JP2005152061A - Body fat measuring apparatus - Google Patents

Body fat measuring apparatus Download PDF

Info

Publication number
JP2005152061A
JP2005152061A JP2003391559A JP2003391559A JP2005152061A JP 2005152061 A JP2005152061 A JP 2005152061A JP 2003391559 A JP2003391559 A JP 2003391559A JP 2003391559 A JP2003391559 A JP 2003391559A JP 2005152061 A JP2005152061 A JP 2005152061A
Authority
JP
Japan
Prior art keywords
capacitance
measured
body fat
measurement
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003391559A
Other languages
Japanese (ja)
Other versions
JP4155170B2 (en
Inventor
Satoru Inakagata
悟 田舎片
Shogo Fukushima
省吾 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003391559A priority Critical patent/JP4155170B2/en
Publication of JP2005152061A publication Critical patent/JP2005152061A/en
Application granted granted Critical
Publication of JP4155170B2 publication Critical patent/JP4155170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure subcutaneous fat and visceral fat easily worn in a simple constitution without directly passing an electric current to the body in the body fat measuring apparatus. <P>SOLUTION: This body fat measuring apparatus 1 is provided with a plurality of insulating electrodes 21, a capacitance measuring means 23 impressing a voltage between one insulating electrode 21 and another insulating electrode 21 out of the insulating electrodes 21 and measuring the static capacitance between the respective electrodes, a computing part 32 calculating the body fat volume based on the measured capacitance, a display portion 4 displaying the calculated result. The insulating electrode 21 is disposed and used in a state insulated from the skin surface of a human body, or a part M to be measured. The capacitance measuring means 23 measures the static capacitance based on the oscillating frequency of an oscillating circuit 2 including the capacitance determined by the body tissue components between the insulating electrodes 21 in its circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、体脂肪測定装置に関する。   The present invention relates to a body fat measurement device.

従来から、人体腹部などの被測定部のインピーダンスを測定して、体脂肪と他の体組成分との電気特性の違いに基づいて体脂肪量を求める技術が知られている。インピーダンスの測定は、測定対象である人体に1対の電極を用いて微小電流を流し、電流により誘起した電圧を他の1対の電極を用いて測定して行われる。体脂肪の絶対量又は体脂肪率は、水中体重法やCT法(コンピューティッド・トモグラフィ法)により求めた体脂肪量とインピーダンスとの既知の相関式を用いて、決定される。この技術は、生体中の血液、肺、脂肪等の分布の測定に応用される技術である(例えば、非特許文献1参照)。   2. Description of the Related Art Conventionally, a technique for measuring body impedance by measuring the impedance of a part to be measured such as the human abdomen and based on the difference in electrical characteristics between body fat and other body compositions. The impedance is measured by passing a minute current through a human body to be measured using a pair of electrodes and measuring a voltage induced by the current using another pair of electrodes. The absolute amount or body fat percentage of body fat is determined by using a known correlation formula between body fat amount and impedance obtained by the underwater body weight method or CT method (computed tomography method). This technique is a technique applied to measurement of the distribution of blood, lungs, fats, and the like in a living body (for example, see Non-Patent Document 1).

上述のインピーダンス測定による体脂肪測定装置は、例えば、被験者の被測定部である腹部の周囲に巻き付けて用いられる巻帯の内側に、電流路形成電極対及び電圧計測用電極対をそれぞれ略等間隔で設けて構成される。選択した電流路形成電極対を用いて交流電流を流して電流路が形成され、形成された電流路におけるインピーダンスが、選択した電圧計測用電極対を用いて計測される。電流用及び電圧用の2つの電極対を適宜選択することで、隣接する電極対間では主として測定部位の皮下脂肪が計測され、対向する電極間では主として測定部位の内臓脂肪が計測される。   The above-described body fat measurement device based on impedance measurement includes, for example, a current path forming electrode pair and a voltage measurement electrode pair at substantially equal intervals, respectively, on the inner side of a band used by being wound around the abdomen, which is a measured part of a subject. It is provided and configured. An alternating current is passed using the selected current path forming electrode pair to form a current path, and the impedance in the formed current path is measured using the selected voltage measuring electrode pair. By appropriately selecting two electrode pairs for current and voltage, subcutaneous fat at the measurement site is mainly measured between adjacent electrode pairs, and visceral fat at the measurement site is mainly measured between the opposing electrodes.

また、被測定部の断面における体脂肪分布を求めて分布を表示する装置が知られている。この装置は、体表面に装着した複数の電極を用いて計測した電極間のインピーダンスから電極装着部位断面のインピーダンス行列を生成し、入力手段から入力された被測定体及び装着部位の情報に応じて形成された係数行列との行列積演算を行い、演算結果により対象断面の体脂肪分布を求めている(例えば、特許文献1参照)。
日本ME学会BME、Vol.8、No.8(1994)p.49 特開平11−113870号公報
There is also known an apparatus that obtains a body fat distribution in a cross section of a part to be measured and displays the distribution. This device generates an impedance matrix of a cross section of an electrode mounting site from the impedance between electrodes measured using a plurality of electrodes mounted on the body surface, and according to information on the body to be measured and the mounting site input from the input means A matrix product operation with the formed coefficient matrix is performed, and a body fat distribution of the target cross section is obtained from the operation result (see, for example, Patent Document 1).
The ME Society of Japan BME, Vol. 8, no. 8 (1994) p. 49 Japanese Patent Laid-Open No. 11-113870

しかしながら、上述したような従来の体脂肪測定装置では、微小電流を人体に流してインピーダンス測定が行われるので、電極を人体に電気的に接触させる必要がある。そのため、電極装着のために時間がかかるという不便さがある。また、個体のバラツキや、測定環境・測定時刻などによる身体コンディションの変化によって、皮膚表面の保湿性が変化し、電流測定値に誤差が発生するという問題がある。   However, in the conventional body fat measuring device as described above, impedance measurement is performed by passing a minute current through the human body, so it is necessary to electrically contact the electrode with the human body. Therefore, there is an inconvenience that it takes time to mount the electrodes. In addition, there is a problem in that the moisture retention on the skin surface changes due to variations in individuals, body conditions due to measurement environment / measurement time, etc., and an error occurs in the current measurement value.

本発明は、上記課題を解消するものであって、簡単な構成により、容易に装着可能で人体に直接電流を流すことなく皮下脂肪及び内臓脂肪を測定できる体脂肪測定装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to provide a body fat measuring device that can be easily worn with a simple configuration and can measure subcutaneous fat and visceral fat without flowing current directly into the human body. And

上記課題を達成するために、請求項1の発明は、複数の絶縁電極と、前記絶縁電極の1つの絶縁電極と他の絶縁電極間に電圧を印加して、各電極間の静電容量を計測する静電容量計測手段と、計測された静電容量に基づいて体脂肪量を算出する演算部と、算出された結果を表示する表示部と、を備え、前記絶縁電極は、被測定体である人体の皮膚面から絶縁された状態で配置使用され、前記静電容量計測手段は、前記絶縁電極間の体組成分で定まる静電容量を回路に含む発振回路の発振周波数をもとにして静電容量を計測する体脂肪測定装置である。   In order to achieve the above object, the invention of claim 1 is characterized in that a voltage is applied between a plurality of insulated electrodes and one insulated electrode of the insulated electrodes and the other insulated electrode, and the capacitance between the electrodes is increased. A capacitance measuring means for measuring; a calculation unit for calculating a body fat amount based on the measured capacitance; and a display unit for displaying the calculated result. The capacitance measuring means is based on the oscillation frequency of an oscillation circuit including a capacitance determined by the body composition between the insulating electrodes in the circuit. This is a body fat measurement device that measures capacitance.

請求項2の発明は、請求項1に記載の体脂肪測定装置において、前記複数個の絶縁電極は、被測定部周囲に一列又は複数列に配置され、該絶縁電極は、正負の極性が切り替えられるものである。   According to a second aspect of the present invention, in the body fat measurement device according to the first aspect, the plurality of insulated electrodes are arranged in one or a plurality of rows around the portion to be measured, and the positive and negative polarities of the insulated electrodes are switched. It is what

請求項3の発明は、請求項2に記載の体脂肪測定装置において、静電容量計測手段は、各電極間の静電容量を計測するため前記絶縁電極を選択的にスキャンするものである。   According to a third aspect of the present invention, in the body fat measuring device according to the second aspect, the capacitance measuring means selectively scans the insulating electrode in order to measure the capacitance between the electrodes.

請求項4の発明は、請求項1に記載の体脂肪測定装置において、前記被測定体の被測定部の外周長及び、該被測定体の体重・身長・年齢・性別のいずれか又は全てを入力する入力手段をさらに備え、前記演算部は、前記計測された静電容量値と前記入力された被測定部の外周長とに基づいて脂肪量を算出するものである。   According to a fourth aspect of the present invention, in the body fat measurement device according to the first aspect, any one or all of the outer peripheral length of the measured part of the measured body and the weight, height, age, and sex of the measured body An input means for inputting is further provided, and the calculation unit calculates a fat amount based on the measured capacitance value and the input outer peripheral length of the measured part.

請求項5の発明は、請求項2に記載の体脂肪測定装置において、被測定部の皮下脂肪測定時は、被測定部周囲に互いに隣接して配置された正の絶縁電極と負の絶縁電極とを用いるものである。   According to a fifth aspect of the present invention, in the body fat measuring device according to the second aspect, when measuring the subcutaneous fat of the portion to be measured, a positive insulating electrode and a negative insulating electrode arranged adjacent to each other around the portion to be measured Are used.

請求項6の発明は、請求項3に記載の体脂肪測定装置において、前記表示部は、前記演算部で算出された体脂肪の分布を平面的又は立体的に表示するものである。   According to a sixth aspect of the present invention, in the body fat measurement device according to the third aspect, the display unit displays the distribution of the body fat calculated by the calculation unit in a two-dimensional or three-dimensional manner.

請求項7の発明は、請求項1に記載の体脂肪測定装置において、前記静電容量計測手段は、静電容量を補正するための温度補正回路を有するものである。   According to a seventh aspect of the present invention, in the body fat measuring device according to the first aspect, the capacitance measuring means includes a temperature correction circuit for correcting the capacitance.

請求項8の発明は、請求項7に記載の体脂肪測定装置において、前記温度補正回路は、環境温度及び/又は被測定部表面温度に基づいて補正を行うものである。   According to an eighth aspect of the present invention, in the body fat measuring device according to the seventh aspect, the temperature correction circuit performs correction based on the environmental temperature and / or the surface temperature of the part to be measured.

請求項9の発明は、請求項2に記載の体脂肪測定装置において、前記絶縁電極は、シート上に形成されるものである。   A ninth aspect of the present invention is the body fat measuring device according to the second aspect, wherein the insulating electrode is formed on a sheet.

請求項10の発明は、請求項9に記載の体脂肪測定装置において、前記シート上に形成された絶縁電極は、前記シートを被測定部に巻き付けることによって被測定部に配置され、前記シートの被測定部巻き付け時に被測定部周囲長を計測する周囲長計測手段をさらに備えているものである。   According to a tenth aspect of the present invention, in the body fat measuring device according to the ninth aspect, the insulating electrode formed on the sheet is disposed on the measured portion by winding the sheet around the measured portion, Perimeter length measuring means for measuring the perimeter of the part to be measured when winding the part to be measured is further provided.

請求項1の発明によれば、絶縁電極間の体組成分で定まる静電容量を発振回路の発振周波数から求め、計測した静電容量に基づいて体脂肪量を算出するので、人体に直接電流を流すことなく皮下脂肪及び内臓脂肪を測定でき、従って、被測定部位に容易に装着可能であり、また、従来の電流測定時の接触抵抗よる誤差が解消される。   According to the first aspect of the present invention, the capacitance determined by the body composition between the insulated electrodes is obtained from the oscillation frequency of the oscillation circuit, and the body fat amount is calculated based on the measured capacitance. Subcutaneous fat and visceral fat can be measured without flowing, so that it can be easily attached to the measurement site, and errors due to contact resistance during current measurement are eliminated.

請求項2及び請求項3の発明によれば、複数の絶縁電極の極性を切り替えながら任意の電極間の静電容量を測定でき、被測定部の断面における体脂肪分布を効率的に求めることができる。   According to invention of Claim 2 and Claim 3, the electrostatic capacitance between arbitrary electrodes can be measured, switching the polarity of several insulated electrodes, and the body fat distribution in the cross section of a to-be-measured part can be calculated | required efficiently. it can.

請求項4の発明によれば、入力された被測定部に関する情報に基づき、より精度良い測定結果が得られる。   According to the invention of claim 4, a more accurate measurement result can be obtained based on the input information on the measured part.

請求項5の発明によれば、表皮近傍における静電容量を測定でき、皮下脂肪を選択的に測定でき、また、請求項6の発明によれば、体脂肪の分布を視覚的に把握して、体脂肪減量エクササイズなどに測定結果を有効活用できる。   According to the invention of claim 5, the capacitance in the vicinity of the epidermis can be measured, and subcutaneous fat can be selectively measured. According to the invention of claim 6, the distribution of body fat can be visually grasped. The measurement results can be effectively used for body fat weight loss exercise.

請求項7及び請求項8の発明によれば、測定条件に左右されることなく温度補正により精度良い体脂肪測定ができる。   According to the seventh and eighth aspects of the invention, accurate body fat measurement can be performed by temperature correction without being affected by measurement conditions.

請求項9及び請求項10の発明によれば、測定時に測定装置装着が容易であり、また、被測定部周囲長が自動的に計測できるので、測定の操作も簡単容易である。   According to the ninth and tenth aspects of the present invention, it is easy to attach the measuring device at the time of measurement, and since the circumference of the portion to be measured can be automatically measured, the measurement operation is also easy and easy.

以下、本発明の一実施形態に係る体脂肪測定装置について、図面を参照して説明する。図1は、体脂肪測定装置1のブロック構成を示す。体脂肪測定装置1は、被測定部の静電容量を測定するための発振回路2と、測定された静電容量に基づいて体脂肪量を算出する演算と装置の制御を行う制御部3と、得られた結果を表示する表示部4と、計測及び演算条件を入力する入力手段5を備えている。   Hereinafter, a body fat measurement device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a block configuration of the body fat measurement device 1. The body fat measuring device 1 includes an oscillation circuit 2 for measuring the capacitance of the part to be measured, a control unit 3 for calculating the body fat amount based on the measured capacitance, and controlling the device. A display unit 4 for displaying the obtained results and an input means 5 for inputting measurement and calculation conditions are provided.

上述の発振回路2は、被測定体である人体の被測定部Mの周囲皮膚面に絶縁された状態で一列又は複数列に配置使用される複数の絶縁電極21と、これらの絶縁電極21やその正負の極性を切り替える電極切替回路22と、電極切替回路22により切り替えて選択された各対毎の絶縁電極21間の静電容量を測定する静電容量測定手段23とを備えている。静電容量計測手段23は、それぞれの選択された1対の絶縁電極21とその間の体組成分とで定まる静電容量を発振回路の回路構成素子と見做して、発振回路の周波数特性から体組成分の静電容量を計測する。具体的な発振回路について、後述される。   The oscillation circuit 2 described above includes a plurality of insulating electrodes 21 arranged and used in one or a plurality of rows in a state of being insulated from the surrounding skin surface of the measurement target M of the human body, which is a measurement target, An electrode switching circuit 22 that switches between the positive and negative polarities, and a capacitance measuring means 23 that measures the capacitance between each pair of insulated electrodes 21 that are switched and selected by the electrode switching circuit 22 are provided. The capacitance measuring means 23 considers the capacitance determined by each selected pair of insulated electrodes 21 and the body composition therebetween as a circuit component of the oscillation circuit, and determines the frequency characteristics of the oscillation circuit. Measure the capacitance of body composition. A specific oscillation circuit will be described later.

また、上述の制御部2は、例えば、マイクロプロセッサなどで構成されてデータの入出力管理や電極切替回路22による切り替え計測制御を行う中央制御部CPUと、静電容量測定手段23によって計測され中央制御部CPUを経由して入力される各絶縁電極間の静電容量及び記憶されている基礎データや計測・演算条件データ等に基づいて体脂肪量を算出する演算部32と、体脂肪算出に用いられる基礎データや制御パラメータなどを記憶しているメモリ33とを備えている。体脂肪算出に用いられる基礎データは、例えば、水中体重法やCT法(コンピューティッド・トモグラフィ法)により求めた体脂肪量と静電容量(インピーダンス)との相関式である。   In addition, the above-described control unit 2 is constituted by, for example, a microprocessor and the like, and is measured by a central control unit CPU that performs data input / output management and switching measurement control by the electrode switching circuit 22, and a capacitance measurement unit 23. A calculation unit 32 that calculates body fat mass based on the capacitance between each insulated electrode that is input via the control unit CPU and the stored basic data, measurement / calculation condition data, and the like, for body fat calculation And a memory 33 for storing basic data and control parameters used. The basic data used for calculating body fat is, for example, a correlation formula between body fat mass and capacitance (impedance) obtained by the underwater weight method or CT method (computed tomography method).

また、中央制御部CPUは、表示部4と入力手段5を制御している。入力手段5を介して、外周長入力手段51による被測定体の被測定部Mの外周長や、条件入力手段52による被測定体の体重・身長・年齢・性別のいずれか又は全ての計測・演算条件が中央制御部CPUに入力される。これらの条件データは演算部32で用いられる。中央制御部CPUは、表示部4を介して、数値の他、演算部32で算出された体脂肪の分布を平面的又は立体的に表示する。また、静電容量計測手段23は、各電極間の静電容量を計測するため、中央制御部CPUの制御のもとで電極切替回路22による切り替えられた絶縁電極を選択的にスキャンする。   The central control unit CPU controls the display unit 4 and the input unit 5. Via the input means 5, the outer peripheral length of the part M to be measured by the outer peripheral length input means 51, the weight / height / age / gender of the measured object by the condition input means 52, or all measurement / Calculation conditions are input to the central control unit CPU. These condition data are used in the calculation unit 32. The central control unit CPU displays the distribution of the body fat calculated by the calculation unit 32 in a two-dimensional or three-dimensional manner through the display unit 4 in addition to numerical values. The capacitance measuring means 23 selectively scans the insulated electrodes switched by the electrode switching circuit 22 under the control of the central control unit CPU in order to measure the capacitance between the electrodes.

次に、体脂肪測定装置1の具体的構造を説明する。図2(a)〜(d)は、体脂肪測定装置1の外観及び断面を示す。体脂肪測定装置1は、図2(a)(b)(c)に示すように、入力用ボタンや表示部を備えた操作器11と、操作器11を略中央部に備えた計測ベルト12とからなり、図2(d)に示すように、被測定部M、例えば腹部に計測ベルト12を巻き付けて用いられる。操作器11には、上述の発振回路や制御部などの回路が内蔵されている。操作器11の押しボタンからなる条件入力手段52によって身長・体重・年齢・性別が入力される。また、ボタン53によって、測定制御や条件クリヤなどが行われる。表示部4の画面を見ながらボタン操作や、表示部4に表示された測定結果の確認を行うことができる。表示部4には、演算部で算出された体脂肪の分布が平面的又は立体的に表示され、使用者は、体脂肪の分布を視覚的に把握して、体脂肪減量エクササイズなどに有効活用できる。   Next, a specific structure of the body fat measuring device 1 will be described. 2A to 2D show an appearance and a cross section of the body fat measurement device 1. FIG. As shown in FIGS. 2A, 2B, and 2C, the body fat measuring device 1 includes an operating device 11 that includes an input button and a display unit, and a measuring belt 12 that includes the operating device 11 in a substantially central portion. As shown in FIG. 2 (d), the measurement belt 12 is wound around the measurement target M, for example, the abdomen. The operation device 11 incorporates circuits such as the above-described oscillation circuit and control unit. Height, weight, age, and sex are input by the condition input means 52 including push buttons of the operation device 11. Further, measurement control and condition clearing are performed by the button 53. While viewing the screen of the display unit 4, it is possible to perform button operations and check the measurement results displayed on the display unit 4. The display unit 4 displays the distribution of the body fat calculated by the calculation unit in a two-dimensional or three-dimensional manner, so that the user can visually grasp the distribution of the body fat and effectively use it for body fat weight loss exercises, etc. it can.

計測ベルト12は、ベースとなるシート6と、シート6の上に形成された複数の絶縁電極21と、各絶縁電極21を操作器11内部の測定回路部分に接続する導線(不図示)と、以下に説明する被測定部の外周長自動計測機能の構造とを備えて構成されている。絶縁電極21は、シート6の長さ方向に沿って、一列又は複数列に配置される。絶縁電極21が、シート6上に形成されることにより、複数個でも簡単に形成可能であり、計測ベルト12にも薄く収納できるので、装着感が良くなる。   The measurement belt 12 includes a base sheet 6, a plurality of insulating electrodes 21 formed on the sheet 6, a conductive wire (not shown) that connects each insulating electrode 21 to a measurement circuit portion inside the operation device 11, And a structure of a function for automatically measuring the outer peripheral length of the part to be measured, which will be described below. The insulating electrodes 21 are arranged in one or a plurality of rows along the length direction of the sheet 6. By forming the insulating electrode 21 on the sheet 6, a plurality of insulating electrodes 21 can be easily formed and can be stored thinly in the measuring belt 12, so that the wearing feeling is improved.

上述の計測ベルト12による、被測定部の外周長自動計測機能について説明する。シート6のおもて面の一部には、接点検出導体62が、また裏面には、長さ計測用抵抗体63が、それぞれ電気的接触可能な状態で形成されている。この体脂肪測定装置1を、図2(d)に示すように装着すると、長さ計測用抵抗体63上の点Pと、接点検出導体62上の点P1が接触する。そして、図2(c)に示すように、長さ計測用抵抗体63上の点Qと点P間の距離L、すなわち被測定部Mの外周長が、外周長に比例する抵抗値として前述の制御部に読み込まれる。制御部に入力された抵抗値が外周長に換算され、絶縁電極を用いて計測された静電容量から求めた体脂肪量と共に表示部4に表示される。   The automatic outer peripheral length measurement function of the part to be measured by the above-described measurement belt 12 will be described. A contact detection conductor 62 is formed on a part of the front surface of the sheet 6, and a length measuring resistor 63 is formed on the back surface in a state in which electrical contact is possible. When the body fat measuring device 1 is mounted as shown in FIG. 2D, the point P on the length measuring resistor 63 and the point P1 on the contact detection conductor 62 are in contact with each other. As shown in FIG. 2C, the distance L between the point Q and the point P on the length measuring resistor 63, that is, the outer peripheral length of the part M to be measured is described above as a resistance value proportional to the outer peripheral length. Is read by the control unit. The resistance value input to the control unit is converted into the outer peripheral length, and is displayed on the display unit 4 together with the body fat amount obtained from the capacitance measured using the insulating electrode.

上述のように、体脂肪測定装置1において、被測定部Mの脂肪量を算出する際に、被測定部周囲長(外周長)及び/又は性別及び/又は年齢を考慮して算出精度を高めるようにされている。人体の静電容量測定に関する文献として、生体を電気等価回路で表現したときの情報である誘電率に着目した「木本晃、信太克規“静電容量測定による脳ファントムの温度変化分布推定”電気学会論文誌C、Vol.119−C、No.8/9、PP.998−1003(1999.8/9)」がある。   As described above, in the body fat measurement device 1, when calculating the fat amount of the measurement target M, the calculation accuracy is improved in consideration of the measurement target circumference (peripheral length) and / or gender and / or age. Has been. As a literature on capacitance measurement of the human body, “Kimoto Satoshi, Nobuta Katsunori“ Estimation of temperature change distribution of brain phantom by capacitance measurement ”focusing on dielectric constant, which is information when living body is expressed by electrical equivalent circuit Journal of academic society C, Vol. 119-C, No. 8/9, PP. 998-1003 (1999. 8/9) ”.

そして、生体の電気的性質のうち導電率σに注目すると、電極間に印加される電圧の周波数、及び体組成分に対して導電率σは、表1に示すような値を持つ。脂肪の導電率が他の体組成分の導電率より略一桁以上小さい(抵抗が大きい)値を有している。電流を流して体組成分を調べる方法は、電流が流れやすい部分を流れるので、抵抗の大きい脂肪の分布を調べるには不利と考えられる。人体を形成する細胞の形質膜は脂質の二重膜及び様々なタンパク質、糖質からできていて、電気的にはコンデンサとして働くと考えられる。コンデンサは、その静電容量が一定の場合、周波数に比例して電気を通しやすくなる。生体の電気特性は、単純化した場合、静電容量(比誘電率εに関係)と抵抗(導電率σに関係)の並列回路で等価的に表される。そこで、絶縁した電極間の体組成分で定まる静電容量を回路に含む発振回路の発振周波数をもとにして静電容量を計測することで精度良く体脂肪の分布を求めることが可能となる。   When attention is paid to the electrical conductivity σ among the electrical properties of the living body, the electrical conductivity σ has values as shown in Table 1 with respect to the frequency of the voltage applied between the electrodes and the body composition. The conductivity of fat has a value that is approximately an order of magnitude smaller (or higher resistance) than the conductivity of other body compositions. The method of investigating the body composition by passing an electric current is considered disadvantageous for investigating the distribution of fat with high resistance because it flows in a portion where the electric current easily flows. The plasma membrane of the cells that form the human body is composed of a lipid bilayer membrane and various proteins and carbohydrates, and is considered to function electrically as a capacitor. When the capacitance of the capacitor is constant, it becomes easy to conduct electricity in proportion to the frequency. When simplified, the electrical characteristics of a living body are equivalently represented by a parallel circuit of capacitance (related to relative permittivity ε) and resistance (related to conductivity σ). Therefore, the body fat distribution can be obtained with high accuracy by measuring the capacitance based on the oscillation frequency of the oscillation circuit including the capacitance determined by the body composition between the insulated electrodes in the circuit. .

Figure 2005152061
Figure 2005152061

次に、体脂肪測定装置1を用いた体脂肪測定のフローを、図3により説明する。なお、前出の図1及び図2も参照する。体脂肪測定は、例えば、腹部、大腿部などの被測定部Mに体脂肪測定装置1の計測ベルト12を巻き付けて装着することから始まる(S1)。その後、条件入力手段52によって、体重・身長・年齢・性別等を入力する(S2)。続いて、中央制御部31において、メモリ33から測定制御パラメータや脂肪量計算のための規準値や基礎データが読み込まれ、測定の初期値設定が行われる(S3)。続いて、絶縁電極の各対について、発振周波数測定(S4)、絶縁電極切替(S5)、測定済み判断(S6)が行われる。   Next, a flow of body fat measurement using the body fat measuring device 1 will be described with reference to FIG. Reference is also made to FIG. 1 and FIG. The body fat measurement is started, for example, by winding the measurement belt 12 of the body fat measurement device 1 around the measurement target M such as the abdomen and thigh (S1). Thereafter, the condition input means 52 inputs weight, height, age, sex, etc. (S2). Subsequently, the central control unit 31 reads measurement control parameters, reference values for fat mass calculation, and basic data from the memory 33, and sets initial values for measurement (S3). Subsequently, oscillation frequency measurement (S4), insulation electrode switching (S5), and measurement completion determination (S6) are performed for each pair of insulation electrodes.

全電極の対について測定が済むと(S6でY)、温度センサで測定された環境温度/人体温度が読み込まれ(S7)、発振周波数から静電容量への変換、測定温度に基づく静電容量の温度補正、基礎データや計測・演算条件データ等に基づいた体脂肪量の算出が行われる(S8)。発振周波数計測だけでは、体脂肪量の相対的変化はわかるが、体脂肪量の絶対値として算出できないため、基礎データや計測・演算条件データが参照される。これらのデータは、例えば、CTスキャンにより測定した体脂肪算出値を測定基準としてメモリに記憶させたデータである。これらは個人のCTスキャンによる体脂肪値であってもよく、また、複数人数に対する発振周波数の測定結果とCTスキャンデータから得られた体脂肪相関による相関式をプリセットしておいたデータでよい。算出された体脂肪量の結果は、表示部4に表示されて体脂肪量測定は終了する(S9)。   When measurement is completed for all electrode pairs (Y in S6), the ambient temperature / human body temperature measured by the temperature sensor is read (S7), conversion from oscillation frequency to capacitance, and capacitance based on the measured temperature The body fat amount is calculated based on the temperature correction, basic data, measurement / calculation condition data, and the like (S8). Although the relative change in the body fat mass can be determined only by the oscillation frequency measurement, it cannot be calculated as the absolute value of the body fat mass, so the basic data and measurement / calculation condition data are referred to. These data are, for example, data stored in a memory using a calculated body fat value measured by CT scan as a measurement standard. These may be body fat values obtained by individual CT scans, or data obtained by presetting correlation equations based on body fat correlation obtained from the measurement results of oscillation frequencies and CT scan data for a plurality of persons. The result of the calculated body fat mass is displayed on the display unit 4, and the body fat mass measurement is completed (S9).

次に、絶縁電極間の体組成分で定まる静電容量を求める具体的な発振回路について説明する。図4乃至図6は、(a)体脂肪測定装置における静電容量計測用の発振回路2、及び(b)同回路における動作状態毎の電圧変化、を示す。体脂肪測定装置における測定の基本原理は、一対の絶縁電極間の静電容量が体組成分によって定まることを応用している。図4(a)の発信回路2中のコンデンサC1の部分に一対の絶縁電極を対応させる。すなわち、コンデンサC1は、人体の体組成分を誘電体として絶縁電極間に挿入して形成したコンデンサである。人体の体組成分が変化すると静電容量が変化する。このコンデンサC1を発振回路中の素子として組み込むことにより、体組成分の違いが出力発振周波数の違いとして捉えられ、出力発振周波数値を静電容量の違いに対応させることができる。体脂肪量の変化に対する、発振周波数の変化の大きい周波数帯域の選択が重要となる。   Next, a specific oscillation circuit for obtaining the capacitance determined by the body composition between the insulating electrodes will be described. 4 to 6 show (a) the oscillation circuit 2 for measuring capacitance in the body fat measurement device, and (b) voltage change in each operation state in the circuit. The basic principle of measurement in the body fat measurement device is that the capacitance between a pair of insulated electrodes is determined by the body composition. A pair of insulating electrodes is made to correspond to the portion of the capacitor C1 in the transmission circuit 2 in FIG. That is, the capacitor C1 is a capacitor formed by inserting the body composition of the human body as a dielectric between the insulated electrodes. When the body composition of the human body changes, the capacitance changes. By incorporating this capacitor C1 as an element in the oscillation circuit, a difference in body composition can be recognized as a difference in output oscillation frequency, and an output oscillation frequency value can be made to correspond to a difference in capacitance. It is important to select a frequency band in which the oscillation frequency changes greatly with respect to changes in the body fat mass.

図4(a)に示す発振回路2は、電圧比較器(コンパレータ)CP1,CP2、フリップフロップFF、及び放電用のトランジスタTRをアクティブ素子として備えて構成されている。図4(a)(b)は、電源投入直後の状態を示している。電源電圧Vccが、直列に接続された3つの抵抗器R1,R2,R3によって3分割されている。電圧比較器CP1のプラス入力端子には、電源電圧Vccの1/3の電圧V1、電圧比較器CP2のマイナス端子には、電源電圧Vccの2/3の電圧V2が印加されている。また、コンデンサC1には、抵抗器Ra,スレッショルド端子Y、抵抗器Rb、トリガ端子Xを介して電源電圧Vccが接続されている。トリガ端子Xにおける電圧が、電源電圧Vccの1/3以下(V1以下)ではフリップフロップFFのS端子がHレベルになり、フリップフロップFFがセット状態になる。スレッショルド端子Yが電源電圧Vccの2/3以上(V2以上)になるとフリップフロップFFのR端子がHレベルになり、FFがリセット状態になる。   The oscillation circuit 2 shown in FIG. 4A includes voltage comparators (comparators) CP1 and CP2, a flip-flop FF, and a discharge transistor TR as active elements. 4 (a) and 4 (b) show a state immediately after the power is turned on. The power supply voltage Vcc is divided into three by three resistors R1, R2 and R3 connected in series. A voltage V1 that is 1/3 of the power supply voltage Vcc is applied to the positive input terminal of the voltage comparator CP1, and a voltage V2 that is 2/3 of the power supply voltage Vcc is applied to the negative terminal of the voltage comparator CP2. The power supply voltage Vcc is connected to the capacitor C1 through a resistor Ra, a threshold terminal Y, a resistor Rb, and a trigger terminal X. When the voltage at the trigger terminal X is 1/3 or less (V1 or less) of the power supply voltage Vcc, the S terminal of the flip-flop FF becomes H level, and the flip-flop FF is set. When the threshold terminal Y becomes 2/3 or more (V2 or more) of the power supply voltage Vcc, the R terminal of the flip-flop FF becomes H level and the FF is reset.

電源投入直後、フリップフロップFFは、Q端子がHレベル、Qバー端子がLレベルであり、トランジスタTRは、OFF状態である。そして、コンデンサC1には、抵抗Ra、Rbを通して電流が流れ、充電される。トリガ端子Xの電圧は、図4(b)に示すように、0Vからスタートして、コンデンサC1の充電と共に上昇する。トリガ端子Xが、電圧比較器CP1のプラス入力端子電圧がV1より低い間は、フリップフロップFFのS端子はHレベル状態である。一方、電圧比較器CP2のプラス入力端子電圧は、V2より低いので、電圧比較器CP2の出力はLになり、フリップフロップFFは、この状態で安定している。   Immediately after power-on, the flip-flop FF has the Q terminal at the H level and the Q bar terminal at the L level, and the transistor TR is in the OFF state. The capacitor C1 is charged with a current flowing through the resistors Ra and Rb. As shown in FIG. 4B, the voltage of the trigger terminal X starts from 0V and increases with the charging of the capacitor C1. While the trigger terminal X has a positive input terminal voltage of the voltage comparator CP1 lower than V1, the S terminal of the flip-flop FF is in the H level state. On the other hand, since the positive input terminal voltage of the voltage comparator CP2 is lower than V2, the output of the voltage comparator CP2 becomes L, and the flip-flop FF is stable in this state.

続いて、図5(a)(b)に示すように、トリガ端子Xの電圧が電圧比較器CM1のプラス入力端子電圧V1を越えると、電圧比較器CP1の出力はLレベルとなる。トリガ端子Xの電圧がさらに上昇し、電圧比較器CP2のプラス入力端子電圧V2に達すると電圧比較器CP2の出力がHレベル状態になる。これにより、フリップフロップFFのR端子がHレベルとなり、フリップフロップFFの出力状態が反転する。Q端子がLレベル状態、Qバー端子がHレベル状態になる。この時、発振回路2の出力端子OUTの電圧は、HレベルからLレベルへと変化する。Qバー端子がHレベル状態となったことにより、トランジスタTRはON状態となる。すると、今まで抵抗器Ra、Rbを通してコンデンサC1に流れていた電流は、抵抗器Raと抵抗器Rbの接合点であるスレッショルド端子Yが接地された状態となるため、コンデンサC1には流れなくなる。逆に、コンデンサC1に溜まっていた電荷が、抵抗器Rb、トランジスタTRを通して放電される。この放電によりトリガ端子Xの電圧が降下し、電圧比較器CP2のプラス入力端子電圧がV2以下になり、フリップフロップFFのR端子がHレベルからLレベル状態に変化するが、フリップフロップFFの状態は変らない。すなわち、フリップフロップFFのR端子がHレベル状態になっているのは少しの時間だけである。   Subsequently, as shown in FIGS. 5A and 5B, when the voltage at the trigger terminal X exceeds the positive input terminal voltage V1 of the voltage comparator CM1, the output of the voltage comparator CP1 becomes L level. When the voltage at the trigger terminal X further rises and reaches the positive input terminal voltage V2 of the voltage comparator CP2, the output of the voltage comparator CP2 becomes H level. As a result, the R terminal of the flip-flop FF becomes H level, and the output state of the flip-flop FF is inverted. The Q terminal is in the L level state and the Q bar terminal is in the H level state. At this time, the voltage at the output terminal OUT of the oscillation circuit 2 changes from H level to L level. When the Q bar terminal is in the H level state, the transistor TR is turned on. Then, the current that has been flowing to the capacitor C1 through the resistors Ra and Rb so far does not flow to the capacitor C1 because the threshold terminal Y that is the junction point of the resistors Ra and Rb is grounded. On the contrary, the electric charge accumulated in the capacitor C1 is discharged through the resistor Rb and the transistor TR. Due to this discharge, the voltage at the trigger terminal X drops, the positive input terminal voltage of the voltage comparator CP2 becomes V2 or less, and the R terminal of the flip-flop FF changes from H level to L level. Will not change. That is, the R terminal of the flip-flop FF is in the H level state for only a short time.

続いて、図6(a)(b)に示すように、トランジスタTRがONになっていることによりコンデンサC1の電荷は放電を続け、トリガ端子Xの電圧は降下する。トリガ端子Xの電圧が電圧比較器CP1のプラス入力端子電圧V1以下になると、電圧比較器CP1の出力はHレベル状態となり、フリップフロップFFのS端子もHレベル状態になる。これによりフリップフロップFFのQ端子はHレベル、Qバー端子はLレベル状態に変化する。Qバー端子がLレベル状態となったことにより、トランジスタTRはOFF状態となり、今まで行われていたコンデンサC1の放電は停止し、コンデンサC1には再び、抵抗器Ra、Rbを通して電流が流れ、電荷が溜まり始める。コンデンサC1に電荷が溜まり始めるとトリガ端子Xの電圧が上がり始め、電圧比較器CP1の出力はすぐにLレベル状態となる。   Subsequently, as shown in FIGS. 6A and 6B, the charge of the capacitor C1 continues to be discharged because the transistor TR is ON, and the voltage of the trigger terminal X drops. When the voltage at the trigger terminal X becomes equal to or lower than the positive input terminal voltage V1 of the voltage comparator CP1, the output of the voltage comparator CP1 is in the H level state, and the S terminal of the flip-flop FF is also in the H level state. As a result, the Q terminal of the flip-flop FF changes to the H level and the Q bar terminal changes to the L level. When the Q bar terminal is in the L level state, the transistor TR is turned off, and the discharging of the capacitor C1 performed so far is stopped, and the current flows again through the resistors Ra and Rb to the capacitor C1, Charge begins to accumulate. When charge starts to accumulate in the capacitor C1, the voltage at the trigger terminal X begins to rise, and the output of the voltage comparator CP1 immediately goes into the L level state.

上述の充電と放電の動作が繰り返えされ、発振回路2の出力端子OUTの電圧は、矩形波の信号となって出力されることになる。繰り返し周期は、コンデンサC1の充電時(電荷を溜める)には抵抗器Ra、Rbを通して電流が流れ、放電時(電荷を逃がす)には抵抗器Rbのみを流れるため、充電時間T2と放電時間T1の長さは異なる。この充電時間T2と放電時間T1は、コンデンサC1の静電容量を直接反映するものであり、従って、充電時間T1と放電時間T1を測定すること、すなわち、発振回路2の発信周波数を測定することにより、被測定部Mの静電容量を求めることができる。   The above charging and discharging operations are repeated, and the voltage at the output terminal OUT of the oscillation circuit 2 is output as a rectangular wave signal. The repetitive period is such that current flows through the resistors Ra and Rb when the capacitor C1 is charged (accumulates electric charge), and only the resistor Rb flows when discharged (discharges electric charge), so that the charging time T2 and the discharging time T1 The length of is different. The charging time T2 and the discharging time T1 directly reflect the capacitance of the capacitor C1. Therefore, the charging time T1 and the discharging time T1 are measured, that is, the oscillation frequency of the oscillation circuit 2 is measured. Thus, the capacitance of the part M to be measured can be obtained.

次に、体脂肪測定装置1を用いた人体の内部に存在する部分的脂肪量の測定について、図7により説明する。人体の、例えば、腹部を被測定部Mとすると、図7に示すように、その断面外周部には、皮下脂肪81が存在し、内部には、背骨83や内臓とともに、内臓周辺に蓄積された内臓脂肪82が存在する。被測定部Mの皮膚表面に、正の絶縁電極21aを基準にして、1つの対向する負の絶縁電極21bを配置し、電極間の静電容量を静電容量計測手段23を用いて測定する。2つの絶縁電極21a,21bで形成されるコンデンサとこれに接続された静電容量計測手段23によって、前述の発振回路2が形成されている。発振回路(静電容量計測手段23)から出力される高周波出力電流(変位又は電束電流)は、被測定部M内を、曲線Eで示すように、被測定部M全体を横断して通過する。従って、図7に示す絶縁電極21a,21bの配置による測定では、皮下脂肪81と内臓脂肪82を合計した体脂肪量が測定される。   Next, the measurement of the partial fat amount existing inside the human body using the body fat measuring device 1 will be described with reference to FIG. For example, when the abdomen of the human body is the measurement target M, as shown in FIG. 7, subcutaneous fat 81 is present at the outer periphery of the cross section, and is accumulated around the internal organs along with the spine 83 and internal organs. Visceral fat 82 is present. One opposing negative insulating electrode 21b is arranged on the skin surface of the measurement target M with reference to the positive insulating electrode 21a, and the capacitance between the electrodes is measured using the capacitance measuring means 23. . The aforementioned oscillation circuit 2 is formed by the capacitor formed by the two insulating electrodes 21a and 21b and the capacitance measuring means 23 connected to the capacitor. The high-frequency output current (displacement or electric flux current) output from the oscillation circuit (capacitance measuring means 23) passes through the measured part M across the measured part M as indicated by the curve E. To do. Therefore, in the measurement based on the arrangement of the insulating electrodes 21a and 21b shown in FIG. 7, the total body fat mass including the subcutaneous fat 81 and the visceral fat 82 is measured.

上述の測定において、絶縁電極21a,21bと人体皮膚面とは密着させる必要があるが、電気的には絶縁されており、従って伝導電流は流れない。静電容量計測手段23は、正の絶縁電極21aと負の絶縁電極21bとの間に交流電流を流し、この間の静電容量に応じた周波数を発生させる。制御部3は、この周波数を測定する測定手段と、測定された周波数に基づいて被測定部Mの脂肪量を算出する演算部とを備えている。制御部3には、測定者の被測定部外周長(ウエスト長)や性別及び必要に応じて年齢などの身体情報を入力するための入力手段を接続して備えてもよい。制御部3に接続された表示部4は、入力された身体情報及び算出した脂肪量が表示される。このときの演算部は、測定された周波数と入力された測定者の被測定部外周長や性別(及び必要に応じて年齢)を用いて、人体被測定部の脂肪量を算出する。   In the measurement described above, the insulated electrodes 21a and 21b and the human skin surface need to be in close contact with each other, but are electrically insulated, and therefore no conduction current flows. The electrostatic capacitance measuring means 23 causes an alternating current to flow between the positive insulating electrode 21a and the negative insulating electrode 21b, and generates a frequency corresponding to the electrostatic capacity therebetween. The control unit 3 includes a measuring unit that measures the frequency, and an arithmetic unit that calculates the fat mass of the measurement target M based on the measured frequency. The control unit 3 may be connected to input means for inputting physical information such as the outer circumference length (waist length) of the measurement person, sex, and age as necessary. The display unit 4 connected to the control unit 3 displays the input body information and the calculated fat amount. At this time, the calculation unit calculates the fat mass of the human body measurement portion using the measured frequency and the input measurement subject outer circumference length and gender (and age if necessary).

また、体組成分に対応した静電容量は、一般に周囲温度にも影響を受けるため、図7に示すように、環境温度及び/又は人体温度を、サーミスタ等で形成された環境温度センサ71、人体温度センサ72で計測して、温度補正回路7によって、制御部3に補正値を提示して、測定精度をより高めることができる。   In addition, since the capacitance corresponding to the body composition is generally also affected by the ambient temperature, as shown in FIG. 7, the environmental temperature and / or the human body temperature is measured by an environmental temperature sensor 71 formed of a thermistor or the like. Measurement is performed by the human body temperature sensor 72, and the correction value is presented to the control unit 3 by the temperature correction circuit 7, so that the measurement accuracy can be further improved.

次に、人体の内部に存在する皮下脂肪や内臓脂肪などの部分的脂肪量に対し、体脂肪測定装置1を用いて行う選択的な測定について、図8により説明する。この測定において、人体の被測定部M表面上に第1の絶縁電極Z1を配置し、対向する第2の絶縁電極Z2との間の静電容量を測定する。これは上述した測定と同様である。次に、第1の絶縁電極Z1と第4の絶縁電極間Z4との間の静電容量を測定する。この場合、高周波電流は最短距離を通るため、皮膚直下の皮下脂肪81の値を反映した測定結果が得られる。すなわち、被測定部の皮下脂肪測定は、被測定部周囲に互いに隣接して配置された正の絶縁電極と負の絶縁電極とを用いることで可能となる。   Next, selective measurement using the body fat measuring device 1 for partial fat amounts such as subcutaneous fat and visceral fat existing in the human body will be described with reference to FIG. In this measurement, the first insulating electrode Z1 is disposed on the surface of the measurement target M of the human body, and the capacitance between the first insulating electrode Z2 and the opposing second insulating electrode Z2 is measured. This is the same as the measurement described above. Next, the capacitance between the first insulating electrode Z1 and the fourth insulating electrode Z4 is measured. In this case, since the high-frequency current passes through the shortest distance, a measurement result reflecting the value of the subcutaneous fat 81 directly under the skin is obtained. That is, the measurement of the subcutaneous fat of the part to be measured is possible by using a positive insulating electrode and a negative insulating electrode which are arranged adjacent to each other around the part to be measured.

そこで、第1絶縁電極Z1と第2絶縁電極Z2間の静電容量から、第1絶縁電極Z1と第4絶縁電極Z4間の静電容量を引けば、内臓脂肪量の測定結果が得られる。さらに測定精度を上げるためには、第1の絶縁電極Z1と第3絶縁電極間Z3の静電容量を測定し、次に絶縁電極を変えて第2の絶縁電極Z2から他の絶縁電極を見ることにより、次々にスキャンして静電容量を測定し、皮下脂肪や内臓脂肪などの部分的脂肪量に対し、選択的な測定が可能となる。   Therefore, if the electrostatic capacitance between the first insulating electrode Z1 and the fourth insulating electrode Z4 is subtracted from the electrostatic capacitance between the first insulating electrode Z1 and the second insulating electrode Z2, the measurement result of the visceral fat mass can be obtained. In order to further increase the measurement accuracy, the capacitance between the first insulating electrode Z1 and the third insulating electrode Z3 is measured, and then the other insulating electrode is changed to see another insulating electrode from the second insulating electrode Z2. Thus, the capacitance can be measured by scanning one after another, and selective measurement can be performed on the partial fat amount such as subcutaneous fat and visceral fat.

次に、人体の内部に存在する皮下脂肪や内臓脂肪などの部分的脂肪量を位置情報として捉え、かつ精度を向上させた測定について、図9により説明する。この測定方法は、前述の測定方法の発展型とも言えるものである。まず、第1の絶縁電極Z1を中心に考えると、すぐ隣の第4の絶縁電極Z4の間に生ずる静電容量を測定し、次に第1と第6、第1と第8、・・、第1と第16という順で各絶縁電極間の静電容量を発振周波数として測定する。   Next, a measurement in which the partial fat amount such as subcutaneous fat and visceral fat existing in the human body is regarded as position information and the accuracy is improved will be described with reference to FIG. This measurement method can be said to be a development of the above-described measurement method. First, considering the first insulating electrode Z1 as a center, the capacitance generated between the adjacent fourth insulating electrode Z4 is measured, and then the first and sixth, first and eighth,... The electrostatic capacitance between the insulated electrodes is measured as the oscillation frequency in the order of the first and sixteenth.

さらに続けて、第4の絶縁電極Z4を基準にして、第4と第6、・・、第4と第1のように反時計周りで次々とスキャンを行う。この例では、全スキャンを実施すると16×16=256の静電容量データが収集できる。これらのデータを、隣同士の絶縁電極の測定値のみの情報として処理すれば、皮下脂肪81を反映したデータとなる。また、内蔵脂肪82を横断する方向における測定データの結果から、皮下脂肪81を減算すれば、内臓脂肪82を反映した測定データとなる。   Subsequently, with the fourth insulating electrode Z4 as a reference, scanning is sequentially performed counterclockwise as in the fourth and sixth,..., Fourth and first. In this example, 16 × 16 = 256 capacitance data can be collected when all scans are performed. If these data are processed as information of only the measurement values of the adjacent insulated electrodes, the data reflects the subcutaneous fat 81. Further, if the subcutaneous fat 81 is subtracted from the result of the measurement data in the direction crossing the internal fat 82, the measurement data reflecting the visceral fat 82 is obtained.

また、絶縁電極間の測定は交差する部分があるので、測定データを被測定部Mの断面における2次元のマップとして捉えることも可能であり、部分的な脂肪量を計測することも可能である。本実施例では16電極としたが、もっと電極数を増やして被測定部Mの表面に隙間なく絶縁電極を配置することにより、さらに測定精度を向上させることができる。また、本実施例では、絶縁電極の配置を一列としているが、列数を複数化することにより、体脂肪の立体的な測定と、分布表示が可能である。   Further, since there are intersecting portions in the measurement between the insulated electrodes, it is possible to capture the measurement data as a two-dimensional map in the cross section of the measurement target M, and it is also possible to measure a partial fat mass. . In this embodiment, the number of electrodes is 16; however, the measurement accuracy can be further improved by further increasing the number of electrodes and arranging the insulating electrodes on the surface of the portion M to be measured without gaps. Further, in this embodiment, the arrangement of the insulating electrodes is one row, but by making the number of rows plural, three-dimensional measurement of body fat and distribution display are possible.

また、図10に示すように、体脂肪測定装置における絶縁電極21A,21Bをアンテナとして捉えて、発振回路2A、受信回路2Bと制御部31による測定システムと考えることができる。すなわち発信回路2Aで形成された電波EMを、第1の絶縁電極(アンテナ)21Aから放射し、第2の絶縁電極(アンテナ)2Bで受信するシステムである。体内の組成物により電波の伝わり方が変わるため、送信電波と受信電波の位相差や電波強度の減衰等をパラメータとして、体脂肪量、及びその空間分布を測定・算出することができる。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   Further, as shown in FIG. 10, the insulated electrodes 21A and 21B in the body fat measurement device can be regarded as an antenna, and can be considered as a measurement system including the oscillation circuit 2A, the reception circuit 2B, and the control unit 31. That is, the radio wave EM formed by the transmission circuit 2A is radiated from the first insulating electrode (antenna) 21A and received by the second insulating electrode (antenna) 2B. Since propagation of radio waves varies depending on the composition in the body, body fat mass and its spatial distribution can be measured and calculated using parameters such as phase difference between transmitted radio waves and received radio waves and attenuation of radio wave intensity. The present invention is not limited to the above-described configuration, and various modifications can be made.

本発明の一実施形態に係る体脂肪測定装置についての、ブロック構成図。The block block diagram about the body fat measuring device which concerns on one Embodiment of this invention. (a)は同体脂肪測定装置の正面図、(b)は(a)におけるA−A断面図、(c)は(b)におけるB−B断面図、(d)は同体脂肪測定装置の使用状態を示す断面図。(A) is a front view of a body fat measuring device, (b) is a sectional view taken along line AA in (a), (c) is a sectional view taken along line BB in (b), and (d) is a use of the body fat measuring device. Sectional drawing which shows a state. 同上体脂肪測定装置を用いた体脂肪測定のフローチャート図。The flowchart figure of the body fat measurement using a body fat measuring apparatus same as the above. (a)は同上体脂肪測定装置における静電容量計測用発振回路の回路図、(b)は同回路における動作状態を示す電圧変化図。(A) is a circuit diagram of an oscillation circuit for capacitance measurement in the upper body fat measurement device, (b) is a voltage change diagram showing the operating state in the same circuit. (a)は同上体脂肪測定装置における静電容量計測用発振回路の回路図、(b)は同回路における動作状態を示す電圧変化図。(A) is a circuit diagram of an oscillation circuit for capacitance measurement in the upper body fat measurement device, (b) is a voltage change diagram showing the operating state in the same circuit. (a)は同上体脂肪測定装置における静電容量計測用発振回路の回路図、(b)は同回路における動作状態を示す電圧変化図。(A) is a circuit diagram of an oscillation circuit for capacitance measurement in the upper body fat measurement device, (b) is a voltage change diagram showing the operating state in the same circuit. 同上体脂肪測定装置を用いた体脂肪測定を説明するブロック図。The block diagram explaining the body fat measurement using a body fat measuring apparatus same as the above. 同上体脂肪測定装置を用いた体脂肪測定を説明するブロック図。The block diagram explaining the body fat measurement using a body fat measuring apparatus same as the above. 同上体脂肪測定装置を用いた体脂肪測定を説明するブロック図。The block diagram explaining the body fat measurement using a body fat measuring apparatus same as the above. 同上体脂肪測定装置を用いた体脂肪測定を説明するブロック図。The block diagram explaining the body fat measurement using a body fat measuring apparatus same as the above.

符号の説明Explanation of symbols

1 体脂肪測定装置
2 発振回路
3 制御部
4 表示部
5 入力手段
6 シート
7 温度補正回路
21、21a、21b、Z1〜Z19 絶縁電極
23 静電容量計測手段
32 演算部
81 皮下脂肪
82 内臓脂肪
M 被測定体
DESCRIPTION OF SYMBOLS 1 Body fat measuring device 2 Oscillation circuit 3 Control part 4 Display part 5 Input means 6 Sheet | seat 7 Temperature correction circuit 21, 21a, 21b, Z1-Z19 Insulating electrode 23 Capacitance measuring means 32 Calculation part 81 Subcutaneous fat 82 Visceral fat M Object to be measured

Claims (10)

複数の絶縁電極と、
前記絶縁電極の1つの絶縁電極と他の絶縁電極間に電圧を印加して、各電極間の静電容量を計測する静電容量計測手段と、
計測された静電容量に基づいて体脂肪量を算出する演算部と、
算出された結果を表示する表示部と、を備え、
前記絶縁電極は、被測定体である人体の皮膚面から絶縁された状態で配置使用され、
前記静電容量計測手段は、前記絶縁電極間の体組成分で定まる静電容量を回路に含む発振回路の発振周波数をもとにして静電容量を計測することを特徴とする体脂肪測定装置。
A plurality of insulated electrodes;
A capacitance measuring means for applying a voltage between one insulated electrode of the insulated electrode and the other insulated electrode to measure a capacitance between the electrodes;
An arithmetic unit that calculates body fat mass based on the measured capacitance;
A display unit for displaying the calculated result,
The insulated electrode is arranged and used in a state where it is insulated from the skin surface of the human body that is the measurement object,
The body fat measuring device, wherein the capacitance measuring means measures a capacitance based on an oscillation frequency of an oscillation circuit including a capacitance determined by a body composition between the insulating electrodes in the circuit. .
前記複数個の絶縁電極は、被測定部周囲に一列又は複数列に配置され、
該絶縁電極は、正負の極性が切り替えられることを特徴とする請求項1に記載の体脂肪測定装置。
The plurality of insulated electrodes are arranged in one or a plurality of rows around the portion to be measured,
The body fat measuring device according to claim 1, wherein the insulating electrode is switched between positive and negative polarities.
前記静電容量計測手段は、各電極間の静電容量を計測するため前記絶縁電極を選択的にスキャンすることを特徴とする請求項2に記載の体脂肪測定装置。   The body fat measuring device according to claim 2, wherein the capacitance measuring means selectively scans the insulating electrode in order to measure the capacitance between the electrodes. 前記被測定体の被測定部の外周長及び、該被測定体の体重・身長・年齢・性別のいずれか又は全てを入力する入力手段をさらに備え、
前記演算部は、前記計測された静電容量値と前記入力された被測定部の外周長とに基づいて脂肪量を算出することを特徴とする請求項1に記載の体脂肪測定装置。
And further comprising an input means for inputting any or all of the outer peripheral length of the measured part of the measured object and the weight, height, age, and sex of the measured object,
The body fat measurement device according to claim 1, wherein the calculation unit calculates a fat mass based on the measured capacitance value and the input outer peripheral length of the measurement target.
被測定部の皮下脂肪測定時は、被測定部周囲に互いに隣接して配置された正の絶縁電極と負の絶縁電極とを用いることを特徴とする請求項2に記載の体脂肪測定装置。   3. The body fat measuring device according to claim 2, wherein a positive insulating electrode and a negative insulating electrode arranged adjacent to each other around the portion to be measured are used when measuring the subcutaneous fat of the portion to be measured. 前記表示部は、前記演算部で算出された体脂肪の分布を平面的又は立体的に表示することを特徴とする請求項3に記載の体脂肪測定装置。   The body fat measurement device according to claim 3, wherein the display unit displays the distribution of body fat calculated by the calculation unit in a two-dimensional or three-dimensional manner. 前記静電容量計測手段は、静電容量を補正するための温度補正回路を有することを特徴とする請求項1に記載の体脂肪測定装置。   2. The body fat measuring device according to claim 1, wherein the capacitance measuring means includes a temperature correction circuit for correcting the capacitance. 前記温度補正回路は、環境温度及び/又は被測定部表面温度に基づいて補正を行うことを特徴とする請求項7に記載の体脂肪測定装置。   8. The body fat measurement device according to claim 7, wherein the temperature correction circuit performs correction based on an environmental temperature and / or a surface temperature of a measured part. 前記絶縁電極は、シート上に形成されることを特徴とする請求項2に記載の体脂肪測定装置。   The body fat measuring device according to claim 2, wherein the insulating electrode is formed on a sheet. 前記シート上に形成された絶縁電極は、前記シートを被測定部に巻き付けることによって被測定部に配置され、
前記シートの被測定部巻き付け時に被測定部周囲長を計測する周囲長計測手段をさらに備えていることを特徴とする請求項9に記載の体脂肪測定装置。
The insulated electrode formed on the sheet is disposed in the measured portion by winding the sheet around the measured portion,
The body fat measuring device according to claim 9, further comprising a peripheral length measuring unit that measures a peripheral length of the measured part when the measured part of the sheet is wound.
JP2003391559A 2003-11-21 2003-11-21 Body fat measuring device Expired - Fee Related JP4155170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391559A JP4155170B2 (en) 2003-11-21 2003-11-21 Body fat measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391559A JP4155170B2 (en) 2003-11-21 2003-11-21 Body fat measuring device

Publications (2)

Publication Number Publication Date
JP2005152061A true JP2005152061A (en) 2005-06-16
JP4155170B2 JP4155170B2 (en) 2008-09-24

Family

ID=34718538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391559A Expired - Fee Related JP4155170B2 (en) 2003-11-21 2003-11-21 Body fat measuring device

Country Status (1)

Country Link
JP (1) JP4155170B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123043A1 (en) * 2007-03-20 2008-10-16 Omron Healthcare Co., Ltd. Body fat measuring device
WO2008146661A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Abdomen wearing unit for measuring impedance of living body and body fat measuring device
WO2008146663A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Body fat measuring device
WO2008146662A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Body fat measuring device
WO2009011180A1 (en) * 2007-07-19 2009-01-22 Omron Healthcare Co., Ltd. Abdomen attachment unit for measuring living body impedance and body fat measuring device
JP2010099182A (en) * 2008-10-22 2010-05-06 Kao Corp Body fat measuring instrument for animals
EP2735266A1 (en) 2012-11-21 2014-05-28 Hutech Laboratory Co., Ltd. Method and apparatus for measurement of body fat on abdominal cross section including umbilicus
TWI472314B (en) * 2012-04-25 2015-02-11 Univ Ishou A method and an apparatus to measure the skin capacitances and signals
JPWO2015002210A1 (en) * 2013-07-02 2017-02-23 学校法人北里研究所 EIT measuring apparatus, EIT measuring method and program

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123043A1 (en) * 2007-03-20 2008-10-16 Omron Healthcare Co., Ltd. Body fat measuring device
US8150507B2 (en) 2007-06-01 2012-04-03 Omron Healthcare Co., Ltd. Body fat measurement device
WO2008146661A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Abdomen wearing unit for measuring impedance of living body and body fat measuring device
WO2008146663A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Body fat measuring device
WO2008146662A1 (en) * 2007-06-01 2008-12-04 Omron Healthcare Co., Ltd. Body fat measuring device
JP2008295881A (en) * 2007-06-01 2008-12-11 Omron Healthcare Co Ltd Body part mounting unit for measuring bio-impedance and body fat measuring instrument
JP2008295883A (en) * 2007-06-01 2008-12-11 Omron Healthcare Co Ltd Body fat measuring instrument
WO2009011180A1 (en) * 2007-07-19 2009-01-22 Omron Healthcare Co., Ltd. Abdomen attachment unit for measuring living body impedance and body fat measuring device
JP2009022515A (en) * 2007-07-19 2009-02-05 Omron Healthcare Co Ltd Abdomen attachment unit for measuring living body impedance and body fat measuring device
JP2010099182A (en) * 2008-10-22 2010-05-06 Kao Corp Body fat measuring instrument for animals
TWI472314B (en) * 2012-04-25 2015-02-11 Univ Ishou A method and an apparatus to measure the skin capacitances and signals
EP2735266A1 (en) 2012-11-21 2014-05-28 Hutech Laboratory Co., Ltd. Method and apparatus for measurement of body fat on abdominal cross section including umbilicus
JPWO2015002210A1 (en) * 2013-07-02 2017-02-23 学校法人北里研究所 EIT measuring apparatus, EIT measuring method and program
EP3017758A4 (en) * 2013-07-02 2017-08-16 School Juridical Person The Kitasato Institute Eit measurement device, eit measurement method and program
US10285618B2 (en) 2013-07-02 2019-05-14 School Juridical Person Kitasato Institute EIT measurement device, EIT measurement method and program
EP4154809A1 (en) * 2013-07-02 2023-03-29 School Juridical Person The Kitasato Institute Eit measurement device

Also Published As

Publication number Publication date
JP4155170B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
EP1621131B1 (en) Body composition meter
JP4024774B2 (en) Body fat measuring device
JP4101821B2 (en) Abdominal impedance type body composition meter
US9259169B2 (en) Visceral fat measurement device
US8527040B2 (en) Health managing device
US7233823B2 (en) Apparatus for measuring body composition
JP4155170B2 (en) Body fat measuring device
JP5641527B2 (en) Muscle mass evaluation method and muscle mass evaluation apparatus
JP2004195220A (en) Human body composition monitoring method and instrument for measuring induction coefficient and impedance of human body by digital quantity sampling method of frequency
JP5708136B2 (en) Weight management device
EP1393675A1 (en) Apparatus for judgment of physical constitution and physical strength of a person
Shiga et al. A new simple measurement system of visceral fat accumulation by bioelectrical impedance analysis
EP1488742B1 (en) Biological data acquiring apparatus
JP4099428B2 (en) Muscle mass estimation device
JP3396663B2 (en) Body fat measurement device
JP2005125059A (en) Adipometer and program for estimating body fat percentage
JP2003169784A (en) Body fat measuring instrument
KR20050105783A (en) Measuring installation of fat in body using a mobile and measuring method thereof
JP4647639B2 (en) Body fat measuring device
JP2009261435A (en) Body fat measuring device
KR20040106833A (en) Portable Communication Terminal Having Body Fat Measurement
JP5610535B2 (en) measuring device
WO2023163116A1 (en) Lesion evaluation device, lesion evaluation method, lesion evaluation program, and computer-readable non-transitory storage medium
JP3508633B2 (en) Body fat scale
KR200318855Y1 (en) A device for measuring fat of body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4155170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees