |
JP2008089620A (en) | Sound absorbing material and attaching method therefor and fiber product | |
JP2007025044A (en) | Sound absorbing material | |
JPH11152670A (en) | Carpet material and its production | |
JP2010085873A (en) | Double layer sound absorbing material | |
US10792870B2 (en) | Process for forming a nonwoven composite | |
JP7392649B2 (en) | Nonwoven fabric structure and its manufacturing method | |
JP4502250B2 (en) | Sound insulation for hose | |
JP2000088329A (en) | Adiabatic silencing duct | |
EP1574326A1 (en) | Laminated surface skin material and laminate for interior material | |
JP5155016B2 (en) | Manufacturing method of fiber structure for sound absorbing material and manufacturing method of sound absorbing material | |
JP3166607U (en) | Coating material | |
JP3152598U (en) | Insulation | |
JP3204675U (en) | Ceiling material | |
JP2002180362A (en) | Acoustic material | |
JP2011185505A (en) | Flexible duct | |
JP3151737U (en) | bedding | |
KR200322920Y1 (en) | flame retardant aluminium rolling film | |
JP2004106477A (en) | Interior material and molded interior material | |
JP2021018265A (en) | Sound absorbing material and product | |
JP2006110912A (en) | Multilayer skin material and laminate for interior material laminated with the same | |
JPH1114129A (en) | Flexible duct for air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060615 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070830 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100415 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4502250 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |