JP2005154849A - Method of depositing silicon thin film - Google Patents

Method of depositing silicon thin film Download PDF

Info

Publication number
JP2005154849A
JP2005154849A JP2003396456A JP2003396456A JP2005154849A JP 2005154849 A JP2005154849 A JP 2005154849A JP 2003396456 A JP2003396456 A JP 2003396456A JP 2003396456 A JP2003396456 A JP 2003396456A JP 2005154849 A JP2005154849 A JP 2005154849A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
silicon
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396456A
Other languages
Japanese (ja)
Other versions
JP4246042B2 (en
Inventor
Maki Hoshikawa
真樹 星川
Kentaro Hirai
健太郎 平井
Eiji Tanaka
英次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003396456A priority Critical patent/JP4246042B2/en
Publication of JP2005154849A publication Critical patent/JP2005154849A/en
Application granted granted Critical
Publication of JP4246042B2 publication Critical patent/JP4246042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of depositing a silicon thin film required for depositing a silicon thin film used for a liquid crystal display or the like at a lower temperature. <P>SOLUTION: In the method of depositing a silicon thin film, at the time of depositing a silicon thin film on a substrate by a CVD (chemical vapor deposition) method, a silicon-containing raw material compound having a structure in the general formula (1) is used; wherein, R<SB>1</SB>to R<SB>4</SB>are a 1 to 4C alkyl group or a hydrogen atom; and R<SB>5</SB>to R<SB>8</SB>are a 1 to 4C alkyl group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、化学気相法(以下、CVD法と称する)により、シリコン薄膜を基板上に製膜するシリコン薄膜の製膜方法に関する。より詳しくは、例えば液晶ディスプレイ等を製造する際に実施されるガラス基板等上にアモルファスシリコン、ポリシリコン等のシリコン薄膜(以下、これらの薄膜を総称してシリコン薄膜と称する)をCVD法により製膜する際に、特定珪素含有化合物を原料として用いるシリコン薄膜の製膜方法に関する。   The present invention relates to a method for forming a silicon thin film by forming a silicon thin film on a substrate by a chemical vapor deposition method (hereinafter referred to as a CVD method). More specifically, for example, a silicon thin film such as amorphous silicon or polysilicon (hereinafter, these thin films are collectively referred to as a silicon thin film) is manufactured by a CVD method on a glass substrate or the like that is used when manufacturing a liquid crystal display or the like. The present invention relates to a method for forming a silicon thin film using a specific silicon-containing compound as a raw material.

従来、アクティブマトリックス型の液晶ディスプレイの大半は、アモルファスシリコンをTFT(薄膜トランジスタ)に用いたタイプである。このアモルファスシリコンTFT液晶ディスプレイを製造する際には、SiH(以下、モノシランと称する)やSi(以下、ジシランと称する)等のSi−H系化合物を原料として用いたCVD法により、ガラス基板上にアモルファスシリコンを製膜する工程を有する。近年のディスプレイの大面積化に伴い、ガラス基板の熱膨張等の問題が顕著になりつつあり、該製膜工程において、より低温でアモルファスシリコンを製膜する技術が求められている(非特許文献1等参照)。 Conventionally, most active matrix type liquid crystal displays are of the type using amorphous silicon for TFTs (thin film transistors). When manufacturing this amorphous silicon TFT liquid crystal display, a CVD method using a Si—H compound such as SiH 4 (hereinafter referred to as monosilane) or Si 2 H 6 (hereinafter referred to as disilane) as a raw material, A step of forming amorphous silicon on a glass substrate; With the recent increase in the area of displays, problems such as thermal expansion of glass substrates are becoming prominent, and a technique for forming amorphous silicon at a lower temperature is required in the film forming process (Non-patent Document). See 1st etc.).

一方、高精彩、低消費電力化、チップオングラス等の目的で、ガラス基板上にポリシリコン(多結晶シリコンともいう)が製膜され、これをTFTに用いた液晶ディスプレイが知られている。ガラス基板上にポリシリコンを製膜する場合、まず基板にアモルファスシリコンを堆積し、ついでエキシマレーザーアニール(以下、レーザーアニールと称する)を用いて結晶化することによって得る方法が報告されている(特許文献1参照)。この様に、直接ポリシリコンをガラス基板上に製膜せず、レーザーアニールを用いるのは、通常、該液晶ディスプレイに用いられるガラス基板の耐熱性の問題からである。これに対し、レーザーアニール無しで基板上にポリシリコンを製膜する方法としては、通常、基板温度を600℃〜900℃以上にする必要があり、基板として高価な石英ガラス基板を使わざるを得ないのが現状であり、コストがかかる。また、レーザーアニール工程等を有する手法では、ガラス基板に無アルカリガラス等の安価なガラスを用いることが出来る。しかしながら依然として、製造工数が増えることにより、アモルファスシリコンをTFTに用いたタイプに比べ、製造コストが高くなる等の問題があり、さらにはディスプレイの大面積化に対応しにくい等の問題が存在している。   On the other hand, for the purpose of high definition, low power consumption, chip-on-glass, etc., polysilicon (also referred to as polycrystalline silicon) is formed on a glass substrate, and a liquid crystal display using this as a TFT is known. In the case of forming polysilicon on a glass substrate, a method has been reported in which amorphous silicon is first deposited on a substrate and then crystallized using excimer laser annealing (hereinafter referred to as laser annealing) (patent) Reference 1). As described above, the reason why the laser annealing is used without directly forming the polysilicon on the glass substrate is usually due to the heat resistance problem of the glass substrate used in the liquid crystal display. On the other hand, as a method of forming polysilicon on a substrate without laser annealing, it is usually necessary to set the substrate temperature to 600 ° C. to 900 ° C. or higher, and an expensive quartz glass substrate must be used as the substrate. There is no current situation, and it costs money. In the method having a laser annealing step or the like, inexpensive glass such as non-alkali glass can be used for the glass substrate. However, as the number of manufacturing steps increases, there are problems such as higher manufacturing costs compared to the type using amorphous silicon for TFT, and there are also problems such as difficulty in responding to the increase in display area. Yes.

そこで高性能、大面積液晶ディスプレイを低コストで製膜する為には、レーザーアニールを用いずに、無アルカリガラス等の液晶ディスプレイ用ガラス基板上に、該ガラス基板の耐熱温度より低い温度でポリシリコン薄膜を直接製膜する技術が求められている。   Therefore, in order to form a high-performance, large-area liquid crystal display at low cost, a polycrystal is formed on a glass substrate for liquid crystal displays such as non-alkali glass at a temperature lower than the heat resistant temperature of the glass substrate without using laser annealing. A technique for directly forming a silicon thin film is required.

さらには今後の情報産業の発展に伴い、電子ペーパー用等、軽量化、耐衝撃性、可とう性等の向上を目的とし、ガラス基板よりもさらに融点が低い樹脂フィルムを基板として用い、この樹脂フィルム上にシリコン薄膜を製膜する技術が検討されている。その為、より低い温度においてシリコン薄膜を製膜するプロセスが求められてくることも予想されている。   Furthermore, with the development of the information industry in the future, for the purpose of improving weight reduction, impact resistance, flexibility, etc. for electronic paper, etc., this resin is used as a substrate with a melting point lower than that of a glass substrate. A technique for forming a silicon thin film on a film has been studied. Therefore, it is expected that a process for forming a silicon thin film at a lower temperature will be required.

この様な状況の中で、シリコン薄膜の低温製膜技術の開発としては「製膜装置・プロセスの改良」を中心とした検討が行われている。しかし、珪素含有CVD原料としては依然としてシランやジシラン等のSi−H系原料が用いられており、このSi−H系原料の化学特性に伴う制約の為、低温製膜化は十分に達成されていない。   Under such circumstances, studies focusing on “improving the film forming apparatus and process” have been conducted as the development of a low temperature silicon thin film forming technique. However, Si-H-based materials such as silane and disilane are still used as silicon-containing CVD materials, and low-temperature film formation has been sufficiently achieved due to restrictions associated with the chemical characteristics of the Si-H-based materials. Absent.

珪素含有CVD原料の変更もふまえたシリコン薄膜の製膜方法の検討については、例えば特許文献2にHSi(NR4−xで示される化合物を原料として用いることが開示されている程度である。該文献によれば、CVD法によりさまざまなシリコン膜等を基板上に形成する際に安全かつ膜形成反応の制御が容易であると記載されているが、実施例ではシリコン窒化膜に関する記述のみに留まっており、シリコン薄膜に関する記載は殆どなく、該文献記載の内容からシリコン薄膜を製膜するのは実際不可能であった。 Regarding the examination of the method for forming a silicon thin film in consideration of the change of the silicon-containing CVD raw material, for example, Patent Document 2 discloses that a compound represented by H x Si (NR 2 ) 4-x is used as a raw material. It is. According to this document, it is described that various silicon films and the like are formed on a substrate by a CVD method, and it is safe and easy to control a film formation reaction. There is almost no description about the silicon thin film, and it was actually impossible to form the silicon thin film from the contents described in the literature.

即ち、現状のシリコン薄膜製膜技術には、TFT等の液晶ディスプレイを製造する際に、ガラス基板上にシリコン薄膜を低温で製膜する技術が、近年のディスプレイの大面積化に対応しきれていない、またポリシリコン薄膜においてはエキシマレーザーアニールを用いずに、低コストでガラス基板の耐熱温度より低い温度で、ポリシリコン薄膜を直接製膜する技術が確立されていない、さらには電子ペーパー用等、ガラス基板よりもさらに融点が低い樹脂フィルム上にシリコン薄膜を製膜する技術が確立されていない等の様々な問題点を有しており、これらを解決することが求められている。
特開平10−12548号公報 特開平5―251354号公報 液晶 131p〜142p vol.4 No.2 2000年
In other words, in the current silicon thin film forming technology, when manufacturing a liquid crystal display such as a TFT, a technology for forming a silicon thin film on a glass substrate at a low temperature has been able to cope with the recent increase in area of the display. There is no technology for directly forming a polysilicon thin film at a lower temperature than the heat resistance temperature of the glass substrate without using excimer laser annealing in the polysilicon thin film, and for electronic paper, etc. There are various problems such as a technique for forming a silicon thin film on a resin film having a melting point lower than that of a glass substrate has not been established, and there is a need to solve these problems.
Japanese Patent Laid-Open No. 10-12548 JP-A-5-251354 Liquid crystal 131p-142p vol. 4 No. 2 2000

本発明の課題は、液晶ディスプレイ等に用いられるシリコン薄膜を、より低温で製膜する為の製膜方法を提供することである。   An object of the present invention is to provide a film forming method for forming a silicon thin film used for a liquid crystal display or the like at a lower temperature.

本発明者らは、CVD法によるシリコン薄膜を製膜する際に、より低温で製膜することを目的として、シリコン薄膜の製膜方法の鋭意検討を行った。その結果、Si−H結合を有する化合物はSi−H結合が解離しにくい為、シリコン薄膜の製膜低温化に限界があると考え、Si−H結合と比較して、Si−N結合が解離しやすいことに着目し、分子内にSi−Hを有さず、Si−Nのみを有する下記一般式(1)で表される構造を持つ珪素含有化合物を原料ガスとして使用することにより、低温でシリコン薄膜の製膜が可能になることを見出し、本発明を完成した。   The inventors of the present invention have intensively studied a method for forming a silicon thin film for the purpose of forming a silicon thin film by a CVD method at a lower temperature. As a result, since the Si-H bond is difficult to dissociate in a compound having a Si-H bond, it is considered that there is a limit to lowering the temperature of the silicon thin film, and the Si-N bond is dissociated compared to the Si-H bond. By using a silicon-containing compound having a structure represented by the following general formula (1) having no Si—H in the molecule and having only Si—N as a source gas, And found that a silicon thin film can be formed, and the present invention was completed.

すなわち本発明は、CVD法にてシリコン薄膜を基板上に製膜する際に、下記一般式(1)で表される構造を有する珪素含有化合物を原料ガスとして用いることを特徴とする、シリコン薄膜の製膜方法である。

Figure 2005154849
That is, the present invention uses a silicon-containing compound having a structure represented by the following general formula (1) as a source gas when a silicon thin film is formed on a substrate by a CVD method. This is a film forming method.
Figure 2005154849

(式中R〜Rは炭素数1〜4のアルキル基又は水素原子、R〜Rは炭素数1〜4のアルキル基を示す。) (In the formula, R 1 to R 4 represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and R 5 to R 8 represent an alkyl group having 1 to 4 carbon atoms.)

本発明によれば、該珪素含有化合物を原料ガスとして用いることによって、CVD法にてシリコン薄膜を低温で製膜することが可能となる。   According to the present invention, by using the silicon-containing compound as a source gas, a silicon thin film can be formed at a low temperature by a CVD method.

以下、本発明のシリコン薄膜の製膜方法について詳述する。
本発明のシリコン薄膜の製膜方法は、CVD法にてシリコン薄膜を基板上に製膜する際に、一般式(1)で表される構造を有する珪素含有化合物を原料ガスとして用いることを特徴とする。
Hereinafter, the method for producing a silicon thin film of the present invention will be described in detail.
The method for producing a silicon thin film of the present invention is characterized in that a silicon-containing compound having a structure represented by the general formula (1) is used as a source gas when a silicon thin film is formed on a substrate by a CVD method. And

まず本発明に使用する一般式(1)の構造を有する珪素含有化合物について説明する。ここで一般式(1)中のR〜Rは炭素数1〜4のアルキル基又は水素原子であり、R5〜Rは炭素数1〜4のアルキル基である。炭素数1〜4のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。好ましくは、メチル基、エチル基である。これらの置換基R〜Rは、各々独立であって、同一であっても同一でなくても問題なく、化合物の合成しやすさ、および化合物の安定性を考慮して適宜選択することができる。しかし、該珪素含有原料化合物群でも、同じ窒素原子に結合する2つの基が共にHとなるとSiに結合する基がNH基になり、縮合反応が起きてしまうため不安定になる可能性が高くなる。さらに炭素数が4よりも大きくなると、構造上、不安定になってしまう可能性がある。 First, the silicon-containing compound having the structure of the general formula (1) used in the present invention will be described. Here, R 1 to R 4 in the general formula (1) are an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and R 5 to R 8 are alkyl groups having 1 to 4 carbon atoms. Specific examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group. Preferably, they are a methyl group and an ethyl group. These substituents R 1 to R 8 are independent of each other and may be the same or not the same, and may be selected appropriately in consideration of the ease of synthesis of the compound and the stability of the compound. Can do. However, even in the silicon-containing raw material compound group, if two groups bonded to the same nitrogen atom are both H, the group bonded to Si becomes an NH 2 group, which may cause instability because a condensation reaction occurs. Get higher. Further, when the number of carbon atoms is larger than 4, the structure may become unstable.

一般式(1)で表される具体的化合物の例としては、Si{N(CH}、Si{N(C}、Si{NH(n−C)}等が挙げられる。好ましくは化合物の合成しやすさなどを考慮して、Si{N(CH}である。 Examples of specific compounds represented by the general formula (1) include Si {N (CH 3 ) 2 } 4 , Si {N (C 2 H 5 ) 2 } 4 , Si {NH (n—C 4 H). 9 )} 4 etc. are mentioned. Si {N (CH 3 ) 2 } 4 is preferable in consideration of ease of synthesis of the compound.

該珪素含有化合物は、その用途から好ましくは特定の条件下で蒸気圧を持つものの中から選定される。例えば、−200℃〜300℃の温度範囲の少なくとも一点において0.1〜760Torrの蒸気圧を有するものが好ましい。使用目的を考慮すれば、より低い温度で高い蒸気圧を持つものが好ましい。   The silicon-containing compound is preferably selected from those having a vapor pressure under specific conditions for its use. For example, those having a vapor pressure of 0.1 to 760 Torr at at least one point in the temperature range of −200 ° C. to 300 ° C. are preferable. Considering the purpose of use, those having a high vapor pressure at a lower temperature are preferred.

さらに、該珪素含有化合物の使用目的を考慮すれば、これらのガスは、室温で気体状もしくは液状のものが好ましい。室温で固体である場合には融点が200℃以下、より好ましくは100℃以下のものが好ましい。融点が高くなれば、該CVD原料としての供給が困難になる場合がある。   Further, considering the purpose of use of the silicon-containing compound, these gases are preferably gaseous or liquid at room temperature. When it is solid at room temperature, the melting point is preferably 200 ° C. or lower, more preferably 100 ° C. or lower. If the melting point becomes high, supply as the CVD raw material may become difficult.

本発明のシリコン薄膜の製膜方法は、CVD装置を用いて、基板上にシリコン薄膜を製膜するものである。CVD装置は、主にCVD原料の供給・気化装置、および気化した原料を分解し基板上にシリコン薄膜として堆積させるCVD反応製膜装置(以下、CVDチャンバーという)からなるものが好ましい。   The method for forming a silicon thin film of the present invention forms a silicon thin film on a substrate using a CVD apparatus. The CVD apparatus is preferably composed mainly of a CVD raw material supply / vaporization apparatus and a CVD reaction film forming apparatus (hereinafter referred to as a CVD chamber) that decomposes the vaporized raw material and deposits it as a silicon thin film on the substrate.

製膜方法の一例を挙げると、一般式(1)で表される構造を有する珪素含有化合物をCVD用原料として、CVD装置の原料供給・気化装置に充填する。原料が気体の場合には、原料をボンベに充填し、ボンベより供給する。原料が液体の場合は、容器に充填した原料をキャリアーガスでバブリングし供給する方法、容器を直接加熱し、気化させてフィードする方法等が用いられる。装置の形式については、原料の性状等に応じて適宜選択される。通常、ガス化した原料はキャリアーガスと共に供給される。キャリアーガスとしてはHeやAr等の希ガスが好ましい。   As an example of the film forming method, a silicon-containing compound having a structure represented by the general formula (1) is filled as a raw material for CVD into a raw material supply / vaporization device of a CVD apparatus. When the raw material is a gas, the raw material is filled in a cylinder and supplied from the cylinder. In the case where the raw material is liquid, a method of bubbling and supplying the raw material filled in the container with a carrier gas, a method of directly heating the container to vaporize it, and the like are used. The type of apparatus is appropriately selected according to the properties of the raw material. Usually, the gasified raw material is supplied together with a carrier gas. As the carrier gas, a rare gas such as He or Ar is preferable.

ついで、該供給・気化装置で気化された原料は、CVDチャンバー内に供給される。チャンバー内の圧力は、原料やその他装置の形式、蒸着方法などに応じて適宜選択されるが、通常プラズマCVDで、0.01torr〜50torr、熱CVDで0.01torr〜760torrの間で実施される。原料ガスフィード量は、装置の形状、原料の種類、膜厚等に応じ、適宜選択されるが一般的には0.01L/min〜10L/min(標準状態換算)内で選ばれる。CVDチャンバー内には、基板が設置してあり、該チャンバー内において該CVD原料が分解することで、基板上にシリコン薄膜を製膜することができる。   Next, the raw material vaporized by the supply / vaporization apparatus is supplied into the CVD chamber. The pressure in the chamber is appropriately selected according to the raw material, the type of other equipment, the vapor deposition method, and the like. Usually, the plasma CVD is performed at 0.01 to 50 torr and the thermal CVD is performed at 0.01 to 760 torr. . The raw material gas feed amount is appropriately selected according to the shape of the apparatus, the type of raw material, the film thickness, and the like, but is generally selected within 0.01 L / min to 10 L / min (standard state conversion). A substrate is installed in the CVD chamber, and a silicon thin film can be formed on the substrate by decomposing the CVD raw material in the chamber.

CVDチャンバー内において、珪素含有CVD原料が分解されるが、この分解方法は基板の温度を上げて熱分解により堆積させる方法(熱CVD法)、反応容器の中に高周波の電界をかけ、He、Ar等の希ガス中でプラズマを発生させ、発生したプラズマ中で原料ガスを分解し、基板上へ堆積させる方法(プラズマCVD法)、タングステン等の熱線を触媒とし原料ガスを化学反応させ分解し、基板上へ堆積させる方法(触媒CVD法、CAT−CVD法ともいう)等、既存の方式をいずれも採用することができ、特に限定されない。   In the CVD chamber, the silicon-containing CVD raw material is decomposed. This decomposition method is a method in which the temperature of the substrate is raised and deposited by thermal decomposition (thermal CVD method), a high-frequency electric field is applied in the reaction vessel, He, Plasma is generated in a rare gas such as Ar, the source gas is decomposed in the generated plasma and deposited on the substrate (plasma CVD method), and the source gas is chemically reacted and decomposed using a hot wire such as tungsten as a catalyst. Any of existing methods such as a method of depositing on a substrate (also referred to as a catalytic CVD method or a CAT-CVD method) can be employed, and is not particularly limited.

また原料ガスの分解を促進する為に、チャンバー内に水素を共存させることが好ましい。水素添加量は原料ガスの種類、供給量、分解方法、得られるシリコン膜の膜質を考慮して、通常0.01L/min〜1000L/min(標準状態換算)の範囲内である。水素ガスを前述のキャリアーガスに用いても良い。   In order to promote the decomposition of the source gas, it is preferable to coexist hydrogen in the chamber. The amount of hydrogen addition is usually in the range of 0.01 L / min to 1000 L / min (standard state conversion) in consideration of the type of raw material gas, supply amount, decomposition method, and film quality of the obtained silicon film. Hydrogen gas may be used for the carrier gas described above.

製膜する基板としては、無アルカリガラス等の液晶ディスプレイ用ガラス、ポリイミド、ポリエチレンテレフタレート等の樹脂フィルムが挙げられるが、特に限定されない。   Examples of the substrate to be formed include glass for liquid crystal display such as alkali-free glass, and resin films such as polyimide and polyethylene terephthalate, but are not particularly limited.

また本発明の製膜方法は、液晶ディスプレイ用の基板のみならず、LSI用Siウエハ等にも適用することができる。この場合、半導体集積回路製造時に実施されるシリコン薄膜の製膜工程の低温化に寄与することができる。尚、本発明において薄膜とは、通常1μm以下の厚みの膜を示し、その用途に応じ、厚さは製造条件によって制御可能である。   The film forming method of the present invention can be applied not only to substrates for liquid crystal displays but also to Si wafers for LSIs. In this case, it is possible to contribute to lowering the temperature of the silicon thin film forming process performed at the time of manufacturing the semiconductor integrated circuit. In the present invention, the thin film generally indicates a film having a thickness of 1 μm or less, and the thickness can be controlled by manufacturing conditions depending on the application.

製膜する際の基板温度は、通常400度℃以下で製膜可能である。基板の性質(耐熱性、熱膨張率等)、製膜するシリコン薄膜の要求特性、CVDの分解方法等を考慮して適宜決定されるものであり、特に限定されない。例えば、液晶用ガラス基板に熱CVD法やプラズマCVD法でシリコン薄膜を製膜する場合には、好ましくは300℃以下、樹脂フィルム上にプラズマCVD法でシリコン薄膜を製膜する場合には好ましくは100℃以下となる。   The substrate temperature during film formation can usually be formed at 400 ° C. or lower. It is appropriately determined in consideration of the properties of the substrate (heat resistance, coefficient of thermal expansion, etc.), required characteristics of the silicon thin film to be formed, the decomposition method of CVD, etc., and is not particularly limited. For example, when a silicon thin film is formed on a glass substrate for liquid crystal by a thermal CVD method or a plasma CVD method, it is preferably 300 ° C. or less, preferably when a silicon thin film is formed on a resin film by a plasma CVD method. It becomes 100 degrees C or less.

製膜されるシリコン薄膜は、アモルファスシリコン薄膜、ポリシリコン薄膜等、膜特性への要求性能、製膜方法等により適宜選択される。   The silicon thin film to be formed is appropriately selected depending on the required performance for film characteristics, the film forming method, etc., such as an amorphous silicon thin film and a polysilicon thin film.

シリコン薄膜用の原料としてSi{N(CH}[融点16℃、蒸気圧1Torr(12℃)]を用い、以下のような操作を行い、シリコン薄膜の製膜を行った。
製膜はチャンバーに石英管を用い、原料ガスを0.1L/min、水素を1.5L/minで供給し、基板温度300℃で実施した(熱CVD法で実施した)。基板には無アルカリガラス片(10mm×30mm×0.7mm(厚み))を用いた。その結果、基板上にシリコン薄膜の堆積が30nm確認された。
この薄膜について、X光電子分光法(ESCA)でワイドスキャン法にて分析したところ、珪素は確認されたが、炭素、窒素は確認されなかった。また、赤外分光法(IR)で分析したところ、Si−Hのピークは確認されなかった。
Using Si {N (CH 3 ) 2 } 4 [melting point: 16 ° C., vapor pressure: 1 Torr (12 ° C.)] as a raw material for the silicon thin film, the following operation was performed to form a silicon thin film.
Film formation was carried out using a quartz tube in the chamber, supplying a source gas of 0.1 L / min and hydrogen of 1.5 L / min, and a substrate temperature of 300 ° C. (implemented by a thermal CVD method). An alkali-free glass piece (10 mm × 30 mm × 0.7 mm (thickness)) was used for the substrate. As a result, deposition of a silicon thin film on the substrate was confirmed to be 30 nm.
When this thin film was analyzed by a wide scan method by X photoelectron spectroscopy (ESCA), silicon was confirmed, but carbon and nitrogen were not confirmed. Further, when analyzed by infrared spectroscopy (IR), no Si—H peak was confirmed.

比較例1
シリコン薄膜用珪素含有CVD原料として、Si{N(CH}の代わりにモノシランを用いた以外は、実施例1と同様の方法でシリコン薄膜を製膜することを試みた。
その結果、ガラス基板上にシリコン薄膜が堆積しなかった。
Comparative Example 1
An attempt was made to form a silicon thin film by the same method as in Example 1 except that monosilane was used instead of Si {N (CH 3 ) 2 } 4 as the silicon-containing CVD raw material for the silicon thin film.
As a result, no silicon thin film was deposited on the glass substrate.

液晶ディスプレイ用ガラス基板へのシリコン薄膜の製膜や、電子ペーパー用等、耐熱性が低い樹脂フィルム上へのシリコン薄膜の製膜に利用可能である。また、半導体集積回路製造時に実施されるシリコン薄膜の製膜工程の低温化にも利用可能である。   It can be used for forming a silicon thin film on a glass substrate for a liquid crystal display, or for forming a silicon thin film on a resin film having low heat resistance such as for electronic paper. Further, it can be used for lowering the temperature of the silicon thin film forming process that is performed when the semiconductor integrated circuit is manufactured.

Claims (1)

CVD法にてシリコン薄膜を基板上に製膜する際に、下記一般式(1)で表される構造を有する珪素含有化合物を原料ガスとして用いることを特徴とする、シリコン薄膜の製膜方法。
Figure 2005154849
(式中R〜Rは炭素数1〜4のアルキル基又は水素原子、R〜Rは炭素数1〜4のアルキル基を示す。)
A method for forming a silicon thin film, wherein a silicon-containing compound having a structure represented by the following general formula (1) is used as a raw material gas when forming a silicon thin film on a substrate by a CVD method.
Figure 2005154849
(In the formula, R 1 to R 4 represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and R 5 to R 8 represent an alkyl group having 1 to 4 carbon atoms.)
JP2003396456A 2003-11-27 2003-11-27 Method for forming silicon thin film Expired - Fee Related JP4246042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396456A JP4246042B2 (en) 2003-11-27 2003-11-27 Method for forming silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396456A JP4246042B2 (en) 2003-11-27 2003-11-27 Method for forming silicon thin film

Publications (2)

Publication Number Publication Date
JP2005154849A true JP2005154849A (en) 2005-06-16
JP4246042B2 JP4246042B2 (en) 2009-04-02

Family

ID=34721895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396456A Expired - Fee Related JP4246042B2 (en) 2003-11-27 2003-11-27 Method for forming silicon thin film

Country Status (1)

Country Link
JP (1) JP4246042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216153B2 (en) * 2003-09-17 2009-01-28 株式会社リコー Belt conveying apparatus and image forming apparatus using the same

Also Published As

Publication number Publication date
JP4246042B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7488693B2 (en) Method for producing silicon oxide film
US7211506B2 (en) Methods of forming cobalt layers for semiconductor devices
KR20180069769A (en) Compositions and methods for the deposition of silicon oxide films
JP2006517517A (en) Compositions and methods for low temperature deposition of silicon-containing films, such as films comprising silicon, silicon nitride, silicon dioxide and / or silicon oxynitride
US8101788B2 (en) Silicon precursors and method for low temperature CVD of silicon-containing films
TW201932634A (en) Method of manufacturing ruthenium-containing thin film and ruthenium-containing thin film manufactured therefrom
TW201539574A (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20140322924A1 (en) Silicon containing compounds for ald deposition of metal silicate films
KR20090019691A (en) Method for production of thin film and apparatus for manufacturing the same
US20040203255A1 (en) Method of forming Si-containing thin film
US20060068103A1 (en) Film forming method
JP4581119B2 (en) NiSi film forming material and NiSi film forming method
US20060068100A1 (en) Film forming method
KR20230022971A (en) Vapor Deposition Precursor Compounds and Methods of Use
JP4246042B2 (en) Method for forming silicon thin film
CN112210769A (en) Atomic layer deposition method of low-temperature high-growth-rate silicon oxide film
JP2005163084A (en) Method of depositing silicon thin film
US20060067230A1 (en) Film forming method
JP3836553B2 (en) Method for manufacturing silicon insulating film
JPH02102531A (en) Manufacture of silicon nitride and boron layer
JP2021177550A (en) Silicon precursor and manufacturing method of silicon-containing thin film using silicon precursor
JP4343656B2 (en) Silicon-containing CVD raw material for silicon thin film, method for selecting the raw material, and method for forming a silicon thin film using the raw material
JPH1149507A (en) Production of silicon particles and formation of silicon film
Schröder et al. Some indications of different film forming radicals in a-Si: H deposition by the glow discharge and thermocatalytic CVD processes
US20060068101A1 (en) Film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees