JP2005154371A - New benzodichalcogenophene derivative, method for producing the same and organic semiconductor device produced by using the same - Google Patents

New benzodichalcogenophene derivative, method for producing the same and organic semiconductor device produced by using the same Download PDF

Info

Publication number
JP2005154371A
JP2005154371A JP2003397788A JP2003397788A JP2005154371A JP 2005154371 A JP2005154371 A JP 2005154371A JP 2003397788 A JP2003397788 A JP 2003397788A JP 2003397788 A JP2003397788 A JP 2003397788A JP 2005154371 A JP2005154371 A JP 2005154371A
Authority
JP
Japan
Prior art keywords
atom
group
carbon atoms
organic semiconductor
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397788A
Other languages
Japanese (ja)
Other versions
JP4157463B2 (en
Inventor
Kazuo Takimiya
和男 瀧宮
Yoshito Kunugi
義人 功刀
Tetsuo Otsubo
徹夫 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003397788A priority Critical patent/JP4157463B2/en
Publication of JP2005154371A publication Critical patent/JP2005154371A/en
Application granted granted Critical
Publication of JP4157463B2 publication Critical patent/JP4157463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new benzodichalcogenophene derivative satisfying both of the high field-effect mobility (≥0.1 cm<SP>2</SP>/Vs) and high on/off current ratio (≥10<SP>5</SP>) required in organic semiconductor materials, a method for the production of the derivative as an easily purifiable practical material, and an organic semiconductor device produced by using the derivative. <P>SOLUTION: The benzodichalcogenophene derivative is expressed by general formula (1) or general formula (2) (X<SP>1</SP>to X<SP>4</SP>are each independently selenium atom or tellurium atom). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規なベンゾジカルコゲノフェン誘導体、その製造方法およびそれを用いた有機半導体デバイスに関し、詳しくは、電気的、電子的、光電気的部品に用いられる有機電子部品材料として有用な新規なベンゾジカルコゲノフェン誘導体、その製造方法およびそれを用いた有機半導体デバイスに関する。かかる新規な縮合複素環式化合物は、有機半導体層を有する薄膜トランジスタ(TFT)、有機キャリア輸送層または発光層を有する発光デバイス等への利用が可能な有機電子部品材料である。   The present invention relates to a novel benzodichalcogenophene derivative, a method for producing the same, and an organic semiconductor device using the same, and more particularly, a novel useful as an organic electronic component material used for electrical, electronic, and photoelectric components. The present invention relates to a novel benzodichalcogenophene derivative, a production method thereof, and an organic semiconductor device using the same. Such a novel condensed heterocyclic compound is an organic electronic component material that can be used for a thin film transistor (TFT) having an organic semiconductor layer, a light emitting device having an organic carrier transporting layer, or a light emitting layer.

有機半導体層を有する薄膜トランジスタは、低コストデバイス、軽量デバイスとして、現在のシリコンベースTFTの安価な代替品として注目されている。かかる薄膜トランジスタでは、有機材料を用いることでシリコンデバイスの製造において必要とされる高コストプロセスを経ることなく、デバイスを作製することが可能となる。また、軽量、フレキシブルなど、有機材料特有の利点を活用することで、これまでにないスマートタグ、軽量ディスプレイなどへの応用も考案されている。   A thin film transistor having an organic semiconductor layer is attracting attention as a low-cost device and a lightweight device as an inexpensive alternative to the current silicon-based TFT. In such a thin film transistor, it becomes possible to manufacture a device without using a high-cost process required in manufacturing a silicon device by using an organic material. In addition, by utilizing the advantages unique to organic materials such as lightweight and flexible, application to smart tags, lightweight displays, etc. that have never been seen before has been devised.

一方、有機半導体デバイスは、一般的に応答速度が遅いという欠点を有する。これは有機薄膜活性層中の伝導キャリアの移動度が低いことに起因する。この問題点を克服するため、今日までさまざまな有機半導体材料が提案され、その移動度が検討されている。   On the other hand, the organic semiconductor device generally has a drawback that the response speed is slow. This is due to the low mobility of conductive carriers in the organic thin film active layer. In order to overcome this problem, various organic semiconductor materials have been proposed to date and their mobility has been studied.

例えば、5個のベンゼン環が直線状に縮合した多環芳香族分子であるペンタセンにおいて、アモルファスシリコンに匹敵する高移動度(0.1〜1.0cm2/Vs)が報告されているが、ペンタセンをベースとしたTFTの性能は活性層であるペンタセンの純度に大きく依存し、デバイス作製前に複数回の真空昇華精製や水素気流中での昇華精製を行うことで、初めて前記の性能が達成されている(非特許文献1)。 For example, in pentacene, which is a polycyclic aromatic molecule in which five benzene rings are linearly condensed, a high mobility (0.1 to 1.0 cm 2 / Vs) comparable to amorphous silicon has been reported. The performance of a pentacene-based TFT largely depends on the purity of the active layer, pentacene, and the above performance is achieved for the first time by performing multiple vacuum sublimation purifications and sublimation purifications in a hydrogen stream before device fabrication. (Non-Patent Document 1).

また、非特許文献2には、ベンゾジチオフェンモノマーを二量体化したベンゾジチオフェンダイマーにおいて0.04cm2/Vsの移動度が得られたと報告されている。 Non-Patent Document 2 reports that a mobility of 0.04 cm 2 / Vs was obtained in a benzodithiophene dimer obtained by dimerizing a benzodithiophene monomer.

さらに、近年、チオフェンとフルオレンを組み合わせることで、移動度が0.14cm2/Vsに達する材料が報告されている(非特許文献3参照)。さらにまた、最近では、アントラセンのダイマーやトリマーにおいて0.1cm2/Vsオーダーの移動度が報告されている(非特許文献4)。 Furthermore, in recent years, a material having mobility of 0.14 cm 2 / Vs by combining thiophene and fluorene has been reported (see Non-Patent Document 3). Furthermore, recently, mobility of the order of 0.1 cm 2 / Vs in anthracene dimers and trimers has been reported (Non-patent Document 4).

前記非特許文献2〜4に記載された材料は、その製造において多段階の反応を必要とする上に、低収率の段階も含まれているので、大量合成に不適であり、実用材料としての応用には製法的にも克服すべき点が残されている。また、前記非特許文献1記載のペンタセンは材料の純化に問題がある。   The materials described in Non-Patent Documents 2 to 4 require a multi-stage reaction in the production and also include a low-yield stage. There are still problems to overcome in the manufacturing process. Further, pentacene described in Non-Patent Document 1 has a problem in purification of the material.

これら従来の問題点を克服する材料として、特許文献1には次の一般式(5)、
R−X1−CH=CH−X2−R (5)
(式中、X1およびX2はそれぞれ独立に、下記式、

Figure 2005154371
で表される二価の置換基であって、Y1〜Y7はそれぞれ同一かまたは異なり、硫黄原子、酸素原子または窒化物NRa(Raは水素原子、塩素原子、炭素数1〜8のアルキル基または置換されてもよいアリール基)である)で示される有機分子配向薄膜用材料に関する提案がなされている。 As materials for overcoming these conventional problems, Patent Document 1 discloses the following general formula (5),
R—X 1 —CH═CH—X 2 —R (5)
(Wherein X 1 and X 2 are each independently the following formulas:
Figure 2005154371
In which Y 1 to Y 7 are the same or different and each represents a sulfur atom, an oxygen atom or a nitride NR a (R a is a hydrogen atom, a chlorine atom, a carbon number of 1 to 8). In which an organic molecular alignment thin film material is represented by the following formula:

また、同様に前記従来技術の問題点を克服することを目的として、特許文献2には、下記一般式(6)および一般式(7)、

Figure 2005154371
(式中、Xは酸素原子、アミン、又は硫黄原子である)で示される有機半導体化合物に関する提案がなされている。 Similarly, for the purpose of overcoming the problems of the prior art, Patent Document 2 includes the following general formulas (6) and (7),
Figure 2005154371
The proposal regarding the organic-semiconductor compound shown by (In formula, X is an oxygen atom, an amine, or a sulfur atom) is made | formed.

特開2000−122068号公報Japanese Patent Laid-Open No. 2000-122068 特開平11−195790号公報JP-A-11-195790 IEEE Electron Dev.Lett.1997,18,87IEEE Electron Dev. Lett. 1997, 18, 87 Joyce G.Laquindanum et al,Adv.Mater.1997,9,36Joyce G. Laquindanum et al, Adv. Mater. 1997, 9, 36 Z.Bao et al,J.Am.CHEM.Soc.2001,123,9214Z.Bao et al, J.Am.CHEM.Soc.2001,123,9214 Suzuki et al, Angew.Chem.Int.Ed.2003,42,1159Suzuki et al, Angew.Chem.Int.Ed.2003,42,1159

特許文献1に記載された薄膜形成方法は有機分子線蒸着法によらず、通常の真空蒸着法によって高度に配向した有機分子配向薄膜を作製することによって安価な製造を可能にすることを目指したものであるが、製造された薄膜のデバイスとしての具体的な電界効果移動度、オン/オフ電流比等に関しては何ら言及されていない。   The thin film formation method described in Patent Document 1 aims to enable inexpensive production by producing a highly oriented organic molecular alignment thin film by a normal vacuum evaporation method, not by an organic molecular beam evaporation method. However, there is no mention of specific field effect mobility, on / off current ratio, and the like as a manufactured thin film device.

また、特許文献2に記載された材料は高い電界効果移動度(0.01cm2/Vs以上)と耐熱性(融点は250℃以上)を有し、デバイスに組み込んだ状態でのオン/オフ電流比も102の値が報告されているが、いずれの特性も有機半導体材料の特性としては十分とは言えないのが現状である。 Further, the material described in Patent Document 2 has high field effect mobility (0.01 cm 2 / Vs or more) and heat resistance (melting point is 250 ° C. or more), and the on / off current in a state incorporated in the device. Although a ratio of 10 2 has been reported, none of the characteristics are sufficient as the characteristics of the organic semiconductor material.

そこで本発明の目的は、有機半導体材料に求められている高い電界効果移動度(0.1cm2/Vs以上)と、高いオン/オフ電流比(105以上)の双方を満足する新規なベンゾジカルコゲノフェン誘導体を提供することにある。 Accordingly, an object of the present invention is to provide a novel benzoate that satisfies both the high field effect mobility (0.1 cm 2 / Vs or more) required for organic semiconductor materials and the high on / off current ratio (10 5 or more). It is to provide a dichalcogenophene derivative.

また、本発明の他の目的は、かかるベンゾジカルコゲノフェン誘導体の、実用材料としての製造および精製が容易な製造方法を提供することにある。   Another object of the present invention is to provide a production method of such a benzodichalcogenophene derivative that can be easily produced and purified as a practical material.

さらに、本発明の他の目的は、有機半導体材料として新規なベンゾジカルコゲノフェン誘導体を用いることにより優れた電気的、電子的および光電気的特性を有する有機半導体デバイスを提供することにある。   Furthermore, another object of the present invention is to provide an organic semiconductor device having excellent electrical, electronic and photoelectric properties by using a novel benzodichalcogenophene derivative as an organic semiconductor material.

本発明者らは、前記課題を解決すべく、有機半導体材料について鋭意研究を続けた結果、カルコゲン原子としてセレン原子またはテルル原子を含む特定構造の新規なベンゾジカルコゲノフェン誘導体が有機半導体材料として優れた電気的、電子的および光電気的特性を有することを見出し、さらに、その新規なベンゾジカルコゲノフェン誘導体を簡便かつ安価に製造することができる方法をも見出し、本発明を完成するに至った。   As a result of intensive research on organic semiconductor materials to solve the above problems, the present inventors have found that a novel benzodichalcogenophene derivative having a specific structure containing a selenium atom or a tellurium atom as a chalcogen atom is used as an organic semiconductor material. In order to complete the present invention, it has been found that it has excellent electrical, electronic and photoelectric properties, and has also found a method capable of producing the novel benzodichalcogenophene derivative easily and inexpensively. It came.

即ち、本発明のベンゾジカルコゲノフェン誘導体は、次の一般式(1)、

Figure 2005154371
(式中、X1およびX2はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R1およびR2はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されることを特徴とするものである。 That is, the benzodichalcogenophene derivative of the present invention has the following general formula (1),
Figure 2005154371
Wherein X 1 and X 2 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3, R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. It may have at least one kind of substituent selected from the group consisting of a group and an aryl group).

また、本発明の他のベンゾジカルコゲノフェン誘導体は、次の一般式(2)、

Figure 2005154371
(式中、X3およびX4はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R3およびR4はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されることを特徴とするものである。 Another benzodichalcogenophene derivative of the present invention has the following general formula (2),
Figure 2005154371
Wherein X 3 and X 4 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. It may have at least one kind of substituent selected from the group consisting of a group and an aryl group).

また、本発明は、次の一般式(3)、

Figure 2005154371
または、次の一般式(4)、
Figure 2005154371
(式中、X5およびX6はそれぞれ独立にカルコゲン原子、nは1〜3の整数、R5およびR6はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表される縮合多環芳香族化合を製造するにあたり、
末端にR5およびR6(但し、R5およびR6が水素原子の場合には該水素原子に対する保護基)を別々に有する不飽和炭素結合を含む2個の置換基と、X5およびX6を別々に含む2個の置換基とを同一環上に有するベンゼン環において、R5(但し、R5が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX5を含む置換基との間と、R6(但し、R6が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX6を含む置換基との間とで、夫々縮合反応させる工程を含むことを特徴とするベンゾジカルコゲノフェン誘導体の製造方法である。 Further, the present invention provides the following general formula (3),
Figure 2005154371
Or the following general formula (4),
Figure 2005154371
Wherein X 5 and X 6 are each independently a chalcogen atom, n is an integer of 1 to 3, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 2 to 18 carbon atoms, or a chalcogen An aryl group which may have an atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, an alkylthio group having 2 to 18 carbon atoms and an aryl group. In the production of the condensed polycyclic aromatic compound represented by (which may have at least one substituent selected from the group consisting of groups),
Two substituents containing an unsaturated carbon bond separately having R 5 and R 6 at the ends (provided that when R 5 and R 6 are hydrogen atoms, a protecting group for the hydrogen atom), X 5 and X 6 A benzene ring having two substituents containing 6 separately on the same ring, including an unsaturated carbon bond having R 5 (provided that when R 5 is a hydrogen atom, a protecting group for the hydrogen atom) A substituent containing an unsaturated carbon bond having a substituent and a substituent containing X 5 , and R 6 (provided that when R 6 is a hydrogen atom, a protecting group for the hydrogen atom), and X 6 A method for producing a benzodichalcogenophene derivative, comprising a step of condensation reaction with a substituent.

さらに、本発明は、前記一般式(1)および/または(2)で表される化合物の少なくとも1種を有機半導体材料として用いたことを特徴とする有機半導体デバイスである。   Furthermore, the present invention is an organic semiconductor device characterized in that at least one compound represented by the general formula (1) and / or (2) is used as an organic semiconductor material.

上述の特許文献1および2のように、従来より、硫黄原子を含むベンゾジカルコゲノフェン誘導体を用いた電界効果薄膜トランジスタにおいて高い移動度が報告されている。これは硫黄原子を介した強い分子間相互作用により、薄膜中での効果的なキャリア種の移動が可能となったことが、有効に作用していると考えられている。この知見に基づき、本発明者らは、硫黄と同族の第16族元素で高周期に位置するセレン原子またはテルル原子を分子内に持つベンゾジカルコゲノフェン誘導体を有機半導体材料として用いたところ、驚くべきことに、硫黄原子の場合に比し薄膜中での分子間相互作用はさらに増大し、電界効果移動度がより向上することを見出し、本発明の新規ベンゾジカルコゲノフェン誘導体およびそれを用いた有機半導体デバイスを完成するに至った。   As described in Patent Documents 1 and 2 above, high mobility has been reported in a field effect thin film transistor using a benzodichalcogenophene derivative containing a sulfur atom. This is thought to be due to the fact that effective movement of the carrier species in the thin film is enabled by strong intermolecular interactions via sulfur atoms. Based on this knowledge, the present inventors used a benzodichalcogenophene derivative having a selenium atom or tellurium atom located in a high cycle in the group 16 element of the same group as sulfur as an organic semiconductor material. Surprisingly, it has been found that the intermolecular interaction in the thin film is further increased and the field effect mobility is further improved as compared with the case of sulfur atoms, and the novel benzodichalcogenophene derivative of the present invention and The organic semiconductor device used was completed.

ところで、従来技術における硫黄原子を含むベンゾジカルコゲノフェン誘導体の合成においては、高価な原料を用いる多段階の製造過程を要するため、このような化合物は実用材料としては問題があった。さらに、これまでの有機合成化学の知見では、複数のセレン原子またはテルル原子を縮合多環芳香族骨格内に導入することは極めて困難であった。本発明者らは、セレン原子またはテルル原子を含むベンゾジカルコゲノフェン誘導体の簡便な合成法の研究を行った結果、安価に市販されている化合物、例えば、ジブロモベンゼンを原料とし、3から5段階の反応によって、目的化合物を製造できる簡便な方法を見出し、本発明の製造方法を完成するに至った。本発明の方法は、安価な原料が利用できる点、製造段階が少なく、いずれの段階も高効率で製造できる点、さらには、不純物の混入の少ない製造法であり、精製がきわめて容易である点、など、従来にない優れた特長を有する。   By the way, in the synthesis of a benzodichalcogenophene derivative containing a sulfur atom in the prior art, a multi-step production process using an expensive raw material is required, so that such a compound has a problem as a practical material. Furthermore, it has been extremely difficult to introduce a plurality of selenium atoms or tellurium atoms into a condensed polycyclic aromatic skeleton based on the knowledge of organic synthetic chemistry so far. As a result of studying a simple method for synthesizing a benzodichalcogenophene derivative containing a selenium atom or a tellurium atom, the present inventors have used a commercially available compound at a low price, for example, dibromobenzene as a raw material. A simple method capable of producing the target compound was found by the step reaction, and the production method of the present invention was completed. The method of the present invention is that a cheap raw material can be used, there are few production steps, each step can be produced with high efficiency, and furthermore, it is a production method with less contamination of impurities, and is extremely easy to purify. , Etc. It has excellent features that have never been seen before.

本発明の新規なベンゾジカルコゲノフェン誘導体においては、有機半導体材料に求められている高い電界効果移動度(0.1cm2/Vs以上)と、高いオン/オフ電流比(105以上)を達成することができる。また、本発明の製造方法においては、前記ベンゾジカルコゲノフェン誘導体を簡便かつ安価に製造することができる。よって、本発明によれば、優れた電気的、電子的および光電気的特性を有する有機半導体デバイスをこれまで以上に安価にかつ簡便に製造することができる。 In the novel benzodichalcogenophene derivative of the present invention, high field effect mobility (0.1 cm 2 / Vs or more) required for organic semiconductor materials and high on / off current ratio (10 5 or more) are obtained. Can be achieved. Moreover, in the manufacturing method of this invention, the said benzodichalcogenophene derivative can be manufactured simply and cheaply. Therefore, according to the present invention, an organic semiconductor device having excellent electrical, electronic, and photoelectric characteristics can be manufactured at a lower cost and more easily than ever.

本発明のベンゾジカルコゲノフェン誘導体は、次の一般式(1)、

Figure 2005154371
(式中、X1およびX2はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R1およびR2はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されるものか、あるいは次の一般式(2)、
Figure 2005154371
(式中、X3およびX4はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R3およびR4はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されるものである。 The benzodichalcogenophene derivative of the present invention has the following general formula (1),
Figure 2005154371
Wherein X 1 and X 2 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3, R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. Which may have at least one substituent selected from the group consisting of a group and an aryl group), or the following general formula (2),
Figure 2005154371
Wherein X 3 and X 4 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. And may have at least one substituent selected from the group consisting of a group and an aryl group.

前記式中のX1およびX2並びにX3およびX4はセレン原子またはテルル原子であり、カルコゲン原子の中でこれら原子を選定したことにより、硫黄原子に比しより優れた電気的、電子的および光電気的特性が得られる。 X 1 and X 2 and X 3 and X 4 in the above formula are selenium atoms or tellurium atoms, and by selecting these atoms among the chalcogen atoms, they are more excellent in electrical and electronic properties than sulfur atoms. And optoelectric properties are obtained.

また、前記式中のR1およびR2並びにR3およびR4のうち、アリール基としては、フェニル基、ナフチル基、アントラニル基、フリル基、チエニル基、セレノフリル基、チエノチエニル基等を好適に挙げることができる。 In addition, among R 1 and R 2 and R 3 and R 4 in the above formula, preferred examples of the aryl group include a phenyl group, a naphthyl group, an anthranyl group, a furyl group, a thienyl group, a selenofuryl group, and a thienothienyl group. be able to.

次に、本発明の製造方法は、次の一般式(3)、

Figure 2005154371
または、次の一般式(4)、
Figure 2005154371
(式中、X5およびX6はそれぞれ独立にカルコゲン原子、nは1〜3の整数、R5およびR6はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されるベンゾジカルコゲノフェン誘導体を製造するものであり、X5およびX6はセレン原子またはテルル原子に限定されず、これら以外のカルコゲン原子を含むものである。 Next, the production method of the present invention has the following general formula (3),
Figure 2005154371
Or the following general formula (4),
Figure 2005154371
Wherein X 5 and X 6 are each independently a chalcogen atom, n is an integer of 1 to 3, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 2 to 18 carbon atoms, or a chalcogen An aryl group which may have an atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, an alkylthio group having 2 to 18 carbon atoms and an aryl group. X 5 and X 6 are selenium atoms or tellurium atoms, which may have at least one substituent selected from the group consisting of groups) It is not limited to this, It includes a chalcogen atom other than these.

本発明の製造方法では、末端にR5およびR6(但し、R5およびR6が水素原子の場合には該水素原子に対する保護基)を別々に有する不飽和炭素結合を含む2個の置換基と、X5およびX6を別々に含む2個の置換基とを同一環上に有するベンゼン環において、R5(但し、R5が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX5を含む置換基との間と、R6(但し、R6が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX6を含む置換基との間とで、夫々縮合反応させる工程を含むことにより、前記一般式(3)または(4)で表されるベンゾジカルコゲノフェン誘導体を簡便かつ安価に製造することができる。末端にR5またはR6を有する不飽和炭素結合を含む置換基は、好ましくは末端にR5またはR6を有するエチニル基である。また、R5およびR6が水素原子である場合の、該水素原子に対する保護基としてはケイ素置換基を好適に使用することができ、特に好ましくはトリメチルシリル基(TMS)を使用することができる。 In the production method of the present invention, two substituents containing an unsaturated carbon bond having R 5 and R 6 at the ends (provided that when R 5 and R 6 are a hydrogen atom, separately, a protecting group for the hydrogen atom) A benzene ring having the same group and two substituents separately containing X 5 and X 6 on the same ring, R 5 (provided that when R 5 is a hydrogen atom, a protecting group for the hydrogen atom) includes between substituent includes a substituent group and X 5 which includes an unsaturated carbon bond, R 6 (where, R 6 is a protecting group for the hydrogen atom in the case of hydrogen atoms) an unsaturated carbon bond with having By including a step of condensation reaction between the substituent and the substituent containing X 6 , the benzodichalcogenophene derivative represented by the general formula (3) or (4) can be obtained easily and inexpensively. Can be manufactured. The substituent containing an unsaturated carbon bond having R 5 or R 6 at the terminal is preferably an ethynyl group having R 5 or R 6 at the terminal. Moreover, when R < 5 > and R < 6 > are hydrogen atoms, a silicon substituent can be used suitably as a protective group with respect to this hydrogen atom, Especially preferably, a trimethylsilyl group (TMS) can be used.

例えば、従来、前記一般式(3)中のX5およびX6がともに硫黄原子で、かつR5およびR6がともに水素原子で、nが1である既知のベンゾジカルコゲノフェン誘導体を製造するにあたっては、出発材料として高価なチオフェン誘導体を使用しなければならず、また、反応のステップ数、収率面でも本発明の方法に比べ工程数が多く、また最終段階の環化反応で副生成物が相当量生じるなど、問題があったが、本発明の製造方法ではかかる問題を大幅に低減することができる。 For example, conventionally, a known benzodichalcogenophene derivative in which X 5 and X 6 in the general formula (3) are both sulfur atoms, R 5 and R 6 are both hydrogen atoms, and n is 1 is produced. In this case, an expensive thiophene derivative must be used as a starting material, and the number of reaction steps and yield are larger than those of the method of the present invention. Although there was a problem that a considerable amount of product was produced, the production method of the present invention can greatly reduce such a problem.

即ち、本発明では、一例として以下の反応式、

Figure 2005154371
で表されるように、安価に市販されているジブロモベンゼンを原料として、3〜5段階の反応により前記一般式(3)で表されるベンゾジカルコゲノフェン誘導体を製造することができる。 That is, in the present invention, the following reaction formula is given as an example:
Figure 2005154371
As shown in the formula, a benzodichalcogenophene derivative represented by the general formula (3) can be produced by a reaction of 3 to 5 steps using dibromobenzene commercially available at a low price.

また、同様に、前記一般式(4)で表されるベンゾジカルコゲノフェン誘導体のうち、X5およびX6がともにセレン原子または硫黄原子、R5およびR6がともにフェニル基、nが1であるベンゾジカルコゲノフェン誘導体は、以下の反応式に従い製造することができる。 Similarly, among the benzodichalcogenophene derivatives represented by the general formula (4), X 5 and X 6 are both selenium atoms or sulfur atoms, R 5 and R 6 are both phenyl groups, and n is 1 The benzodichalcogenophene derivative can be produced according to the following reaction formula.

Figure 2005154371
Figure 2005154371

本発明の製造方法において、前記一般式(1)または(2)で表される本発明のベンゾジカルコゲノフェン誘導体を得るには、前記カルコゲン原子をセレン原子またはテルル原子とすればよい。   In the production method of the present invention, in order to obtain the benzodichalcogenophene derivative of the present invention represented by the general formula (1) or (2), the chalcogen atom may be a selenium atom or a tellurium atom.

また、前記一般式(3)または(4)中のnが2または3で表される化合物を得るには、先ずnが1で表される化合物を製造し、次いで、得られた化合物同士を結合させればよい。この結合のためには、前記一般式(3)または(4)中のnが1で表される化合物を有機金属試薬処理により活性化した後、金属塩による酸化的結合生成反応を好適に利用することができる。   In addition, in order to obtain a compound in which n in the general formula (3) or (4) is represented by 2 or 3, first, a compound in which n is represented by 1 is produced, and then the obtained compounds are combined with each other. What is necessary is just to combine. For this bonding, the compound represented by the general formula (3) or (4) where n is 1 is activated by treatment with an organometallic reagent, and then an oxidative bond formation reaction with a metal salt is preferably used. can do.

本発明の機半導体デバイスは、前記一般式(1)および/または(2)で表される本発明のベンゾジカルコゲノフェン誘導体の少なくとも1種を有機半導体材料として使用するものである。かかる有機半導体デバイスは、好適には薄膜トランジスタや発光デバイスであり、高電界効果移動度(0.1cm2/Vs以上)と、高オン/オフ電流比(105以上)を達成することができる。なお、本発明に係る有機半導体材料を使用する以外は既知の材料および構造を採用することができ、特に制限されるべきものではない(図1参照)。 The machine semiconductor device of the present invention uses at least one benzodichalcogenophene derivative of the present invention represented by the general formula (1) and / or (2) as an organic semiconductor material. Such an organic semiconductor device is preferably a thin film transistor or a light emitting device, and can achieve a high field effect mobility (0.1 cm 2 / Vs or more) and a high on / off current ratio (10 5 or more). It should be noted that known materials and structures can be adopted except that the organic semiconductor material according to the present invention is used, and there is no particular limitation (see FIG. 1).

以下、本発明を実施例に基づき具体的に説明する。
合成例1
文献[J.Org.Chem.Vol.50,P.3140,(1985)]記載の方法に従い、1,4−ジブロモベンゼン(東京化成(株)製)に濃硫酸中、120℃で6時間ヨウ素を作用させることで、1,4−ジブロモ−2,5−ジヨードベンゼンを調製した(収率83%)。次いで、窒素雰囲気下、これを、文献[J.Am.Chem.Soc.Vol.119,P.4578,(1997)]記載の方法に準拠し、塩化パラジウム・ビス(トリフェニルホスフィン)、ヨウ化第一銅の存在下、フェニルアセチレンと、ジイソプロピルアミン中で反応させることで、1,4−ジブロモ−2,5−ビス(フェニルエチニル)ベンゼンへと変換した(収率98%)。この反応は、文献とほぼ同様に高収率で進行した。
Hereinafter, the present invention will be specifically described based on examples.
Synthesis example 1
According to the method described in the literature [J. Org. Chem. Vol. 50, P. 3140, (1985)], iodine was added to 1,4-dibromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) in concentrated sulfuric acid at 120 ° C. for 6 hours. 1,4-dibromo-2,5-diiodobenzene was prepared (yield 83%). Then, in a nitrogen atmosphere, this was treated with palladium chloride bis (triphenylphosphine), iodide according to the method described in the literature [J. Am. Chem. Soc. Vol. 119, P. 4578, (1997)]. Conversion into 1,4-dibromo-2,5-bis (phenylethynyl) benzene was achieved by reacting with phenylacetylene in diisopropylamine in the presence of cuprous (yield 98%). This reaction proceeded in high yield, much like the literature.

次いで、不活性ガス雰囲気下、得られた1,4−ジブロモ−2,5−ビス(フェニルエチニル)ベンゼン(1g,2.3mmol)を低温にてリチオ化し、セレン粉末(0.36g,4.6mmol)と反応させることで黄色固体として、2,6−ジフェニル−ベンゾ[1,2−b:4,5−b’]ジセレノフェン(前記一般式(1)中、n=1,X1,X2=Se,R1,R2=フェニル)(1.61g,収率74%)を得た。
融点:300℃以上、MS(EI)m/z436(M+,100%、セレン原子二個を含む同位体パターンあり)、
元素分析:計算値(C2214Se2)C,60.57;H,3.23%、実測値C,60.61;H,3.29%
Next, the obtained 1,4-dibromo-2,5-bis (phenylethynyl) benzene (1 g, 2.3 mmol) was lithiated at a low temperature under an inert gas atmosphere to obtain selenium powder (0.36 g, 4. 6 mmol) to give 2,6-diphenyl-benzo [1,2-b: 4,5-b ′] diselenophene (in formula (1), n = 1, X 1 , X 2 = Se, to obtain a R 1, R 2 = phenyl) (1.61 g, 74% yield).
Melting point: 300 ° C. or higher, MS (EI) m / z 436 (M + , 100%, with an isotope pattern containing two selenium atoms),
Elemental analysis: calculated value (C 22 H 14 Se 2 ) C, 60.57; H, 3.23%, measured value C, 60.61; H, 3.29%

合成例2
合成例1と同様にして、1,4−ジブロモ−2,5−ジヨードベンゼンと4−エチニルビフェニル(1 g,5.6 mmol)を反応させ、1,4−ジブロモ−2,5−ビス[(4,1’−ビフェニル)−1−イル−エチニル]ベンゼンを得た。これを、同じく合成例1と同様に処理し、2,6−ビス[(4,1’−ビフェニル)−1−イル]−ベンゾ[1、2−b:4,5−b’]ジセレノフェン(前記一般式(1)中、n=1,X1,X2=Se,R1,R2=ビフェニル)(0.58g,収率99%)を得た。
融点:300℃以上、MS(MALDI−TOF)m/z588(M+,100%)、 元素分析:計算値(C3422Se2)C,69.40;H,3.77%、実測値C,69.40;H,3.74%
Synthesis example 2
In the same manner as in Synthesis Example 1, 1,4-dibromo-2,5-diiodobenzene and 4-ethynylbiphenyl (1 g, 5.6 mmol) are reacted to give 1,4-dibromo-2,5-bis. [(4,1′-biphenyl) -1-yl-ethynyl] benzene was obtained. This was treated in the same manner as in Synthesis Example 1, and 2,6-bis [(4,1′-biphenyl) -1-yl] -benzo [1,2-b: 4,5-b ′] diselenophene ( In the general formula (1), n = 1, X 1 , X 2 = Se, R 1 , R 2 = biphenyl) (0.58 g, yield 99%) was obtained.
Melting point: 300 ° C. or higher, MS (MALDI-TOF) m / z 588 (M + , 100%), elemental analysis: calculated value (C 34 H 22 Se 2 ) C, 69.40; H, 3.77%, actual measurement Value C, 69.40; H, 3.74%

合成例3
合成例1において、セレン粉末の代わりにテルル粉末を使用した以外は合成例1と同様にして、1,4−ジブロモ−2,5−ビス(フェニルエチニル)ベンゼンのリチオ体とテルル粉末を反応させ、2,6−ジフェニル−ベンゾ[1,2−b:4,5−b’]ジテルロフェン(前記一般式(1)中、n=1,X1,X2=Te,R1,R2=フェニル)を収率40%で得た。
融点:300℃以上、MS(EI)m/z534(M+,100%、テルル原子二個を含む同位体パターンあり)、
元素分析:計算値(C2214Te2)C,49.52;H,2.64%、実測値C,49.49;H,2.65%
Synthesis example 3
In Synthesis Example 1, except that tellurium powder was used in place of selenium powder, the reaction between the lithiol of 1,4-dibromo-2,5-bis (phenylethynyl) benzene and tellurium powder was performed in the same manner as in Synthesis Example 1. 2,6-diphenyl-benzo [1,2-b: 4,5-b ′] ditellophene (in the general formula (1), n = 1, X 1 , X 2 = Te, R 1 , R 2 = Phenyl) was obtained with a yield of 40%.
Melting point: 300 ° C. or higher, MS (EI) m / z 534 (M + , 100%, with an isotope pattern containing two tellurium atoms),
Calcd (C 22 H 14 Te 2) C, 49.52; H, 2.64%, Found C, 49.49; H, 2.65%

合成例4
合成例1においてフェニルアセチレンの代わりにトリメチルシリルアセチレンを使用した以外は合成例1と同様にして1,4−ジブロモ−2,5−ビス(トリメチルシリルエチニル)ベンゼンを調製し、これを合成例1と同様にして2,6−ビス(トリメチルシリル)−ベンゾ[1,2−b:4,5−b’]ジセレノフェンへと変換した。さらにこれを、アルカリ処理により脱シリル化し、ベンゾ[1,2−b:4,5−b’]ジセレノフェン(前記一般式(1)中、n=1,X1,X2=Se,R1,R2=H)を得た。
Synthesis example 4
1,4-dibromo-2,5-bis (trimethylsilylethynyl) benzene was prepared in the same manner as in Synthesis Example 1 except that trimethylsilylacetylene was used instead of phenylacetylene in Synthesis Example 1, and this was the same as in Synthesis Example 1. To 2,6-bis (trimethylsilyl) -benzo [1,2-b: 4,5-b ′] diselenophene. Further, this was desilylated by alkali treatment, and benzo [1,2-b: 4,5-b ′] diselenophene (in the general formula (1), n = 1, X 1 , X 2 = Se, R 1 , R 2 = H).

合成例5
合成例4で得られたベンゾ[1,2−b:4,5−b’]ジセレノフェンをテトラヒドロフラン(THF)に溶解、冷却した後、ブチルリウムにてリチオ化し、その後、鉄(III)−アセチルアセナートを加えて攪拌した。次いで、水を加え、析出した固体を濾取洗浄し、乾燥後、昇華精製し、黄色固体として2,2’−ビ(ベンゾ[1,2−b:4,5−b’]ジセレノフェン)(前記一般式(1)中、n=2,X1,X2=Se,R1,R2=H)を得た。
融点:300℃以上、MS(EI)m/z566(M+,100%)、
元素分析:計算値(C2010Se2)C,42.43;H,1.78%、実測値C,42.39;H,1.82%
Synthesis example 5
The benzo [1,2-b: 4,5-b ′] diselenophene obtained in Synthesis Example 4 is dissolved in tetrahydrofuran (THF), cooled, lithiated with butyllium, and then iron (III) -acetylacetate. Nart was added and stirred. Subsequently, water was added, and the precipitated solid was collected by filtration, dried, purified by sublimation, and 2,2′-bi (benzo [1,2-b: 4,5-b ′] diselenophene) (yellow solid) In the general formula (1), n = 2, X 1 , X 2 = Se, R 1 , R 2 = H) were obtained.
Melting point: 300 ° C. or higher, MS (EI) m / z 566 (M + , 100%),
Elemental analysis: calculated value (C 20 H 10 Se 2 ) C, 42.43; H, 1.78%, measured value C, 42.39; H, 1.82%

合成例6
1,4−ジブロモベンゼンの代わりに1,3−ジブロモベンゼン(東京化成(株)製)を使用した以外は合成例1と同様にして1,5−ジブロモ−2,4−ジヨードベンゼンを調製した(収率90%)。次いで、窒素雰囲気下、これを、文献[Tetrahedron Vol.59,p.2497(2003)]記載の方法の改良法(試薬:塩化パラジウム・ビス(トリフェニルホスフィン)、ヨウ化第一銅、フェニルアセチレン、溶媒:ジイソプロピルアミン)を用い、1,5−ジブロモ−2,4−ビス(フェニルエチニル)ベンゼンへと変換した(収率84%)。
Synthesis Example 6
1,5-dibromo-2,4-diiodobenzene was prepared in the same manner as in Synthesis Example 1 except that 1,3-dibromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,4-dibromobenzene. (Yield 90%). Then, in a nitrogen atmosphere, this was improved from the method described in the literature [Tetrahedron Vol.59, p.2497 (2003)] (reagents: palladium chloride bis (triphenylphosphine), cuprous iodide, phenylacetylene). , Solvent: diisopropylamine) and converted to 1,5-dibromo-2,4-bis (phenylethynyl) benzene (yield 84%).

次いで、不活性ガス雰囲気下、得られた1,5−ジブロモ−2,4−ジヨードベンゼン(0.5g,1.1mmol)を低温にてリチオ化し、セレン粉末(0.17g,2.2mmol)と反応させることで黄色固体として、2,6−ジフェニル−ベンゾ[1,2−b:5,4−b’]ジセレノフェン(前記一般式(2)中、n=1,X3,X4=Se,R3,R4=フェニル)(0.41g,収率81%)を得た。
融点:300℃以上、MS(MALDI−TOF)m/z436(M+,100%)、
元素分析:計算値(C2214Se2)C,60.57;H,3.23%、実測値C,60.58;H,3.25%
Subsequently, the obtained 1,5-dibromo-2,4-diiodobenzene (0.5 g, 1.1 mmol) was lithiated at a low temperature under an inert gas atmosphere, and selenium powder (0.17 g, 2.2 mmol) was obtained. ) As a yellow solid, 2,6-diphenyl-benzo [1,2-b: 5,4-b ′] diselenophene (in the general formula (2), n = 1, X 3 , X 4 = Se, R 3 , R 4 = phenyl) (0.41 g, 81% yield).
Melting point: 300 ° C. or higher, MS (MALDI-TOF) m / z 436 (M + , 100%),
Elemental analysis: calculated value (C 22 H 14 Se 2 ) C, 60.57; H, 3.23%, measured value C, 60.58; H, 3.25%

合成例7
合成例6において、セレン粉末の代わりに硫黄粉末を使用した以外は合成例6と同様にして、1,5−ジブロモ−2,4−ジヨードベンゼン(0.5g,1.1mmol)のリチオ体と硫黄粉末(0.07g,2.2mmol)とを反応させることで黄色固体として、2,6−ジフェニル−ベンゾ[1,2−b:5,4−b’]ジチオフェン(前記一般式(2)中、n=1,X3,X4=S,R3,R4=フェニル)(0.18g,収率48%)を得た。
融点:300℃以上、MS(MALDI−TOF)m/z324(M+,100%)、
元素分析:計算値(C22142)C,77.15;H,4.12%、実測値C,77.10;H,4.18%
Synthesis example 7
In Synthesis Example 6, 1,5-dibromo-2,4-diiodobenzene (0.5 g, 1.1 mmol) lithiated in the same manner as in Synthesis Example 6 except that sulfur powder was used instead of selenium powder. And sulfur powder (0.07 g, 2.2 mmol) are reacted as a yellow solid to give 2,6-diphenyl-benzo [1,2-b: 5,4-b ′] dithiophene (formula (2 ), N = 1, X 3 , X 4 = S, R 3 , R 4 = phenyl) (0.18 g, yield 48%) was obtained.
Melting point: 300 ° C. or higher, MS (MALDI-TOF) m / z 324 (M + , 100%),
Elemental analysis: calculated value (C 22 H 14 S 2 ) C, 77.15; H, 4.12%, measured value C, 77.10; H, 4.18%

図1(a)および(b)に示す構造の薄膜デバイスを、前記合成例1〜7に従い調製した化合物を有機半導体材料6として用いて夫々製造した。これら薄膜デバイスでは、n−ドープすることによりゲート電極3として作用するシリコン基板4上に、熱酸化により二酸化ケイ素からなる誘電層5を形成した。図1(a)に示す構造の薄膜デバイスの製造の際にはソース1とドレイン2との接点チャンネルを電子線描画またはフォトリソグラフィーによって画定した。このチャンネルの幅は200μmで、チャンネルの長さは1〜10μmの範囲内であった。かかるデバイスの接点金属は金を用いた。   Thin film devices having the structures shown in FIGS. 1A and 1B were manufactured using the compounds prepared according to Synthesis Examples 1 to 7 as the organic semiconductor material 6, respectively. In these thin film devices, the dielectric layer 5 made of silicon dioxide was formed on the silicon substrate 4 acting as the gate electrode 3 by n-doping by thermal oxidation. In manufacturing the thin film device having the structure shown in FIG. 1A, the contact channel between the source 1 and the drain 2 was defined by electron beam drawing or photolithography. The channel width was 200 μm and the channel length was in the range of 1-10 μm. The contact metal of such a device was gold.

シリコン基板4の誘電層5上に、約1×10-3Pa以下の圧力で有機半導体材料6を、真空蒸着により堆積した。その蒸着速度は0.1nm/sであった。基板の温度は基板が置かれた銅ブロックの加熱により調整した。 An organic semiconductor material 6 was deposited on the dielectric layer 5 of the silicon substrate 4 by vacuum deposition at a pressure of about 1 × 10 −3 Pa or less. The vapor deposition rate was 0.1 nm / s. The temperature of the substrate was adjusted by heating the copper block on which the substrate was placed.

図1(b)に示す他の構造の薄膜デバイスでは、ソース1とドレイン2は、シャドウマスクを用いて上述のようにして形成された半導体層6の上面に形成した。ソース1とドレイン2との接点は幅1.5mm、長さ0.05mmであった。   In the thin film device having another structure shown in FIG. 1B, the source 1 and the drain 2 are formed on the upper surface of the semiconductor layer 6 formed as described above using a shadow mask. The contact point between the source 1 and the drain 2 was 1.5 mm in width and 0.05 mm in length.

電界効果移動度は、ゲート電圧を固定させて一定とし、各合成例の化合物による半導体層が形成されたデバイスに対して、掃引されたソースドレイン電圧(0−100V)をかけることで測定し、FET応答曲線の飽和ドレイン−ソース電流を用いて算出した。典型的なFET応答曲線の例として、合成例1のジフェニルジベンゾセレノフェン薄膜のFET素子から得られたものを図2に示す。半導体のキャリア移動度の算出は「半導体デバイス物理特性および技術」[Sze,S.M.,pp30-35,pp200-207(1985)]の記載内容に準拠した。図1(a)に示す構造の薄膜デバイスを用い、合成例1および2による半導体のキャリア移動度およびオン/オフ電流比を室温にて測定して得られた結果を下記の表1に示す。尚、オン/オフ電流比はゲート電圧が−100Vをオンとし、0Vをオフとして、夫々流れた電流を基に算出した。   The field-effect mobility is measured by applying a swept source / drain voltage (0 to 100 V) to a device in which a semiconductor layer is formed from the compound of each synthesis example, with the gate voltage fixed. The saturation drain-source current of the FET response curve was used for calculation. As an example of a typical FET response curve, the one obtained from the FET element of the diphenyldibenzoselenophene thin film of Synthesis Example 1 is shown in FIG. The calculation of the carrier mobility of the semiconductor complied with the description in “Semiconductor device physical characteristics and technology” [Sze, S.M., pp30-35, pp200-207 (1985)]. Table 1 below shows the results obtained by measuring the carrier mobility and on / off current ratio of the semiconductors according to Synthesis Examples 1 and 2 at room temperature using the thin film device having the structure shown in FIG. The on / off current ratio was calculated based on the currents flowing when the gate voltage was -100V on and 0V off.

Figure 2005154371
*参考例は、合成例1のセレン原子を硫黄原子に代えた2,6−ジフェニル−ベンゾ[1,2−b;4,5−b’]ジチオフェンに対し、合成例1と同様にして測定して得られた結果を示す。
Figure 2005154371
* Reference Example was measured in the same manner as in Synthesis Example 1 for 2,6-diphenyl-benzo [1,2-b; 4,5-b ′] dithiophene in which the selenium atom in Synthesis Example 1 was replaced with a sulfur atom. The results obtained are shown below.

また、有機半導体薄膜の移動度はその膜作製時、すなわち膜付着時の基板温度に影響される。これを以下のようにして確認した。先ず、合成例1のジフェニルジベンゾセレノフェンと合成例2のジ(ビフェニル)ジベンゾセレノフェンとを有機半導体材料として夫々使用し、これら有機半導体材料を室温、60℃、100℃にて付着させることにより各種薄膜デバイスを製造した。各付着温度のそれぞれにおいて約10のデバイスを製造した。図3のグラフに種々の温度における付着された有機半導体薄膜の平均移動度を示す。   The mobility of the organic semiconductor thin film is affected by the substrate temperature at the time of film formation, that is, when the film is attached. This was confirmed as follows. First, diphenyldibenzoselenophene of Synthesis Example 1 and di (biphenyl) dibenzoselenophene of Synthesis Example 2 are used as organic semiconductor materials, respectively, and these organic semiconductor materials are adhered at room temperature, 60 ° C., and 100 ° C. Various thin film devices were manufactured. Approximately 10 devices were fabricated at each of the deposition temperatures. The graph of FIG. 3 shows the average mobility of the deposited organic semiconductor thin film at various temperatures.

図3に示すグラフを得るために測定したデバイスは、図1の(b)に示す構造を有するものである。図示するグラフは有機半導体薄膜を付着させるときの基板温度が該有機半導体薄膜の移動度に影響を与えることを示している。合成例1のジフェニルジベンゾセレノフェンでは基板温度が60℃の時に、また合成例2のジ(ビフェニル)ジベンゾセレノフェンでは基板温度が100℃の時に、夫々最大の移動度が観測された。また、このときのオン/オフ電流比は105であった。 The device measured to obtain the graph shown in FIG. 3 has the structure shown in FIG. The graph shown in the figure shows that the substrate temperature when depositing the organic semiconductor thin film affects the mobility of the organic semiconductor thin film. The maximum mobility was observed when the substrate temperature was 60 ° C. for diphenyldibenzoselenophene of Synthesis Example 1 and when the substrate temperature was 100 ° C. for di (biphenyl) dibenzoselenophene of Synthesis Example 2. Further, the on / off current ratio at this time was 10 5 .

本発明のベンゾジカルコゲノフェン誘導体を有機半導体材料として有する有機半導体デバイスは、0.1cm2/Vsを超える移動度と、高いオン−オフ電流比(105以上)を達成することができるため、薄膜トランジスタや、有機キャリア輸送層または発光層を有する発光デバイスとして極めて有用である。 The organic semiconductor device having the benzodichalcogenophene derivative of the present invention as an organic semiconductor material can achieve a mobility exceeding 0.1 cm 2 / Vs and a high on-off current ratio (10 5 or more). It is extremely useful as a light emitting device having a thin film transistor or an organic carrier transporting layer or a light emitting layer.

また、本発明の製造方法により、安価な市販の原料、例えば、1,4−ジブロモベンゼンより3〜5段階で本発明のベンゾジカルコゲノフェン誘導体を高い総合収率(50%以上)で得ることができる。また、その合成過程における不純物混入が少ないため、容易に精製を行うことができ、よって、一回の昇華精製により0.1cm2/Vsを超える移動度と、高いオン/オフ電流比(105以上)とを達成できる有機半導体デバイスを得ることができる。 In addition, the production method of the present invention obtains the benzodichalcogenophene derivative of the present invention in a high overall yield (50% or more) in 3 to 5 steps from an inexpensive commercially available raw material such as 1,4-dibromobenzene. be able to. Further, since there is little impurity contamination in the synthesis process, the purification can be easily performed. Therefore, a mobility exceeding 0.1 cm 2 / Vs and a high on / off current ratio (10 5) can be obtained by a single sublimation purification. An organic semiconductor device capable of achieving the above can be obtained.

(a)および(b)は、夫々薄膜トランジスタデバイスの構造を示す摸式的断面図である。(A) And (b) is typical sectional drawing which shows the structure of a thin-film transistor device, respectively. ジフェニルジベンゾセレノフェンを用いた薄膜トランジスタデバイスのFET応答曲線を示すグラフである。It is a graph which shows the FET response curve of the thin-film transistor device using diphenyl dibenzo selenophene. 種々の温度で付着された有機半導体薄膜(合成例1、合成例2)の平均移動度を示すグラフである。It is a graph which shows the average mobility of the organic-semiconductor thin film (Synthesis example 1, Synthesis example 2) attached at various temperature.

符号の説明Explanation of symbols

1 ソース
2 ドレイン
3 ゲート電極
4 シリコン基板
5 誘電層
6 有機半導体材料(有機半導体層)
1 source 2 drain 3 gate electrode 4 silicon substrate 5 dielectric layer 6 organic semiconductor material (organic semiconductor layer)

Claims (11)

次の一般式(1)、
Figure 2005154371
(式中、X1およびX2はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R1およびR2はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されることを特徴とするベンゾジカルコゲノフェン誘導体。
The following general formula (1),
Figure 2005154371
Wherein X 1 and X 2 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3, R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. A benzodichalcogenophene derivative, which may have at least one substituent selected from the group consisting of a group and an aryl group.
次の一般式(2)、
Figure 2005154371
(式中、X3およびX4はそれぞれ独立にセレン原子またはテルル原子、nは1〜3の整数、R3およびR4はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されることを特徴とするベンゾジカルコゲノフェン誘導体。
The following general formula (2),
Figure 2005154371
Wherein X 3 and X 4 are each independently a selenium atom or tellurium atom, n is an integer of 1 to 3 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 2 to 18 carbon atoms. Or an aryl group optionally having a chalcogen atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, and an alkylthio group having 2 to 18 carbon atoms. A benzodichalcogenophene derivative, which may have at least one substituent selected from the group consisting of a group and an aryl group.
次の一般式(3)、
Figure 2005154371
または、次の一般式(4)、
Figure 2005154371
(式中、X5およびX6はそれぞれ独立にカルコゲン原子、nは1〜3の整数、R5およびR6はそれぞれ独立に水素原子、ハロゲン原子、炭素数2〜18のアルキル基、又はカルコゲン原子を有していてもよいアリール基であり、該アリール基は、ハロゲン原子、炭素数2〜18のアルキル基、炭素数2〜18のアルキルオキシ基、炭素数2〜18のアルキルチオ基およびアリール基からなる群から選択される少なくとも1種の置換基を有していてもよい)で表されるベンゾジカルコゲノフェン誘導体を製造するにあたり、
末端にR5およびR6(但し、R5およびR6が水素原子の場合には該水素原子に対する保護基)を別々に有する不飽和炭素結合を含む2個の置換基と、X5およびX6を別々に含む2個の置換基とを同一環上に有するベンゼン環において、R5(但し、R5が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX5を含む置換基との間と、R6(但し、R6が水素原子の場合には該水素原子に対する保護基)を有する不飽和炭素結合を含む置換基とX6を含む置換基との間とで、夫々縮合反応させる工程を含むことを特徴とするベンゾジカルコゲノフェン誘導体の製造方法。
The following general formula (3),
Figure 2005154371
Or the following general formula (4),
Figure 2005154371
Wherein X 5 and X 6 are each independently a chalcogen atom, n is an integer of 1 to 3, R 5 and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 2 to 18 carbon atoms, or a chalcogen An aryl group which may have an atom, and the aryl group includes a halogen atom, an alkyl group having 2 to 18 carbon atoms, an alkyloxy group having 2 to 18 carbon atoms, an alkylthio group having 2 to 18 carbon atoms and an aryl group. In the production of a benzodichalcogenophene derivative represented by (which may have at least one substituent selected from the group consisting of groups)
Two substituents containing an unsaturated carbon bond separately having R 5 and R 6 at the ends (provided that when R 5 and R 6 are hydrogen atoms, a protecting group for the hydrogen atom), X 5 and X 6 A benzene ring having two substituents containing 6 separately on the same ring, including an unsaturated carbon bond having R 5 (provided that when R 5 is a hydrogen atom, a protecting group for the hydrogen atom) A substituent containing an unsaturated carbon bond having a substituent and a substituent containing X 5 , and R 6 (provided that when R 6 is a hydrogen atom, a protecting group for the hydrogen atom), and X 6 A method for producing a benzodichalcogenophene derivative, comprising a step of condensation reaction with a substituent.
前記カルコゲン原子がセレン原子またはテルル原子である請求項3記載の製造方法。   The production method according to claim 3, wherein the chalcogen atom is a selenium atom or a tellurium atom. 前記一般式(3)または(4)中のnが2または3で表される化合物を、nが1で表される化合物を製造した後、これらを結合させることにより製造する請求項3または4記載の製造方法。   The compound represented by formula (3) or (4) wherein n is 2 or 3 is produced by producing a compound wherein n is 1 and then combining them. The manufacturing method as described. 前記一般式(3)または(4)中のnが1で表される化合物を有機金属試薬処理により活性化した後、金属塩による酸化的結合生成反応を利用する請求項5記載の製造方法。   The production method according to claim 5, wherein the compound represented by the general formula (3) or (4) wherein n is 1 is activated by treatment with an organometallic reagent, and then an oxidative bond formation reaction with a metal salt is used. 前記一般式(1)および/または(2)で表される化合物の少なくとも1種を有機半導体材料として用いたことを特徴とする有機半導体デバイス。   An organic semiconductor device, wherein at least one compound represented by the general formula (1) and / or (2) is used as an organic semiconductor material. 有機半導体層を有する薄膜トランジスタである請求項7記載の有機半導体デバイス。   The organic semiconductor device according to claim 7, which is a thin film transistor having an organic semiconductor layer. 有機キャリア輸送層または発光層を有する発光デバイスである請求項7記載の有機半導体デバイス。   The organic semiconductor device according to claim 7, which is a light emitting device having an organic carrier transport layer or a light emitting layer. 0.1cm2/Vs以上の電界効果移動度を有する請求項7〜9のうちいずれか一項記載の有機半導体デバイス。 The organic-semiconductor device as described in any one of Claims 7-9 which has a field effect mobility of 0.1 cm < 2 > / Vs or more. 105以上のオン/オフ電流比を有する請求項7〜10のうちいずれか一項記載の有機半導体デバイス。
The organic semiconductor device according to claim 7, having an on / off current ratio of 10 5 or more.
JP2003397788A 2003-11-27 2003-11-27 Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same Expired - Fee Related JP4157463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397788A JP4157463B2 (en) 2003-11-27 2003-11-27 Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397788A JP4157463B2 (en) 2003-11-27 2003-11-27 Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2005154371A true JP2005154371A (en) 2005-06-16
JP4157463B2 JP4157463B2 (en) 2008-10-01

Family

ID=34722846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397788A Expired - Fee Related JP4157463B2 (en) 2003-11-27 2003-11-27 Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP4157463B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067263A (en) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2007088222A (en) * 2005-09-22 2007-04-05 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin-film transistor
WO2007125671A1 (en) * 2006-03-31 2007-11-08 Nippon Kayaku Kabushiki Kaisha Field effect transistor
WO2008026602A1 (en) * 2006-08-28 2008-03-06 Tosoh Corporation Heteroacene derivative, tetrahaloterphenyl derivative, and their production methods
JP2008081494A (en) * 2006-08-28 2008-04-10 Tosoh Corp Heteroacene derivative, tetrahaloterphenyl derivative and their production method
JP2008258592A (en) * 2007-03-09 2008-10-23 Hiroshima Univ Field-effect transistor
WO2008146597A1 (en) * 2007-05-24 2008-12-04 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
WO2009038120A1 (en) 2007-09-21 2009-03-26 Nippon Kayaku Kabushiki Kaisha Field effect transistor
JP2010163433A (en) * 2009-01-14 2010-07-29 Air Products & Chemicals Inc Heterocyclic fused selenophene monomer
US7834198B2 (en) 2005-01-19 2010-11-16 National University Of Corporation Hiroshima University Condensed polycyclic aromatic compound and use thereof
JP2011006388A (en) * 2009-05-28 2011-01-13 Hiroshima Univ New compound and application thereof
WO2011098113A3 (en) * 2010-02-15 2011-10-06 Merck Patent Gmbh Semiconducting polymers
US8067764B2 (en) 2007-12-17 2011-11-29 E. I. Du Pont De Nemours And Company Electroactive materials
US8115200B2 (en) 2007-12-13 2012-02-14 E.I. Du Pont De Nemours And Company Electroactive materials
US8212239B2 (en) 2007-12-13 2012-07-03 E I Du Pont De Nemours And Company Electroactive materials
US8216753B2 (en) 2007-12-13 2012-07-10 E I Du Pont De Nemours And Company Electroactive materials
US8461291B2 (en) * 2007-12-17 2013-06-11 E I Du Pont De Nemours And Company Organic electroactive materials and an organic electronic device having an electroactive layer utilizing the same material
WO2014027581A1 (en) 2012-08-14 2014-02-20 国立大学法人九州大学 Heterocyclic compound and use thereof
CN103626976A (en) * 2013-11-22 2014-03-12 武汉理工大学 Benzo [2,1-b:3,4-b']diselenophen polymer semiconductor materials and application thereof
JP2014078730A (en) * 2013-11-25 2014-05-01 Konica Minolta Inc Organic semiconductor material, organic semiconductor film, organic thin film transistor and manufacturing method of organic thin film transistor
JP2014169290A (en) * 2006-07-26 2014-09-18 Merck Patent Gmbh Substituted benzodithiophenes and benzodiselenophenes
US9260451B2 (en) 2012-08-24 2016-02-16 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
KR20200024609A (en) * 2018-08-28 2020-03-09 삼성전자주식회사 Compound and thin film transistor and electronic device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084624B2 (en) 2005-01-19 2011-12-27 National University Of Corporation Hiroshima University Condensed polycyclic aromatic compound and use thereof
US7834198B2 (en) 2005-01-19 2010-11-16 National University Of Corporation Hiroshima University Condensed polycyclic aromatic compound and use thereof
JP2007067263A (en) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device and organic semiconductor thin-film transistor
JP2007088222A (en) * 2005-09-22 2007-04-05 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor device, and organic thin-film transistor
JP5167560B2 (en) * 2006-03-31 2013-03-21 日本化薬株式会社 Field effect transistor
WO2007125671A1 (en) * 2006-03-31 2007-11-08 Nippon Kayaku Kabushiki Kaisha Field effect transistor
JP2014169290A (en) * 2006-07-26 2014-09-18 Merck Patent Gmbh Substituted benzodithiophenes and benzodiselenophenes
JP2008081494A (en) * 2006-08-28 2008-04-10 Tosoh Corp Heteroacene derivative, tetrahaloterphenyl derivative and their production method
WO2008026602A1 (en) * 2006-08-28 2008-03-06 Tosoh Corporation Heteroacene derivative, tetrahaloterphenyl derivative, and their production methods
US8138355B2 (en) 2006-08-28 2012-03-20 Tosoh Corporation Heteroacene derivative, tetrahaloterphenyl derivative, and processes for producing the same
JP2008258592A (en) * 2007-03-09 2008-10-23 Hiroshima Univ Field-effect transistor
JP2013177399A (en) * 2007-05-24 2013-09-09 Nippon Kayaku Co Ltd Method for producing aromatic compound
JP5370771B2 (en) * 2007-05-24 2013-12-18 日本化薬株式会社 Method for producing aromatic compound
WO2008146597A1 (en) * 2007-05-24 2008-12-04 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
EP2371829A1 (en) * 2007-05-24 2011-10-05 Nippon Kayaku Kabushiki Kaisha Method for producing benzo-trithiophene or benzo-triselenophene derivatives
US9073938B2 (en) 2007-05-24 2015-07-07 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
WO2009038120A1 (en) 2007-09-21 2009-03-26 Nippon Kayaku Kabushiki Kaisha Field effect transistor
EP2207218A4 (en) * 2007-09-21 2011-01-26 Nippon Kayaku Kk Field effect transistor
EP2207218A1 (en) * 2007-09-21 2010-07-14 Nippon Kayaku Kabushiki Kaisha Field effect transistor
JP5428113B2 (en) * 2007-09-21 2014-02-26 日本化薬株式会社 Field effect transistor
US8216753B2 (en) 2007-12-13 2012-07-10 E I Du Pont De Nemours And Company Electroactive materials
US8247810B2 (en) 2007-12-13 2012-08-21 E I Du Pont De Nemours And Company Electroactive materials
US8115200B2 (en) 2007-12-13 2012-02-14 E.I. Du Pont De Nemours And Company Electroactive materials
US8212239B2 (en) 2007-12-13 2012-07-03 E I Du Pont De Nemours And Company Electroactive materials
US8324619B2 (en) 2007-12-13 2012-12-04 E I Du Pont De Nemours And Company Electroactive materials
US8470960B2 (en) 2007-12-13 2013-06-25 E I Du Pont De Nemours And Company Electroactive materials
US8471251B2 (en) 2007-12-13 2013-06-25 E.I. Du Pont De Nemours And Company Electroactive materials
US8563972B2 (en) 2007-12-13 2013-10-22 E I Du Pont De Nemours And Company Electroactive materials
US8461291B2 (en) * 2007-12-17 2013-06-11 E I Du Pont De Nemours And Company Organic electroactive materials and an organic electronic device having an electroactive layer utilizing the same material
US8067764B2 (en) 2007-12-17 2011-11-29 E. I. Du Pont De Nemours And Company Electroactive materials
JP2010163433A (en) * 2009-01-14 2010-07-29 Air Products & Chemicals Inc Heterocyclic fused selenophene monomer
JP2011006388A (en) * 2009-05-28 2011-01-13 Hiroshima Univ New compound and application thereof
US9365585B2 (en) 2010-02-15 2016-06-14 Merck Patent Gmbh Semiconducting polymers
CN102762545A (en) * 2010-02-15 2012-10-31 默克专利股份有限公司 Semiconducting polymers
GB2490463A (en) * 2010-02-15 2012-10-31 Merck Patent Gmbh Semiconducting polymers
WO2011098113A3 (en) * 2010-02-15 2011-10-06 Merck Patent Gmbh Semiconducting polymers
US10155774B2 (en) 2010-02-15 2018-12-18 Merck Patent Gesellschaft Mit Beschrankter Haftung Semiconducting polymers
KR20150042257A (en) 2012-08-14 2015-04-20 고쿠리쓰다이가쿠호진 규슈다이가쿠 Heterocyclic compound and use thereof
US9187493B2 (en) 2012-08-14 2015-11-17 Nippon Kayaku Kabushiki Kaisha Heterocyclic compound and use thereof
WO2014027581A1 (en) 2012-08-14 2014-02-20 国立大学法人九州大学 Heterocyclic compound and use thereof
US9260451B2 (en) 2012-08-24 2016-02-16 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
CN103626976A (en) * 2013-11-22 2014-03-12 武汉理工大学 Benzo [2,1-b:3,4-b']diselenophen polymer semiconductor materials and application thereof
JP2014078730A (en) * 2013-11-25 2014-05-01 Konica Minolta Inc Organic semiconductor material, organic semiconductor film, organic thin film transistor and manufacturing method of organic thin film transistor
KR20200024609A (en) * 2018-08-28 2020-03-09 삼성전자주식회사 Compound and thin film transistor and electronic device
KR102631401B1 (en) * 2018-08-28 2024-01-29 삼성전자주식회사 Compound and thin film transistor and electronic device

Also Published As

Publication number Publication date
JP4157463B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4157463B2 (en) Novel benzodichalcogenophene derivative, method for producing the same, and organic semiconductor device using the same
KR100854907B1 (en) Novel condensed polycyclic aromatic compound and use thereof
JP4220951B2 (en) NOVEL ORGANIC SEMICONDUCTOR COMPOUND, PROCESS FOR PRODUCING THE SAME AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
US8232546B2 (en) Fused polycyclic aromatic compound, process for producing the same, and use thereof
JP5562652B2 (en) Silylethynylated heteroacenes and electronic devices made therewith
US7355199B2 (en) Substituted anthracenes and electronic devices containing the substituted anthracenes
US8816100B2 (en) Compound, method of producing the compound, organic semiconductor material and organic semiconductor device
US7385221B1 (en) Silylethynylated heteroacenes and electronic devices made therewith
JP2008513544A (en) Carbonyl-functionalized thiophene compounds and related device structures
US20070195576A1 (en) Organic compound having functional groups different in elimination reactivity at both terminals, organic thin film, organic device and method of producing the same
JP2007145984A (en) Siloxane-based molecular membrane, method for producing the same and organic device using the membrane
JP2015501298A (en) Pyrrolo-pyrroledione-thiophenequinone compound, preparation method and use thereof
KR101626363B1 (en) Anthracenyl alternating copolymer, preparation method thereof, and organic thin film transistor using the same
JP2007157752A (en) Organic thin film transistor and its fabrication process
JP5617296B2 (en) Bi (anthrachalcogenophenyl) derivatives, precursor compounds thereof, and production methods thereof
KR20100118253A (en) Polyacene derivative and organic thin film transistor using the same
JP2010254636A (en) Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof
WO2006008951A1 (en) π-ELECTRON CONJUGATED ORGANOSILANE COMPOUND AND METHOD FOR SYNTHESIZING SAME
WO2011020712A2 (en) Oligothiophenes derivatives
KR101736920B1 (en) Aryl-substituted anthracene compound, preparation method thereof, and organic thin film transistor comprising the same
CN117801229A (en) Benzofuranone diindolone-dithiophene vinyl polymer and green preparation method and application thereof
KR20080027274A (en) Oligo-tetracenes, production and use thereof
Yang Development of π-Extended Heteroacene-based Materials toward Application in Organic Field-Effect Transistors
TW201307361A (en) Organic semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees