JP2005154846A - Composite metal particulate-dispersed liquid, and its production method - Google Patents

Composite metal particulate-dispersed liquid, and its production method Download PDF

Info

Publication number
JP2005154846A
JP2005154846A JP2003396064A JP2003396064A JP2005154846A JP 2005154846 A JP2005154846 A JP 2005154846A JP 2003396064 A JP2003396064 A JP 2003396064A JP 2003396064 A JP2003396064 A JP 2003396064A JP 2005154846 A JP2005154846 A JP 2005154846A
Authority
JP
Japan
Prior art keywords
metal fine
fine particles
dispersion
composite metal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003396064A
Other languages
Japanese (ja)
Other versions
JP4485174B2 (en
Inventor
Yoichi Ishihara
庸一 石原
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2003396064A priority Critical patent/JP4485174B2/en
Publication of JP2005154846A publication Critical patent/JP2005154846A/en
Application granted granted Critical
Publication of JP4485174B2 publication Critical patent/JP4485174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing composite metal particulates having excellent dispersibility. <P>SOLUTION: In the method of producing a composite metal particulate-dispersed liquid in which metal particulates (B) are carried on the surfaces of metal particulates (A), a mixed dispersion liquid of the metal particulates (A) having the average particle diameter (D<SB>A</SB>) of 50 nm to 5 μm and the metal particulates (B) which has standard electrode potential higher than that of the metal particulates (A) and the average particle diameter (D<SB>B</SB>) of 1 to 20 nm is stirred while the pH is kept 4 to 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、分散性に優れた複合金属微粒子の製造方法に関する。さらに詳しくは、分散性、安定性が必ずしも良くない金属微粒子を改質して分散性、安定性に優れた複合金属微粒子分散液を製造する方法に関する。   The present invention relates to a method for producing composite metal fine particles having excellent dispersibility. More specifically, the present invention relates to a method for producing a composite metal fine particle dispersion excellent in dispersibility and stability by modifying metal fine particles that do not necessarily have good dispersibility and stability.

従来より、金属微粒子、複合金属微粒子は、電子部品材料の導電性膜、塗料用材料、光学材料(赤外線反射膜、紫外線遮蔽剤など)あるいは触媒材料として広く使用されている。   Conventionally, metal fine particles and composite metal fine particles have been widely used as conductive films for electronic component materials, coating materials, optical materials (infrared reflective films, ultraviolet shielding agents, etc.) or catalyst materials.

たとえば、これらの微粒子を含む透明導電性被膜を陰極線管、蛍光表示管、液晶表示板などの表示パネル表面に形成すると、表示パネルの帯電を防止したり、電磁波を遮蔽することができる。   For example, when a transparent conductive film containing these fine particles is formed on the surface of a display panel such as a cathode ray tube, a fluorescent display tube, or a liquid crystal display panel, the display panel can be prevented from being charged or electromagnetic waves can be shielded.

また、これらの微粒子は触媒活性を有する場合があり、これらの微粒子をコロイド状に分散させると、光が透過しやすく、光反応触媒として好適に使用することができる。   In addition, these fine particles may have catalytic activity, and when these fine particles are dispersed in a colloidal form, light is easily transmitted and can be suitably used as a photoreaction catalyst.

このような微粒子のうち、コア−セル構造(核(コア)となる微粒子の表面に他の金属の層(セル)が形成されている)を有する複合微粒子を用いて、導電性被膜を形成すると、信頼性・耐久性に優れた被膜を形成することができる。また、このようなコア−セル構造を有する複合微粒子は、通常知られている金属微粒子と比べて触媒活性が高いことも知られている(非特許文献1:戸嶋、触媒技術の動向と展望,触媒学会編,12 (1996))。
触媒技術の動向と展望,触媒学会編,12 (1996)
Among such fine particles, when a conductive film is formed using composite fine particles having a core-cell structure (a layer of other metal (cell) is formed on the surface of fine particles serving as nuclei (core)) Thus, it is possible to form a film having excellent reliability and durability. Moreover, it is also known that the composite fine particles having such a core-cell structure have higher catalytic activity than the conventionally known metal fine particles (Non-patent Document 1: Toshima, Trends and Prospects of Catalyst Technology, Catalysis Society, 12 (1996)).
Trends and prospects of catalyst technology, Catalysis Society of Japan, 12 (1996)

コア−セル構造を有する複合微粒子の製造方法としては、電解めっき法、共還元法、還元めっき法、機械的・物理的方法などが知られている。しかしながら、これらの方法では、コア粒子の大きさの影響を受けるので、粒子径が小さい微粒子が得にくく、形成されるセル層の厚さにばらつきに応じて、得られる粒子の形状および粒子径が不均一であるという欠点があった。また、このような微粒子の中には分散性が低く凝集粒子となりやすいので、例えば導電性被膜を形成しても、電磁遮蔽効果、信頼性および耐久性などが不充分であるという欠点もあった。   As a method for producing composite fine particles having a core-cell structure, an electrolytic plating method, a co-reduction method, a reduction plating method, a mechanical / physical method, and the like are known. However, since these methods are affected by the size of the core particles, it is difficult to obtain fine particles having a small particle size, and the shape and particle size of the obtained particles vary depending on the thickness of the formed cell layer. There was the disadvantage of being non-uniform. In addition, since such fine particles have low dispersibility and are likely to be aggregated particles, for example, even when a conductive coating is formed, there is a drawback that the electromagnetic shielding effect, reliability and durability are insufficient. .

さらに、共還元法および還元めっき法では、還元剤として、アルコール、ジメチルアミン、ホルムアルデヒド、ホスフィン酸ナトリウム、クエン酸3ナトリウム、硫酸第一鉄などを使用しているため、金属塩、還元剤に由来するイオンが多く残存し、得られた微粒子が凝集するなどの欠点がある。このため、凝集を抑制し、分散性や安定性を高めるためにゼラチン、ポリビニルピロリドン、クエン酸等の有機安定化剤や界面活性剤が用いられるが、これら安定化剤、界面活性剤は金属微粒子の表面に存在するため導電性を阻害することから充分な導電性が得られないことがあった。   Furthermore, the co-reduction method and reduction plating method use alcohol, dimethylamine, formaldehyde, sodium phosphinate, trisodium citrate, ferrous sulfate, etc. as the reducing agent. There are disadvantages such as a large number of ions remaining and the resulting fine particles agglomerate. For this reason, organic stabilizers and surfactants such as gelatin, polyvinylpyrrolidone and citric acid are used to suppress aggregation and increase dispersibility and stability. These stabilizers and surfactants are metal fine particles. In some cases, sufficient conductivity could not be obtained because the conductivity was inhibited.

そこで本発明者らは鋭意検討した結果、粒子径が大きいか、粒子径が小さくても表面電荷量が少なく、分散性、安定性が不充分な金属微粒子を、標準電極電位の高い金属コロイド分散液で処理することにより、金属微粒子表面に金属コロイドを担持させれば、安定性が不充分な金属微粒子の表面に、金属コロイドが担持され、分散安定性に優れた分散液が
得られることを見出した。
Accordingly, as a result of intensive studies, the present inventors have determined that metal fine particles having a high standard electrode potential can be obtained by dispersing metal fine particles having a large particle size or a small surface charge amount and insufficient dispersibility and stability even when the particle size is small. If the metal colloid is supported on the surface of the metal fine particles by treating with the liquid, the metal colloid is supported on the surface of the metal fine particles with insufficient stability, and a dispersion having excellent dispersion stability can be obtained. I found it.

すなわち、本発明に係る複合金属微粒子分散液の製造方法は、
平均粒子径(DA)が50nm〜5μmの範囲にある金属微粒子(A)と、該金属微粒
子(A)より標準電極電位が高く、平均粒子径(DB)が1nm〜20nmの範囲にある
金属微粒子(B)との混合分散液のpHを4〜10に維持しながら撹拌することを特徴としている。
That is, the method for producing a composite metal fine particle dispersion according to the present invention comprises:
The fine metal particles (A) having an average particle diameter (D A ) in the range of 50 nm to 5 μm, the standard electrode potential is higher than the fine metal particles (A), and the average particle diameter (D B ) is in the range of 1 nm to 20 nm. Stirring while maintaining the pH of the mixed dispersion with the metal fine particles (B) at 4-10.

前記平均粒子径(DB)と平均粒子径(DA)との比、(DB)/(DA)が1/5000〜1/5の範囲にあることが好ましい。 The ratio of the average particle diameter (D B ) to the average particle diameter (D A ), (D B ) / (D A ) is preferably in the range of 1/5000 to 1/5.

前記金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1〜4.1Vの範囲にあることが好ましい。   The difference in standard electrode potential between the metal fine particles (A) and the metal fine particles (B) is preferably in the range of 0.1 to 4.1V.

前記金属微粒子(A)がNi、Al、Mg、Ti、Fe、In、Co、Sn、Mo、Cu、Ru、
Rh、Pd、Agから選ばれる1種以上の金属であり、前記金属微粒子(B)がRh、Ru、
Pd、Ag、Pt、Ir、Auから選ばれる1種以上の金属であることが好ましい。
The metal fine particles (A) are Ni, Al, Mg, Ti, Fe, In, Co, Sn, Mo, Cu, Ru,
One or more metals selected from Rh, Pd, and Ag, and the metal fine particles (B) are Rh, Ru,
One or more metals selected from Pd, Ag, Pt, Ir, and Au are preferable.

前記金属微粒子(A)と前記金属微粒子(B)の重量比が、金属微粒子(A)100重量部に対し金属微粒子(B)が1〜50重量部の範囲にあることが好ましい。   The weight ratio of the metal fine particles (A) to the metal fine particles (B) is preferably in the range of 1 to 50 parts by weight of the metal fine particles (B) with respect to 100 parts by weight of the metal fine particles (A).

得られた複合金属微粒子の流動電位が、複合金属微粒子の濃度が1重量%の場合に−400〜−50mVの範囲にあることが好ましい。   The flow potential of the obtained composite metal fine particles is preferably in the range of −400 to −50 mV when the concentration of the composite metal fine particles is 1% by weight.

本発明に係る複合金属微粒子分散液は、平均粒子径(DA)が50nm〜5μmの範囲
にある金属微粒子(A)の表面に、該金属微粒子(A)より標準電極電位が高く、平均粒子径(DB)が1nm〜20nmの範囲にある金属微粒子(B)が担持されてなる複合金
属微粒子が分散してなることを特徴としている。
The composite metal fine particle dispersion according to the present invention has a standard electrode potential higher than that of the metal fine particles (A) on the surface of the metal fine particles (A) having an average particle diameter (D A ) in the range of 50 nm to 5 μm. It is characterized in that composite metal fine particles formed by supporting metal fine particles (B) having a diameter (D B ) in the range of 1 nm to 20 nm are dispersed.

このように本発明によれば、大きめの金属微粒子の表面に、小さい金属コロイド微粒子が担持され、さらに、担持されていない、フリーの金属コロイド微粒子が分散した複合金属微粒子の分散液が得られる。このように、金属コロイド微粒子が表面に担持されているため、複合金属微粒子が高い表面電位を有し、このため、分散性、安定性に優れた複合金属微粒子分散液を得ることができる。   As described above, according to the present invention, a dispersion of composite metal fine particles in which small metal colloidal fine particles are supported on the surface of larger metal fine particles and free metal colloidal fine particles are not dispersed is obtained. As described above, since the metal colloidal fine particles are supported on the surface, the composite metal fine particles have a high surface potential. Therefore, a composite metal fine particle dispersion having excellent dispersibility and stability can be obtained.

本発明によれば、複合金属微粒子分散液を調製する際に、有機安定化剤等を使用してないので有機安定化剤による導電性阻害がなく、本発明によって得られる複合金属微粒子を用いると、導電性に優れた導電性接着剤、導電性フィルム、回路、電極等を提供することができる。   According to the present invention, when preparing the composite metal fine particle dispersion liquid, since no organic stabilizer or the like is used, there is no conductivity inhibition by the organic stabilizer, and the composite metal fine particles obtained by the present invention are used. It is possible to provide a conductive adhesive, a conductive film, a circuit, an electrode and the like excellent in conductivity.

さらに、有機系導電性材料を用いた場合に比べて、耐候性、耐熱性、耐薬品性等に優れた導電性接着剤、導電性フィルム、回路、電極等を提供することができる。   Furthermore, it is possible to provide a conductive adhesive, a conductive film, a circuit, an electrode, and the like that are superior in weather resistance, heat resistance, chemical resistance, and the like as compared with the case where an organic conductive material is used.

以下、本発明に係る複合微粒子分散液の製造方法について具体的に説明する。   Hereinafter, the method for producing a composite fine particle dispersion according to the present invention will be specifically described.

複合金属微粒子の製造方法
本発明に係る複合金属微粒子の製造方法では、平均粒子径(DA)が50nm〜5μm
の範囲にある金属微粒子(A)と、該金属微粒子(A)より標準電極電位が高く、平均粒
子径(DB)が1nm〜20nmの範囲にある金属微粒子(B)との混合分散液のpHを
4〜10の範囲に維持しながら撹拌することを特徴としている。
Method for Producing Composite Metal Fine Particles In the method for producing composite metal fine particles according to the present invention, the average particle diameter (D A ) is 50 nm to 5 μm.
Of a mixed dispersion of fine metal particles (A) in the range of 1 and a fine metal particle (B) having a standard electrode potential higher than that of the fine metal particles (A) and an average particle diameter (D B ) in the range of 1 nm to 20 nm. It is characterized by stirring while maintaining the pH in the range of 4-10.

すなわち、大きめの金属微粒子(A)と小さい金属微粒子(B)が使用される。   That is, large metal fine particles (A) and small metal fine particles (B) are used.

本発明に用いる金属微粒子(A)は、Ni、Al、Mg、Ti、Fe、In、Co、Sn、Mo
、Cu、Ru、Rh、Pd、Agから選ばれる1種以上の金属からなる。これらの金属からな
る金属微粒子(A)は、導電性は有しているものの、表面帯電量が少なく、液中への分散性が必ずしも良くない。このため凝集したり沈降し易く、安定な金属微粒子の分散液を得ることが困難であった。
The fine metal particles (A) used in the present invention are Ni, Al, Mg, Ti, Fe, In, Co, Sn, Mo.
, Cu, Ru, Rh, Pd, and Ag. Although the metal fine particles (A) made of these metals have electrical conductivity, the surface charge amount is small and the dispersibility in the liquid is not always good. For this reason, it is easy to agglomerate or settle, and it is difficult to obtain a stable dispersion of metal fine particles.

金属微粒子(A)の平均粒子径(DA)は、50nm〜5μm、好ましくは100〜1
μmの範囲にある。
The average particle diameter (D A ) of the metal fine particles (A) is 50 nm to 5 μm, preferably 100 to 1.
It is in the range of μm.

金属微粒子(A)の平均粒子径(DA)が50nm未満の場合は、前記金属が容易に酸
化されやすいことに加えて、粒子径が小さいことによる易酸化性のために導電性の高い複合金属微粒子を得ることが困難である。
When the average particle size of the fine metal particles (A) (D A) is less than 50nm, in addition to the metal tends to be easily oxidized, highly conductive for oxidizable by small particle size complex It is difficult to obtain metal fine particles.

金属微粒子(A)の平均粒子径(DA)が5μmを越えると、粒子が大きすぎてしまい
、粒子が容易に沈降し、本発明の方法で複合金属微粒子を含む導電性被膜形成用塗布液を調製しても、複合金属微粒子が沈降しやすく、均一に分散せず、また導電性被膜を形成しても膜形成性が悪く、所望の導電性が得られなかったり、膜の強度が不充分になることがある。
If the average particle size of the fine metal particles (A) (D A) is more than 5 [mu] m, the particles becomes too large, the particles are easily precipitated, conductive film-forming coating liquid containing composite metal particles by the method of the present invention Even if the composite metal particles are prepared, the composite metal fine particles are liable to settle and do not uniformly disperse, and even if a conductive film is formed, the film formation is poor and the desired conductivity cannot be obtained or the film strength is poor. May be sufficient.

前記金属微粒子(A)は、必ずしも単分散の金属微粒子(以下、一次粒子ということがある。)である必要はなく、粒状に凝集した粒子でなければ、鎖状に連結した鎖状粒子(以下、二次粒子ということがある。)であってもよい。鎖状粒子の場合、通常一次粒子が2個以上、好ましくは5〜50個程度連結した鎖状粒子である。このような鎖状粒子を用いると、予め粒子が連結しているために粒界抵抗が小さく高い導電性が得られる傾向にある。   The metal fine particles (A) are not necessarily monodispersed metal fine particles (hereinafter sometimes referred to as primary particles). , Sometimes referred to as secondary particles). In the case of chain particles, they are usually chain particles in which two or more primary particles, preferably about 5 to 50, are connected. When such chain particles are used, since the particles are connected in advance, the grain boundary resistance tends to be small and high conductivity tends to be obtained.

本発明に用いる金属微粒子(A)としては、従来公知の製造方法で得られた金属粒子を特に制限なく用いることができる。   As the metal fine particles (A) used in the present invention, metal particles obtained by a conventionally known production method can be used without particular limitation.

例えば、特開2000−196287号公報等に開示された一次粒子(単分散粒子)、二次粒子(鎖状粒子)は好適に用いることができる。   For example, primary particles (monodispersed particles) and secondary particles (chain particles) disclosed in JP 2000-196287 A can be suitably used.

つぎに、本発明に用いる金属微粒子(B)は、Rh、Ru、Pd、Ag、Pt、Ir、Auか
ら選ばれる1種以上の金属であることが好ましい。これら金属の微粒子は表面帯電量が多く、分散性、安定性に優れている。
Next, the metal fine particles (B) used in the present invention are preferably one or more metals selected from Rh, Ru, Pd, Ag, Pt, Ir, and Au. These fine metal particles have a large surface charge amount and are excellent in dispersibility and stability.

このような金属微粒子(B)の平均粒子径(DB)は、1nm〜20nm、さらには2
〜10nmの範囲の範囲にあることが好ましい。
The average particle diameter (D B ) of such metal fine particles ( B ) is 1 nm to 20 nm, and further 2
It is preferably in the range of 10 nm.

金属微粒子(B)の平均粒子径(DB)が1nm未満のものは、得ることが困難であり
、得られたとしても凝集する傾向があるので、金属微粒子(B)の分散液を金属微粒子(A)の分散液と混合しても金属微粒子(A)の表面に均一に担持できないことがあり、分散性、安定性を有する複合金属微粒子(分散液)が得られないことがある。
An average particle size of the fine metal particles (B) (D B) is less than 1nm is difficult to obtain, tend to aggregate as the resulting metal a dispersion of fine metal particles (B) microparticles Even if it is mixed with the dispersion liquid (A), it may not be uniformly supported on the surface of the metal fine particles (A), and composite metal fine particles (dispersion liquid) having dispersibility and stability may not be obtained.

金属微粒子(B)の平均粒子径(DB)が20nmを越えると、金属微粒子(A)に担
持されても複合金属微粒子としての表面帯電量を増加させる効果が少なく、分散性、安定性を有する複合金属微粒子(分散液)が得られないことがある。
If the average particle size of the fine metal particles (B) (D B) exceeds 20 nm, less effect be supported on the metal fine particles (A) to increase the surface charge amount of the composite metal fine particles, dispersibility, stability The composite metal fine particles (dispersion liquid) may not be obtained.

本発明に用いる金属微粒子(B)としては、上記した粒子径を有していれば特に制限はなく従来公知の金属粒子を用いることができる。
(例えば、特開2002−294301号公報等に開示された金属微粒子を好適に用いることができる。)
本発明で使用される金属微粒子(A)および(B)は、2種以上の合金であってもよい。
The metal fine particles (B) used in the present invention are not particularly limited as long as they have the above particle diameter, and conventionally known metal particles can be used.
(For example, metal fine particles disclosed in JP-A No. 2002-294301 and the like can be suitably used.)
The metal fine particles (A) and (B) used in the present invention may be two or more kinds of alloys.

前記平均粒子径(DB)と平均粒子径(DA)との比、(DB)/(DA)が1/5000〜1/5、さらには1/500〜1/10の範囲にあることが好ましい。 The ratio of the average particle diameter (D B ) to the average particle diameter (D A ), and (D B ) / (D A ) is in the range of 1/5000 to 1/5, and further 1/500 to 1/10. Preferably there is.

(DB)/(DA)が1/5000未満の場合は、金属微粒子(B)が金属微粒子(A)の表面に不均一に担持される傾向があり、金属微粒子(A)の表面帯電量を効果的に増加させることができず、得られた複合金属微粒子の分散性、安定性の向上効果が充分得られないことがある。 When (D B ) / (D A ) is less than 1/5000, the metal fine particles (B) tend to be unevenly supported on the surface of the metal fine particles (A). The amount cannot be increased effectively, and the effect of improving the dispersibility and stability of the obtained composite metal fine particles may not be sufficiently obtained.

(DB)/(DA)が1/5を越えると、金属微粒子(B)の金属微粒子(A)への担持力が低下するとともに、金属微粒子(B)の担持粒子数も少なく、金属微粒子(A)の表面帯電量を効果的に増加させることができず、得られた複合金属微粒子の分散性、安定性の向上効果が充分得られないことがある。 When (D B ) / (D A ) exceeds 1/5, the supporting force of the metal fine particles (B) on the metal fine particles (A) is reduced, and the number of particles supported on the metal fine particles (B) is small. The surface charge amount of the fine particles (A) cannot be effectively increased, and the resulting composite metal fine particles may not be sufficiently improved in dispersibility and stability.

また、金属微粒子(B)は金属微粒子(A)より標準電極電位が高く、金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1〜4.1V、さらには0.2〜4.0Vの範囲にあることが好ましい。こような電位差にあると、pH調製によって、金属微粒子(B
)が金属微粒子(A)に容易に担持される。
Further, the fine metal particles (B) have a higher standard electrode potential than the fine metal particles (A), and the difference between the standard electrode potentials of the fine metal particles (A) and the fine metal particles (B) is 0.1 to 4.1 V, more preferably, 0.1. It is preferably in the range of 2 to 4.0V. If there is such a potential difference, metal fine particles (B
) Is easily supported on the metal fine particles (A).

金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1V未満の場合は、金
属微粒子(B)の大きさにもよるが、所望の量を担持することができない場合がある。
When the difference in the standard electrode potential between the metal fine particles (A) and the metal fine particles (B) is less than 0.1 V, a desired amount may not be supported depending on the size of the metal fine particles (B). is there.

このため、分散性、安定性に優れた複合金属微粒子の分散液が得られないことがある。   For this reason, a dispersion of fine composite metal particles having excellent dispersibility and stability may not be obtained.

金属微粒子(A)と金属微粒子(B)の標準電極電位の差は、前記金属成分を選択する限りにおいては4.1Vを越えることはない。   The difference in standard electrode potential between the metal fine particles (A) and the metal fine particles (B) does not exceed 4.1 V as long as the metal component is selected.

本発明に用いる金属微粒子(A)と金属微粒子(B)の組み合わせとしては、上記条件を満たすもののであれば特に制限はないが、好適な組み合わせの例として、(A)−(B)(電位差=V)で表すと、Au−Ni(3.96V)、Pt−Ni(3.47V)、Pd−Ni(3.20V)、Ag−Ni(3.08V)、Ru−Ni(2.74V)、Au−Fe(2.12V)、Pd−Fe(
1.36V)、Au−Ag(0.88V)等が挙げられる。
The combination of the metal fine particles (A) and the metal fine particles (B) used in the present invention is not particularly limited as long as the above conditions are satisfied. Examples of suitable combinations include (A)-(B) (potential difference = V), Au-Ni (3.96V), Pt-Ni (3.47V), Pd-Ni (3.20V), Ag-Ni (3.08V), Ru-Ni (2.74V). ), Au-Fe (2.12 V), Pd-Fe (
1.36V), Au-Ag (0.88V) and the like.

本発明に係る複合金属微粒子の製造方法では、上記した金属微粒子(A)の分散液と金属微粒子(B)の分散液とを混合し、混合分散液のpHを4〜10、好ましくは5〜9の範囲に調整する。このとき、金属微粒子(A)が沈降しない程度に撹拌することが好ましい。   In the method for producing composite metal fine particles according to the present invention, the dispersion of the metal fine particles (A) and the dispersion of the metal fine particles (B) are mixed, and the pH of the mixed dispersion is 4 to 10, preferably 5 to 5. Adjust to 9 range. At this time, it is preferable to stir to such an extent that the metal fine particles (A) do not settle.

金属微粒子(A)の分散液と金属微粒子(B)の分散液との混合割合は、金属微粒子(A)100重量部に対し金属微粒子(B)が1〜50重量部、さらには5〜30重量部の範囲にあることが好ましい。   The mixing ratio of the dispersion of the metal fine particles (A) and the dispersion of the metal fine particles (B) is 1 to 50 parts by weight, more preferably 5 to 30 parts by weight of the metal fine particles (B) with respect to 100 parts by weight of the metal fine particles (A). It is preferably in the range of parts by weight.

金属微粒子(A)100重量部に対し金属微粒子(B)が1重量部未満の場合は、金属微粒子(B)の粒子径にもよるが、金属微粒子(A)の表面帯電量の増加が不充分となり、分散性、安定性に優れた複合金属微粒子の分散液が得られないことがある。   When the amount of the metal fine particles (B) is less than 1 part by weight with respect to 100 parts by weight of the metal fine particles (A), the surface charge amount of the metal fine particles (A) is not increased although it depends on the particle diameter of the metal fine particles (B). In some cases, a dispersion of fine composite metal particles having sufficient dispersibility and stability cannot be obtained.

金属微粒子(A)100重量部に対し金属微粒子(B)が50重量部を越えてもさらに表面帯電量が増加することもなく、凝集した複合金属微粒子が生成することがある。   Even when the amount of the metal fine particles (B) exceeds 50 parts by weight with respect to 100 parts by weight of the metal fine particles (A), the surface charge amount does not further increase and aggregated composite metal fine particles may be generated.

なお、金属微粒子(B)は全量が金属微粒子(A)に担持されるのではなく、一部が、分散液中に担持されずに残っていてもよい(フリーの金属微粒子(B))。   The entire amount of the metal fine particles (B) is not supported on the metal fine particles (A), but a part of the metal fine particles (B) may remain unsupported in the dispersion (free metal fine particles (B)).

金属微粒子(A)の分散液の金属微粒子の濃度は、概ね1〜30重量%の範囲にあることが好ましい。また、金属微粒子(B)の分散液の金属微粒子の濃度も概ね1〜30重量%の範囲にあることが好ましい。   The concentration of the metal fine particles in the dispersion of the metal fine particles (A) is preferably in the range of approximately 1 to 30% by weight. The concentration of the metal fine particles in the dispersion of the metal fine particles (B) is also preferably in the range of about 1 to 30% by weight.

金属微粒子(A)および(B)の分散液をそれぞれ混合して得られた混合分散液の濃度は、1〜30重量%、さらには5〜20重量%の範囲にあることが好ましい。混合分散液の濃度が1重量%未満の場合は、金属微粒子(B)が金属微粒子(A)に担持される割合が低下したり、長時間を要するので経済性が低下する。   The concentration of the mixed dispersion obtained by mixing the dispersions of metal fine particles (A) and (B) is preferably in the range of 1 to 30% by weight, more preferably 5 to 20% by weight. When the concentration of the mixed dispersion is less than 1% by weight, the proportion of the metal fine particles (B) supported on the metal fine particles (A) is reduced, and it takes a long time.

混合分散液の濃度が30重量%を越えると、凝集した複合金属微粒子が生成することがある。   When the concentration of the mixed dispersion exceeds 30% by weight, aggregated composite metal fine particles may be generated.

ついで、混合分散液のpHを4〜10に調整する。このpH調整によって、金属微粒子
(B)が金属微粒子(A)表面に担持される。
Next, the pH of the mixed dispersion is adjusted to 4-10. By this pH adjustment, the metal fine particles (B) are supported on the surface of the metal fine particles (A).

混合分散液のpHが4未満の場合は、金属微粒子(A)、金属微粒子(B)がイオン化して溶解し、この場合も凝集した複合金属微粒子が生成することがある。   When the pH of the mixed dispersion is less than 4, the metal fine particles (A) and the metal fine particles (B) are ionized and dissolved, and in this case, aggregated composite metal fine particles may be generated.

混合分散液のpHが10を越えると、金属微粒子(A)、金属微粒子(B)の一部が酸化物あるいは水酸化物となることがあり、得られる複合金属微粒子の導電性が低下することがある。   When the pH of the mixed dispersion exceeds 10, a part of the metal fine particles (A) and the metal fine particles (B) may become oxides or hydroxides, and the conductivity of the resulting composite metal fine particles decreases. There is.

また、pH調整剤としては酸、または塩基を用いるが、酸としてはHCl、HNO3
、塩基としてはNaOH、NH3、有機アミン等が用いられる。
Moreover, although an acid or a base is used as the pH adjuster, HCl, HNO 3 or the like is used as the acid, and NaOH, NH 3 , an organic amine or the like is used as the base.

なお、金属微粒子(A)の分散液および/または金属微粒子(B)の分散液は、金属微粒子(A)および/または金属微粒子(B)の分散性を向上するために、あるいは、予め混合後の分散液のpHが上記範囲となるようにpH調整(酸または塩基の添加)を行ってもよく、さらに混合後の分散液のpH調整と併用することもできる。   The dispersion of the metal fine particles (A) and / or the dispersion of the metal fine particles (B) is used for improving the dispersibility of the metal fine particles (A) and / or the metal fine particles (B) or after mixing in advance. PH adjustment (addition of acid or base) may be carried out so that the pH of the dispersion liquid falls within the above range, and it can also be used in combination with pH adjustment of the dispersion liquid after mixing.

予め調整する場合の金属微粒子(A)分散液のpHは、金属微粒子の種類によっても異なるが6〜10、金属微粒子(B)分散液のpHは4〜7の範囲にあることが好ましい。   The pH of the metal fine particle (A) dispersion when it is preliminarily adjusted varies depending on the type of metal fine particles, but the pH of the metal fine particle (B) dispersion is preferably in the range of 4-7.

pHを調整する際に、通常攪拌を行う。攪拌としては特に制限されるものではなく、均
一に混合できればよい。
When adjusting the pH, stirring is usually performed. The stirring is not particularly limited as long as it can be uniformly mixed.

混合後の分散液は、pH調整した後、通常常温で10分間〜10時間攪拌を継続する。   The dispersion after mixing is continuously stirred for 10 minutes to 10 hours at ordinary temperature after adjusting the pH.

このとき、pH調整、撹拌等は、金属の酸化を防止するために不活性ガス雰囲気下および/または還元ガス雰囲気下で行うことが好ましい。   At this time, pH adjustment, stirring, and the like are preferably performed in an inert gas atmosphere and / or a reducing gas atmosphere in order to prevent oxidation of the metal.

さらに、上記撹拌の後、必要に応じて分散を促進するためにナノマイザー、ホモジナイザー、超音波照射等により分散処理することもできる。   Furthermore, after the above stirring, a dispersion treatment can be performed by nanomizer, homogenizer, ultrasonic irradiation or the like in order to promote dispersion as necessary.

ついで、得られた分散液は、そのまま使用することもできるが、必要に応じて、遠心分離、濾過分離、磁気分離等により複合金属微粒子を分離回収し、ついで、純水に再分散させてもよい。さらに、必要に応じてイオン交換処理してもよい。   Then, the obtained dispersion can be used as it is, but if necessary, the composite metal fine particles can be separated and recovered by centrifugation, filtration separation, magnetic separation, etc., and then redispersed in pure water. Good. Furthermore, you may perform an ion exchange process as needed.

最終的に調製される複合金属微粒子分散液の濃度は用途によって異なるが、所望の濃度に調整すれば良く、1〜30重量%である。   Although the concentration of the composite metal fine particle dispersion finally prepared varies depending on the application, it may be adjusted to a desired concentration and is 1 to 30% by weight.

また、用途によっては、分散媒を有機溶媒に置換してもよい。有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。   Depending on the application, the dispersion medium may be replaced with an organic solvent. Examples of organic solvents include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, ethylene glycol and hexylene glycol; esters such as methyl acetate and ethyl acetate; diethyl ether and ethylene glycol monomethyl Examples include ethers such as ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetate. These may be used singly or in combination of two or more.

このようにして得られた複合金属微粒子水分散液は、複合金属微粒子の濃度が1重量%の場合に、流動電位が−400〜−50mV、さらには−300〜−100mVの範囲にあることが好ましい。   The aqueous dispersion of fine composite metal particles thus obtained may have a streaming potential in the range of −400 to −50 mV, more preferably −300 to −100 mV, when the composite metal fine particle concentration is 1% by weight. preferable.

流動電位が−400mV未満の場合は、複合金属微粒子の表面電荷量が過剰となり、複合金属微粒子が凝集することがある。   When the streaming potential is less than −400 mV, the surface charge amount of the composite metal fine particles becomes excessive, and the composite metal fine particles may aggregate.

流動電位が−50mVを越えると、複合金属微粒子の表面電荷が消失し、複合金属微粒子が凝集することがある。   When the streaming potential exceeds −50 mV, the surface charge of the composite metal fine particles may disappear and the composite metal fine particles may aggregate.

なお流動電位は、Mutek社製:Particle Charge Detectorを用いて測定した。   The streaming potential was measured using a Particle Charge Detector manufactured by Mutek.

複合金属微粒子分散液
本発明に係る複合金属微粒子分散液は、平均粒子径(DA)が50nm〜5μmの範囲
にある金属微粒子(A)の表面に、該金属微粒子(A)より標準電極電位が高く、平均粒子径(DB)が1nm〜20nmの範囲にある金属微粒子(B)が担持されてなる複合金
属微粒子が分散してなることを特徴としている。金属微粒子(A)および(B)、分散媒としては、前記と同様である。このような、複合金属微粒子分散液の濃度は用途によって異なるが、1〜30重量%であればよい。また前記したように重量%のときの分散液の流動電位が-40〜-500mV、さらには−300〜−100mVの範囲にあることが好ましい。
Composite Metal Fine Particle Dispersion The composite metal fine particle dispersion according to the present invention has a standard electrode potential from the metal fine particles (A) on the surface of the metal fine particles (A) having an average particle diameter (D A ) in the range of 50 nm to 5 μm. It is characterized in that composite metal fine particles on which metal fine particles (B) having a high average particle diameter (D B ) in the range of 1 nm to 20 nm are supported are dispersed. The metal fine particles (A) and (B) and the dispersion medium are the same as described above. The concentration of such a composite metal fine particle dispersion varies depending on the application, but may be 1 to 30% by weight. Further, as described above, it is preferable that the flow potential of the dispersion when it is% by weight is in the range of −40 to −500 mV, more preferably −300 to −100 mV.

前記平均粒子径(DB)と平均粒子径(DA)との比、(DB)/(DA)が1/5000〜1/5、さらには1/500〜1/10の範囲にあることが好ましい。 The ratio of the average particle diameter (D B ) to the average particle diameter (D A ), and (D B ) / (D A ) is in the range of 1/5000 to 1/5, and further 1/500 to 1/10. Preferably there is.

前記金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1〜4.1V、さらには0.2〜4.0Vの範囲にあることが好ましい。   The difference in standard electrode potential between the metal fine particles (A) and the metal fine particles (B) is preferably in the range of 0.1 to 4.1 V, more preferably 0.2 to 4.0 V.

前記金属微粒子(A)と前記金属微粒子(B)の重量比が、金属微粒子(A)100重量部に対し金属微粒子(B)が1〜50重量部、5〜30重量部の範囲にあることが好ま
しい。
The weight ratio of the metal fine particles (A) to the metal fine particles (B) is in the range of 1 to 50 parts by weight and 5 to 30 parts by weight of the metal fine particles (B) with respect to 100 parts by weight of the metal fine particles (A). Is preferred.

このような複合金属微粒子分散液は、前記したように大きめでなおかつ表面帯電量の少ない、金属微粒子(A)表面に、小さいかつ表面帯電量の大きい金属微粒子(B)が担持されている。このため、かかる複合金属微粒子には、金属微粒子(B)より電荷が付与され、金属微粒子(A)では困難であった、分散性に優れた分散液を得ることができる。また
、金属微粒子(B)は、金属微粒子(A)に担持されている他に、そのままフリーの状態で、分散液中に分散している。その理由は明確ではないが、このフリーの金属微粒子(B)に
よって、複合金属微粒子の分散性、安定性も向上されるものと考えられる。
In such a composite metal fine particle dispersion, the metal fine particles (B) having a small and large surface charge are supported on the surface of the metal fine particles (A) having a large and small surface charge as described above. For this reason, a charge is imparted to the composite metal fine particles from the metal fine particles (B), and a dispersion having excellent dispersibility, which was difficult with the metal fine particles (A), can be obtained. In addition to the metal fine particles (B) supported on the metal fine particles (A), they are dispersed in the dispersion in a free state. Although the reason is not clear, it is considered that the dispersibility and stability of the composite metal fine particles are improved by the free metal fine particles (B).

したがって、このような複合金属微粒子は、有機安定剤を使用しなくとも、分散性、安定性に優れている。このため、有機安定化剤による導電性阻害がない。また本発明によって得られる複合金属微粒子分散液を用いると、その導電性を利用して、接着剤に配合したり、フィルムに配合したりすれば導電性に優れた導電性接着剤、導電性フィルムがえられ、塗布液として使用すれば、導通性が高く、抵抗の小さい、回路、電極等を提供することができる。   Therefore, such composite metal fine particles are excellent in dispersibility and stability without using an organic stabilizer. For this reason, there is no conductivity inhibition by the organic stabilizer. In addition, when the composite metal fine particle dispersion obtained by the present invention is used, a conductive adhesive or conductive film excellent in conductivity can be obtained by blending it into an adhesive or film by utilizing its conductivity. On the other hand, if it is used as a coating solution, it is possible to provide a circuit, an electrode, etc. having high conductivity and low resistance.

さらに、有機系導電性材料を用いた場合に比べて、耐候性、耐熱性、耐薬品性等に優れた導電性接着剤、導電性フィルム、回路、電極等を提供することができる。   Furthermore, it is possible to provide a conductive adhesive, a conductive film, a circuit, an electrode, and the like that are superior in weather resistance, heat resistance, chemical resistance, and the like as compared with the case where an organic conductive material is used.

実施例
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1(Au/Ni)
複合金属微粒子(1)分散液の調製
純水16000gに塩化金酸四水和物19g(Auとして9g)を溶解した金属塩水溶液に、錯化安定剤として濃度1.0重量%のクエン酸3ナトリウム水溶液1660gと、還元
剤として濃度0.1重量%の水素化ホウ素ナトリウム140gを加え、窒素雰囲気下で1
時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液は、限外洗浄により精製した後濃縮して金属換算で濃度5.0重量%Au微粒子(金属微粒子(B-1))の分散液
とした。
Example 1 (Au / Ni)
Preparation of composite metal fine particle (1) dispersion In a metal salt aqueous solution in which 19 g of chloroauric acid tetrahydrate (9 g as Au) was dissolved in 16000 g of pure water, citric acid 3 having a concentration of 1.0% by weight as a complexing stabilizer 1660 g of an aqueous sodium solution and 140 g of sodium borohydride having a concentration of 0.1% by weight as a reducing agent were added.
The mixture was stirred at 20 ° C. for a time to obtain a dispersion of metal fine particles. The obtained dispersion was purified by ultra-cleaning and then concentrated to obtain a dispersion of 5.0 wt% Au fine particles (metal fine particles (B-1)) in terms of metal.

金属微粒子(B-1)分散液のpHは6で、平均粒子径は5nmであった。   The pH of the metal fine particle (B-1) dispersion was 6, and the average particle size was 5 nm.

ついで、純水71gにニッケル粉末(住友電気工業(株)製:平均粒子径200nm)9gを添加し、混合攪拌後にpH9に調製してニッケル粒子(金属微粒子(A-1))分散液を
得た。これに金属微粒子(B-1)分散液20g(Auとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をしてAu/Ni複合金属微粒子の分
散液を得た。得られた分散液は、遠心分離機により分離回収し、再度純水に分散させ、pHを6に調製し固形分換算で10重量%のAu/Ni複合金属微粒子(1)の分散液とした。
Next, 9 g of nickel powder (Sumitomo Electric Industries, Ltd .: average particle size 200 nm) is added to 71 g of pure water, and after mixing and stirring, the pH is adjusted to 9 to obtain a dispersion of nickel particles (metal fine particles (A-1)). It was. To this was added 20 g of a metal fine particle (B-1) dispersion (1 g as Au), and the mixture was stirred for 1 hour at 20 ° C. in a nitrogen atmosphere, and then dispersed with a nanomizer to disperse Au / Ni composite metal fine particles. A liquid was obtained. The obtained dispersion was separated and collected by a centrifuge, dispersed again in pure water, adjusted to pH 6 and used as a dispersion of 10% by weight of Au / Ni composite metal fine particles (1) in terms of solid content. .

得られたAu/Ni複合金属微粒子(1)のAu含有量は10重量%であり、流動電位は−1
30mVで表面電位を有し、複合金属微粒子(1)の平均粒子径は210nmであった。
The obtained Au / Ni composite metal fine particles (1) have an Au content of 10% by weight and a streaming potential of -1.
It had a surface potential at 30 mV, and the average particle size of the composite metal fine particles (1) was 210 nm.

なお、平均粒子径は、透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について測定し、その平均値を用いた。また、流動電位は金属微粒子の濃度が1重量%の複合金属微粒子分散液を調製し、Mutek社製:Particle Charge Detectorを用いて測定した。   In addition, the average particle diameter measured the 100 particle | grains, image | photographed the transmission electron micrograph (TEM), and used the average value. In addition, the flow potential was measured using a particle charge detector manufactured by Mutek Co., Ltd., with a composite metal fine particle dispersion having a metal fine particle concentration of 1 wt%.

得られたAu/Ni複合金属微粒子(1)分散液の安定性を以下の基準で評価した。   The stability of the obtained Au / Ni composite metal fine particle (1) dispersion was evaluated according to the following criteria.

分散液の撹拌を止めた後、60分以上沈降物が認められなかった :◎
分散液の撹拌を止めた後、30〜60分未満で沈降物が認められた:○
分散液の撹拌を止めた後、3〜30分未満で沈降物が認められた :△
分散液の撹拌を止めた後、0〜3分未満で沈降物が認められた :×
結果をあわせて表1に示す。
After stopping the stirring of the dispersion, no sediment was observed for 60 minutes or more: ◎
After stopping the stirring of the dispersion, sediment was observed in less than 30-60 minutes:
After stopping the stirring of the dispersion, a precipitate was observed in less than 3 to 30 minutes: Δ
After stopping the stirring of the dispersion, sediment was observed in 0 to 3 minutes or less: ×
The results are shown in Table 1.

導電性フィルム(1)の調製
複合金属微粒子(1)の分散液10gに樹脂濃度34重量%の水溶性ポリエステル樹脂(
東洋紡績(株)性:バイロナール MD−1200)2.9gを加え、導電性フィルム形成用塗料(1)を調製した。ついで、導電性フィルム形成用塗料(1)をPETフィルム上にバーコーター法にて塗布し、120℃で30分間乾燥して導電性フィルム(1)を調製した。導電性フィルム(1)について、表面抵抗測定装置(三菱化学(株)製:ローレスター)にて測定した。
Preparation of conductive film (1) Water-soluble polyester resin having a resin concentration of 34% by weight (10 g) in a dispersion of composite metal fine particles (1) (
Toyobo Co., Ltd .: 2.9 g of Vylonal MD-1200) was added to prepare a conductive film-forming paint (1). Next, the conductive film-forming paint (1) was applied onto the PET film by a bar coater method and dried at 120 ° C. for 30 minutes to prepare a conductive film (1). About the electroconductive film (1), it measured with the surface resistance measuring apparatus (Mitsubishi Chemical Corporation make: Lorestar).

結果を表1に示した。   The results are shown in Table 1.

実施例2(Pt/Ni)
複合金属微粒子(2)分散液の調製
純水16000gに塩化白金酸六水和物25g(Ptとして9g)を溶解した金属塩水溶液に、錯化安定剤として濃度1.0重量%のクエン酸3ナトリウム水溶液1660gと還元
剤として濃度0.1重量%の水素化ホウ素ナトリウム140gを加え、窒素雰囲気下で1
時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液は、限外洗浄により精製した後濃縮して金属換算で濃度5.0重量%のPt微粒子(金属微粒子(B-2))の分散
液とした。金属微粒子(B-2)分散液のpHは6で、平均粒子径は2nmであった。
Example 2 (Pt / Ni)
Preparation of composite metal fine particle (2) dispersion In a metal salt aqueous solution in which 25 g of chloroplatinic acid hexahydrate (9 g as Pt) is dissolved in 16000 g of pure water, citric acid 3 having a concentration of 1.0% by weight as a complexing stabilizer 1660 g of an aqueous sodium solution and 140 g of sodium borohydride having a concentration of 0.1% by weight as a reducing agent were added, and 1 in a nitrogen atmosphere.
The mixture was stirred at 20 ° C. for a time to obtain a dispersion of metal fine particles. The obtained dispersion was purified by ultra-cleaning and concentrated to obtain a dispersion of Pt fine particles (metal fine particles (B-2)) having a concentration of 5.0% by weight in terms of metal. The pH of the metal fine particle (B-2) dispersion was 6, and the average particle size was 2 nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-2)分散液20g(Ptとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマ
イザーにて分散処理をしてPt/Ni複合金属微粒子の分散液を得た。得られた分散液は、
遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のPt/Ni複合金属微粒子(2)の分散液とした。得られたPt/Ni複合金属微粒子(2)のPt含有量は10重量%であり、流動電位は−120mVで表面電位を有し、平均粒子径は
204nmであった。また、Pt/Ni複合金属微粒子(2)分散液の安定性を評価した。
Subsequently, 20 g (1 g as Pt) of the metal fine particle (B-2) dispersion was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and stirred at 20 ° C. for 1 hour in a nitrogen atmosphere. After that, dispersion treatment was performed with a nanomizer to obtain a dispersion of Pt / Ni composite metal fine particles. The resulting dispersion is
It was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6, and used as a dispersion of 10 wt% Pt / Ni composite metal fine particles (2) in terms of solid content. The obtained Pt / Ni composite metal fine particles (2) had a Pt content of 10% by weight, a streaming potential of −120 mV, a surface potential, and an average particle size of 204 nm. Further, the stability of the Pt / Ni composite metal fine particle (2) dispersion was evaluated.

結果を表1に示す。   The results are shown in Table 1.

導電性フィルム(2)の調製
実施例1において、複合金属微粒子(2)の分散液10gを用いた以外は同様にして導電
性フィルム(2)を調製した。導電性フィルム(2)について、表面抵抗値を測定した。
Preparation of conductive film (2) A conductive film (2) was prepared in the same manner as in Example 1 except that 10 g of the dispersion of composite metal fine particles (2) was used. The surface resistance value of the conductive film (2) was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例3(Pd/Ni)
複合金属微粒子(3)分散液の調製
純水230gに硝酸パラジウムニ水和物22.5g(Ptとして9g)を溶解した金属塩水
溶液に、錯化安定剤として濃度30重量%のクエン酸3ナトリウム水溶液460gと還元剤として濃度25重量%の硫酸第一鉄七水和物187gを加え、窒素雰囲気下で20時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液から金属微粒子を遠心分離機により分離回収し、純水に再分散させて金属換算で濃度5.0重量%のPd微粒子(金属微粒子(B-3))の分散液とした。金属微粒子(B-3)分散液のpHは5で、平均粒子径は3
nmであった。
Example 3 (Pd / Ni)
Preparation of composite metal fine particle (3) dispersion In a metal salt aqueous solution in which 22.5 g of palladium nitrate dihydrate (9 g as Pt) was dissolved in 230 g of pure water, trisodium citrate having a concentration of 30% by weight as a complexing stabilizer 460 g of an aqueous solution and 187 g of ferrous sulfate heptahydrate having a concentration of 25% by weight as a reducing agent were added and stirred at 20 ° C. for 20 hours in a nitrogen atmosphere to obtain a dispersion of metal fine particles. Metal fine particles were separated and recovered from the obtained dispersion by a centrifugal separator, and redispersed in pure water to obtain a dispersion of Pd fine particles (metal fine particles (B-3)) having a concentration of 5.0% by weight in terms of metal. . The pH of the metal fine particle (B-3) dispersion is 5, and the average particle size is 3.
nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-3)分散液20g(Pdとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマ
イザーにて分散処理をしてAu/Ni複合金属微粒子の分散液を得た。得られた分散液は、
遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のPd/Ni複合金属微粒子(3)の分散液とした。得られたPd/Ni複合金属微粒子(3)のPd含有量は10重量%であり、流動電位は−98mVで表面電位を有し、複合金属微粒子(3)の平均粒子径は206nmであった。また、Pd/Ni複合金属微粒子(3)分散液の安定性を評価した。
Next, 20 g (1 g as Pd) of the metal fine particle (B-3) dispersion was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and the mixture was stirred at 20 ° C. for 1 hour in a nitrogen atmosphere. After that, dispersion treatment was performed with a nanomizer to obtain a dispersion of Au / Ni composite metal fine particles. The resulting dispersion is
It was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6, and used as a dispersion of 10 wt% Pd / Ni composite metal fine particles (3) in terms of solid content. The obtained Pd / Ni composite metal fine particles (3) had a Pd content of 10% by weight, a streaming potential of -98 mV and a surface potential, and the composite metal fine particles (3) had an average particle size of 206 nm. . In addition, the stability of the Pd / Ni composite metal fine particle (3) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(3)の調製
実施例1において、複合金属微粒子(3)の分散液10gを用いた以外は同様にして導電性フィルム(3)を調製した。導電性フィルム(3)について、表面抵抗値を測定した。
Preparation of conductive film (3) A conductive film (3) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (3) was used. About the conductive film (3), the surface resistance value was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例4(Ag/Ni)
複合金属微粒子(4)分散液の調製
純水230gに硝酸銀14.2g(Agとして9g)を溶解した金属塩水溶液に、錯化安定
剤として濃度30重量%のクエン酸3ナトリウム水溶液460gと還元剤として濃度25重量%の硫酸第一鉄七水和物93gを加え、窒素雰囲気下で1時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液から金属微粒子を遠心分離機により分離回収し、純水に再分散させて金属換算で濃度5.0重量%のAg微粒子(金属微粒子(B-4))の分
散液とした。金属微粒子(B-4)分散液のpHは5で、平均粒子径は4nmであった。
Example 4 (Ag / Ni)
Preparation of composite metal fine particle (4) dispersion In a metal salt aqueous solution in which 14.2 g of silver nitrate (9 g as Ag) is dissolved in 230 g of pure water, 460 g of a trisodium citrate aqueous solution with a concentration of 30% by weight as a complexing stabilizer and a reducing agent As a result, 93 g of ferrous sulfate heptahydrate having a concentration of 25% by weight was added and stirred at 20 ° C. for 1 hour in a nitrogen atmosphere to obtain a dispersion of metal fine particles. Metal fine particles were separated and recovered from the obtained dispersion by a centrifugal separator and redispersed in pure water to obtain a dispersion of Ag fine particles (metal fine particles (B-4)) having a concentration of 5.0% by weight in terms of metal. . The pH of the metal fine particle (B-4) dispersion was 5, and the average particle size was 4 nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-4)分散液20g(Agとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマ
イザーにて分散処理をしてAu/Ni複合金属微粒子の分散液を得た。得られた分散液は、
遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のAg/Ni複合金属微粒子(4)の分散液とした。得られたAg/Ni複合金属微粒子(4)のAg含有量は10重量%であり、流動電位は-80mVで表面電位を有し、複合金属微粒子(4)
平均粒子径は208nmであった。また、Ag/Ni複合金属微粒子(4)分散液の安定性を評価した。
Next, 20 g (1 g as Ag) of the metal fine particle (B-4) dispersion was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and the mixture was stirred at 20 ° C. for 1 hour in a nitrogen atmosphere. After that, dispersion treatment was performed with a nanomizer to obtain a dispersion of Au / Ni composite metal fine particles. The resulting dispersion is
It was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and used as a dispersion of Ag / Ni composite metal fine particles (4) of 10% by weight in terms of solid content. The resulting Ag / Ni composite metal fine particles (4) have an Ag content of 10% by weight, a flow potential of -80 mV and a surface potential.
The average particle size was 208 nm. Further, the stability of the Ag / Ni composite metal fine particle (4) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(4)の調製
実施例1において、複合金属微粒子(4)の分散液10gを用いた以外は同様にして導電性フィルム(4)を調製した。導電性フィルム(4)について、表面抵抗値を測定した。
Preparation of conductive film (4) A conductive film (4) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (4) was used. The surface resistance value of the conductive film (4) was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例5(Ag-Pd/Ni)
複合金属微粒子(5)分散液の調製
純水230gに硝酸パラジウムニ水和物11.3g(Ptとして4.5g)と硝酸銀7.1g(Agとして4.5g)を溶解した金属塩水溶液に、錯化安定剤として濃度30重量%のクエン酸3ナトリウム水溶液460gと還元剤として濃度25重量%の硫酸第一鉄七水和物187
gを加え、窒素雰囲気下で20時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液から金属微粒子を遠心分離機により分離回収し、純水に再分散させて金属換算で濃度5.0重量%のAg-Pd合金微粒子(金属微粒子(B-5))の分散液とした。金属微粒
子(B-5)分散液のpHは5で、平均粒子径は5nmであった。
Example 5 (Ag-Pd / Ni)
Preparation of composite metal fine particle (5) dispersion In 230 g of pure water, complexed with a metal salt aqueous solution in which 11.3 g of palladium nitrate dihydrate (4.5 g as Pt) and 7.1 g of silver nitrate (4.5 g as Ag) were dissolved. 460 g of a trisodium citrate aqueous solution having a concentration of 30% by weight as a stabilizer and ferrous sulfate heptahydrate 187 having a concentration of 25% by weight as a reducing agent
g was added and stirred at 20 ° C. for 20 hours under a nitrogen atmosphere to obtain a dispersion of metal fine particles. Metal fine particles are separated and recovered from the obtained dispersion liquid by a centrifugal separator, redispersed in pure water, and dispersed in a metal-converted Ag-Pd alloy fine particle (metal fine particle (B-5)) having a concentration of 5.0% by weight. Liquid. The pH of the metal fine particle (B-5) dispersion was 5, and the average particle size was 5 nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-5)分散液20g(Ag-Pdとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をしてAg-Pd/Ni複合金属微粒子の分散液を得た。得られた分散
液は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のAg-Pd/Ni複合金属微粒子(5)の分散液とした。得られたAg-Pd/Ni複合金
属微粒子(5)のAg-Pd含有量は10重量%であり、流動電位は−160mVで表面電位を有し、複合金属微粒子(5)の平均粒子径は210nmであった。また、Ag-Pd/Ni複合金属微粒子(5)分散液の安定性を評価した。
Next, 20 g of the metal fine particle (B-5) dispersion (1 g as Ag-Pd) was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and the mixture was heated at 20 ° C. for 1 hour in a nitrogen atmosphere. Then, the dispersion was processed with a nanomizer to obtain a dispersion of Ag-Pd / Ni composite metal fine particles. The obtained dispersion was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and 10% by weight of Ag-Pd / Ni composite metal fine particles (5) in terms of solid content. did. The obtained Ag—Pd / Ni composite metal fine particles (5) have an Ag—Pd content of 10% by weight, a streaming potential of −160 mV and a surface potential, and the average particle size of the composite metal fine particles (5) is It was 210 nm. In addition, the stability of the Ag—Pd / Ni composite metal fine particle (5) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(5)の調製
実施例1において、複合金属微粒子(5)の分散液10gを用いた以外は同様にして導電性フィルム(5)を調製した。導電性フィルム(5)について、表面抵抗値を測定した。
Preparation of conductive film (5) A conductive film (5) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (5) was used. The surface resistance value of the conductive film (5) was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例6(Ag-Pd/Fe)
複合金属微粒子(6)分散液の調製
実施例5と同様にしてAg-Pd合金微粒子(B-5)分散液を調製した。
Example 6 (Ag-Pd / Fe)
Preparation of Composite Metal Fine Particle (6) Dispersion An Ag—Pd alloy fine particle (B-5) dispersion was prepared in the same manner as in Example 5.

ついで、純水71gに鉄粉末(真空冶金(株)製:平均粒子径200nm)9g添加し混合攪拌後にpH9に調製し鉄粒子(金属微粒子(A-2))分散液を得た。 ついで、金属微
粒子(A-2)分散液にAg-Pd合金微粒子(B-5)分散液20g(Ag-Pdとして1g)を加え、窒
素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をしてAg-Pd/Fe複合金属微粒子の分散液を得た。得られた分散液は、遠心分離機により分離回収し、純
水に分散させ、pHを6に調製し固形分換算で10重量%のAg-Pd/Fe複合金属微粒子(6)の分散液とした。得られたAg-Pd/Fe複合金属微粒子(6)のAg-Pd含有量は10重量
%であり、流動電位は-97mVで表面電位を有し、複合金属微粒子(6)の平均粒子径は210nm、であった。また、Ag-Pd/Fe複合金属微粒子(6)分散液の安定性を評価した。
Next, 9 g of iron powder (manufactured by Vacuum Metallurgical Co., Ltd .: average particle size 200 nm) was added to 71 g of pure water, and after mixing and stirring, the pH was adjusted to 9 to obtain a dispersion of iron particles (metal fine particles (A-2)). Next, 20 g of Ag-Pd alloy fine particle (B-5) dispersion (1 g as Ag-Pd) was added to the metal fine particle (A-2) dispersion and stirred at 20 ° C. for 1 hour in a nitrogen atmosphere. Then, a dispersion of Ag—Pd / Fe composite metal fine particles was obtained. The obtained dispersion was separated and collected by a centrifuge, dispersed in pure water, adjusted to pH 6 and 10% by weight of Ag-Pd / Fe composite metal fine particles (6) in terms of solid content. did. The obtained Ag—Pd / Fe composite metal fine particles (6) have an Ag—Pd content of 10% by weight, a streaming potential of −97 mV and a surface potential. The average particle size of the composite metal fine particles (6) is 210 nm. Further, the stability of the Ag—Pd / Fe composite metal fine particle (6) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(6)の調製
実施例1において、複合金属微粒子(6)の分散液10gを用いた以外は同様にして導電性フィルム(6)を調製した。導電性フィルム(6)について、表面抵抗値を測定した。
Preparation of conductive film (6) A conductive film (6) was prepared in the same manner as in Example 1 except that 10 g of the dispersion of composite metal fine particles (6) was used. The surface resistance value of the conductive film (6) was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例7(Au/Ag)
複合金属微粒子(7)分散液の調製
実施例1と同様にして金属微粒子(B-1)分散液を調製した。
Example 7 (Au / Ag)
Preparation of Composite Metal Fine Particle (7) Dispersion A metal fine particle (B-1) dispersion was prepared in the same manner as in Example 1.

ついで、純水71gにAg粉末((株)徳力本店製:平均粒子径500nm)9g添加
し混合攪拌後にpH6に調製しAg粒子(金属微粒子(A-3))分散液を得た。
Next, 9 g of Ag powder (manufactured by Tokuroku Honten Co., Ltd .: average particle size 500 nm) was added to 71 g of pure water, and after mixing and stirring, the pH was adjusted to 6 to obtain a dispersion of Ag particles (metal fine particles (A-3)).

ついで、金属微粒子(A-3)分散液に金属微粒子(B-1)分散液20g(Auとして1g)を加
え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をしてAg-Pd/Ni複合金属微粒子の分散液を得た。得られた分散液は、遠心分離機により分離回収
し、純水に分散させ、pHを6に調製し固形分換算で10重量%のAu/Ag複合金属微粒
子(7)の分散液とした。得られたAu/Ag複合金属微粒子(7)のAu含有量は10重量%であり、流動電位は−78mVで表面電位を有し、複合金属微粒子(7)の平均粒子径は510
nmであった。また、Au/Ag複合金属微粒子(7)分散液の安定性を評価した。
Next, 20 g of the metal fine particle (B-1) dispersion (1 g as Au) is added to the metal fine particle (A-3) dispersion, and the mixture is stirred for 1 hour at 20 ° C. in a nitrogen atmosphere. As a result, a dispersion of Ag-Pd / Ni composite metal fine particles was obtained. The obtained dispersion was separated and collected by a centrifuge, dispersed in pure water, adjusted to pH 6 and used as a dispersion of 10% by weight of Au / Ag composite metal fine particles (7) in terms of solid content. The obtained Au / Ag composite metal fine particles (7) have an Au content of 10% by weight, a streaming potential of -78 mV and a surface potential, and the composite metal fine particles (7) have an average particle size of 510.
nm. In addition, the stability of the Au / Ag composite metal fine particle (7) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(7)の調製
実施例1において、複合金属微粒子(7)の分散液10gを用いた以外は同様にして導
電性フィルム(7)を調製した。導電性フィルム(7)について、表面抵抗値を測定した。
Preparation of conductive film (7) A conductive film (7) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (7) was used. The surface resistance value of the conductive film (7) was measured.

結果を表1に示した。   The results are shown in Table 1.

実施例8(Au/Fe)
複合金属微粒子(8)分散液の調製
純水16000gに塩化金酸四水和物19g(Auとして9g)を溶解した金属塩水溶液に、濃度1.0重量%のクエン酸3ナトリウム水溶液800gと還元剤として濃度0.1重量%の水素化ホウ素ナトリウム140gを加え、窒素雰囲気下で1時間、20℃で攪拌して金属微粒子の分散液を得た。得られた分散液は、限外洗浄により精製した後濃縮して金属換算で濃度5.0重量%のAu微粒子(金属微粒子(B-6))の分散液とした。金属微粒子(B-6)分散液のpHは6で、平均粒子径は15nmであった。
Example 8 (Au / Fe)
Preparation of composite metal fine particle (8) dispersion A metal salt aqueous solution in which 19 g of chloroauric acid tetrahydrate (9 g as Au) was dissolved in 16000 g of pure water was reduced with 800 g of a trisodium citrate aqueous solution having a concentration of 1.0% by weight. As an agent, 140 g of sodium borohydride having a concentration of 0.1% by weight was added and stirred at 20 ° C. for 1 hour in a nitrogen atmosphere to obtain a dispersion of metal fine particles. The obtained dispersion was purified by ultra-cleaning and then concentrated to obtain a dispersion of Au fine particles (metal fine particles (B-6)) having a concentration of 5.0% by weight in terms of metal. The pH of the metal fine particle (B-6) dispersion was 6, and the average particle size was 15 nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-6))の分散液20g(Auとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナ
ノマイザーにて分散処理をしてAu/Fe複合金属微粒子の分散液を得た。得られた分散液
は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のAu/Fe複合金属微粒子(8)の分散液とした。得られたAu/Fe複合金属微粒子(8)のAu含有量は10重量%であり、流動電位は−82mVで表面電位を有し、複合金属微
粒子(8)の平均粒子径は230nmであった。また、Au/Fe複合金属微粒子(8)分散液の
安定性を評価した。
Next, 20 g (1 g as Au) of a metal fine particle (B-6)) was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and the mixture was heated at 20 ° C. for 1 hour in a nitrogen atmosphere. After stirring, the dispersion process was performed with a nanomizer to obtain a dispersion of Au / Fe composite metal fine particles. The obtained dispersion was separated and collected by a centrifuge, dispersed in pure water, adjusted to pH 6 and used as a dispersion of 10% by weight of Au / Fe composite metal fine particles (8) in terms of solid content. The obtained Au / Fe composite metal fine particles (8) had an Au content of 10% by weight, a flow potential of -82 mV and a surface potential, and the composite metal fine particles (8) had an average particle size of 230 nm. . In addition, the stability of the Au / Fe composite metal fine particle (8) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(8)の調製
実施例1において、複合金属微粒子(8)の分散液10gを用いた以外は同様にして導
電性フィルム(8)を調製した。導電性フィルム(8)について、表面抵抗値を測定した。
Preparation of conductive film (8) A conductive film (8) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (8) was used. The surface resistance value of the conductive film (8) was measured.

結果を表1に示した。   The results are shown in Table 1.

比較例1
金属微粒子(R-1)分散液の調製
実施例1と同様にして金属微粒子(A-1)分散液を調製した。
Comparative Example 1
Preparation of metal fine particle (R-1) dispersion A metal fine particle (A-1) dispersion was prepared in the same manner as in Example 1.

金属微粒子(A-1)分散液に濃度5.0重量%のポリビニルピロリドン水溶液20g(ニッ
ケル金属重量に対してポリビニルピロリドンが20重量%)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をして界面活性剤処理金属微粒子の分散液を得た。得られた分散液は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%の界面活性剤で処理した金属微粒子(R-1)の分散液
とした。得られたNi金属微粒子(R-1)分散液の流動電位は実質的にゼロであった。Ni金
属微粒子(R-1)の平均粒子径は200nmであった。
20 g of a polyvinyl pyrrolidone aqueous solution having a concentration of 5.0% by weight (polyvinyl pyrrolidone is 20% by weight with respect to the weight of the nickel metal) was added to the metal fine particle (A-1) dispersion, followed by stirring at 20 ° C. for 1 hour in a nitrogen atmosphere. Then, the dispersion process of the surfactant process metal microparticles was obtained by carrying out the dispersion process with a nanomizer. The obtained dispersion was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and dispersed with 10% by weight of a surfactant in terms of solid content. Liquid. The flow potential of the obtained Ni metal fine particle (R-1) dispersion was substantially zero. The average particle size of the Ni metal fine particles (R-1) was 200 nm.

また、Ni金属微粒子(R-1)分散液の安定性を評価した。   In addition, the stability of the Ni metal fine particle (R-1) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(R-1)の調製
実施例1において、金属微粒子(R-1)の分散液10gを用いた以外は同様にして導電性
フィルム(R-1)を調製した。導電性フィルム(R-1)について、表面抵抗値を測定した。
Preparation of conductive film (R-1) A conductive film (R-1) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of metal fine particles (R-1) was used. The surface resistance value of the conductive film (R-1) was measured.

結果を表1に示した。。   The results are shown in Table 1. .

比較例2
金属微粒子(R-2)分散液の調製
純水16000gに塩化金酸四水和物19g(Auとして9g)を溶解した金属塩水溶液に、濃度1.0重量%のクエン酸3ナトリウム水溶液800gと還元剤として濃度0.1重量%の水素化ホウ素ナトリウム140gを加え、窒素雰囲気下で1時間、50℃で攪拌して金属微粒子の分散液を得た。得られた分散液は、限外洗浄により精製した後濃縮して金属換算で濃度5.0重量%のAu微粒子(金属微粒子(B-7))の分散液とした。金属微粒子(B-7)分散液のpHは6で、平均粒子径は60nmであった。
Comparative Example 2
Preparation of metal fine particle (R-2) dispersion In a metal salt aqueous solution in which 19 g of chloroauric acid tetrahydrate (9 g as Au) was dissolved in 16000 g of pure water, 800 g of a trisodium citrate aqueous solution having a concentration of 1.0 wt. As a reducing agent, 140 g of sodium borohydride having a concentration of 0.1% by weight was added and stirred at 50 ° C. for 1 hour in a nitrogen atmosphere to obtain a dispersion of metal fine particles. The obtained dispersion was purified by ultra-cleaning and then concentrated to obtain a dispersion of Au fine particles (metal fine particles (B-7)) having a concentration of 5.0% by weight in terms of metal. The pH of the metal fine particle (B-7) dispersion was 6, and the average particle size was 60 nm.

ついで、実施例1と同様にして調製した金属微粒子(A-1)分散液に金属微粒子(B-7))の分散液20g(Auとして1g)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナ
ノマイザーにて分散処理をしてAu/Ni複合金属微粒子の分散液を得た。得られた分散液
は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%のAu/Ni複合金属微粒子(R-2)の分散液とした。得られたAu/Fe複合金属微粒子(R-2)のAu含有量は10重量%であり、流動電位は−30mVで、複合金属微粒子(R-2)の平均粒子径は320nmであった。また、Au/Fe複合金属微粒子(R-2)分散液の安定性を評価した。
Next, 20 g (1 g as Au) of the metal fine particles (B-7)) was added to the metal fine particle (A-1) dispersion prepared in the same manner as in Example 1, and the mixture was heated at 20 ° C. for 1 hour in a nitrogen atmosphere. Then, the dispersion was performed with a nanomizer to obtain a dispersion of Au / Ni composite metal fine particles. The obtained dispersion was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and a dispersion of 10 wt% Au / Ni composite metal fine particles (R-2) in terms of solid content. did. The obtained Au / Fe composite metal fine particles (R-2) had an Au content of 10% by weight, a streaming potential of −30 mV, and the composite metal fine particles (R-2) had an average particle size of 320 nm. In addition, the stability of the Au / Fe composite metal fine particle (R-2) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(R-2)の調製
実施例1において、複合金属微粒子(R-2)の分散液10gを用いた以外は同様にして導
電性フィルム(R-2)を調製した。導電性フィルム(R-2)について、表面抵抗値を測定した。
Preparation of conductive film (R-2) A conductive film (R-2) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of composite metal fine particles (R-2) was used. The surface resistance value of the conductive film (R-2) was measured.

結果を表1に示した。   The results are shown in Table 1.

比較例3
金属微粒子(R-3)分散液の調製
実施例6と同様にして金属微粒子(A-2)分散液を調製した。
Comparative Example 3
Preparation of metal fine particle (R-3) dispersion A metal fine particle (A-2) dispersion was prepared in the same manner as in Example 6.

金属微粒子(A-2)分散液に濃度5.0重量%のポリビニルピロリドン水溶液20g(鉄金属重量に対してポリビニルピロリドンが20重量%)を加え、窒素雰囲気下で1時間、2
0℃で攪拌した後、ナノマイザーにて分散処理をして界面活性剤処理金属微粒子の分散液を得た。得られた分散液は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%の界面活性剤で処理した金属微粒子(R-3)の分散液とした
。得られたFe金属微粒子(R-3)分散液の流動電位は実質的にゼロであった。Fe金属微粒
子(R-3)の平均粒子径は200nmであった。また、Fe金属微粒子(R-3)分散液の安定性
を評価した。
20 g of a polyvinyl pyrrolidone aqueous solution having a concentration of 5.0% by weight (20% by weight of polyvinyl pyrrolidone with respect to the weight of iron metal) is added to the metal fine particle (A-2) dispersion,
After stirring at 0 ° C., dispersion treatment was performed with a nanomizer to obtain a dispersion of surfactant-treated metal fine particles. The obtained dispersion was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and dispersed with 10% by weight of a surfactant in terms of solid content. Liquid. The flow potential of the obtained Fe metal fine particle (R-3) dispersion was substantially zero. The average particle size of the Fe metal fine particles (R-3) was 200 nm. Moreover, the stability of the Fe metal fine particle (R-3) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(R-3)の調製
実施例1において、Fe金属微粒子(R-3)の分散液10gを用いた以外は同様にして導電性フィルム(R-3)を調製した。導電性フィルム(R-3)について、表面抵抗値を測定した。
Preparation of conductive film (R-3) A conductive film (R-3) was prepared in the same manner as in Example 1, except that 10 g of the dispersion of Fe metal fine particles (R-3) was used. The surface resistance value of the conductive film (R-3) was measured.

結果を表1に示した。   The results are shown in Table 1.

比較例4
金属微粒子(R-4)分散液の調製
実施例7と同様にして金属微粒子(A-3)分散液を調製した。
Comparative Example 4
Preparation of metal fine particle (R-4) dispersion A metal fine particle (A-3) dispersion was prepared in the same manner as in Example 7.

金属微粒子(A-3)分散液に濃度5.0重量%のポリビニルピロリドン水溶液20g(銀金属重量に対してポリビニルピロリドンが20重量%)を加え、窒素雰囲気下で1時間、20℃で攪拌した後、ナノマイザーにて分散処理をして界面活性剤処理金属微粒子の分散液を得た。得られた分散液は、遠心分離機により分離回収し、純水に分散させ、pHを6に調製し固形分換算で10重量%の界面活性剤で処理した金属微粒子(R-4)の分散液とした
。得られたAg金属微粒子(R-4)分散液の流動電位は実質的にゼロであった。Ag金属微
粒子(R-4)の平均粒子径は500nmであった。また、Ag金属微粒子(R-4)分散液の安定性を評価した。
20 g of a polyvinyl pyrrolidone aqueous solution having a concentration of 5.0% by weight (20% by weight of polyvinyl pyrrolidone with respect to the weight of silver metal) was added to the metal fine particle (A-3) dispersion, and the mixture was stirred at 20 ° C. for 1 hour in a nitrogen atmosphere. Then, the dispersion process of the surfactant process metal microparticles was obtained by carrying out the dispersion process with a nanomizer. The obtained dispersion was separated and collected by a centrifugal separator, dispersed in pure water, adjusted to pH 6 and treated with 10% by weight of surfactant in terms of solid content to disperse fine metal particles (R-4). Liquid. The flow potential of the obtained Ag metal fine particle (R-4) dispersion was substantially zero. The average particle diameter of the Ag metal fine particles (R-4) was 500 nm. In addition, the stability of the Ag metal fine particle (R-4) dispersion was evaluated.

結果を表1に示した。   The results are shown in Table 1.

導電性フィルム(R-4)の調製
実施例1において、Fe金属微粒子(R-4)の分散液10gを用いた以外は同様にして導電性フィルム(R-4)を調製した。導電性フィルム(R-4)について、表面抵抗値を測定した。
Preparation of conductive film (R-4) A conductive film (R-4) was prepared in the same manner as in Example 1 except that 10 g of the dispersion of Fe metal fine particles (R-4) was used. The surface resistance value of the conductive film (R-4) was measured.

結果を表1に示した。   The results are shown in Table 1.

Figure 2005154846
Figure 2005154846

Claims (12)

平均粒子径(DA)が50nm〜5μmの範囲にある金属微粒子(A)と、該金属微粒
子(A)より標準電極電位が高く、平均粒子径(DB)が1nm〜20nmの範囲にある
金属微粒子(B)との混合分散液のpHを4〜10に維持しながら撹拌することを特徴とする、金属微粒子(A)の表面に金属微粒子(B)が担持された複合金属微粒子分散液の製造方法。
The fine metal particles (A) having an average particle diameter (D A ) in the range of 50 nm to 5 μm, the standard electrode potential is higher than the fine metal particles (A), and the average particle diameter (D B ) is in the range of 1 nm to 20 nm. Stirring while maintaining the pH of the mixed dispersion with the metal fine particles (B) at 4 to 10, the composite metal fine particle dispersion having the metal fine particles (B) supported on the surface of the metal fine particles (A) Manufacturing method.
前記平均粒子径(DB)と平均粒子径(DA)との比、(DB)/(DA)が1/5000〜1/5の範囲にあることを特徴とする請求項1に記載の複合金属微粒子分散液の製造方法。 The ratio between the average particle diameter (D B ) and the average particle diameter (D A ), (D B ) / (D A ) is in the range of 1/5000 to 1/5. A method for producing the described composite metal fine particle dispersion. 前記金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1〜4.1Vの範囲にあることを特徴とする請求項1または2に記載の複合金属微粒子分散液の製造方法。   3. The composite metal fine particle dispersion according to claim 1, wherein a difference in standard electrode potential between the metal fine particles (A) and the metal fine particles (B) is in the range of 0.1 to 4.1 V. 4. Method. 前記金属微粒子(A)がNi、Al、Mg、Ti、Fe、In、Co、Sn、Mo、Cu、Ru、
Rh、Pd、Agから選ばれる1種以上の金属であり、前記金属微粒子(B)がRh、Ru、
Pd、Ag、Pt、Ir、Auから選ばれる1種以上の金属であることを特徴とする請求項1
〜3のいずれかに記載の複合金属微粒子分散液の製造方法。
The metal fine particles (A) are Ni, Al, Mg, Ti, Fe, In, Co, Sn, Mo, Cu, Ru,
One or more metals selected from Rh, Pd, and Ag, and the metal fine particles (B) are Rh, Ru,
2. One or more metals selected from Pd, Ag, Pt, Ir, and Au
The manufacturing method of the composite metal microparticle dispersion liquid in any one of -3.
前記金属微粒子(A)と前記金属微粒子(B)の重量比が、金属微粒子(A)100重量部に対し金属微粒子(B)が1〜50重量部の範囲にあることを特徴とする請求項1〜4のいずれかに記載の複合金属微粒子分散液の製造方法。   The weight ratio of the metal fine particles (A) to the metal fine particles (B) is in the range of 1 to 50 parts by weight of the metal fine particles (B) with respect to 100 parts by weight of the metal fine particles (A). The manufacturing method of the composite metal microparticle dispersion liquid in any one of 1-4. 得られた複合金属微粒子分散液の流動電位が、複合金属微粒子の濃度が1重量%の場合に−400〜−50mVの範囲にあることを特徴とする請求項1〜5のいずれかに記載の複合金属微粒子分散液の製造方法。   The flow potential of the obtained composite metal fine particle dispersion is in the range of -400 to -50 mV when the concentration of the composite metal fine particles is 1% by weight. A method for producing a composite metal fine particle dispersion. 平均粒子径(DA)が50nm〜5μmの範囲にある金属微粒子(A)の表面に、該金
属微粒子(A)より標準電極電位が高く、平均粒子径(DB)が1nm〜20nmの範囲
にある金属微粒子(B)が担持されてなる複合金属微粒子が分散してなることを特徴とする複合金属微粒子分散液。
On the surface of the metal fine particles (A) having an average particle diameter (D A ) in the range of 50 nm to 5 μm, the standard electrode potential is higher than that of the metal fine particles (A), and the average particle diameter (D B ) is in the range of 1 nm to 20 nm. A composite metal fine particle dispersion, wherein the composite metal fine particles on which the metal fine particles (B) are supported are dispersed.
複合金属微粒子の濃度が1重量%のときの分散液の流動電位が-40〜-500mVの範囲にあることを特徴とする請求項7に記載の複合金属微粒子分散液。   8. The composite metal fine particle dispersion according to claim 7, wherein the flow potential of the dispersion when the concentration of the composite metal fine particles is 1% by weight is in the range of −40 to −500 mV. 前記平均粒子径(DB)と平均粒子径(DA)との比、(DB)/(DA)が1/5000〜1/5の範囲にあることを特徴とする請求項7に記載の複合金属微粒子分散液。 The ratio between the average particle diameter (D B ) and the average particle diameter (D A ), (D B ) / (D A ) is in the range of 1/5000 to 1/5. The composite metal fine particle dispersion described. 前記金属微粒子(A)と金属微粒子(B)の標準電極電位の差が0.1〜4.1Vの範囲にあることを特徴とする請求項7〜9のいずれかに記載の複合金属微粒子分散液。   10. The composite metal fine particle dispersion according to claim 7, wherein a difference in standard electrode potential between the metal fine particles (A) and the metal fine particles (B) is in the range of 0.1 to 4.1 V. 10. liquid. 前記金属微粒子(A)がNi、Al、Mg、Ti、Fe、In、Co、Sn、Mo、Cu、Ru、
Rh、Pd、Agから選ばれる1種以上の金属であり、前記金属微粒子(B)がRh、Ru、
Pd、Ag、Pt、Ir、Auから選ばれる1種以上の金属であることを特徴とする請求項7
〜10のいずれかに記載の複合金属微粒子分散液。
The metal fine particles (A) are Ni, Al, Mg, Ti, Fe, In, Co, Sn, Mo, Cu, Ru,
One or more metals selected from Rh, Pd, and Ag, and the metal fine particles (B) are Rh, Ru,
8. One or more metals selected from Pd, Ag, Pt, Ir, and Au
The composite metal fine particle dispersion according to any one of 10 to 10.
前記金属微粒子(A)と前記金属微粒子(B)の重量比が、金属微粒子(A)100重量部に対し金属微粒子(B)が1〜50重量部の範囲にあることを特徴とする請求項7〜11のいずれかに記載の複合金属微粒子分散液。   The weight ratio of the metal fine particles (A) to the metal fine particles (B) is in the range of 1 to 50 parts by weight of the metal fine particles (B) with respect to 100 parts by weight of the metal fine particles (A). The composite metal fine particle dispersion according to any one of 7 to 11.
JP2003396064A 2003-11-26 2003-11-26 Composite metal fine particle dispersion and method for producing the same Expired - Lifetime JP4485174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396064A JP4485174B2 (en) 2003-11-26 2003-11-26 Composite metal fine particle dispersion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396064A JP4485174B2 (en) 2003-11-26 2003-11-26 Composite metal fine particle dispersion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005154846A true JP2005154846A (en) 2005-06-16
JP4485174B2 JP4485174B2 (en) 2010-06-16

Family

ID=34721665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396064A Expired - Lifetime JP4485174B2 (en) 2003-11-26 2003-11-26 Composite metal fine particle dispersion and method for producing the same

Country Status (1)

Country Link
JP (1) JP4485174B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293126A (en) * 2008-06-05 2009-12-17 Xerox Corp Method for forming core-shell metal nanoparticle
JP2010110719A (en) * 2008-11-07 2010-05-20 Toyota Central R&D Labs Inc Colloidal solution of metallic compound, and method of producing the same
JP2010189682A (en) * 2009-02-17 2010-09-02 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2014148756A (en) * 2014-04-17 2014-08-21 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2015087549A (en) * 2013-10-30 2015-05-07 東洋製罐グループホールディングス株式会社 Antibacterial blue-light-wavelength absorber
JP2016034640A (en) * 2015-10-02 2016-03-17 株式会社新光化学工業所 Composite metal nanoparticle colloid, composite metal nanoparticle, production method of composite metal nanoparticle colloid, production method of composite metal nanoparticle, and apparatus for producing composite metal nanoparticle colloid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375302A (en) * 1989-03-29 1991-03-29 Nisshin Flour Milling Co Ltd Particles whose surface is coated with super fine particles and manufacture thereof
JP2002060805A (en) * 2000-08-24 2002-02-28 Chemiprokasei Kaisha Ltd Method for producing multicomponent composite metallic grain colloid dispersed liquid
JP2002294301A (en) * 2001-03-30 2002-10-09 Catalysts & Chem Ind Co Ltd Fine metallic particle, method for producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material fitted with transparent electrically conductive film and display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375302A (en) * 1989-03-29 1991-03-29 Nisshin Flour Milling Co Ltd Particles whose surface is coated with super fine particles and manufacture thereof
JP2002060805A (en) * 2000-08-24 2002-02-28 Chemiprokasei Kaisha Ltd Method for producing multicomponent composite metallic grain colloid dispersed liquid
JP2002294301A (en) * 2001-03-30 2002-10-09 Catalysts & Chem Ind Co Ltd Fine metallic particle, method for producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material fitted with transparent electrically conductive film and display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293126A (en) * 2008-06-05 2009-12-17 Xerox Corp Method for forming core-shell metal nanoparticle
JP2010110719A (en) * 2008-11-07 2010-05-20 Toyota Central R&D Labs Inc Colloidal solution of metallic compound, and method of producing the same
JP2010189682A (en) * 2009-02-17 2010-09-02 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2015087549A (en) * 2013-10-30 2015-05-07 東洋製罐グループホールディングス株式会社 Antibacterial blue-light-wavelength absorber
JP2014148756A (en) * 2014-04-17 2014-08-21 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2016034640A (en) * 2015-10-02 2016-03-17 株式会社新光化学工業所 Composite metal nanoparticle colloid, composite metal nanoparticle, production method of composite metal nanoparticle colloid, production method of composite metal nanoparticle, and apparatus for producing composite metal nanoparticle colloid

Also Published As

Publication number Publication date
JP4485174B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
KR101301634B1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP6616287B2 (en) Ferromagnetic metal nanowire dispersion and method for producing the same
JP7329941B2 (en) Core-shell particles and their applications
JP4679716B2 (en) Method for producing metal colloid solution
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP5778941B2 (en) Method for producing silver-coated flake copper powder
CN113579229B (en) Nano metal 3D printing ink and application thereof
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
TWI565838B (en) Copper powder and the use of its copper paste, conductive paint, conductive film, and copper powder manufacturing methods
JP2005281781A (en) Method for producing copper nanoparticle
JP7361464B2 (en) AgPd core-shell particles and their use
JP4485174B2 (en) Composite metal fine particle dispersion and method for producing the same
JP2004043892A (en) Fine particle of noble metal and manufacturing method therefor
JP2006210197A (en) Metal coating film and its formation method
KR20020026019A (en) Method for making super-fine metal powders
JP7014664B2 (en) Alloy particle dispersion and its manufacturing method
JP5582164B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP5140035B2 (en) Colloidal solution containing metal nanoparticles
JP6407640B2 (en) Chain metal particles and method for producing the same
JP2019178385A (en) Method for producing alloy particle dispersion liquid
JP6715588B2 (en) Method for producing metal composite powder
JP7199285B2 (en) Silver-palladium alloy powder and its use
JP2019178384A (en) Metal particle dispersion liquid and method for producing the same
KR102115232B1 (en) fabricating method including sonicating for metal nanowire dispersed solution
TW201726973A (en) Ni-coated copper powder, conductive paste, conductive paint and conductive sheet using same, and method for manufacturing Ni-coated copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term