JP2005151999A - Regulatory gene for nitrile-hydratase gene expression - Google Patents

Regulatory gene for nitrile-hydratase gene expression Download PDF

Info

Publication number
JP2005151999A
JP2005151999A JP2005062078A JP2005062078A JP2005151999A JP 2005151999 A JP2005151999 A JP 2005151999A JP 2005062078 A JP2005062078 A JP 2005062078A JP 2005062078 A JP2005062078 A JP 2005062078A JP 2005151999 A JP2005151999 A JP 2005151999A
Authority
JP
Japan
Prior art keywords
gene
dna
nitrile hydratase
plasmid
nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005062078A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
昌 清水
Tatsuhiko Kobayashi
達彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005062078A priority Critical patent/JP2005151999A/en
Publication of JP2005151999A publication Critical patent/JP2005151999A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regulatory gene DNA encoding a peptide having activation ability of a nitrile-hydratase gene promoter, a recombinant DNA including the regulatory gene DNA, and a transformant transformed by the recombinant DNA. <P>SOLUTION: The regulatory gene DNA encoding a polypeptide having activation ability of a nitrile-hydratase gene promoter is isolated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はロドコッカス属細菌に由来し、ニトリルヒドラターゼ遺伝子プロモーターの活性化能を有するポリペプチドをコードする調節遺伝子DNA、このDNAを含む組換え体DNAおよび該組換え体DNAにより形質転換された形質転換体に関する。   The present invention relates to a regulatory gene DNA derived from Rhodococcus bacteria and encoding a polypeptide having the ability to activate a nitrile hydratase gene promoter, a recombinant DNA containing this DNA, and a trait transformed with the recombinant DNA. Concerning the converter.

ニトリル類を水和してアミド類を生成させる酵素であるニトリルヒドラターゼを用いたアミド類の製造方法は、常温常圧での反応であること、高い転化率等から、工業的にも優れた方法として用いられてきている。特に、ロドコッカス属細菌は著量の酵素を菌体内に蓄積することが知られており、高い触媒活性を有している(特公昭4-4873号、特開昭62-91189号、特開平2-470号および特開平2-84198号各公報参照)。   The method for producing amides using nitrile hydratase, which is an enzyme that hydrates nitriles to produce amides, is industrially superior because it is a reaction at normal temperature and pressure, and a high conversion rate. It has been used as a method. In particular, Rhodococcus bacteria are known to accumulate significant amounts of enzymes in the cells, and have high catalytic activity (Japanese Patent Publication Nos. 4-4873, 62-91189, and 2). -470 and JP-A-2-84198).

遺伝子組換えの方法でクローン化されたニトリルヒドラターゼ遺伝子によるニトリルの水和では、菌体内に同遺伝子を多コピー存在させることができるため、微生物の触媒能力を従来の方法に比して飛躍的に増大させることが期待できる。また、部位特異的変異、ランダム変異等の方法により、遺伝子組換え技術を用いた酵素の改良も容易となる。ロドコッカス属由来のニトリルヒドラターゼ遺伝子はN774株(特開平2-119778号)又はJ1株(特開平4-211379号)から得られている。このN774株のニトリルヒドラターゼ遺伝子をロドコッカス属-大腸菌複合プラスミドベクター(特開平5-64589号)に組込み、ロドコッカス属細菌に導入した場合には高い活性が得られている(特開平5-68566号)。一方、N774株のニトリルヒドラターゼに比して極めて高い性能を有するロドコッカス・ロドクロウスJ1株由来のニトリルヒドラターゼ遺伝子をロドコッカス属細菌に導入して発現させたものはこれまで報告されていない。   Nitrile hydration with the nitrile hydratase gene cloned by the genetic recombination method allows multiple copies of the same gene to be present in the cell, thus dramatically improving the catalytic ability of microorganisms compared to conventional methods. Can be expected to increase. In addition, improvement of the enzyme using gene recombination technology is facilitated by methods such as site-specific mutation and random mutation. The nitrile hydratase gene derived from the genus Rhodococcus has been obtained from the N774 strain (Japanese Patent Laid-Open No. 2-119778) or the J1 strain (Japanese Patent Laid-Open No. 4-21379). When the N774 nitrile hydratase gene is incorporated into a Rhodococcus-E. Coli composite plasmid vector (Japanese Patent Laid-Open No. 5-64589) and introduced into a Rhodococcus bacterium, high activity is obtained (Japanese Patent Laid-Open No. 5-68566). ). On the other hand, no nitrile hydratase gene derived from Rhodococcus rhodochrous J1 strain, which has extremely high performance as compared with N774 strain nitrile hydratase, has been reported so far.

発明者らは、J1株由来の遺伝子を導入した場合に発現が認められないのは、ニトリルヒドラターゼ遺伝子のプロモーターが機能しておらず、プロモーターが機能するために必要な調節遺伝子がこれまでに取得されているDNA領域には含まれていないためであろうと考えた。そこで、J1株染色体DNA上のどこかに存在するはずである調節遺伝子について探索した結果、ニトリルヒドラターゼ構造遺伝子の上流にその存在を見いだし、これを用いてロドコッカス属細菌組換え体においてJ1株ニトリルヒドラターゼ活性を高発現させ、本発明を完成するに至った。   The inventors have found that when the gene derived from the J1 strain is introduced, the expression of the nitrile hydratase gene promoter is not functioning, and the regulatory gene required for the function of the promoter has not been found so far. I thought it was because it was not included in the DNA region that was acquired. Therefore, as a result of searching for a regulatory gene that should exist somewhere on the chromosomal DNA of the J1 strain, it was found upstream of the nitrile hydratase structural gene, and this was used to detect the presence of the nitrile J1 strain in the recombinant genus Rhodococcus. The present invention was completed by highly expressing hydratase activity.

すなわち、本発明はロドコッカス属細菌に由来し、ニトリルヒドラターゼ遺伝子プロモーターの活性化能を有するポリペプチドをコードする調節遺伝子DNA、このDNAを含む組換え体DNAおよび該組換え体DNAにより形質転換された形質転換体に関する。   That is, the present invention is derived from a Rhodococcus bacterium, a regulatory gene DNA that encodes a polypeptide having the ability to activate a nitrile hydratase gene promoter, a recombinant DNA containing this DNA, and a recombinant DNA that is transformed with the recombinant DNA. The present invention relates to a transformant.

本発明の調節遺伝子を、プロモーター領域を含むニトリルヒドラターゼ遺伝子と同一ロドコッカス属菌体内に共存させることにより、該ニトリルヒドラターゼの大量生産を可能にせしめる。また、そのプロモーター下に異種遺伝子を導入することにより、異種タンパク質の高発現が可能となる。   By making the regulatory gene of the present invention coexist in the same genus Rhodococcus as the nitrile hydratase gene containing the promoter region, mass production of the nitrile hydratase is made possible. Further, by introducing a heterologous gene under the promoter, high expression of the heterologous protein becomes possible.

以下に、本発明を詳細に説明する。本発明は、下記の工程により実施されるものである。   The present invention is described in detail below. The present invention is carried out by the following steps.

(1) 染色体DNAの調製:
ロドコッカス・ロドクロウスJ1株より染色体DNAを分離、調製する。
(1) Chromosomal DNA preparation:
Chromosomal DNA is isolated and prepared from Rhodococcus rhodochrous strain J1.

(2) DNAライブラリーの作製:
J1株ニトリルヒドラターゼ遺伝子を有するプラスミドより、J1株由来の遺伝子部分を切り出しこれを放射線同位元素でラベルしプローブとする。
(2) Preparation of DNA library:
From the plasmid having the nitrile hydratase gene of the J1 strain, the gene portion derived from the J1 strain is excised and labeled with a radioisotope as a probe.

染色体DNAを制限酵素で切断後、サザーンハイブリダイゼーション法(Southern E. M. , J. Mol. Biol. 98 503 (1975))により目的遺伝子を含有するDNA断片画分を上記プロープを用いて検出する。この画分をプラスミドベクターpUC19に挿入しライブラリーとする。   After cleaving the chromosomal DNA with a restriction enzyme, a DNA fragment fraction containing the target gene is detected by the Southern hybridization method (Southern E. M., J. Mol. Biol. 98 503 (1975)) using the above probe. This fraction is inserted into the plasmid vector pUC19 to form a library.

(3) 形質転換体の作製および組換え体DNAの選別:
工程(2)で作製された組換え体DNAのライブラリーによる形質転換体を作製し、その中から工程(2)で作製したプローブを用いてコロニーハイブリダイゼーション法(R. Bruce Wallace. et al. Nuc. Acids Res. 9 879 (1981))により目的の組換え体DNAを含む形質転換体を選別する。更にサザーンハイブリダイゼーション法により目的の組換え体DNAの再確認を行う。
(3) Production of transformants and selection of recombinant DNA:
A transformant using the recombinant DNA library prepared in step (2) is prepared, and colony hybridization method (R. Bruce Wallace. Et al. Nuc. Acids Res. 9 879 (1981)), a transformant containing the desired recombinant DNA is selected. Furthermore, the target recombinant DNA is reconfirmed by Southern hybridization.

(4) 組換え体プラスミドの精製と制限酵素地図の作製:
工程(3)で得られた組換え体よりプラスミドを精製する。こうして得られたプラスミドをpNHU10と称する。これを種々の制限酵素を用いて切断したものについて電気泳動で分析し、制限酵素地図を作成する。
(4) Purification of recombinant plasmid and construction of restriction enzyme map:
The plasmid is purified from the recombinant obtained in step (3). The plasmid thus obtained is called pNHU10. This is analyzed by electrophoresis for those cleaved with various restriction enzymes, and a restriction enzyme map is prepared.

(5) 調節遺伝子およびニトリルヒドラターゼ遺伝子を含む領域およびロドコッカス属において複製可能なベクタープラスミドからなる組換え体プラスミドの作製:
工程(4)で得られたプラスミド、J1株ニトリルヒドラターゼ遺伝子を含むプラスミドpNHJ10Hおよび複合プラスミドベクターpK4より、調節遺伝子およびニトリルヒドラターゼ遺伝子を含む領域およびロドコッカス属において複製可能なベクタープラスミドからなる組換え体プラスミドpHK18およびpHK19を作製する。
(5) Production of a recombinant plasmid comprising a region containing a regulatory gene and a nitrile hydratase gene and a vector plasmid capable of replicating in Rhodococcus:
Recombination consisting of the plasmid obtained in step (4), the plasmid pNHJ10H containing the nitrile hydratase gene J1 and the composite plasmid vector pK4, the region containing the regulatory gene and the nitrile hydratase gene and the vector plasmid replicable in the genus Rhodococcus The body plasmids pHK18 and pHK19 are prepared.

(6) ロドコッカス属細菌の形質転換および形質転換体を用いたニトリルヒドラターゼの生産:
工程(5)で得られたプラスミドによりロドコッカス属細菌を形質転換し、J1株由来のニトリルヒドラターゼが発現していることを確認する。
(6) Transformation of Rhodococcus bacteria and production of nitrile hydratase using transformants:
Rhodococcus bacteria are transformed with the plasmid obtained in step (5), and it is confirmed that nitrile hydratase derived from the J1 strain is expressed.

(7) 欠失プラスミドとニトリルヒドラターゼ活性:
工程(5)で得られたプラスミドから種々の領域を除いたプラスミドを作製し、どの領域がニトリルヒドラターゼの発現に必須であるかを調べる。ニトリルヒドラターゼ構造遺伝子領域以外の部分で発現のために必要な領域を特定する。
(7) Deletion plasmid and nitrile hydratase activity:
A plasmid obtained by removing various regions from the plasmid obtained in step (5) is prepared, and which region is essential for the expression of nitrile hydratase is examined. A region necessary for expression is specified in a portion other than the nitrile hydratase structural gene region.

(8) 塩基配列の決定:
工程(7)で特定された領域について塩基配列を決定する。
(8) Determination of nucleotide sequence:
The base sequence is determined for the region specified in step (7).

なお、ロドコッカス・ロドクロウスJ1株はFERM BP-1478として生命工学工業技術研究所に寄託されている。また、ニトリルヒドラターゼ遺伝子を含むプラスミドpNHJ10Hはこれを含有する形質転換体TG1/pNHJ10H(FERM BP-2777)として、複合プラスミドベクターpK4はこれを含有する形質転換体ロドコッカス・ロドクロウスATCC12674/pK4(FERM BP-3731)として、プラスミドpNHU10はこれを含有する形質転換体JM109/pNHU10(FERM P-14568)として寄託されている。   Rhodococcus rhodochrous J1 strain has been deposited with the Biotechnology Institute of Technology as FERM BP-1478. Moreover, the plasmid pNHJ10H containing the nitrile hydratase gene is a transformant TG1 / pNHJ10H (FERM BP-2777) containing this, and the complex plasmid vector pK4 is the transformant Rhodococcus rhodochrous ATCC12674 / pK4 (FERM BP -3731), plasmid pNHU10 has been deposited as a transformant JM109 / pNHU10 (FERM P-14568) containing it.

以下、本発明を実施例により具体的に説明する。ただし、本発明はこれらの実施例によりその技術的範囲が限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the technical scope of the present invention is not limited by these examples.

なお、実施例において下記の略語を用いた。
TE溶液: 10 mM Tris-HCl (pH7.8)-1 mM EDTA (pH8.0)
TNE溶液: 50 mM Tris-HCl (pH8.0)-1 mM EDTA (pH8.0)-50 mM NaCl
STE溶液: 50 mM Tris-HCl (pH8.0)-1 mM EDTA (pH8.0)-35 mMシュークロース
2xYT培地: 1.6 % トリプトン、1 % 酵母エキス、0.5% NaCl
MY培地: 1%ポリペプトン、0.3%酵母エキス、0.3%麦芽エキス、1%グルコース
In the examples, the following abbreviations were used.
TE solution: 10 mM Tris-HCl (pH7.8) -1 mM EDTA (pH8.0)
TNE solution: 50 mM Tris-HCl (pH 8.0) -1 mM EDTA (pH 8.0) -50 mM NaCl
STE solution: 50 mM Tris-HCl (pH8.0) -1 mM EDTA (pH8.0) -35 mM sucrose
2xYT medium: 1.6% tryptone, 1% yeast extract, 0.5% NaCl
MY medium: 1% polypeptone, 0.3% yeast extract, 0.3% malt extract, 1% glucose

1)染色体DNAの調製
ロドコッカス・ロドクロウス J1株(FERM BP-1478)を100mlの培地(グルコース、KH2PO4、K2HPO4、MgSO4・7H2O、酵母エキス、ペプトン、CoCl2、尿素、水1L、pH7.2)で28℃、2日間培養後、集菌した。得られた菌体をTEN溶液で洗浄後、10mlのTE溶液に懸濁し、0.25M EDTA4ml、リゾチーム10〜20 mg、アクロモプロテアーゼ10〜20 mgおよび10%SDS 10 mlを加え、37℃で3時間放置後、遠心分離器にかけて上清を得た。この上清20mlに2.5M酢酸ナトリウム溶液0.7 ml、ジエチルエーテルを加え遠心分離器にかけて、上層を捨て下層に2倍溶のエタノールを加えガラス棒でDNAを巻き取った。これをTE溶液:エタノール(容積比)2:1、1:9、0:10の各溶液に5分間ずつ浸した後、2〜4 mlのTE溶液に溶かし、リボヌクレアーゼ A とリボヌクレアーゼT1の混合物10μlを加え37℃で処理した。次に、TE溶液で飽和されたフェノールを等量加え、遠心分離後の上層に等量以上のエーテルを加え、下層を得た。これをクロロホルムを少量添加した2LのTE溶液で一晩透析し、2回目の透析を3〜4時間行い、染色体DNA標品4mlを得た。
1) Preparation of chromosomal DNA Rhodococcus rhodochrous J1 strain (FERM BP-1478) in 100 ml medium (glucose, KH 2 PO 4 , K 2 HPO 4 , MgSO 4 .7H 2 O, yeast extract, peptone, CoCl 2 , urea The cells were collected after culturing at 28 ° C. for 2 days in 1 L of water, pH 7.2). The obtained bacterial cells were washed with a TEN solution, suspended in 10 ml of TE solution, added with 4 ml of 0.25 M EDTA, 10-20 mg of lysozyme, 10-20 mg of achromoprotease and 10 ml of 10% SDS, and added at 37 ° C. After standing for a period of time, the supernatant was obtained by centrifuging. To 20 ml of the supernatant, 0.7 ml of a 2.5 M sodium acetate solution and diethyl ether were added and centrifuged, and the upper layer was discarded, and twice the ethanol was added to the lower layer, and the DNA was wound up with a glass rod. This is immersed in TE solution: ethanol (volume ratio) 2: 1, 1: 9, 0:10 for 5 minutes, then dissolved in 2-4 ml of TE solution, and 10 μl of ribonuclease A and ribonuclease T1 mixture. And treated at 37 ° C. Next, an equal amount of phenol saturated with a TE solution was added, and an equal amount or more of ether was added to the upper layer after centrifugation to obtain a lower layer. This was dialyzed overnight with 2 L of TE solution to which a small amount of chloroform was added, followed by a second dialysis for 3 to 4 hours to obtain 4 ml of a chromosomal DNA preparation.

2)DNAライブラリーの作製
J1株H型ニトリルヒドラターゼ遺伝子を含む6.0kbDNA断片がpUC19ベクターに組み込まれたプラスミドpNHJ10H(特開平4-211379、Biochim. Biophys. Acta 1129, 23-33 (1991))を制限酵素SacIとEcoRIで切断後、0.37kbのSacI-EcoRI断片を1%アガロースゲル電気泳動により分離し、ゲルより切り出し回収した。制限酵素による切断は以下のように行った。pNHJ10H 10μl に対し、制限酵素用緩衝液(10倍濃度)3μl、制限酵素SacIおよびEcoRIをそれぞれ2μl、滅菌水13μlを加え37℃にて2時間反応させた。
2) Preparation of DNA library
Plasmid pNHJ10H (JP-A-4-21379, Biochim. Biophys. Acta 1129, 23-33 (1991)) in which a 6.0 kb DNA fragment containing the J1 strain H-type nitrile hydratase gene was incorporated into the pUC19 vector was transformed with restriction enzymes SacI and EcoRI. After cleavage, the 0.37 kb SacI-EcoRI fragment was separated by 1% agarose gel electrophoresis, and cut out from the gel and recovered. Cleavage with a restriction enzyme was performed as follows. To 10 μl of pNHJ10H, 3 μl of a restriction enzyme buffer (10-fold concentration), 2 μl each of restriction enzymes SacI and EcoRI, and 13 μl of sterilized water were added and reacted at 37 ° C. for 2 hours.

J1株染色体DNAをEcoRIおよびEcoRVにより切断した標品についてアガロースゲル電気泳動を行った。0.37kb SacI-EcoRI断片を放射性同位元素32Pでラベルし、これをプローブとしてサザーンハイブリダイゼーション法により上流域を含む約4.3 kbのDNA断片を検出した。プローブによりハイブリダイズした4.3kb断片を含むDNA断片画分をアガロースゲルより切り出し、SmaIおよびEcoRIで切断したプラスミドベクターpUC19に挿入した。   Agarose gel electrophoresis was performed on a sample obtained by cleaving J1 strain chromosomal DNA with EcoRI and EcoRV. A 0.37 kb SacI-EcoRI fragment was labeled with the radioactive isotope 32P, and a DNA fragment of about 4.3 kb including the upstream region was detected by Southern hybridization using this as a probe. A DNA fragment fraction containing a 4.3 kb fragment hybridized with the probe was excised from an agarose gel and inserted into a plasmid vector pUC19 cleaved with SmaI and EcoRI.

pUC19の切断は以下のように行った。pUC19 10μl に対し、制限酵素用緩衝液(10倍濃度)3μl、制限酵素SmaIおよびEcoRIをそれぞれ2μl、滅菌水13μlを加え30℃にて2時間反応させた。反応液に等量のTE溶液飽和フェノールを加え撹拌後遠心分離し上層(水層)と下層に分離させた。上層についてこの操作を2回繰り返した後、同量のクロロホルムを加え同様の抽出操作を2回繰り返した。上層に3μlの3M酢酸ナトリウムと90μlのエタノールを加え、-80℃にて30分間放置後遠心し、乾燥してTE溶液に溶解した。   pUC19 was cleaved as follows. To 10 μl of pUC19, 3 μl of restriction enzyme buffer (10-fold concentration), 2 μl each of restriction enzymes SmaI and EcoRI and 13 μl of sterilized water were added and reacted at 30 ° C. for 2 hours. An equal amount of TE solution saturated phenol was added to the reaction solution, and the mixture was stirred and then centrifuged to separate it into an upper layer (aqueous layer) and a lower layer. This operation was repeated twice for the upper layer, the same amount of chloroform was added, and the same extraction operation was repeated twice. 3 μl of 3M sodium acetate and 90 μl of ethanol were added to the upper layer, allowed to stand at −80 ° C. for 30 minutes, centrifuged, dried and dissolved in TE solution.

4.3kb断片を含むDNA断片画分3μlを、上記のようにして調製したSmaI,EcoRI切断pUC19μlとTAKARAライゲーションキットを用いて4℃で一晩反応させることによりpUC19への挿入を行い、DNAライブラリーとした。   Insertion into pUC19 by reacting 3 μl of the DNA fragment fraction containing 4.3 kb fragment with SmaI, EcoRI cleaved pUC19 μl prepared as described above and TAKARA ligation kit overnight at 4 ° C. It was.

3)形質転換体の作製および組換え体DNAの選別
大腸菌JM109株(宝酒造(株)より入手)を2xYT培地10mlに37℃で12時間培養後、新規な同培地に1%植菌し2時間培養した。遠心分離により集菌した後、冷50mM CaCl2溶液を5ml加え、0℃で40分間放置後、再度遠心分離し、冷50 mM CaCl2溶液0.25 mlに懸濁した。これに工程(2)で作製した組換え体プラスミドを含有する溶液(DNAライブラリー)を60μlを加え、0℃で40分間放置後、42℃で2分間ヒートショックを与え、2xYT培地1 mlを加え37℃にて60分間振盪培養した。これを100μlずつアンピシリン50μg/ml含有2xYT寒天培地にまき、37℃で培養した。寒天培地上に生育した形質転換体コロニーについてコロニーハイブリダイゼーションを行い、ニトリルヒドラターゼ遺伝子上流域を含む形質転換体を選別した。すなわち、寒天培地上に生育させたコロニーをニトロセルロースフィルター上に移し、菌体を溶かしてDNAを固定した後、これを工程(2)で作製したプローブ(0.37kb断片)で処理し、オートラジオグラフ法で目的の組換え体DNAを含むコロニーを選択した。更に、この選択したコロニーから組換え体プラスミドを抽出し、サザンハイブリダイゼーション法によって上述のプローブとハイブリダイズさせ、選抜したコロニーが目的遺伝子を含む形質転換体であることを再確認した。
3) Preparation of transformants and selection of recombinant DNA E. coli JM109 strain (obtained from Takara Shuzo Co., Ltd.) was cultured in 10 ml of 2xYT medium at 37 ° C for 12 hours, then inoculated with 1% of the same medium for 2 hours. Cultured. After collecting the cells by centrifugation, 5 ml of a cold 50 mM CaCl 2 solution was added, allowed to stand at 0 ° C. for 40 minutes, centrifuged again, and suspended in 0.25 ml of a cold 50 mM CaCl 2 solution. Add 60 μl of the solution (DNA library) containing the recombinant plasmid prepared in step (2), leave it at 0 ° C for 40 minutes, give a heat shock at 42 ° C for 2 minutes, and add 1 ml of 2xYT medium. The mixture was further cultured with shaking at 37 ° C for 60 minutes. 100 μl of this was plated on 2 × YT agar medium containing 50 μg / ml of ampicillin and cultured at 37 ° C. Colony hybridization was performed on the transformant colonies grown on the agar medium, and transformants containing the upstream region of the nitrile hydratase gene were selected. That is, colonies grown on an agar medium were transferred onto a nitrocellulose filter, the cells were dissolved and DNA was fixed, and this was treated with the probe (0.37 kb fragment) prepared in step (2). Colonies containing the desired recombinant DNA were selected by the graph method. Further, a recombinant plasmid was extracted from the selected colony, hybridized with the above-mentioned probe by Southern hybridization, and reconfirmed that the selected colony was a transformant containing the target gene.

4)組換え体プラスミドの精製と制限酵素地図の作製
工程(3)で選択した形質転換体を100 mlの2xYT培地にて37℃一晩培養し、集菌後、TNE溶液により洗浄し、STE溶液を8 ml、リゾチームを10 mg加え、0℃で5分間放置した。0.25 M EDTA 4 ml加え、さらに室温で10 % SDS 2 ml, 5 M NaCl 5 mlを加え、0〜4℃で3時間放置した。これを超遠心し、その上澄みに30 % PEG6000を1/2当量加え、0〜4℃で一晩放置し、遠心後TNEに溶解して7.5 mlとした。CsClを加えた後遠心により除タンパクを行い、臭化エチジウム溶液を300〜500 mg/ml加えシールチューブに移し、熱シールし超遠心を行った。cccDNAを回収し、水飽和イソプロピルアルコールを当量以上加えて臭化エチジウムを除き、TEで透析し精製した組換え体プラスミド約3 mlを得た。これをpNHU10と命名した。この組換え体プラスミドを数種の制限酵素を用いて切断し、図1中に示される制限酵素地図を作製した。
4) Purification of recombinant plasmid and preparation of restriction enzyme map The transformant selected in step (3) is cultured overnight at 37 ° C in 100 ml of 2xYT medium, collected, washed with TNE solution, and washed with STE. 8 ml of the solution and 10 mg of lysozyme were added and left at 0 ° C. for 5 minutes. 4 ml of 0.25 M EDTA was added, and further 2 ml of 10% SDS and 5 M NaCl were added at room temperature, and the mixture was allowed to stand at 0 to 4 ° C. for 3 hours. This was ultracentrifuged, 1/2 equivalent of 30% PEG6000 was added to the supernatant, left overnight at 0-4 ° C., centrifuged, and dissolved in TNE to make 7.5 ml. After adding CsCl, protein removal was performed by centrifugation, and 300-500 mg / ml of ethidium bromide solution was added, transferred to a seal tube, heat sealed, and ultracentrifuged. cccDNA was recovered, and an equivalent amount of water-saturated isopropyl alcohol was added to remove ethidium bromide, and about 3 ml of recombinant plasmid purified by dialysis with TE was obtained. This was named pNHU10. This recombinant plasmid was cleaved with several kinds of restriction enzymes to prepare a restriction enzyme map shown in FIG.

5)調節遺伝子およびニトリルヒドラターゼ遺伝子を含む領域およびロドコッカス属において複製可能なベクタープラスミドからなる組換え体プラスミドの作製
工程(4)で得られたプラスミドpNHU10は、ニトリルヒドラターゼ遺伝子を含むpNHJ10Hに含まれるJ1株由来のDNA断片と0.37 kbオーバーラップし、更に3.9 kb上流までを含んでいる。pNHU10より1.4 kb FspI-EcoRI断片および0.9 kb ScaI-EcoRI断片を切り出し、これらをそれぞれ大腸菌-ロドコッカス属細菌用複合プラスミドベクターpK4に挿入し、プラスミドpHJK16およびpHJK17を作製した。これらのプラスミドにpNHJ10H由来の5.9 kb EcoRI断片を挿入し、それぞれpHJK18およびpHJK19を作製した。これらの作製過程は図1および図2に示した。なお、図1のpHJK18において、太い矢印は本発明において見いだされた調節遺伝子の位置と方向を示し、細い矢印はニトリルヒドラターゼ遺伝子の二つのサブユニット遺伝子の位置と方向を示す。また、図2のpHJK19において、太い矢印は本発明において見いだされた調節遺伝子の位置と方向を示し、細い矢印はニトリルヒドラターゼ遺伝子の二つのサブユニット遺伝子の位置と方向を示す。
5) Preparation of recombinant plasmid consisting of a region containing regulatory gene and nitrile hydratase gene and vector plasmid replicable in Rhodococcus The plasmid pNHU10 obtained in step (4) is included in pNHJ10H containing nitrile hydratase gene It overlaps with the DNA fragment derived from J1 strain by 0.37 kb, and further includes up to 3.9 kb upstream. A 1.4 kb FspI-EcoRI fragment and a 0.9 kb ScaI-EcoRI fragment were excised from pNHU10 and inserted into the Escherichia coli-Rhodococcus complex plasmid vector pK4 to prepare plasmids pHJK16 and pHJK17. 5.9 kb EcoRI fragment derived from pNHJ10H was inserted into these plasmids to prepare pHJK18 and pHJK19, respectively. These manufacturing processes are shown in FIGS. In addition, in pHJK18 of FIG. 1, the thick arrows indicate the positions and directions of the regulatory genes found in the present invention, and the thin arrows indicate the positions and directions of the two subunit genes of the nitrile hydratase gene. Further, in pHJK19 of FIG. 2, the thick arrows indicate the positions and directions of the regulatory genes found in the present invention, and the thin arrows indicate the positions and directions of the two subunit genes of the nitrile hydratase gene.

6)ロドコッカス属細菌の形質転換および形質転換体を用いたニトリルヒドラターゼの生産
ロドコッカス・ロドクロウスATCC12674株の対数増殖期の細胞を遠心分離により集菌し、氷冷した滅菌水にて3回洗浄し、15%PEG6000(ポリエチレングリコール6000)溶液に懸濁した(菌体濃度109 cell / ml以上)。工程(5)のプラスミドpHK18DNA またはpHK19 DNA 1μgと菌体懸濁液100μlを混合し、氷冷した。ジーンパルサー用のチャンバーにDNAと菌体の混合液を入れ、氷冷した後、静電容量25μF,抵抗 400オーム、電場強度20 kV/cmで電気パルス処理を行った。
6) Transformation of Rhodococcus bacteria and production of nitrile hydratase using transformants Rhodococcus rhodochrous ATCC12674 cells in the logarithmic growth phase were collected by centrifugation and washed three times with ice-cold sterile water. And suspended in a 15% PEG6000 (polyethylene glycol 6000) solution (bacterial cell concentration of 10 9 cells / ml or more). 1 μg of the plasmid pHK18 DNA or pHK19 DNA in step (5) and 100 μl of the cell suspension were mixed and ice-cooled. A mixture of DNA and bacterial cells was placed in a gene pulser chamber, cooled on ice, and then subjected to electric pulse treatment with a capacitance of 25 μF, a resistance of 400 ohms, and an electric field strength of 20 kV / cm.

電気パルス処理液を氷冷下10分間静置し、37℃、5分間熱処理後、MY培地 1mlを加え、25℃、3時間振とうした。50μg/mlカナマイシン入りMY寒天培地に塗布し28℃、2日間培養した。出現したコロニーが明らかにカナマイシン耐性であることを別に作成したカナマイシン入りMY寒天培地に塗布することにより確認した。   The electric pulse treatment solution was allowed to stand for 10 minutes under ice-cooling, and after heat treatment at 37 ° C. for 5 minutes, 1 ml of MY medium was added and shaken at 25 ° C. for 3 hours. The mixture was applied to MY agar medium containing 50 μg / ml kanamycin and cultured at 28 ° C. for 2 days. It was confirmed by applying to an MY agar medium containing kanamycin that the colonies that appeared were clearly kanamycin resistant.

こうして作製したロドコッカス・ロドクロウスの組換え体、ロドコッカス・ロドクロウスATCC12674/pHJK18又はロドコッカス・ロドクロウスATCC12674/pHJK19を培地(グリセロール 10 g、ポリペプトン 5 g、酵母エキス 3 g、麦芽エキス 3 g、KH2PO4 1 g、K2HPO41 g、CoCl2・6H2O 0.01 g、尿素 0.75 gまたは3.75g (pH7.0) / L)にて28℃2日間培養し、ニトリルヒドラターゼの活性測定を行った。培養液より遠心分離により集菌し、150 mM NaClで洗浄後、0.35 % n-酪酸を含む0.1 M HEPES-KOH(pH7.2)に菌体を懸濁した。超音波処理により細胞を破砕し、遠心分離により細胞膜を除き細胞抽出液を得、ニトリルヒドラターゼ活性を測定した。活性測定は以下のように行った。適当に水で希釈した細胞抽出液0.5mlに100 mMリン酸カリウム緩衝液(pH7.0)を0.5 ml、200 mMのアクリロニトリルを1 ml加え20℃にて10分間反応後、1N HClを0.2 ml加えることにより反応を停止させた。生成するアクリルアミドの定量をHPLCにより行った。 Rhodococcus rhodochrous recombinant thus produced, Rhodococcus rhodochrous ATCC12674 / pHJK18 or Rhodococcus rhodochrous ATCC12674 / pHJK19, medium (glycerol 10 g, polypeptone 5 g, yeast extract 3 g, malt extract 3 g, KH 2 PO 4 1 G, K 2 HPO 4 1 g, CoCl 2 · 6H 2 O 0.01 g, urea 0.75 g or 3.75 g (pH 7.0) / L) were cultured at 28 ° C for 2 days, and the activity of nitrile hydratase was measured. . The cells were collected from the culture by centrifugation, washed with 150 mM NaCl, and suspended in 0.1 M HEPES-KOH (pH 7.2) containing 0.35% n-butyric acid. Cells were disrupted by sonication, the cell membrane was removed by centrifugation to obtain a cell extract, and nitrile hydratase activity was measured. The activity measurement was performed as follows. Add 0.5 ml of 100 mM potassium phosphate buffer (pH 7.0) and 1 ml of 200 mM acrylonitrile to 0.5 ml of cell extract appropriately diluted with water, react at 20 ° C for 10 minutes, and then add 0.2 ml of 1N HCl. The reaction was stopped by adding. The acrylamide produced was quantified by HPLC.

ロドコッカス・ロドクロウスATCC12674/pHJK18およびロドコッカス・ロドクロウスATCC12674/pHJK19の細胞抽出液について以下の表1の値が得られた。なお、表中、尿素はニトリルヒドラターゼ酵素の誘導剤である。   The values in Table 1 below were obtained for cell extracts of Rhodococcus rhodochrous ATCC12674 / pHJK18 and Rhodococcus rhodochrous ATCC12674 / pHJK19. In the table, urea is an inducer of nitrile hydratase enzyme.

Figure 2005151999
Figure 2005151999

7)欠失プラスミドとニトリルヒドラターゼ活性
pHJK18およびpHJK19には、ニトリルヒドラターゼ発現に必要のない領域がまだ多く残っていると考えられたため、欠失プラスミドを作製しニトリルヒドラターゼ活性を調べたところ、活性発現に必須な調節遺伝子領域はScaIからAccIIIの約1.9 kbの間にあることが明らかとなった。
7) Deletion plasmid and nitrile hydratase activity
In pHJK18 and pHJK19, it was thought that there were still many regions that were not necessary for nitrile hydratase expression.When a deletion plasmid was prepared and nitrile hydratase activity was examined, the regulatory gene region essential for expression of activity was It was revealed that it was between 1.9 kb from ScaI to AccIII.

8)塩基配列の決定
工程(7)で特定された領域についてDNA塩基配列を決定したところ、配列番号1に示されるアミノ酸配列を持つ、唯一の長いオープンリーディングフレームが見いだされた。塩基配列の決定はTth DNA polymeraseを用いたチェーンターミネーション法(Sanger F. Science 214, 1205-1210 (1980))により行った。このオープンリーディングフレームの塩基配列を配列番号2に示した。
8) Determination of base sequence When the DNA base sequence was determined for the region specified in step (7), the only long open reading frame having the amino acid sequence shown in SEQ ID NO: 1 was found. The base sequence was determined by the chain termination method (Sanger F. Science 214, 1205-1210 (1980)) using Tth DNA polymerase. The base sequence of this open reading frame is shown in SEQ ID NO: 2.

組換え体プラスミドpHJK18の作製工程を示す図。The figure which shows the preparation process of recombinant plasmid pHJK18. 組換え体プラスミドpHJK19の作製工程を示す図。The figure which shows the preparation process of recombinant plasmid pHJK19.

Claims (2)

配列番号1のアミノ酸配列を有するポリペプチドをコードし、ニトリルヒドラターゼ遺伝子プロモーターの活性化能を有する、調節遺伝子DNA。   A regulatory gene DNA encoding a polypeptide having the amino acid sequence of SEQ ID NO: 1 and having the ability to activate a nitrile hydratase gene promoter. 配列番号2の塩基配列を有するニトリルヒドラターゼ遺伝子プロモーターの活性化能を有する調節遺伝子DNA。   A regulatory gene DNA having the ability to activate the nitrile hydratase gene promoter having the base sequence of SEQ ID NO: 2.
JP2005062078A 2005-03-07 2005-03-07 Regulatory gene for nitrile-hydratase gene expression Pending JP2005151999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062078A JP2005151999A (en) 2005-03-07 2005-03-07 Regulatory gene for nitrile-hydratase gene expression

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062078A JP2005151999A (en) 2005-03-07 2005-03-07 Regulatory gene for nitrile-hydratase gene expression

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23926394A Division JP3828590B2 (en) 1994-10-03 1994-10-03 Regulatory genes for nitrile hydratase gene expression

Publications (1)

Publication Number Publication Date
JP2005151999A true JP2005151999A (en) 2005-06-16

Family

ID=34737765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062078A Pending JP2005151999A (en) 2005-03-07 2005-03-07 Regulatory gene for nitrile-hydratase gene expression

Country Status (1)

Country Link
JP (1) JP2005151999A (en)

Similar Documents

Publication Publication Date Title
FI102539B (en) A DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene, and a method for producing amides using the transformant
US5795776A (en) Expression plasmids regulated by an OSMB promoter
JP4705089B2 (en) Process for producing (S)-or (R) -3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
JP2840253B2 (en) Genetic DNA encoding a polypeptide having nitrile hydratase activity, and method for producing amides from nitriles using transformants containing the same
JP3828590B2 (en) Regulatory genes for nitrile hydratase gene expression
JP2907479B2 (en) Genetic DNA encoding a polypeptide having nitrile hydratase activity, transformant containing the same, and method for producing amides
JP3380133B2 (en) Novel nitrile hydratase
JP2526021B2 (en) Production of Vitamin C precursors using genetically modified organisms
JP2005151999A (en) Regulatory gene for nitrile-hydratase gene expression
JP3709422B2 (en) Regulators involved in nitrilase gene expression and genes thereof
JP3798460B2 (en) Polypeptide having cobalt transport activity and gene thereof
US5753472A (en) DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene and a process for the production of amides using the transformant
US5789211A (en) Gene encoding a polypeptide having nitrile hydratase activity, a transformant containing the gene and a process for the production of amides using the transformant
JP3836168B2 (en) BalI restriction / modification gene
JP3071437B2 (en) Method for producing T3-exonuclease
JP3520322B2 (en) Novel plasmid pPS1M2 and its derivatives from psychrotrophic bacteria
JPH09264A (en) Gene for controlling expression of nitrile hydratase gene
JP3007919B2 (en) Fusion protein of dihydrofolate reductase-antiallergic pentapeptide multimer (II)
JP2006288390A (en) New heat-resistant protein having gmp-mannose pyrophosphorylase activity
JP2001252088A (en) Gene encoding creatine amidinohydrase
JP2001178494A (en) Method for producing optically active chrysanthemumic acid or derivative thereof
JPH09238684A (en) Heat resistant atpase alpha and beta subunit gene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213