JP2005154224A - Super hard material having metal oxycarbide single crystal coating and its producing method - Google Patents

Super hard material having metal oxycarbide single crystal coating and its producing method Download PDF

Info

Publication number
JP2005154224A
JP2005154224A JP2003398047A JP2003398047A JP2005154224A JP 2005154224 A JP2005154224 A JP 2005154224A JP 2003398047 A JP2003398047 A JP 2003398047A JP 2003398047 A JP2003398047 A JP 2003398047A JP 2005154224 A JP2005154224 A JP 2005154224A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
oxycarbide
metal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003398047A
Other languages
Japanese (ja)
Other versions
JP4189490B2 (en
Inventor
Tetsuo Kado
哲男 門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003398047A priority Critical patent/JP4189490B2/en
Publication of JP2005154224A publication Critical patent/JP2005154224A/en
Application granted granted Critical
Publication of JP4189490B2 publication Critical patent/JP4189490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a single crystal of a metal oxycarbide and to provide a super hard material coated with the single crystal of the metal oxycarbide. <P>SOLUTION: The super hard material consists of: a magnesium oxide single crystal or a silicon single crystal; and a single crystal coating of an oxycarbide of a metal selected from molybdenum, chromium and tungsten which is formed on the single crystal. The super hard material is produced by subjecting a metal selected from molybdenum, chromium and tungsten and a carbon oxide or a carbon oxide and a hydrocarbon to a plasma reaction in the presence of the magnesium oxide single crystal substrate or the silicon single crystal substrate kept at 350 to 450°C so as to epitaxially grow the metal oxycarbide single crystal on the surface of the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、研摩材、機械部品などとして有用なモリブデン、クロム及びタングステンの中から選ばれた金属のオキシカーバイド単結晶被覆を有する超硬材料及びその製造方法に関するものである。   The present invention relates to a cemented carbide material having an oxycarbide single crystal coating of a metal selected from molybdenum, chromium and tungsten useful as an abrasive, a machine part and the like, and a method for producing the same.

研摩材や機械部品の耐摩耗性の向上、工具の切削性能や金型の寿命の改善のために、基材の表面に、耐摩耗性、耐食性に優れ、高硬度で密着性のよい被覆を設けた超硬材料が用いられている。   To improve the abrasion resistance of abrasives and machine parts, and improve the cutting performance of tools and the life of molds, the surface of the base material is coated with excellent wear resistance and corrosion resistance, high hardness and good adhesion. The super hard material provided is used.

そして、これらの被覆材料として、クロム、モリブデン、タングステンなどの金属のオキシカーバイドが知られており、特にクロムオキシカーバイドは、マイクロビッカース硬度が28Gpa程度で、窒化チタンの22Gpaよりも大きく、かつ、塩酸、硫酸に対して優れた耐食性、防食性を有する上に、高速度鋼製のスローアウェイチップにコーティングすると、その旋削性能の向上が認められることから、工具鋼のハードコーティング材料として注目されている。   As these coating materials, oxycarbides of metals such as chromium, molybdenum, and tungsten are known. In particular, chromium oxycarbide has a micro Vickers hardness of about 28 Gpa, which is larger than 22 Gpa of titanium nitride, and hydrochloric acid. In addition to having excellent corrosion resistance and anticorrosion properties against sulfuric acid, coating on high-speed steel throwaway inserts has been recognized as an improved hard coating material for tool steel because of its improved turning performance. .

従来、この金属オキシカーバイドは、Cr(CO)6、W(CO)6、Mo(CO)6のような金属ヘキサカルボニルを、プラズマCVD法又は熱CVD法で不完全分解することによって鉄鋼やガラス基板上に形成されているが、形成されるものはいずれも多結晶体であり、単結晶体はこれまで知られていない。 Conventionally, this metal oxycarbide is obtained by incompletely decomposing metal hexacarbonyl such as Cr (CO) 6 , W (CO) 6 , and Mo (CO) 6 by a plasma CVD method or a thermal CVD method. Although formed on a substrate, all formed are polycrystalline, and no single crystal has been known so far.

本発明者は先に金属ヘキサカルボニルを用いないで金属オキシカーバイド被覆を形成させる方法として、クロム、モリブデン及びタングステンの中から選ばれた少なくとも1種の金属を、二酸化炭素の存在下において、反応性プラズマ処理し、その表面に金属オキシカーバイド被覆を形成させる方法を提案した(特許文献1参照)。
しかしながら、これらの皮膜も、ステンレス鋼、アルミニウム合金、ガラスのような多結晶又は非晶質基板上で形成されるため、いずれも多結晶体である。
As a method for forming a metal oxycarbide coating without using metal hexacarbonyl, the present inventor previously reacted at least one metal selected from chromium, molybdenum and tungsten in the presence of carbon dioxide. A method of plasma treatment and forming a metal oxycarbide coating on the surface was proposed (see Patent Document 1).
However, since these films are also formed on a polycrystalline or amorphous substrate such as stainless steel, aluminum alloy, or glass, they are all polycrystalline.

ところで、このような多結晶体は、それぞれ配向方向が異なる多数の結晶から構成されるため、その生成条件により物性が変動し、製品の品質管理がむずかしいのに対し、単結晶体は一定方向に配向する結晶のみから構成されるため、生成条件による物性の変動はなく、しかも多結晶体に比べ、硬度が増大するという利点があるため、金属オキシカーバイドについても、その単結晶体を形成することが要望されていた。   By the way, since such a polycrystal is composed of a large number of crystals having different orientation directions, the physical properties fluctuate depending on the production conditions, and the quality control of the product is difficult. Because it is composed only of oriented crystals, there is no change in physical properties depending on the generation conditions, and there is an advantage that the hardness is increased compared to the polycrystalline body. Therefore, the single crystal body of metal oxycarbide must be formed. Was requested.

特開2001−279426号公報(特許請求の範囲その他)JP 2001-279426 A (Claims and others)

本発明は、このような事情のもとで、金属オキシカーバイドの単結晶を形成させ、それで被覆した超硬材料を提供することを目的としてなされたものである。   Under the circumstances, the present invention has been made for the purpose of providing a cemented carbide material formed by coating a single crystal of metal oxycarbide.

本発明者は、金属オキシカーバイドを形成させる方法について鋭意研究を重ねた結果、酸化マグネシウム単結晶基板又はシリコン単結晶基板の存在下、モリブデン、クロム及びタングステンの中から選ばれた金属と炭素酸化物と、場合によりさらに炭化水素とをプラズマ反応させ、単結晶基板上に金属オキシカーバイドをエピタキシャル成長させることにより、金属オキシカーバイドの単結晶が得られることを見出し、この知見に基づいて、本発明をなすに至った。   As a result of extensive research on a method for forming metal oxycarbide, the present inventors have found that a metal and carbon oxide selected from molybdenum, chromium and tungsten in the presence of a magnesium oxide single crystal substrate or a silicon single crystal substrate. In some cases, it is found that a single crystal of metal oxycarbide can be obtained by plasma-reacting with hydrocarbon and epitaxially growing metal oxycarbide on a single crystal substrate, and the present invention is made based on this finding. It came to.

すなわち、本発明は、酸化マグネシウム単結晶又はシリコン単結晶と、その上に形成されたモリブデン、クロム及びタングステンの中から選ばれた金属のオキシカーバイドの単結晶被覆からなる超硬材料、及び350〜450℃に保った酸化マグネシウム単結晶基板又はシリコン単結晶基板の存在下で、モリブデン、クロム及びタングステンの中から選ばれた金属と炭素酸化物又は炭素酸化物及び炭化水素とでプラズマ反応を行わせて、基板表面に金属オキシカーバイド単結晶をエピタキシャル成長させることを特徴とする超硬材料の製造方法を提供するものである。   That is, the present invention provides a cemented carbide material comprising a magnesium oxide single crystal or a silicon single crystal and a single crystal coating of a metal oxycarbide selected from molybdenum, chromium and tungsten formed thereon, and 350- In the presence of a magnesium oxide single crystal substrate or a silicon single crystal substrate maintained at 450 ° C., a plasma reaction is performed with a metal selected from molybdenum, chromium and tungsten and carbon oxide or carbon oxide and hydrocarbon. Thus, the present invention provides a method for producing a cemented carbide material, characterized in that a metal oxycarbide single crystal is epitaxially grown on a substrate surface.

次に、本発明をさらに詳細に説明する。
本発明の超硬材料は、酸化マグネシウム単結晶又はシリコン単結晶からなる基板と、その上に設けられたモリブデン、クロム及びタングステンの中から選ばれた金属のオキシカーバイドの単結晶被覆から構成されている。
Next, the present invention will be described in more detail.
The superhard material of the present invention is composed of a substrate made of magnesium oxide single crystal or silicon single crystal and a single crystal coating of oxycarbide of a metal selected from molybdenum, chromium and tungsten provided thereon. Yes.

上記の単結晶基板は公知であり、市販品として入手できるが、酸化マグネシウム単結晶を基板として用いる場合には、その(110)面又は(100)面を、またシリコン単結晶を用いる場合には、その(111)面、(100)面又は(110)面を用いるのが好ましい。
特に、酸化マグネシウム単結晶の(110)面を用いると、高硬度の金属オキシカーバイドの単結晶膜が形成されるので有利である。
The above single crystal substrate is known and can be obtained as a commercial product. However, when a magnesium oxide single crystal is used as the substrate, the (110) plane or the (100) plane is used, and when a silicon single crystal is used. The (111) plane, (100) plane, or (110) plane is preferably used.
In particular, the use of the (110) plane of magnesium oxide single crystal is advantageous because a single crystal film of metal oxycarbide having a high hardness is formed.

基板として、酸化マグネシウム単結晶やシリコン単結晶以外の単結晶、例えば一般に単結晶を形成させる場合に用いられているサファイア単結晶を用いると多結晶膜が形成され、金属オキシカーバイドの単結晶膜を得ることはできない。   When a single crystal other than a magnesium oxide single crystal or a silicon single crystal, for example, a sapphire single crystal generally used for forming a single crystal, is used as a substrate, a polycrystalline film is formed, and a metal oxycarbide single crystal film is formed. I can't get it.

本発明の超硬材料においては、酸化マグネシウム単結晶又はシリコン単結晶を基板として用いることが必要であるが、この単結晶は他の金属、合金又はセラミックスからなる成形体の表面に、慣用の方法で形成された単結晶膜を用いてもよい。   In the superhard material of the present invention, it is necessary to use a magnesium oxide single crystal or a silicon single crystal as a substrate. This single crystal is applied to the surface of a molded body made of another metal, an alloy or a ceramic by a conventional method. A single crystal film formed in (1) may be used.

このような成形体としては、例えば炭素鋼、ニッケル−クロム鋼、ニッケル−モリブデン鋼、ケイ素−マンガン鋼、快削鋼、工具鋼、ステンレス鋼などの鉄合金、銅、銀、金、スズ、アルミニウムなどの非鉄金属又はその合金、窒化チタン、炭化チタン、窒化鉄、窒化クロムなどのセラミックスを素材とした成形体を挙げることができる。   Examples of such molded bodies include iron alloys such as carbon steel, nickel-chromium steel, nickel-molybdenum steel, silicon-manganese steel, free-cutting steel, tool steel, and stainless steel, copper, silver, gold, tin, and aluminum. Examples thereof include a molded body made of a ceramic such as a non-ferrous metal such as an alloy thereof, titanium nitride, titanium carbide, iron nitride, or chromium nitride.

本発明の超硬材料は、本発明方法に従い、前記した酸化マグネシウム単結晶又はシリコン単結晶を基板とし、この表面にプラズマ反応によりモリブデン、クロム及びタングステンの中から選ばれた金属のオキシカーバイド単結晶膜を形成させることによって得られる。   According to the method of the present invention, the superhard material of the present invention uses the above-described magnesium oxide single crystal or silicon single crystal as a substrate, and the surface thereof has a metal oxycarbide single crystal selected from molybdenum, chromium and tungsten by plasma reaction. It is obtained by forming a film.

このプラズマ反応は、例えば、反応性スパッタリング法、高周波励起反応性スパッタリング法(以下RF反応性スパッタリング法という)、反応性イオンプレーティング法、プラズマ雰囲気中での反応性蒸着法や反応性レーザアブレーション法などによって行うことができる。膜質向上のために基板電極に負の直流バイアスを印加するため、接地しないようにする必要がある。   This plasma reaction includes, for example, a reactive sputtering method, a high frequency excitation reactive sputtering method (hereinafter referred to as an RF reactive sputtering method), a reactive ion plating method, a reactive deposition method in a plasma atmosphere, and a reactive laser ablation method. Etc. Since a negative DC bias is applied to the substrate electrode in order to improve the film quality, it is necessary to prevent grounding.

そして、RF反応性スパッタリング法を用いる場合は、プレーナマグネトロン型ターゲット電極を備えた装置を用いるが、この際、別系統のプラズマ発生用の誘導結合式RF電極を組み込めば、さらに良質の被覆を形成させることができる。   When RF reactive sputtering is used, an apparatus equipped with a planar magnetron type target electrode is used. However, if an inductive coupling type RF electrode for plasma generation of another system is incorporated, a higher quality coating is formed. Can be made.

この反応性プラズマ処理は、基板温度350〜450℃で行うことが必要である。この温度範囲を逸脱すると、エピタキシャル単結晶膜が形成されないし、また形成されたとしても、ロッキング曲線半値幅の広い、極めて品質の劣る単結晶膜になる。   This reactive plasma treatment needs to be performed at a substrate temperature of 350 to 450 ° C. When deviating from this temperature range, an epitaxial single crystal film is not formed, and even if it is formed, it becomes a single crystal film having a wide rocking curve half-width and extremely low quality.

次に、本発明方法においては、生成させる金属オキシカーバイドの炭素源及び酸素源として炭素酸化物、例えば二酸化炭素又は一酸化炭素を含む反応ガスを用いることが必要である。
通常は、二酸化炭素を単独で用いるが、この場合は、酸素含有量が多く、炭素含有量の少ない金属オキシカーバイドが形成されるおそれがあるので、必要に応じ両者を混合して用いることもできる。また、生成する金属オキシカーバイドの炭素含有量を増加させるために、所望に応じ反応ガス中に低級炭化水素を加えることもできる。この低級炭化水素としては、メタン、エタン、プロパン、ブタンのような炭素数4以下の炭化水素が用いられるが、特にメタンが好ましい。
Next, in the method of the present invention, it is necessary to use a reaction gas containing a carbon oxide such as carbon dioxide or carbon monoxide as a carbon source and an oxygen source of the metal oxycarbide to be produced.
Normally, carbon dioxide is used alone, but in this case, metal oxycarbide having a high oxygen content and a low carbon content may be formed, so that both can be mixed and used as necessary. . Moreover, in order to increase the carbon content of the produced metal oxycarbide, a lower hydrocarbon can be added to the reaction gas as desired. As the lower hydrocarbon, a hydrocarbon having 4 or less carbon atoms such as methane, ethane, propane and butane is used, and methane is particularly preferable.

本発明方法においては、通常スパッタリングガスとしてアルゴンを用いるが、タングステンオキシカーバイドを形成させる場合には、二酸化炭素のイオン化を促進させるために補助ガスとしてアルゴン以外の希ガス、すなわちヘリウム、ネオン、クリプトン及びラドンの中から選ばれた少なくとも1種を併用することができる。   In the method of the present invention, argon is usually used as a sputtering gas. However, when tungsten oxycarbide is formed, a rare gas other than argon, that is, helium, neon, krypton, and the like is used as an auxiliary gas in order to promote ionization of carbon dioxide. At least one selected from radon can be used in combination.

また、本発明方法においては、単結晶金属オキシカーバイドを形成させる際に、成膜時に基板に負のバイアスを印加させるのが好ましい。一般に結晶の配向性はバイアスに大きく依存し、バイアスが0の場合は配向は認められず、0〜−200Vでは[111]配向、−200V以下では[110]配向する傾向がある。良質の金属オキシカーバイドのエピタキシャル単結晶膜を形成させるためには、基板バイアスは−200V以下で−500V以上、好ましくは−350V以下、−450V以上の範囲内で選ばれる。   In the method of the present invention, it is preferable to apply a negative bias to the substrate during the film formation when the single crystal metal oxycarbide is formed. In general, crystal orientation greatly depends on the bias. When the bias is 0, no orientation is observed, and there is a tendency of [111] orientation at 0 to −200 V and [110] orientation at −200 V or less. In order to form a high-quality metal oxycarbide epitaxial single crystal film, the substrate bias is selected in the range of −200V or less and −500V or more, preferably −350V or less and −450V or more.

本発明方法においては、エピタキシャル成長性を向上させるために、あらかじめ基板材料の表面を、アルゴンによりボンバードメント処理を行うのが好ましい。このボンバードメントの条件として、真空度1〜10Pa、高周波励起パワー20〜400W、アルゴン流量10〜30sccm、基板バイアス−100〜−200V、基板温度350〜450℃を用いれば、十分にエピタキシャルな膜が形成できる。そして、真空度を2Pa、高周波励起パワーを300W、アルゴン流量を20sccm、基板バイアスを−150V、基板温度を400℃として15〜30分間行ったときに最も優れた単結晶膜が得られる。   In the method of the present invention, in order to improve the epitaxial growth property, it is preferable that the surface of the substrate material is bombarded with argon in advance. If the degree of vacuum is 1 to 10 Pa, the high frequency excitation power is 20 to 400 W, the argon flow rate is 10 to 30 sccm, the substrate bias is −100 to −200 V, and the substrate temperature is 350 to 450 ° C., a sufficiently epitaxial film is formed. Can be formed. The best single crystal film can be obtained when the vacuum is 2 Pa, the high frequency excitation power is 300 W, the argon flow rate is 20 sccm, the substrate bias is −150 V, and the substrate temperature is 400 ° C. for 15 to 30 minutes.

本発明方法を好適に実施するには、上記のボンバードメント終了後、同じ基板温度で、真空度0.1〜2Pa、好ましくは約0.6Pa、高周波励起パワー10〜150W、好ましくは20W、スパッタ電源出力0.2〜1.0kW、好ましくは約0.3kW、基板バイアス−200〜−500V、好ましくは−450V、基板温度350〜450℃、好ましくは380〜420℃の条件下、アルゴン流量2〜20sccm、好ましくは5〜10sccm、二酸化炭素流量1〜4sccm、好ましくは2〜3sccm、メタン流量0.1〜1sccm、好ましくは0.3〜0.6sccmの混合ガス流下で反応性プラズマ処理する。このような条件下で30〜60分間処理することにより、膜厚0.25〜0.5μmの金属オキシカーバイド単結晶膜が得られる。   In order to suitably carry out the method of the present invention, after completion of the above bombardment, at the same substrate temperature, the degree of vacuum is 0.1 to 2 Pa, preferably about 0.6 Pa, the high frequency excitation power is 10 to 150 W, preferably 20 W, sputtering. Argon flow rate 2 under conditions of power output 0.2 to 1.0 kW, preferably about 0.3 kW, substrate bias −200 to −500 V, preferably −450 V, substrate temperature 350 to 450 ° C., preferably 380 to 420 ° C. The reactive plasma treatment is performed under a mixed gas flow of ˜20 sccm, preferably 5 to 10 sccm, carbon dioxide flow rate of 1 to 4 sccm, preferably 2 to 3 sccm, and methane flow rate of 0.1 to 1 sccm, preferably 0.3 to 0.6 sccm. By treating for 30 to 60 minutes under such conditions, a metal oxycarbide single crystal film having a film thickness of 0.25 to 0.5 μm is obtained.

このようにして形成された膜が単結晶か多結晶であるかは膜のX線回折試験により確認することができる。すなわち、θ−2θスキャンによるX線回折パターンにただ1つの独立した面指数の回折線が認められ、かつωスキャンによるその回折線のロッキング曲線の半値幅が狭ければ膜は単結晶として認めることができる。半値幅はその結晶品質の度合いを示すもので、狭ければ狭いほど単結晶としての品質が優れているということができる。   Whether the film thus formed is monocrystalline or polycrystalline can be confirmed by an X-ray diffraction test of the film. That is, if a single independent plane index diffraction line is observed in the X-ray diffraction pattern by the θ-2θ scan, and the half-width of the rocking curve of the diffraction line by the ω scan is narrow, the film is recognized as a single crystal. Can do. The full width at half maximum indicates the degree of crystal quality. The narrower the width, the better the quality as a single crystal.

酸化マグネシウム(110)面基板上に成膜されたモリブデンオキシカーバイドでは、最小0.11゜のロッキング曲線半値幅を示す単結晶が得られた。これはシリコン単結晶を用いて測定した装置分解能の0.04゜に比べ大きいが、良質の単結晶ということができる。   With molybdenum oxycarbide formed on a magnesium oxide (110) plane substrate, a single crystal having a rocking curve half-width of 0.11 ° minimum was obtained. This is larger than the device resolution of 0.04 ° measured using a silicon single crystal, but it can be said to be a good quality single crystal.

他に基板としてシリコン(100)面基板、シリコン(111)面基板及び酸化マグネシウム(100)基板を用いることができ、いずれも金属オキシカーバイドの(110)面をエピタキシャル成長させることができるが、ロッキング曲線の最小半値幅は、それぞれ2.5゜、2.3゜及び3.2゜と酸化マグネシウム(110)面上に形成された皮膜の0.12゜より大きく、品質はあまりよくない。   In addition, a silicon (100) plane substrate, a silicon (111) plane substrate, and a magnesium oxide (100) substrate can be used as the substrate, and any of them can epitaxially grow the (110) plane of metal oxycarbide, but the rocking curve The minimum half-value width is 2.5 °, 2.3 ° and 3.2 °, respectively, which is larger than 0.12 ° of the film formed on the magnesium oxide (110) surface, and the quality is not so good.

本発明によると、文献未載の新規な金属オキシカーバイド単結晶により被覆された超硬材料を得ることができる。そして、この超硬材料、例えばクロムオキシカーバイドは、従来の窒化チタンの22GPaよりも大きい28GPa程度のマイクロビッカース硬度を有する。   According to the present invention, it is possible to obtain a cemented carbide material coated with a novel metal oxycarbide single crystal not described in any literature. And this super hard material, for example, chromium oxycarbide, has a micro Vickers hardness of about 28 GPa, which is larger than 22 GPa of conventional titanium nitride.

次に、実施例により、本発明を実施するための最良の形態を説明するが、本発明はこれによってなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples. However, the present invention is not limited thereto.

3ターンのコイルからなる高周波励起電極を備え、ラジオ周波数13.56MHzの条件下で、スパッタ電極と独立してプラズマを発生しうるディポジションアップ方式の装置を用い、金属モリブデンをプレーナマグネトロン型ターゲット電極とし、ターゲット電極の約100mm上方に酸化マグネシウム単結晶(110)面を基板として配置した。   A planar magnetron type target electrode with metallic high-frequency excitation electrode comprising a three-turn coil and using a deposition-up type apparatus capable of generating plasma independently of a sputter electrode under the condition of a radio frequency of 13.56 MHz. Then, the magnesium oxide single crystal (110) plane was disposed about 100 mm above the target electrode as a substrate.

先ず、上記の基板を、真空度2Pa、高周波励起パワー300W、アルゴン流量20sccm、基板バイアス−150V、基板温度400℃の条件下でアルゴンボンバードクリーニングを30分行って前処理した。   First, the substrate was pretreated by performing argon bombard cleaning for 30 minutes under the conditions of a degree of vacuum of 2 Pa, a high frequency excitation power of 300 W, an argon flow rate of 20 sccm, a substrate bias of −150 V, and a substrate temperature of 400 ° C.

次いで、真空度0.6Pa、高周波励起パワー20W、スパッタ電源出力0.3kW、基板バイアス−450V、アルゴン流量6sccm、二酸化炭素流量2sccm、メタン流量0.3sccm、基板温度400℃の条件下で45分間プラズマ反応させて、基板上に厚さ5μmのモリブデンオキシカーバイド結晶膜を形成させた。   Next, 45 minutes under conditions of vacuum degree 0.6 Pa, high frequency excitation power 20 W, sputtering power output 0.3 kW, substrate bias −450 V, argon flow rate 6 sccm, carbon dioxide flow rate 2 sccm, methane flow rate 0.3 sccm, substrate temperature 400 ° C. Plasma reaction was performed to form a 5 μm-thick molybdenum oxycarbide crystal film on the substrate.

この結晶膜について、オージェ電子分光分析により化学組成を求めたところ、Mo:45原子%、C:43原子%、O:13原子%であった。
図1にこの結晶膜のX線回折パターン(a)及び(220)回折線のロッキング曲線(b)を示す。これらのX線回折パターンには非常に強いMo(C,O)(220)回折線のみが認められ、また、ロッキング曲線から半値幅は0.12゜であることが認められる。これらの結果から、この結晶膜は良質のエピタキシャル単結晶であることが分る。
The chemical composition of this crystal film was determined by Auger electron spectroscopy, and found to be Mo: 45 atomic%, C: 43 atomic%, and O: 13 atomic%.
FIG. 1 shows an X-ray diffraction pattern (a) and a rocking curve (b) of the (220) diffraction line of this crystal film. In these X-ray diffraction patterns, only very strong Mo (C, O) (220) diffraction lines are recognized, and it is recognized from the rocking curve that the half-value width is 0.12 °. From these results, it can be seen that this crystalline film is a good quality epitaxial single crystal.

また、図2は、この結晶膜断面の高分解透過電子顕微鏡写真図であるが、この図の上部はモリブデンオキシカーバイド結晶膜、下部は酸化マグネシウム(110)面基板である。この図より、界面の上下で原子が規則正しく配列していることが分る。
また、挿入図は、それぞれの領域からの電子線回折パターンであるが、これによると、いずれも面内方向は[001]方向で面垂直方向は[110]方向であり、この結晶膜は基板に対してエピタキシャルな関係をもつ単結晶であることが分る。
FIG. 2 is a high-resolution transmission electron micrograph of the cross section of the crystal film, in which the upper part is a molybdenum oxycarbide crystal film and the lower part is a magnesium oxide (110) plane substrate. This figure shows that the atoms are regularly arranged above and below the interface.
Further, the insets are electron diffraction patterns from the respective regions. According to this, both the in-plane direction is the [001] direction and the plane perpendicular direction is the [110] direction. It can be seen that this is a single crystal having an epitaxial relationship with respect to.

前処理の際の高周波励起パワーを20W、成膜の際の基板バイアスを−350Vとした以外は、実施例1と同様にして、酸化マグネシウム単結晶(110)面を基板として、モリブデンオキシカーバイド結晶膜を形成させた。この結晶膜のX線回折パターンには(220)回折線が認められ、この回折線のロッキング曲線半値幅は1.2゜であった。   A molybdenum oxycarbide crystal using a magnesium oxide single crystal (110) plane as a substrate in the same manner as in Example 1 except that the high-frequency excitation power during the pretreatment was 20 W and the substrate bias during the film formation was −350 V. A film was formed. In this X-ray diffraction pattern of the crystal film, a (220) diffraction line was recognized, and the half-width of the rocking curve of this diffraction line was 1.2 °.

実施例1と同じ装置を用い、真空度2Pa、高周波励起パワー100W、アルゴン流量20sccm、基板バイアス−150V、基板温度400℃の条件下で、アルゴンボンバードクリーニング処理を30分間行った酸化マグネシウム(100)面基体表面に、以下の条件でモリブデンオキシカーバイド単結晶を形成させた。   Magnesium oxide (100) obtained by performing argon bombardment cleaning treatment for 30 minutes under the conditions of a vacuum of 2 Pa, a high frequency excitation power of 100 W, an argon flow rate of 20 sccm, a substrate bias of −150 V, and a substrate temperature of 400 ° C. using the same apparatus as in Example 1. A molybdenum oxycarbide single crystal was formed on the surface of the surface substrate under the following conditions.

真空度0.5Pa、高周波励起パワー20W、スパッタ電源出力0.3kW、基板バイアス−350V、基板温度400℃、アルゴン流量6sccm、二酸化炭素流量2sccm、メタン流量0.4sccm、処理時間60分間。   Vacuum degree 0.5 Pa, high frequency excitation power 20 W, sputtering power output 0.3 kW, substrate bias −350 V, substrate temperature 400 ° C., argon flow rate 6 sccm, carbon dioxide flow rate 2 sccm, methane flow rate 0.4 sccm, treatment time 60 minutes.

図3にこのようにして得た結晶膜のX線回折パターン(a)及び(200)回折線(b)のロッキング曲線を示す。
このX線回折パターンからは、酸化マグネシウム(200)面回折線と一部重なりあったMo(C,O)(200)回折線が認められ、ロッキング曲線からは半値幅が3.2゜であることが分った。
このことから、エピタキシャル単結晶膜が形成されていることが確認されたが、基板バイアスを−350Vと低下したことにより、結晶の品質が劣化することが分る。
FIG. 3 shows rocking curves of the X-ray diffraction pattern (a) and (200) diffraction line (b) of the crystal film thus obtained.
From this X-ray diffraction pattern, a Mo (C, O) (200) diffraction line partially overlapping with the magnesium oxide (200) plane diffraction line is observed, and the half-value width is 3.2 ° from the rocking curve. I found out.
From this, it was confirmed that an epitaxial single crystal film was formed, but it can be seen that the quality of the crystal is deteriorated by reducing the substrate bias to -350V.

シリコン単結晶(111)面を基板として用い、実施例1と同様にしてモリブデンオキシカーバイドの結晶膜を形成させた。X線回折パターンより、このものは単結晶からなることが確認された。   Using the silicon single crystal (111) plane as a substrate, a molybdenum oxycarbide crystal film was formed in the same manner as in Example 1. From the X-ray diffraction pattern, it was confirmed that this was composed of a single crystal.

実施例1における金属モリブデンの代りに、金属クロム又は金属タングステンを用いて同様に処理したところ、それぞれクロムオキシカーバイド又はタングステンオキシカーバイドの単結晶膜が得られた。   When the same treatment was carried out using metal chromium or metal tungsten instead of metal molybdenum in Example 1, single crystal films of chromium oxycarbide or tungsten oxycarbide were obtained, respectively.

比較例
サファイア単結晶(001)基板を用い、実施例1と同じ条件でモリブデンオキシカーバイド結晶膜を形成させた。このもののX線回折パターンには(111)と(220)との回折線が認められ、多結晶構造であることが分った。
Comparative Example Using a sapphire single crystal (001) substrate, a molybdenum oxycarbide crystal film was formed under the same conditions as in Example 1. In this X-ray diffraction pattern, diffraction lines of (111) and (220) were recognized, and it was found that the structure was polycrystalline.

金属オキシカーバイド単結晶で被覆することにより、多結晶を用いたものよりも高硬度を得ることができ、研摩材、機械部品、切削工具として広く利用することができる。   By coating with a metal oxycarbide single crystal, it is possible to obtain higher hardness than that using a polycrystal, and it can be widely used as an abrasive, a machine part, or a cutting tool.

実施例1における酸化マグネシウム単結晶(110)面基板上に形成された結晶膜のX線回折パターン(a)及びモリブデンオキシカーバイド(220)回折線のロッキング曲線(b)。The X-ray diffraction pattern (a) of the crystal film formed on the magnesium oxide single crystal (110) plane substrate in Example 1, and the rocking curve (b) of the molybdenum oxycarbide (220) diffraction line. 実施例1で得られた結晶膜断面の高分解透過電子顕微鏡写真図。FIG. 3 is a high-resolution transmission electron microscope photograph of the crystal film cross section obtained in Example 1. 実施例3における酸化マグネシウム単結晶(100)面基板上に形成された結晶膜のX線回折パターン(a)及びモリブデンオキシカーバイド(220)回折線のロッキング曲線(b)。The rocking curve (b) of the X-ray-diffraction pattern (a) and molybdenum oxycarbide (220) diffraction line of the crystal film formed on the magnesium oxide single crystal (100) plane board | substrate in Example 3. FIG.

Claims (4)

酸化マグネシウム単結晶又はシリコン単結晶と、その上に形成されたモリブデン、クロム及びタングステンの中から選ばれた金属のオキシカーバイドの単結晶被覆からなる超硬材料。   A cemented carbide material comprising a magnesium oxide single crystal or silicon single crystal and a single crystal coating of oxycarbide of a metal selected from molybdenum, chromium and tungsten formed thereon. 350〜450℃に保った酸化マグネシウム単結晶基板又はシリコン単結晶基板の存在下で、モリブデン、クロム及びタングステンの中から選ばれた金属と炭素酸化物又は炭素酸化物及び炭化水素とでプラズマ反応を行わせて、基板表面に金属オキシカーバイド単結晶をエピタキシャル成長させることを特徴とする超硬材料の製造方法。   Plasma reaction between a metal selected from molybdenum, chromium and tungsten and carbon oxide or carbon oxide and hydrocarbon in the presence of a magnesium oxide single crystal substrate or a silicon single crystal substrate maintained at 350 to 450 ° C. A method for producing a super hard material, characterized in that a metal oxycarbide single crystal is epitaxially grown on a substrate surface. 酸化マグネシウム単結晶の(110)面、若しくは(100)面又はシリコン単結晶の(111)面、(100)面、若しくは(110)面上にエピタキシャル成長させる請求項2記載の超硬材料の製造方法。   The method for producing a cemented carbide material according to claim 2, wherein epitaxial growth is performed on a (110) plane or a (100) plane of a magnesium oxide single crystal or a (111) plane, a (100) plane, or a (110) plane of a silicon single crystal. . 単結晶基板に−250〜−500Vの負のバイアス電圧を印加して行う請求項2又は3記載の超硬材料の製造方法。
The method for manufacturing a super hard material according to claim 2 or 3, wherein a negative bias voltage of -250 to -500 V is applied to the single crystal substrate.
JP2003398047A 2003-11-27 2003-11-27 Carbide material having metal oxycarbide single crystal coating and method for producing the same Expired - Lifetime JP4189490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398047A JP4189490B2 (en) 2003-11-27 2003-11-27 Carbide material having metal oxycarbide single crystal coating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398047A JP4189490B2 (en) 2003-11-27 2003-11-27 Carbide material having metal oxycarbide single crystal coating and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005154224A true JP2005154224A (en) 2005-06-16
JP4189490B2 JP4189490B2 (en) 2008-12-03

Family

ID=34723026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398047A Expired - Lifetime JP4189490B2 (en) 2003-11-27 2003-11-27 Carbide material having metal oxycarbide single crystal coating and method for producing the same

Country Status (1)

Country Link
JP (1) JP4189490B2 (en)

Also Published As

Publication number Publication date
JP4189490B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP3590579B2 (en) Diamond coated member and method of manufacturing the same
JP5098726B2 (en) Coated tool and method for producing coated tool
CN102650053B (en) Manufacturing method for CVD (Chemical Vapor Deposition) diamond/diamond-like composite coating tool with complex shape
EP0413834B1 (en) Diamond-covered member and process for producing the same
JP2004058270A (en) Cutting tool insert
Larsson et al. Microstructure and properties of Ti (C, N) coatings produced by moderate temperature chemical vapour deposition
JP4427271B2 (en) Alumina protective film and method for producing the same
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
US8962100B2 (en) Method for making diamond composite materials
JP2006152424A (en) Hard film, and hard film-coated cutting tool
CN111005000B (en) Low-stress tetrahedral amorphous carbon composite membrane and preparation method thereof
Gaydaychuk et al. Influence of Al-Si-N interlayer on residual stress of CVD diamond coatings
US8158011B2 (en) Method of fabrication of cubic boron nitride conical microstructures
US6365230B1 (en) Method of manufacturing a diamond film coated cutting tool
JP3452615B2 (en) Cemented carbide, hard carbon film coated cemented carbide, method for producing cemented carbide, and tool using these alloys
JP4189490B2 (en) Carbide material having metal oxycarbide single crystal coating and method for producing the same
JP3353239B2 (en) Method for producing diamond-coated member
JP4257425B2 (en) Novel inorganic compound, superhard material using the same, and method for producing the same
JPH07268607A (en) Article having diamondlike carbon thin film and its production
JP2003231962A (en) Process for manufacturing metal, alloy or ceramic molded product with highly hard surface
JPH05263251A (en) Coated and sintered body
CN115135439A (en) Cutting tool
JP3417902B2 (en) Manufacturing method for high-hardness metal products
JP4133150B2 (en) Method for producing diamond film-coated member
Jian et al. Study on the effects of substrate grain size on diamond thin films deposited on tungsten carbide substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4189490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term