JP2005153276A - Manufacturing method of optical element and optical element - Google Patents

Manufacturing method of optical element and optical element Download PDF

Info

Publication number
JP2005153276A
JP2005153276A JP2003394149A JP2003394149A JP2005153276A JP 2005153276 A JP2005153276 A JP 2005153276A JP 2003394149 A JP2003394149 A JP 2003394149A JP 2003394149 A JP2003394149 A JP 2003394149A JP 2005153276 A JP2005153276 A JP 2005153276A
Authority
JP
Japan
Prior art keywords
optical element
mold
manufacturing
light absorption
resin liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394149A
Other languages
Japanese (ja)
Other versions
JP4195998B2 (en
Inventor
Akira Inoue
章 井上
Mikio Masui
幹生 桝井
Keiji Azuma
啓二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003394149A priority Critical patent/JP4195998B2/en
Publication of JP2005153276A publication Critical patent/JP2005153276A/en
Application granted granted Critical
Publication of JP4195998B2 publication Critical patent/JP4195998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical element capable of ensuring characteristics necessary as a molded product and capable of enhancing productivity. <P>SOLUTION: This manufacturing method of the optical element has a resin liquid supply process for casting a thermosetting resin liquid in a mold part composed of one mold 2 constituted of a light pervious material and another mold 1 constituted of a mold having a light absorbing layer 3b, of which the absorptivity is higher than that of a mold material, provided to its surface and a resin liquid curing process for irradiating the thermosetting resin liquid with visible light or near infrared rays from the side of one mold constituted of the light pervious material to cure the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学素子の製造方法および光学素子にかかり、さらに詳しくは、型表面の凹凸形状を樹脂に転写してなる光学素子の製造方法および光学素子に関する。   The present invention relates to a method for manufacturing an optical element and an optical element, and more particularly to a method for manufacturing an optical element and an optical element obtained by transferring an uneven shape on a mold surface to a resin.

従来より、分離型表面に形成された微細な凹凸面を透光性の熱硬化性樹脂からなる基材に転写してなる光学素子がある。また、機能素子を樹脂封止する技術として、注型型の凹所の空間内に、モールド部材となる溶融したエポキシ樹脂等の熱硬化性樹脂が注入され、その注入された熱硬化性樹脂が硬化してから、熱硬化性樹脂がモールド部材となりこれと機能素子が一体化されるものがある。   Conventionally, there is an optical element formed by transferring a fine uneven surface formed on a separation-type surface onto a base material made of a light-transmitting thermosetting resin. In addition, as a technique for resin-sealing the functional element, a thermosetting resin such as a molten epoxy resin that becomes a mold member is injected into the space of the casting mold recess, and the injected thermosetting resin is In some cases, after curing, the thermosetting resin becomes a mold member and the functional element is integrated.

この機能素子の製造方法は、機能素子を必要に応じて基板に実装して、注型型に挿入する。次いで、基板と注型型の空所に、モールド部材となる溶融した熱硬化性樹脂を注入し、この注入された熱硬化性樹脂を金型周囲から加熱して硬化する。その後、熱硬化性樹脂が硬化してなるモールド部材と一体化された機能素子等を、注型型から取り出す。これにより、モールド部材と機能素子が一体化された光学素子が形成される。   In this method of manufacturing a functional element, the functional element is mounted on a substrate as necessary and inserted into a casting mold. Next, a molten thermosetting resin serving as a mold member is injected into the space between the substrate and the casting mold, and the injected thermosetting resin is heated and cured from around the mold. Thereafter, the functional element integrated with the mold member formed by curing the thermosetting resin is taken out from the casting mold. Thereby, an optical element in which the mold member and the functional element are integrated is formed.

上記のような素子の製造方法において、モールド部材の硬化方法としては、外部からの熱伝導により樹脂に熱エネルギを与え、ラジカル反応を誘起させ硬化成形する方法が一般的である。しかし、その方法では、樹脂を加熱するのに、注型型(金型)全体を加熱する必要があり、多くのエネルギを必要とするだけでなく、金型の耐久性や環境上・安全上の問題をかかえている。   In the element manufacturing method as described above, as a method for curing the mold member, a method in which thermal energy is applied to the resin by heat conduction from the outside to induce a radical reaction and curing is generally performed. However, in that method, it is necessary to heat the entire casting mold (mold) in order to heat the resin, which not only requires a lot of energy, but also in terms of durability and environmental / safety of the mold. Have any problems.

そこで、例えば、特開昭62−5819のように高エネルギ線を透過する材質からなる金型に光硬化性樹脂組成物を射出し、次に高エネルギ線を照射し、樹脂を硬化させる方法で硬化する方法も行われている。
特開昭62−5819号公報
Therefore, for example, as disclosed in Japanese Patent Laid-Open No. 62-5819, a photocurable resin composition is injected into a mold made of a material that transmits high energy rays, and then irradiated with high energy rays to cure the resin. There is also a method of curing.
JP-A-62-5819

しかし、高エネルギ線を照射して樹脂を硬化させる場合も、樹脂組成物はエネルギ線を吸収することを目的に選定されていないため、樹脂組成物に応じたエネルギ線を用意する必要がある。また、吸収発熱効率も高くないので、大型の設備が必要になる。また、ポリマを分解させることなく硬化反応を開始させることが可能なエネルギ範囲は非常に狭い。   However, even when the resin is cured by irradiating with high energy rays, the resin composition is not selected for the purpose of absorbing the energy rays, so it is necessary to prepare energy rays according to the resin composition. Moreover, since the heat absorption efficiency is not high, a large facility is required. Also, the energy range in which the curing reaction can be initiated without degrading the polymer is very narrow.

一方、光硬化性樹脂の場合は、エネルギ線が固定されるため樹脂の種類や特性が限定され、成形品として必要な特性を確保できないという問題がある。   On the other hand, in the case of a photo-curing resin, since energy rays are fixed, the type and characteristics of the resin are limited, and there is a problem that characteristics required as a molded product cannot be ensured.

本発明はこれらの問題点に鑑みて創案されたものであって、成形品として必要な特性を確保でき、生産性を向上できる光学素子の製造方法の提供を目的としている。   The present invention has been made in view of these problems, and an object of the present invention is to provide a method of manufacturing an optical element that can ensure the necessary characteristics as a molded product and can improve productivity.

本発明の請求項1記載に係る光学素子の製造方法は、型表面に形成された微細な凹凸面を、透光性の熱硬化性樹脂からなる基材に転写してなる光学素子の製造方法であって、一方の型が透光性材質で構成され、他方の型が該型材よりも光吸収率の大きな光吸収層を表面に備えた型から構成され、前記型部に、熱硬化性樹脂液を流し込む樹脂液供給工程と、透光性材質で構成された一方の前記型の側より可視または近赤外光を照射して熱硬化性樹脂液を硬化させる樹脂液硬化工程と、を備えたことを特徴とする。   The method for producing an optical element according to claim 1 of the present invention is a method for producing an optical element obtained by transferring a fine uneven surface formed on a mold surface to a base material made of a light-transmitting thermosetting resin. One mold is made of a light-transmitting material, and the other mold is made up of a mold having a light absorption layer having a light absorption rate larger than that of the mold material on the surface. A resin liquid supply process for pouring the resin liquid, and a resin liquid curing process for curing the thermosetting resin liquid by irradiating visible or near-infrared light from the one side of the mold made of a translucent material. It is characterized by having.

請求項2記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、前記光吸収層を備えた前記他方の型に微細な凹凸面があることを特徴とする。   According to a second aspect of the present invention, there is provided an optical element manufacturing method according to the first aspect, wherein the other mold having the light absorption layer has a fine uneven surface. To do.

請求項3記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、前記光吸収層の層厚が10μm〜0.05μmである。   A method for manufacturing an optical element according to a third aspect of the present invention is the method for manufacturing an optical element according to the first aspect, wherein the thickness of the light absorption layer is 10 μm to 0.05 μm.

請求項4記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、前記光吸収層がチタン、クロムの炭化物である。   A method for manufacturing an optical element according to a fourth aspect of the present invention is the method for manufacturing an optical element according to the first aspect, wherein the light absorption layer is a carbide of titanium or chromium.

請求項5記載の本発明に係る光学素子の製造方法は請求項1ないし4に記載の光学素子の製造方法において、前記光吸収層の裏面に断熱層を備えている。   A method for manufacturing an optical element according to a fifth aspect of the present invention is the method for manufacturing an optical element according to any one of the first to fourth aspects, wherein a heat insulating layer is provided on the back surface of the light absorption layer.

請求項6記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、透光性材質で構成された一方の前記型の表面にフッ化マグネシウムの単層膜、シリカ膜、ジルコニア膜、またはアルミナ膜等の反射防止膜を備えている。   A method for manufacturing an optical element according to a sixth aspect of the present invention is the method for manufacturing an optical element according to the first aspect, wherein a single layer film of magnesium fluoride is formed on the surface of one of the molds made of a translucent material. And an antireflection film such as a silica film, a zirconia film, or an alumina film.

請求項7記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、前記透光性材質の屈折率が前記熱硬化性樹脂液と略同一である。   A method for manufacturing an optical element according to a seventh aspect of the present invention is the method for manufacturing an optical element according to the first aspect, wherein the refractive index of the light transmitting material is substantially the same as that of the thermosetting resin liquid.

請求項8記載の本発明に係る光学素子の製造方法は請求項2に記載の光学素子の製造方法において、前記凹凸部の周囲に配された前記光吸収層に光照射した後、前記凹凸部に配された前記光吸収層に光照射する。   The optical element manufacturing method according to the present invention described in claim 8 is the optical element manufacturing method according to claim 2, wherein the light-absorbing layer disposed around the uneven portion is irradiated with light, and then the uneven portion. The light-absorbing layer disposed on the substrate is irradiated with light.

請求項9記載の本発明に係る光学素子の製造方法は請求項2に記載の光学素子の製造方法において、前記凹凸部の周囲に配された前記光吸収層の光吸収率が該凹凸部の光吸収率より高い光吸収層を用いる。   The method for manufacturing an optical element according to the present invention described in claim 9 is the method for manufacturing an optical element according to claim 2, wherein the light absorption rate of the light absorption layer disposed around the uneven portion is that of the uneven portion. A light absorption layer having a higher light absorption rate is used.

請求項10記載の本発明に係る光学素子の製造方法は請求項2に記載の光学素子の製造方法において、前記分離型の温度が前記熱硬化性樹脂液の硬化温度以下に制御する機構を備えている。   A method for manufacturing an optical element according to a tenth aspect of the present invention is the method for manufacturing an optical element according to the second aspect, comprising a mechanism for controlling the temperature of the separation mold to be equal to or lower than the curing temperature of the thermosetting resin liquid. ing.

請求項11記載の本発明に係る光学素子の製造方法は請求項1に記載の光学素子の製造方法において、前記樹脂液供給工程と前記樹脂液硬化工程の間に、少なくとも一方の前記型に圧力を負荷することにより、該型内の熱硬化性樹脂液に圧縮力を負荷する樹脂液圧縮工程を備えている。   An optical element manufacturing method according to an eleventh aspect of the present invention is the optical element manufacturing method according to the first aspect, wherein pressure is applied to at least one of the molds between the resin liquid supply step and the resin liquid curing step. Is loaded with a resin liquid compression step of applying a compressive force to the thermosetting resin liquid in the mold.

請求項12記載の本発明に係る光学素子は、前記請求項1〜請求項11記載の光学素子の製造方法により製造されたことを特徴とする。   An optical element according to a twelfth aspect of the present invention is manufactured by the method for manufacturing an optical element according to the first to eleventh aspects.

請求項1の光学素子の製造方法によれば、光エネルギーを光吸収層で熱に変換することにより、型全体を加熱することなく局所的な加熱が可能となる。そのため、樹脂の硬化速度を加速でき、生産性に優れている。また、従来の硬化方法と比較すると、成形する樹脂の種類と使用する光の波長との組み合わせを考慮する必要がないので、材料選定の自由度が拡大する。   According to the optical element manufacturing method of the first aspect, by converting light energy into heat in the light absorption layer, local heating can be performed without heating the entire mold. Therefore, the curing rate of the resin can be accelerated and the productivity is excellent. Further, as compared with the conventional curing method, it is not necessary to consider the combination of the type of resin to be molded and the wavelength of light to be used, so that the degree of freedom in material selection is expanded.

本発明の請求項2記載の光学素子の製造方法によれば、請求項1の効果に加えて、型材の性質に制約がないので、凹凸面を形成する型材として高精度加工が可能な材質を選択できる。   According to the optical element manufacturing method of the second aspect of the present invention, in addition to the effect of the first aspect, since there is no restriction on the properties of the mold material, a material capable of high-precision processing is used as the mold material for forming the uneven surface. You can choose.

本発明の請求項3に記載の光学素子の製造方法によれば、光吸収層の厚さが10μmを超えると型の形状精度が低下し、光学素子として使用できない。また、光吸収層の厚さが0.05μm未満であると光吸収層の熱容量が小さくなるため発熱量が小さくなり、樹脂が硬化しない部位が発生する。   According to the method for manufacturing an optical element according to claim 3 of the present invention, when the thickness of the light absorption layer exceeds 10 μm, the shape accuracy of the mold is lowered and the optical element cannot be used. Further, if the thickness of the light absorption layer is less than 0.05 μm, the heat capacity of the light absorption layer becomes small, so the amount of heat generation becomes small, and a portion where the resin is not cured occurs.

本発明の請求項4に記載の光学素子の製造方法によれば、請求項1の効果に加えて、硬度が高いため、金型の長寿命化が図れる。   According to the method for manufacturing an optical element described in claim 4 of the present invention, in addition to the effect of claim 1, since the hardness is high, the life of the mold can be extended.

本発明の請求項5に記載の光学素子の製造方法によれば、請求項1の効果に加えて、断熱層が光吸収層からの熱の流出を防止するので、光吸収層の吸収熱量が型側に流出するのを防ぐことができ、加熱効率が向上する。   According to the method for manufacturing an optical element according to claim 5 of the present invention, in addition to the effect of claim 1, the heat insulating layer prevents heat from flowing out of the light absorption layer. Outflow to the mold side can be prevented, and heating efficiency is improved.

本発明の請求項6に記載の光学素子の製造方法によれば、請求項1の効果に加えて、透光性材質で構成された型から光が出射する際の反射による減衰を防止でき、光エネルギーを効率的に使用可能となる。   According to the method for manufacturing an optical element according to claim 6 of the present invention, in addition to the effect of claim 1, it is possible to prevent attenuation due to reflection when light is emitted from a mold made of a translucent material, Light energy can be used efficiently.

本発明の請求項7に記載の光学素子の製造方法によれば、請求項1の効果に加えて、光を照射した際に、透光性材質で構成された型と熱硬化性樹脂液との界面での光屈折による照射位置精度のずれを防止できるので、光を精度良く照射できる。   According to the method for manufacturing an optical element according to claim 7 of the present invention, in addition to the effect of claim 1, when irradiated with light, a mold made of a translucent material, a thermosetting resin liquid, Since the deviation of the irradiation position accuracy due to light refraction at the interface can be prevented, light can be irradiated with high accuracy.

本発明の請求項8に記載の光学素子の製造方法によれば、請求項2の効果に加えて、外周より硬化させると外形の位置精度が確保でき、かつ外周の内側数mmの所に極小変形位置を集中させることになり、凹凸部の内部歪を改善することができる。   According to the method for manufacturing an optical element according to claim 8 of the present invention, in addition to the effect of claim 2, the position accuracy of the outer shape can be ensured when cured from the outer periphery, and the position is a few mm inside the outer periphery. The deformation position is concentrated, and the internal distortion of the uneven portion can be improved.

本発明の請求項9に記載の光学素子の製造方法によれば、請求項2の効果に加えて、非形状部における硬化収縮によって、微細形状が変形することを防止
することができる。
According to the method for manufacturing an optical element of the ninth aspect of the present invention, in addition to the effect of the second aspect, it is possible to prevent the fine shape from being deformed by curing shrinkage in the non-shaped portion.

本発明の請求項10に記載の光学素子の製造方法によれば、請求項1の効果に加えて、必要以上に型内での熱伝播による硬化部位が広がらないので、所望の部位を所望のタイミングで硬化させることが可能となる。また、熱硬化性樹脂液の熱特性を安定させることができるので、取出し時の成形不良の防止および品質を安定化させることが可能となる。   According to the method for manufacturing an optical element according to claim 10 of the present invention, in addition to the effect of claim 1, the hardened portion due to heat propagation in the mold does not spread more than necessary. It can be cured at the timing. Moreover, since the thermal characteristics of the thermosetting resin liquid can be stabilized, it becomes possible to prevent molding defects at the time of removal and to stabilize the quality.

本発明の請求項11に記載の光学素子の製造方法によれば、請求項1の効果に加えて、硬化収縮による比容積減少分を加圧補償することにより、ひけなどの不良発生を抑制できる。   According to the method for manufacturing an optical element according to the eleventh aspect of the present invention, in addition to the effect of the first aspect, the occurrence of defects such as sink marks can be suppressed by applying pressure compensation for the specific volume decrease due to the curing shrinkage. .

本発明の請求項12に記載の光学素子によれば、微細形状の変形のない、成形不良のない良好な光学素子を得ることができる。   According to the optical element of the twelfth aspect of the present invention, it is possible to obtain a good optical element that is not deformed with a fine shape and has no molding defects.

光学素子の製造方法は、分離型表面に形成された微細な凹凸面を、透光性の熱硬化性樹脂からなる基材に転写してなる光学素子の製造方法であって、一方の型が透光性材質で構成され、他方の型が該型材よりも光吸収率の大きな光吸収層を表面に備えた型から構成され、該型部に、熱硬化性樹脂液を流し込む樹脂液供給工程と、透光性材質で構成された一方の前記型の側より可視または近赤外光を照射して熱硬化性樹脂液を硬化させる樹脂液硬化工程とを備えた。これによって、型全体を加熱することなく局所的な加熱を可能とし、樹脂の硬化速度を加速でき、生産性に優れていて、しかも成形する樹脂の種類と使用する光の波長との組み合わせを考慮する必要がないという効果を得ることができた。   The method of manufacturing an optical element is a method of manufacturing an optical element obtained by transferring a fine uneven surface formed on a separation mold surface to a base material made of a light-transmitting thermosetting resin, and one mold is A resin liquid supply step in which the other mold is composed of a mold having a light absorption layer with a light absorption rate larger than that of the mold material on the surface, and a thermosetting resin liquid is poured into the mold portion. And a resin liquid curing step of curing the thermosetting resin liquid by irradiating visible or near infrared light from one side of the mold made of a translucent material. This enables local heating without heating the entire mold, accelerates the curing speed of the resin, has excellent productivity, and considers the combination of the type of resin to be molded and the wavelength of light used The effect of not having to do was able to be acquired.

図1は本発明の光学素子の製造方法の一工程を説明する第1実施例の注型型を示す図で、同図(a)は水平線に沿う断面図、図(b)は図(a)のB−B線に沿う断面図ある。図2は製造方法の工程中の樹脂硬化工程を説明する図である。   FIG. 1 is a view showing a casting mold according to a first embodiment for explaining one process of a method for producing an optical element of the present invention. FIG. 1 (a) is a cross-sectional view taken along a horizontal line, and FIG. It is sectional drawing which follows the BB line of (). FIG. 2 is a diagram illustrating a resin curing step in the manufacturing method.

本発明にかかる光学素子を製造するのに使用する注型型は、箱形の一面が開口して凹所が形成された下型(他方の型)1と、下型1の開口を覆う上型(一方の型)2と、から分離可能に構成されている。   The casting mold used to manufacture the optical element according to the present invention includes a lower mold (the other mold) 1 in which one side of the box is opened and a recess is formed, and an upper covering the opening of the lower mold 1. The mold (one mold) 2 is separable from the mold.

下型1の底部には微細な凹凸形状3aを有すると共に、0.05〜10μmの光を吸収する光吸収性層3bが形成され、これにより光吸収性を有している。分離型3の光吸収層3bの厚さが10μmを超えると型の形状精度が低下し、光学素子として使用できない。また、0.05μm未満であると光吸収層3bの熱容量が小さくなるため発熱量が小さくなり、樹脂が硬化しない部位が発生する。   The bottom of the lower mold 1 has a fine uneven shape 3a, and a light absorbing layer 3b that absorbs light of 0.05 to 10 μm is formed, thereby having light absorption. If the thickness of the light absorption layer 3b of the separation mold 3 exceeds 10 μm, the shape accuracy of the mold deteriorates and cannot be used as an optical element. On the other hand, if the thickness is less than 0.05 μm, the heat capacity of the light absorption layer 3b is reduced, so that the amount of heat generation is reduced, and a portion where the resin is not cured occurs.

また、光吸収層3bの材料としては、黒ニッケルめっき、チタン、クロムの炭化物等が用いられる。チタン、クロムの炭化物とすると、硬度が高いため、金型の長寿命化が図れる。
上型2は石英ガラス等の透光性部材から構成されている。また、透光性材質で構成された上型2の表面にフッ化マグネシウムの単層膜、シリカ膜、ジルコニア膜、アルミナ膜等の反射防止膜2aを備えてもよい。そうすると、透光性材質で構成された型から光が出射する際の反射による減衰を防止でき、光エネルギーを効率的に使用することが可能となる。
Further, as the material of the light absorption layer 3b, black nickel plating, titanium, chromium carbide or the like is used. If the carbide of titanium or chromium is used, the mold has a long life because of its high hardness.
The upper mold 2 is made of a translucent member such as quartz glass. Further, an antireflection film 2a such as a magnesium fluoride single layer film, a silica film, a zirconia film, or an alumina film may be provided on the surface of the upper mold 2 made of a translucent material. If it does so, the attenuation | damping by reflection when light radiate | emits from the type | mold comprised with the translucent material can be prevented, and it will become possible to use optical energy efficiently.

この注型型を用いて光学素子を製造する方法を図2により説明する。先ず、上型2で下型1の開口を覆い密閉し、熱硬化性樹脂4を脱気しながら注入する(図2(a))。   A method of manufacturing an optical element using this casting mold will be described with reference to FIG. First, the upper mold 2 covers and seals the opening of the lower mold 1 and the thermosetting resin 4 is injected while degassing (FIG. 2A).

次に、可視光線または近赤外線Lを上型2を通過させて熱硬化性樹脂液に照射し、光吸収層を昇温して熱硬化性樹脂を加熱し、硬化させる(図2(b))。可視光線または近赤外線Lの照射を光学素子全面にわたって行う(図2(c))。その後、離型して所要の加工を施して光学素子を得る。   Next, visible light or near-infrared light L is passed through the upper mold 2 to irradiate the thermosetting resin liquid, and the temperature of the light absorption layer is increased to heat and cure the thermosetting resin (FIG. 2B). ). Irradiation with visible light or near infrared light L is performed over the entire surface of the optical element (FIG. 2C). Then, it molds and performs a required process and obtains an optical element.

(実施例1)
製造方法を実施する型は図1に示すように、次のように構成し、下記に示したような条件により光学素子を製造した。
型:
その外幅Wを40mm、奥行き外寸法Dを70mm、高さHを30mmとした。
下型(非透光性)の材質:ニッケル
光吸収層:黒ニッケルめっき(黒色の亜鉛一ニッケルの合金めっき)
光吸収層の膜厚:0.5μm
微細形状:高さ10μm、幅10μmの断面を有する凸形状
上型(透光性)の材質:石英ガラス
樹脂:
主剤:ウレタンアクリレート樹脂(プラグラス#8000、大日本塗料社製)
硬化剤:ビスパーオキシジカーネートおよびジブチルフタレートの混合物
充填方法:注入
レーザ条件:
レーザ種類:半導体レーザ(スペクトラフィジックス製)波長:795nm
スポット径:直径1.5mm
エネルギ密度:2.5W
スキャン速度:2.5m/sec
発振方法:連続発振
とした。
(Example 1)
As shown in FIG. 1, the mold for carrying out the manufacturing method was configured as follows, and an optical element was manufactured under the following conditions.
Type:
The outer width W was 40 mm, the depth outer dimension D was 70 mm, and the height H was 30 mm.
Lower mold (non-translucent) material: Nickel light absorption layer: Black nickel plating (Black zinc-nickel alloy plating)
Light absorption layer thickness: 0.5 μm
Fine shape: Convex upper mold (translucent) having a cross section with a height of 10 μm and a width of 10 μm: Quartz glass resin:
Main agent: Urethane acrylate resin (Praglas # 8000, manufactured by Dainippon Paint Co., Ltd.)
Curing agent: Bisperoxy dicarnate and dibutyl phthalate mixture Filling method: Injection laser condition:
Laser type: Semiconductor laser (Spectra Physics) Wavelength: 795 nm
Spot diameter: 1.5mm diameter
Energy density: 2.5W
Scan speed: 2.5m / sec
Oscillation method: Continuous oscillation.

上記の条件により図2に示すように、光吸収層3上に配設された微細な凹凸形面を有する型部に熱硬化性樹脂4を注入する。光透過性の上型2からレーザ光Lを照射して、注入樹脂を硬化させる。その結果、スポット径とほぼ等しい幅の硬化物が形成された。この結果から、局所的な加熱が可能なことが分かった。また、この結果から、樹脂の硬化速度を加速でき、生産性を向上できる。   Under the above conditions, as shown in FIG. 2, the thermosetting resin 4 is injected into a mold part having a fine concavo-convex surface disposed on the light absorption layer 3. The injection resin is cured by irradiating laser light L from the light-transmissive upper mold 2. As a result, a cured product having a width substantially equal to the spot diameter was formed. From this result, it was found that local heating was possible. Moreover, from this result, the curing rate of the resin can be accelerated, and the productivity can be improved.

また、光吸収層を備えた型側に微細な凹凸面を有している。このように構成することで、型材の性質に制約がないので、凹凸面を形成する型材として高精度加工が可能な材質を選択できる。
(実施例2)
光吸収層の厚さを0.05〜10μmに変えた以外は、実施例1と同様にして光学素子を製造した。
Moreover, it has a fine uneven surface on the mold side provided with the light absorption layer. With such a configuration, there is no restriction on the properties of the mold material, and therefore a material capable of high-precision machining can be selected as the mold material for forming the uneven surface.
(Example 2)
An optical element was manufactured in the same manner as in Example 1 except that the thickness of the light absorption layer was changed to 0.05 to 10 μm.

比較例として、光吸収層の厚さを0.05μm未満とした場合と10μmを超えた場合について、型精度と硬化の良否を調べた。そして、その結果を下記の表1に示した。   As a comparative example, the mold accuracy and curing quality were examined when the thickness of the light absorption layer was less than 0.05 μm and when the thickness exceeded 10 μm. The results are shown in Table 1 below.

Figure 2005153276
Figure 2005153276

この表1からも明らかなように、光吸収層の厚さが10μmを超えると樹脂の硬化は良好であったが、型の形状精度が低下した。また、光吸収層の厚さが0.05μm未満であると樹脂の硬化は不良であったが、型の形状精度は良好であった。これは、光吸収層の熱容量が小さくなるため発熱量が小さくなり、樹脂が硬化しない部位が発生するためであると考えられる。
(実施例3)
光吸収層に黒ニッケルめっきの代わりに、クロム炭化物及びチタン炭化物とした以外は、実施例1と同様にして光学素子を製造した。
As is apparent from Table 1, when the thickness of the light absorption layer exceeds 10 μm, the resin was cured well, but the shape accuracy of the mold was lowered. Further, when the thickness of the light absorbing layer was less than 0.05 μm, the resin was not cured well, but the shape accuracy of the mold was good. This is considered to be because the heat capacity of the light absorption layer is reduced, so that the amount of heat generation is reduced, and a portion where the resin is not cured is generated.
(Example 3)
An optical element was manufactured in the same manner as in Example 1 except that the light absorbing layer was made of chromium carbide and titanium carbide instead of black nickel plating.

そして、光吸収層の高度と寿命に至るショット数を測定した。また、その結果を下記の表2に示した。   Then, the number of shots reaching the altitude and life of the light absorption layer was measured. The results are shown in Table 2 below.

Figure 2005153276
Figure 2005153276

この表2からも明らかなように、クロム炭化物の光吸収層とした場合では、黒ニッケルめっき光吸収層の約2倍の寿命が得られる。チタン炭化物の光吸収層では、黒ニッケルめっき光吸収層の約3倍の寿命が得られる。
(実施例4)
下型1の内部に、図3に示すように、厚さ5mmのセラミックスの断熱層5を設けたことと、レーザスキャン速度:3.1m/secとした以外は、実施例1と同様にして光学素子を製造した。
As is apparent from Table 2, in the case of the chromium carbide light absorption layer, a life approximately twice that of the black nickel plating light absorption layer is obtained. In the titanium carbide light absorption layer, a life approximately three times that of the black nickel plating light absorption layer is obtained.
Example 4
As shown in FIG. 3, a ceramic heat insulation layer 5 having a thickness of 5 mm was provided in the lower mold 1 and the laser scan speed was 3.1 m / sec. An optical element was manufactured.

そして、良好な樹脂硬化が得られるレーザスキャン速度を調べて下記の表3に示した。   The laser scanning speed at which good resin curing can be obtained was examined and shown in Table 3 below.

Figure 2005153276
Figure 2005153276

表3に示すように、レーザスキャン速度を3.1m/secとしても樹脂は、むらなく良好に硬化した。これにより、光吸収層の吸収熱量が型側に流出するのを防ぐことができ、加熱効率が向上した。
(実施例5)
上型に、図4に示すように、反射防止膜2aを設けたことと、レーザスキャン速度を2.8〜3.1m/secとした以外は、実施例1と同様にして光学素子を製造した。
透光性材質で構成された型の表面の反射防止膜は、フッ化マグネシウムの単層膜、シリカ膜、ジルコニア膜、アルミナ膜等で形成した。
As shown in Table 3, even when the laser scan speed was 3.1 m / sec, the resin was cured uniformly. Thereby, it was possible to prevent the amount of heat absorbed by the light absorption layer from flowing out to the mold side, and the heating efficiency was improved.
(Example 5)
As shown in FIG. 4, the optical element is manufactured in the same manner as in Example 1 except that the anti-reflection film 2a is provided on the upper die and the laser scan speed is 2.8 to 3.1 m / sec. did.
The antireflection film on the surface of the mold made of a translucent material was formed of a magnesium fluoride single layer film, a silica film, a zirconia film, an alumina film, or the like.

そして、各反射防止膜について、良好な樹脂硬化の得られるレーザスキャン速度を調べて下記の表4に示した。   For each antireflection film, the laser scan speed at which good resin curing can be obtained was examined and shown in Table 4 below.

Figure 2005153276
Figure 2005153276

この表4から明らかなように、透光性材質で構成された型から光が出射する際の反射による減衰を防止できるので、光吸収層の吸収熱量が型側に流出するのを防ぐことができる。これにより、光エネルギを効率的に使用することが可能となり、加熱効率が向上した。その結果、反射防止膜がない場合は、2.5m/secと遅かったのを2.8〜3.1m/secと早くすることができた。
(実施例6)
上型の透光性材質の屈折率が石英ガラスの1.45を熱硬化性樹脂液(アクリル樹脂(屈折率=1.6))と略同一のゲルマニウムガラス;CORNING9754(屈折率=1.6)にしたことと、レーザスキャン速度:3.1m/secとした以外は、実施例1と同様にして光学素子を製造した。
As can be seen from Table 4, since attenuation due to reflection when light is emitted from a mold made of a translucent material can be prevented, the amount of heat absorbed by the light absorption layer can be prevented from flowing out to the mold side. it can. Thereby, it became possible to use light energy efficiently and the heating efficiency was improved. As a result, in the absence of the antireflection film, it was possible to accelerate the slowness from 2.5 m / sec to 2.8 to 3.1 m / sec.
(Example 6)
Germanium glass whose refractive index of the upper light-transmitting material is approximately the same as that of thermosetting resin liquid (acrylic resin (refractive index = 1.6)) of 1.45 of quartz glass; CORNING 9754 (refractive index = 1.6) And an optical element was manufactured in the same manner as in Example 1 except that the laser scanning speed was 3.1 m / sec.

そして、この場合において、良好な樹脂硬化の得られるレーザスキャン速度を調べて下記の表5に示した。   In this case, the laser scanning speed at which good resin curing can be obtained was examined and shown in Table 5 below.

Figure 2005153276
Figure 2005153276

これにより、光を照射した際に、透光性材質で構成された型と熱硬化性樹脂液との界面での光屈折を防止できるので、光を精度良く照射できた。
(実施例7)
下型に、図5に示すように、端から順次レーザスキャンする実施例1とは、凹凸部の周囲からレーザスキャンするように変えた以外は実施例1と同様にして光学素子を製造した。
そして、この場合の樹脂硬化の状態を調べた結果を下記の表6に示した。
Thus, when light is irradiated, light refraction at the interface between the mold made of a translucent material and the thermosetting resin liquid can be prevented, so that light can be irradiated with high accuracy.
(Example 7)
As shown in FIG. 5, the optical element was manufactured in the same manner as in Example 1 except that the lower mold was changed so that laser scanning was performed sequentially from the periphery of the lower mold so that laser scanning was performed from the periphery of the uneven portion.
The results of examining the state of resin curing in this case are shown in Table 6 below.

Figure 2005153276
Figure 2005153276

この端部の微細形状の転写状態を観察した結果、凹凸部から周辺にスキャンした場合は、不良の発生があった。周辺から凹凸部にスキャンした場合は、不良の発生がなかった。
外周より硬化させると外形の位置精度が確保でき、かつ外周の内側数mmの所に極小変形位置を集中させることになり、凹凸部の内部歪を改善することができた。
(実施例8)
図6に示すように、凹凸部の周囲に配された光吸収層3cの光吸収率が凹凸部に配された光吸収層3bより高い光吸収率のものとした以外は実施例1と同様にして光学素子を製造した。
As a result of observing the transfer state of the fine shape of the end portion, there was a defect when scanning from the uneven portion to the periphery. When scanning from the periphery to the concavo-convex portion, no defect occurred.
When cured from the outer periphery, the position accuracy of the outer shape could be ensured, and the minimal deformation position was concentrated at a few mm inside the outer periphery, and the internal distortion of the concavo-convex part could be improved.
(Example 8)
As shown in FIG. 6, the same as in Example 1 except that the light absorption rate of the light absorption layer 3c disposed around the uneven portion is higher than that of the light absorption layer 3b disposed in the uneven portion. Thus, an optical element was manufactured.

そして、この場合の樹脂硬化の状態を調べた結果を下記の表7に示した。   The results of examining the state of resin curing in this case are shown in Table 7 below.

Figure 2005153276
Figure 2005153276

この観察の結果、形状部の周囲の非形状部における硬化収縮によって、形状部の微細形状が変形することを防止できた。
(実施例9)
図7に示すように、下型2の光吸収層の裏側に冷却機構6として冷却水を流す配管を設置し、分離型の温度が熱硬化性樹脂液の硬化温度以下に冷却機構により制御する以外は、実施例1と同様にして光学素子を製造した。型を冷却することで樹脂温度を硬化温度以下に制御し、熱伝導によるレーザ照射部周辺の硬化部を小さくすることがでる。
その結果、必要以上に型内での熱伝播による硬化部位が広がらないので、所望の部位を所望のタイミングで硬化させることが可能となる。また、熱硬化性樹脂液の熱特性を安定させることができるので、取出し時の成形不良の防止および品質を安定化させることが可能となる。
(実施例10)
図8に示すように、樹脂液供給工程と樹脂液硬化工程の間に、少なくとも一方の型に圧力を負荷するように、荷重負荷機構7を設けて負荷する以外は実施例1と同様にして光学素子を製造した。
As a result of this observation, it was possible to prevent the fine shape of the shape portion from being deformed by curing shrinkage in the non-shape portion around the shape portion.
Example 9
As shown in FIG. 7, a pipe for flowing cooling water is installed as a cooling mechanism 6 on the back side of the light absorption layer of the lower mold 2, and the temperature of the separation mold is controlled by the cooling mechanism below the curing temperature of the thermosetting resin liquid. Except for the above, an optical element was manufactured in the same manner as in Example 1. By cooling the mold, the resin temperature can be controlled to be equal to or lower than the curing temperature, and the cured portion around the laser irradiated portion due to heat conduction can be reduced.
As a result, the hardened portion due to heat propagation in the mold does not spread more than necessary, so that the desired portion can be hardened at a desired timing. Moreover, since the thermal characteristics of the thermosetting resin liquid can be stabilized, it becomes possible to prevent molding defects at the time of removal and to stabilize the quality.
(Example 10)
As shown in FIG. 8, in the same manner as in Example 1 except that a load load mechanism 7 is provided to load at least one of the molds between the resin liquid supply process and the resin liquid curing process. An optical element was manufactured.

そして、この場合の樹脂硬化の表面形状と収縮の状態を調べた結果を下記の表8に示した。   Table 8 below shows the results of examining the surface shape of the cured resin and the state of shrinkage in this case.

Figure 2005153276
Figure 2005153276

その結果、硬化収縮による比容積減少分を加圧補償することにより、ひけなどの不良発生を抑制できる。   As a result, the occurrence of defects such as sink marks can be suppressed by applying pressure compensation to the specific volume reduction due to curing shrinkage.

なお、上記において、凹凸形状を転写してなる光学素子について説明したが、本発明はこれに限定されることはない。例えば、型材よりも光吸収率の大きな光吸収層を表面に備えるようにしたCCDリニアセンサーやCCDエリアセンサー用のチップや、LEDチップや半導体レーザチップ等を封止する場合であってもよい。   In the above description, the optical element formed by transferring the concavo-convex shape has been described, but the present invention is not limited to this. For example, a case where a chip for a CCD linear sensor or a CCD area sensor, an LED chip, a semiconductor laser chip, or the like having a light absorption layer having a light absorption rate larger than that of the mold material is sealed may be used.

本発明の光学素子の第1実施例の注型型を説明する図で、図(a)は水平線(図(b)のA−A線)に沿う断面図、図(b)は図(a)のB−B線に沿う断面図ある。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the casting type | mold of 1st Example of the optical element of this invention, A figure (a) is sectional drawing in alignment with a horizontal line (AA line of figure (b)), A figure (b) is a figure (a). It is sectional drawing which follows the BB line of (). 本発明に係る製造方法中の樹脂硬化工程を説明する図であり、図(a)は熱硬化性樹脂を注入した状態を示す断面図で、図(b)はレーザ光の照射を開始した状態を示す断面図で、図(c)はさらにレーザ光の照射をしている状態を示す断面図である。It is a figure explaining the resin hardening process in the manufacturing method which concerns on this invention, A figure (a) is sectional drawing which shows the state which inject | poured thermosetting resin, A figure (b) has started the irradiation of the laser beam FIG. 2C is a cross-sectional view showing a state in which laser light is further irradiated. 本発明の光学素子に係る第4実施例の光吸収層の構成を説明する断面図である。It is sectional drawing explaining the structure of the light absorption layer of 4th Example based on the optical element of this invention. 本発明の光学素子に係る第6実施例の光吸収層の構成を説明する断面図である。It is sectional drawing explaining the structure of the light absorption layer of 6th Example based on the optical element of this invention. 本発明の光学素子に係る第7実施例の製造工程を説明する断面図で、図(a)は照射初期の工程での水平線に沿う断面図、図(b)は図(a)のB−B線に沿う断面図、図(c)は照射終期の工程での水平線に沿う断面図、図(d)は図(c)のB−B線に沿う断面図である。It is sectional drawing explaining the manufacturing process of 7th Example based on the optical element of this invention, FIG. (A) is sectional drawing in alignment with the horizontal line in the process of an irradiation initial stage, FIG. (B) is B- of FIG. Cross-sectional view taken along line B, FIG. 5C is a cross-sectional view taken along the horizontal line in the final stage of irradiation, and FIG. 4D is a cross-sectional view taken along line BB in FIG. 本発明の光学素子に係る第8実施例の光吸収層の構成を説明する断面図で、図(a)は水平線に沿う断面図、図(b)は図(a)のB−B線に沿う断面図である。It is sectional drawing explaining the structure of the light absorption layer of the 8th Example based on the optical element of this invention, (a) is sectional drawing which follows a horizontal line, (b) is BB line of FIG. (A). It is sectional drawing which follows. 本発明の光学素子に係る第9実施例の下型の構成を説明する断面図で、図(a)は水平線に沿う断面図、(b)は(a)のB−B線に沿う断面図ある。Sectional drawing explaining the structure of the lower mold | type of 9th Example which concerns on the optical element of this invention, (a) is sectional drawing which follows a horizontal line, (b) is sectional drawing which follows the BB line of (a). is there. 本発明の光学素子に係る第10実施例の熱硬化性樹脂樹脂を負荷する工程を説明する図である。It is a figure explaining the process of loading the thermosetting resin of 10th Example which concerns on the optical element of this invention.

符号の説明Explanation of symbols

1 下型(他方の型)
2 上型(一方の型)
2a 反射防止層
3a 凹凸形状
3b 光吸収層
3c 高い光吸収率の光吸収層
4 熱硬化性樹脂
4a 硬化した熱硬化性樹脂
5 断熱層
6 冷却機構
7 荷重付加機構
L レーザ光
1 Lower mold (the other mold)
2 Upper mold (one mold)
2a Antireflection layer 3a Concave and convex shape 3b Light absorption layer 3c Light absorption layer with high light absorption rate 4 Thermosetting resin 4a Cured thermosetting resin 5 Heat insulation layer 6 Cooling mechanism 7 Load application mechanism L Laser light

Claims (12)

型表面に形成された微細な凹凸面を、透光性の熱硬化性樹脂からなる基材に転写してなる光学素子の製造方法であって、
一方の型が透光性材質で構成され、他方の型が該型材よりも光吸収率の大きな光吸収層を表面に備えた型から構成され、前記型部に、熱硬化性樹脂液を流し込む樹脂液供給工程と、
透光性材質で構成された一方の前記型の側より可視または近赤外光を照射して熱硬化性樹脂液を硬化させる樹脂液硬化工程と、
を備えたことを特徴とする光学素子の製造方法。
A method for producing an optical element formed by transferring a fine uneven surface formed on a mold surface to a base material made of a light-transmitting thermosetting resin,
One mold is composed of a translucent material, and the other mold is composed of a mold having a light absorption layer having a light absorption rate larger than that of the mold material on the surface, and a thermosetting resin liquid is poured into the mold portion. A resin liquid supply step;
A resin liquid curing step of curing the thermosetting resin liquid by irradiating visible or near-infrared light from the one side of the mold made of a translucent material;
An optical element manufacturing method comprising:
前記光吸収層を備えた前記他方の型に微細な凹凸面がある請求項1記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the other mold having the light absorption layer has a fine uneven surface. 前記光吸収層の層厚が10μm〜0.05μmである請求項1記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the light absorption layer has a thickness of 10 μm to 0.05 μm. 前記光吸収層がチタン、クロムの炭化物である請求項1記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the light absorption layer is a carbide of titanium and chromium. 前記光吸収層の裏面に断熱層を備えている請求項1ないし4記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, wherein a heat insulating layer is provided on the back surface of the light absorption layer. 透光性材質で構成された一方の前記型の表面にフッ化マグネシウムの単層膜、シリカ膜、ジルコニア膜、またはアルミナ膜等の反射防止膜を備えている請求項1記載の光学素子の製造方法。 2. The optical element according to claim 1, wherein an antireflection film such as a magnesium fluoride single layer film, a silica film, a zirconia film, or an alumina film is provided on the surface of one of the molds made of a translucent material. Method. 前記透光性材質の屈折率が前記熱硬化性樹脂液と略同一である請求項1記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein a refractive index of the translucent material is substantially the same as that of the thermosetting resin liquid. 前記凹凸部の周囲に配された前記光吸収層に光照射した後、前記凹凸部に配された前記光吸収層に光照射する請求項2記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 2, wherein the light absorption layer disposed around the uneven portion is irradiated with light, and then the light absorption layer disposed on the uneven portion is irradiated with light. 前記凹凸部の周囲に配された前記光吸収層の光吸収率が該凹凸部の光吸収率より高い光吸収層を用いる請求項2記載の光学素子の製造方法。 The manufacturing method of the optical element of Claim 2 using the light absorption layer whose light absorption rate of the said light absorption layer distribute | arranged around the said uneven | corrugated | grooved part is higher than the light absorption rate of this uneven | corrugated | grooved part. 前記分離型の温度を前記熱硬化性樹脂液の硬化温度以下に制御する機構を備えている請求項1記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 1, further comprising a mechanism for controlling the temperature of the separation mold to be equal to or lower than a curing temperature of the thermosetting resin liquid. 前記樹脂液供給工程と前記樹脂液硬化工程の間に、少なくとも一方の前記型に圧力を負荷することにより、該型内の熱硬化性樹脂液に圧縮力を負荷する樹脂液圧縮工程を備えている請求項1記載の光学素子の製造方法。 A resin liquid compression step of applying a compressive force to the thermosetting resin liquid in the mold by applying pressure to at least one of the molds between the resin liquid supply step and the resin liquid curing step; The method for manufacturing an optical element according to claim 1. 前記請求項1〜請求項11記載の光学素子の製造方法により製造された光学素子。 The optical element manufactured by the manufacturing method of the optical element of the said Claims 1-11.
JP2003394149A 2003-11-25 2003-11-25 Optical element manufacturing method and optical element Expired - Lifetime JP4195998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394149A JP4195998B2 (en) 2003-11-25 2003-11-25 Optical element manufacturing method and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394149A JP4195998B2 (en) 2003-11-25 2003-11-25 Optical element manufacturing method and optical element

Publications (2)

Publication Number Publication Date
JP2005153276A true JP2005153276A (en) 2005-06-16
JP4195998B2 JP4195998B2 (en) 2008-12-17

Family

ID=34720306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394149A Expired - Lifetime JP4195998B2 (en) 2003-11-25 2003-11-25 Optical element manufacturing method and optical element

Country Status (1)

Country Link
JP (1) JP4195998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105582A (en) * 2006-10-26 2008-05-08 Ashimori Ind Co Ltd Airbag device
KR20090071397A (en) * 2007-12-26 2009-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device
JP2009298041A (en) * 2008-06-13 2009-12-24 Toshiba Corp Template and pattern forming method
JP2012148543A (en) * 2011-01-21 2012-08-09 Yazaki Corp Injection molding machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105582A (en) * 2006-10-26 2008-05-08 Ashimori Ind Co Ltd Airbag device
KR20090071397A (en) * 2007-12-26 2009-07-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device
US9159923B2 (en) 2007-12-26 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device
KR101689519B1 (en) * 2007-12-26 2016-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Evaporation donor substrate, method for manufacturing the same, and method for manufacturing light-emitting device
JP2009298041A (en) * 2008-06-13 2009-12-24 Toshiba Corp Template and pattern forming method
JP2012148543A (en) * 2011-01-21 2012-08-09 Yazaki Corp Injection molding machine
US9056408B2 (en) 2011-01-21 2015-06-16 Yazaki Corporation Injection molding machine

Also Published As

Publication number Publication date
JP4195998B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US8507073B2 (en) Exterior parts
EP2637846B1 (en) Method of producing composite optical element
KR910005553B1 (en) Method and apparatus for producing optical element
KR100950873B1 (en) Resin molding process and resin molding apparatus
JP4195998B2 (en) Optical element manufacturing method and optical element
KR20030007470A (en) Method of manufacturing article with specified surface shape
JPH08207159A (en) Method and equipment for manufacturing optical element
KR101141969B1 (en) Mold for lens, method for manufacturing the same and lens using the mold for lens
JP2010099861A (en) Resin molding rubber mold, resin molding apparatus, and resin molding method
WO2009101890A1 (en) Injection molding method
KR102143951B1 (en) 3D Printer Vat
JP5206247B2 (en) Method for producing fine hollow body and method for producing fine composite part
CN1842726A (en) Methacrylic resin cast plate having surface micro structure and method of manufacturing the same
JP5120752B2 (en) Injection molding equipment
JPH11348135A (en) Photo-shaping apparatus
WO2024172041A1 (en) Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model
KR102321375B1 (en) Apparatus and Method for Producing Lens
JP3766811B2 (en) Optical waveguide unit manufacturing method and optical waveguide unit molding die
JP2001018298A (en) Molding method for three-dimensional molded article
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP4419665B2 (en) Optical element manufacturing method
JP2024042445A (en) Three-dimensional modeling method
JPH06127956A (en) Molding device for glass lens
JP2024101200A (en) Three-dimensional modeling method, and method of manufacturing three-dimensional modeled object
Sugino et al. Gas Permeability Characterization of a Metal Plate for Photo-imprint Lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080908

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111010

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121010