JP2005149238A - Battery charger for ic card and passcase - Google Patents

Battery charger for ic card and passcase Download PDF

Info

Publication number
JP2005149238A
JP2005149238A JP2003387181A JP2003387181A JP2005149238A JP 2005149238 A JP2005149238 A JP 2005149238A JP 2003387181 A JP2003387181 A JP 2003387181A JP 2003387181 A JP2003387181 A JP 2003387181A JP 2005149238 A JP2005149238 A JP 2005149238A
Authority
JP
Japan
Prior art keywords
card
charging device
exterior body
oscillator
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387181A
Other languages
Japanese (ja)
Other versions
JP4501416B2 (en
Inventor
Tetsuya Takahashi
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003387181A priority Critical patent/JP4501416B2/en
Publication of JP2005149238A publication Critical patent/JP2005149238A/en
Application granted granted Critical
Publication of JP4501416B2 publication Critical patent/JP4501416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery charger for an IC card and a passcase having highly convenience. <P>SOLUTION: The battery charger for an IC card comprises a secondary battery 24, an oscillator 30 producing alternate signals by being supplied power from the secondary battery, a coil-shaped antenna 32 producing electromagnetic waves by receiving the alternate signals from the oscillator 30, and an exterior body 38 housing the secondary battery 24, the oscillator 30, and the antenna 32. External power supply is not required during charge of the IC card so that the battery charger provides the secondary battery 24 producing power. Therefore, an accumulation electricity element of the IC card 50 can be easily charged at desired time and a desired location required by a user so that the user carries a battery charger 20 for an IC card. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はICカード用充電装置及びこれを有するパスケースに関し、より詳しくは、電磁波を供給してICカード内の蓄電素子を充電させるICカード用充電装置及びこれを有するパスケースに関する。   The present invention relates to an IC card charging device and a pass case having the same, and more particularly to an IC card charging device for supplying an electromagnetic wave to charge an electric storage element in the IC card and a pass case having the same.

近年、マイクロプロセッサやメモリなどのIC(集積回路)と、ICと接続され電磁波を送受信可能なコイル状のアンテナとが、矩形の板状外装体に収容された非接触型のICカードが知られている。このような非接触型のICカードを専用のリーダライタにかざすと、ICカードはリーダライタからの電磁波をアンテナで受け、これにより生じる電力によってマイクロプロセッサを駆動し、マイクロプロセッサは必要に応じてメモリに記録された情報をアンテナからリーダライタに送信したりメモリに記録された情報を書き換えたりする。   In recent years, there has been known a non-contact type IC card in which an IC (integrated circuit) such as a microprocessor or a memory and a coiled antenna connected to the IC and capable of transmitting and receiving electromagnetic waves are accommodated in a rectangular plate-shaped outer package. ing. When such a non-contact type IC card is held over a dedicated reader / writer, the IC card receives electromagnetic waves from the reader / writer via an antenna, and drives the microprocessor by the electric power generated thereby. The information recorded in (1) is transmitted from the antenna to the reader / writer, or the information recorded in the memory is rewritten.

このようなICカードは、偽造や不正使用が難しく情報の機密保持性に優れると共に、磁気カードに比べて大きな記憶容量をもつことができ、さらに、リーダライタにかざすだけで情報の送受信ができる等の特徴がある。そこで、このような非接触型のICカードは、例えば、電子マネー、プリペイドカード、交通機関の乗車券等として広く普及している。   Such an IC card is difficult to counterfeit or illegally use, has excellent information confidentiality, has a larger storage capacity than a magnetic card, and can send and receive information by simply holding it over a reader / writer. There are features. Thus, such non-contact type IC cards are widely used as electronic money, prepaid cards, transportation tickets, and the like.

最近では、このような非接触型のICカードにおいて、ユーザが好きな時・場所において、ICカードに記録された情報、例えば、残高やポイント等を確認したいという要望がある。   Recently, in such a non-contact type IC card, there is a demand for confirming information recorded on the IC card, for example, a balance, points, etc., when the user likes it.

そして、これを可能とすべく、ICやアンテナに加えて、さらに、情報を表示するためのLCD等の表示部、及び、この表示部やICを駆動するための電力源である蓄電素子を有する非接触型のICカードが、例えば、特許文献1に開示されている。このような非接触型のICカードにおいては、このICカードをリーダライタにかざす際にアンテナに発生する電力の内、ICによって利用されなかった余剰分の電力が蓄電素子に充電され、このようにして蓄電素子に充電された電力を用いて表示部等を駆動する。すなわち、リーダライタをICカード用充電装置として用いている。
実用新案登録第3089912号公報
In order to enable this, in addition to the IC and the antenna, there is further provided a display unit such as an LCD for displaying information, and a storage element as a power source for driving the display unit and the IC. A non-contact type IC card is disclosed in Patent Document 1, for example. In such a non-contact type IC card, of the electric power generated in the antenna when the IC card is held over the reader / writer, surplus electric power not used by the IC is charged in the storage element, and thus Then, the display unit and the like are driven using the electric power charged in the storage element. That is, the reader / writer is used as an IC card charging device.
Utility Model Registration No. 3089912

しかしながら、LCD等の表示部を駆動するためには、比較的大きな電力を必要とする場合が多い。したがって、蓄電素子に蓄電された電力量が十分でない場合や、表示部を長時間駆動した場合等には、蓄電素子の電力量が底をつく場合がある。この場合、ICカードの表示部を再び駆動するためには、ICカードをリーダライタにかざして蓄電素子を充電しなければならず、わざわざユーザがICカードをリーダライタの設置場所へ持って行くのは不便である。   However, in order to drive a display unit such as an LCD, a relatively large amount of power is often required. Therefore, when the amount of electric power stored in the electric storage element is not sufficient or when the display unit is driven for a long time, the electric energy of the electric storage element may bottom out. In this case, in order to drive the display unit of the IC card again, the power storage element must be charged by holding the IC card over the reader / writer, and the user intentionally takes the IC card to the installation location of the reader / writer. Is inconvenient.

本発明は、上記課題に鑑みてなされたものであり、ICカードのユーザにとって利便性の高いICカード用充電装置及びこれを有するパスケースを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a charging device for an IC card that is highly convenient for an IC card user and a pass case having the same.

本発明に係るICカード用充電装置は、電力源と、電力源からの電力の供給を受けて交流信号を発生する発振器と、発振器からの交流信号を受けて電磁波を発生するコイル状のアンテナと、電力源、発振器、及び、アンテナを収容する外装体と、を備える。   An IC card charging device according to the present invention includes a power source, an oscillator that generates an AC signal upon receiving power from the power source, and a coiled antenna that generates an electromagnetic wave upon receiving an AC signal from the oscillator. A power source, an oscillator, and an exterior body that houses the antenna.

本発明のICカード用充電装置によれば、電力によって発振器が作動し、この発振によってアンテナから電磁波が送信される。したがって、このようにして送信される電磁波によって、ICカードのアンテナに対して電力を供給でき、ICカードの蓄電素子を充電することができる。   According to the IC card charging device of the present invention, the oscillator is operated by electric power, and electromagnetic waves are transmitted from the antenna by this oscillation. Therefore, electric power can be supplied to the antenna of the IC card by the electromagnetic wave transmitted in this manner, and the storage element of the IC card can be charged.

ここで、このICカード用充電装置は、例えば電池やキャパシタ等、電力の発生源となる電力源を備えているので、充電の際に外部の電力線等からの電源の供給を必要としない。したがって、このICカード用充電装置をユーザが携帯することにより、ユーザが所望する時・場所においてICカードの蓄電素子を手軽に充電することができる。さらに、電池やキャパシタは、例えば、コイン型、フィルム型等のように、小型、薄型化することができるので、携帯性が良いICカード用充電装置が得られる。   Here, since the IC card charging device includes a power source that is a power generation source such as a battery or a capacitor, it is not necessary to supply power from an external power line or the like during charging. Therefore, when the user carries the IC card charging device, the power storage element of the IC card can be easily charged at the time and place desired by the user. Furthermore, since the battery and the capacitor can be reduced in size and thickness, such as a coin type and a film type, an IC card charging device with good portability can be obtained.

ここで、電池は、化学反応により電気エネルギーを発生する素子であり、例えば、アルカリマンガン電池等の一次電池、リチウムイオン電池等の二次電池、燃料電池等を含む。また、キャパシタとは、化学反応によらずに電極間に電気エネルギーを蓄えることができ、蓄えた電気エネルギーを放出することができる素子であり、例えば、電気二重層キャパシタ、アルミ電解コンデンサ、積層セラミックコンデンサ等を含む。   Here, the battery is an element that generates electrical energy by a chemical reaction, and includes, for example, a primary battery such as an alkaline manganese battery, a secondary battery such as a lithium ion battery, and a fuel cell. In addition, a capacitor is an element that can store electrical energy between electrodes regardless of a chemical reaction and can release the stored electrical energy. For example, an electric double layer capacitor, an aluminum electrolytic capacitor, a multilayer ceramic Includes capacitors.

ここで、本発明に係るICカード用充電装置は、電力源から発振器への電力の供給/遮断を制御可能なスイッチを更に備えることが好ましい。   Here, the IC card charging device according to the present invention preferably further includes a switch capable of controlling the supply / cutoff of power from the power source to the oscillator.

これによれば、ユーザが所望する時に所望の時間だけ充電操作ができ、無駄な電力の消費を抑制できる。   According to this, when the user desires, a charging operation can be performed for a desired time, and wasteful power consumption can be suppressed.

ところで、ICカードに充電するために必要とされる電磁波の周波数は、ICカードの種類毎に異なる値に設定されている場合が多い。そこで、ICカード用充電装置は、発振器で発生する交流信号の周波数を変更する周波数変更手段を更に備えることが好ましい。   By the way, the frequency of electromagnetic waves required for charging the IC card is often set to a different value for each type of IC card. Therefore, it is preferable that the IC card charging device further includes frequency changing means for changing the frequency of the AC signal generated by the oscillator.

これによれば、一つのICカード用充電装置によって多種のICカードに好適に充電することができ、ICカード用充電装置の汎用性が高まる。   According to this, various IC cards can be suitably charged by one IC card charging device, and the versatility of the IC card charging device is enhanced.

具体的には、発振器が、コイル及びコンデンサを含むLC共振回路を有し、コイルのインダクタンス、及び、コンデンサのキャパシタンスの少なくとも一方が変更可能とされていることが好ましい。   Specifically, it is preferable that the oscillator has an LC resonance circuit including a coil and a capacitor, and at least one of the inductance of the coil and the capacitance of the capacitor can be changed.

このようなLC共振回路を有する発振器は、主としてコイルのインダクタンス及びコンデンサのキャパシタンスにより定まる共振周波数で発振する。したがって、インダクタンス及びキャパシタンスの少なくとも一方を変更可能とすることによりアンテナから発生する周波数の変更を容易に行える。   An oscillator having such an LC resonance circuit oscillates at a resonance frequency determined mainly by the inductance of the coil and the capacitance of the capacitor. Therefore, by changing at least one of the inductance and the capacitance, the frequency generated from the antenna can be easily changed.

また、LC共振回路のコンデンサは、複数の個別コンデンサ及びこれらの複数の個別コンデンサを並列に接続する配線層により構成されていてもよい。   The capacitor of the LC resonance circuit may be configured by a plurality of individual capacitors and a wiring layer that connects the plurality of individual capacitors in parallel.

これによれば、一つ又は複数の個別コンデンサを切り取ったり、個別コンデンサの接続配線を、例えば、外装体の表面からピン等で刺して切断したりすることによって、所望の個別コンデンサを無効とすることができ、並列接続された個別コンデンサによって構成されるコンデンサ全体のキャパシタンスを変更できるので、LC回路の共振周波数を簡易に変更することができる。   According to this, a desired individual capacitor is invalidated by cutting out one or a plurality of individual capacitors or cutting the connection wiring of the individual capacitors with, for example, a pin or the like from the surface of the exterior body. In addition, since the capacitance of the entire capacitor constituted by the individual capacitors connected in parallel can be changed, the resonance frequency of the LC circuit can be easily changed.

ここで、複数の個別コンデンサは、外装体内において外装体の表面に沿って並設されており、外装体の表面には前記各個別コンデンサに接続された配線層の位置を表示する標識が設けられていることが好ましい。   Here, the plurality of individual capacitors are juxtaposed along the surface of the exterior body in the exterior body, and a sign is provided on the surface of the exterior body to display the position of the wiring layer connected to each individual capacitor. It is preferable.

これによれば、所望の個別コンデンサを無効とするための個別コンデンサの切取りや、配線層の切断を容易に行える。   According to this, it is possible to easily cut out the individual capacitor for invalidating the desired individual capacitor and cut the wiring layer.

また、一般的に、ICカードにおけるアンテナの位置や大きさは、ICカードの種類ごとに異なる場合が多い。したがって、ICカード用充電装置のアンテナが、外装体の主面の面積を占有する大きさが大きくなればなるほど、ICカードのアンテナと、ICカード用充電装置のアンテナと、を対向配置させやすくなり、ICカードを効率よく充電させることが可能となる。   In general, the position and size of an antenna in an IC card are often different for each type of IC card. Therefore, the larger the size of the IC card charging device antenna that occupies the area of the main surface of the exterior body, the easier it is for the IC card antenna and the IC card charging device antenna to face each other. The IC card can be charged efficiently.

そこで、本発明のICカード用充電装置において、外装体が板状であり、コイル状のアンテナは、外装体内において外装体の主面に交差する軸回りに巻き回されていることが好ましい。   Therefore, in the IC card charging device of the present invention, it is preferable that the exterior body has a plate shape and the coiled antenna is wound around an axis intersecting the main surface of the exterior body in the exterior body.

これによれば、アンテナのコイルの径を板の主面と垂直な方向に大きく広げることができるため、外装体が小さくてもアンテナのコイルの径を十分に大きくできる。   According to this, since the diameter of the coil of the antenna can be greatly expanded in the direction perpendicular to the main surface of the plate, the diameter of the coil of the antenna can be sufficiently increased even if the exterior body is small.

ここで、ICカードのアンテナとICカード用充電装置のアンテナとを十分効率よく対向させるには、ICカード用充電装置のアンテナが、外装体の主面に垂直な方向から見たときに外装体の面積の1/4以上を占有する大きさであることが好ましく、外装体の面積の1/2以上を占有する大きさであることがより好ましい。   Here, in order for the antenna of the IC card and the antenna of the charging device for the IC card to face each other with sufficient efficiency, when the antenna of the charging device for the IC card is viewed from a direction perpendicular to the main surface of the exterior body, the exterior body Is preferably a size that occupies 1/4 or more of the area, and more preferably a size that occupies 1/2 or more of the area of the exterior body.

加えて、ICカード用充電装置が板状であると、パスケース等に収容することが容易なので携帯性が向上する。さらに、この板状のICカード用充電装置は、板状のICカードと重ね合わせやすいため、充電の操作が容易に行える。   In addition, if the IC card charging device has a plate shape, portability is improved because it can be easily accommodated in a pass case or the like. Furthermore, since this plate-shaped IC card charging device can be easily superimposed on the plate-shaped IC card, the charging operation can be easily performed.

さらに、太陽電池を更に備え、電力源の電池やキャパシタは太陽電池によって生じた電力により充電されることが好ましく、これにより、省エネルギー化が図られる。   Furthermore, it is preferable to further include a solar battery, and it is preferable that the battery or capacitor of the power source is charged with the electric power generated by the solar battery, thereby saving energy.

本発明に係るパスケースは、ICカード用充電装置、ICカード用充電装置を収容する第一収容部、及び、充電されるべきICカードをICカード用充電装置と対向するように収容可能な第二収容部を備える。このICカード用充電装置は、上述のように、電力源と、電力源からの電力の供給を受けて交流信号を発生する発振器と、発振器からの交流信号を受けて電磁波を発生するコイル状のアンテナと、電力源、発振器、及び、アンテナを収容する外装体と、を有している。   The pass case according to the present invention includes an IC card charging device, a first receiving portion for storing the IC card charging device, and an IC card that can store the IC card to be charged so as to face the IC card charging device. Two housing parts are provided. As described above, this IC card charging device includes a power source, an oscillator that generates an AC signal by receiving power supplied from the power source, and a coil-shaped device that generates an electromagnetic wave by receiving an AC signal from the oscillator. An antenna, a power source, an oscillator, and an exterior body that houses the antenna are included.

このようなパスケースによれば、ICカードをパスケースに入れたまま、ICカード用充電装置によってICカードの充電操作が行えるので極めて利便性が高い。   According to such a pass case, since the IC card can be charged by the IC card charging device while the IC card is put in the pass case, it is extremely convenient.

本発明によれば、ICカードのユーザにとって利便性の高いICカード用充電装置及びこれを用いたパスケースを提供できる。   According to the present invention, it is possible to provide an IC card charging device that is highly convenient for IC card users and a pass case using the same.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。
(第一実施形態)
図1は本発明の第一実施形態に係るICカード用充電装置20、及び、このICカード用充電装置20により充電されるICカード50を示すブロック図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
(First embodiment)
FIG. 1 is a block diagram showing an IC card charging device 20 and an IC card 50 charged by the IC card charging device 20 according to the first embodiment of the present invention.

(ICカード)
まず、本実施形態に係るICカード50の機能から説明する。このICカード50は、情報処理部54及びメモリ56を有するIC部52、蓄電素子58、表示素子60、過充電防止部62、アンテナ64、及び、外装体68を備えている。
(IC card)
First, the function of the IC card 50 according to the present embodiment will be described. The IC card 50 includes an IC unit 52 having an information processing unit 54 and a memory 56, a power storage element 58, a display element 60, an overcharge prevention unit 62, an antenna 64, and an exterior body 68.

IC部52は、情報処理部54及びメモリ56を有する集積回路(IC)である。情報処理部54としては、例えば、CPU等の演算装置が挙げられる。ここで情報処理部54が行う情報の処理とは、具体的には、アンテナ64を介して受信したリーダライタ10からの信号を復調して情報を得、これに基づいてメモリ56内から情報を読み出したりメモリ56内の情報を書き換えたり、読み出した情報を変調してアンテナ64を介してリーダライタ10に送信させたりする処理や、必要に応じてメモリ56内の情報を表示素子60に表示させたりする処理を含む。   The IC unit 52 is an integrated circuit (IC) having an information processing unit 54 and a memory 56. An example of the information processing unit 54 is an arithmetic device such as a CPU. Here, the information processing performed by the information processing unit 54 is, specifically, demodulating a signal from the reader / writer 10 received via the antenna 64 to obtain information, and based on this, information from the memory 56 is obtained. Reading, rewriting information in the memory 56, modulating the read information and transmitting the information to the reader / writer 10 via the antenna 64, and displaying the information in the memory 56 on the display element 60 as necessary. Process.

メモリ56は、情報処理部54にバスを通じて接続されており、情報処理部54で処理された情報の記録等を行う。メモリ56としては、例えば、EEPROM等の不揮発性のメモリを使用できる。   The memory 56 is connected to the information processing unit 54 through a bus, and records information processed by the information processing unit 54. As the memory 56, for example, a nonvolatile memory such as an EEPROM can be used.

アンテナ64は、ループコイルであり、情報処理部54から変調された信号を受けて所定の電磁波を発生する一方、リーダライタ10やICカード用充電装置20からの電磁波を受信し所定の起電力の信号を発生し、情報処理部54や蓄電素子58に送信する。   The antenna 64 is a loop coil, and receives a modulated signal from the information processing unit 54 and generates a predetermined electromagnetic wave. On the other hand, the antenna 64 receives an electromagnetic wave from the reader / writer 10 or the IC card charging device 20 and has a predetermined electromotive force. A signal is generated and transmitted to the information processing unit 54 and the storage element 58.

過充電防止部62は、アンテナ64からの信号を整流して直流に変換し、この直流電力を蓄電素子58の蓄電量に応じて適宜蓄電素子58に充電する。   The overcharge prevention unit 62 rectifies the signal from the antenna 64 and converts it to direct current, and charges the direct current power to the power storage element 58 as appropriate according to the amount of power stored in the power storage element 58.

蓄電素子58は、過充電防止部62によって充電される一方、必要に応じて電力を発生してIC部52や表示素子60に対して電力を供給する。このような蓄電素子58としては、リチウムイオン電池等の二次電池や電気二重層キャパシタ、アルミ電解コンデンサ、フィルムコンデンサ、セラミック積層コンデンサ等を利用できる。   The power storage element 58 is charged by the overcharge prevention unit 62, while generating power as necessary to supply power to the IC unit 52 and the display element 60. As such a storage element 58, a secondary battery such as a lithium ion battery, an electric double layer capacitor, an aluminum electrolytic capacitor, a film capacitor, a ceramic multilayer capacitor, or the like can be used.

表示素子60は、蓄電素子58の電力により駆動され、情報処理部54の指示にしたがって、メモリ56の記憶情報等を表示する。表示素子60としては、例えば、液晶パネル等を利用できる。   The display element 60 is driven by the electric power of the power storage element 58 and displays information stored in the memory 56 in accordance with an instruction from the information processing unit 54. As the display element 60, for example, a liquid crystal panel or the like can be used.

そして、外装体68は、このようなIC部52、アンテナ64、過充電防止部62、蓄電素子58、表示素子60を収容する。   And the exterior body 68 accommodates such IC part 52, the antenna 64, the overcharge prevention part 62, the electrical storage element 58, and the display element 60. FIG.

(ICカード用充電装置)
続いて、本実施形態に係るICカード用充電装置20の機能について説明する。このICカード用充電装置20は、二次電池(電池)24と、太陽電池26と、スイッチ28と、発振器30と、アンテナ32と、外装体38と、を備えている。
(Charging device for IC card)
Next, functions of the IC card charging device 20 according to the present embodiment will be described. The IC card charging device 20 includes a secondary battery (battery) 24, a solar battery 26, a switch 28, an oscillator 30, an antenna 32, and an exterior body 38.

二次電池24は充電可能な電池であり、発生する電力を、スイッチ28を介して発振器30に供給する。二次電池24としては、例えば、リチウムイオン電池、ニッケル水素電池等を使用できる。ここで、二次電池24に代えて、電気二重層キャパシタやセラミック積層コンデンサ等の大容量キャパシタを用いても同様の動作が可能である。   The secondary battery 24 is a rechargeable battery, and supplies generated power to the oscillator 30 via the switch 28. As the secondary battery 24, for example, a lithium ion battery, a nickel hydrogen battery, or the like can be used. Here, instead of the secondary battery 24, the same operation is possible even if a large capacity capacitor such as an electric double layer capacitor or a ceramic multilayer capacitor is used.

太陽電池26は、太陽光線の放射エネルギーを直接電気エネルギーに変換する素子である。太陽電池26により発生した電力は二次電池24に供給され、二次電池24の充電が行われる。太陽電池26としては、例えば、多結晶シリコン太陽電池等が利用できる。   The solar cell 26 is an element that directly converts radiant energy of sunlight into electric energy. The electric power generated by the solar battery 26 is supplied to the secondary battery 24, and the secondary battery 24 is charged. As the solar cell 26, for example, a polycrystalline silicon solar cell can be used.

スイッチ28は、二次電池24から発振器30への電力の供給/遮断を制御するためのスイッチである。このスイッチ28は、通常、ICカード用充電装置20のユーザにより操作される。   The switch 28 is a switch for controlling supply / cutoff of power from the secondary battery 24 to the oscillator 30. This switch 28 is normally operated by the user of the IC card charging device 20.

発振器30は、二次電池24からの電力を受けて、所定の周波数の交流信号を発生する。この発振器30は、ユーザの所望に応じて発振器30が発生する交流信号の周波数を変更させる周波数変更部(周波数変更手段)34を有している。   The oscillator 30 receives power from the secondary battery 24 and generates an AC signal having a predetermined frequency. The oscillator 30 includes a frequency changing unit (frequency changing means) 34 that changes the frequency of the AC signal generated by the oscillator 30 in accordance with a user's request.

アンテナ32は、ループコイルであり、発振器30からの交流信号を受けて所定の周波数の電磁波を発生する。   The antenna 32 is a loop coil, and generates an electromagnetic wave having a predetermined frequency in response to an AC signal from the oscillator 30.

外装体38は、これら二次電池24、太陽電池26、スイッチ28、発振器30、及び、アンテナ32を収容する。ICカード用充電装置20、ICカード50の機械的構造については、後述する。   The exterior body 38 accommodates the secondary battery 24, the solar battery 26, the switch 28, the oscillator 30, and the antenna 32. The mechanical structure of the IC card charging device 20 and the IC card 50 will be described later.

続いて、本実施形態に係るICカード用充電装置20の概略回路図を図2に示す。本実施形態の発振器30は、詳細な回路の図示は省略するが、ノード48a及びノード48bから供給される直流の電力によって駆動され、周波数fの交流信号を発生してノード48c及びノード48dを介して外部に出力する発振回路である。   Then, the schematic circuit diagram of the charging device 20 for IC cards which concerns on this embodiment is shown in FIG. Although the detailed circuit illustration is omitted, the oscillator 30 of this embodiment is driven by DC power supplied from the node 48a and the node 48b, generates an AC signal of frequency f, and passes through the node 48c and the node 48d. This is an oscillation circuit that outputs to the outside.

発振器30は、コイル42及び可変コンデンサ44(周波数変更部34)により構成されるLC共振回路46と、このLC共振回路46によって選択された周波数fの信号を正帰還してトランジスタ等によって増幅させることによって周波数fの発振を起こさせる回路部40と、を備えている。   The oscillator 30 positively feeds back a signal of the frequency f selected by the LC resonance circuit 46 by a coil 42 and a variable capacitor 44 (frequency changing unit 34) and amplifies the signal by a transistor or the like. And a circuit unit 40 that causes oscillation at the frequency f.

このような発振器30としては、具体的には、例えば、ハートレー回路や、コルピッツ回路を使用できる。   As such an oscillator 30, specifically, for example, a Hartley circuit or a Colpitts circuit can be used.

ここで、発振器30が発生する周波数fの概略値は、コイル42のインダンクタンスをL、可変コンデンサ44のキャパシタンスをCとし、例えば、LC共振回路46はコイル42及び可変コンデンサ44が並列接続されたものとすると、

Figure 2005149238
となる。したがって、可変コンデンサ44のキャパシタンスを変化させることにより、所望の周波数での発振が可能となる。 Here, the approximate value of the frequency f generated by the oscillator 30 is that the inductance of the coil 42 is L and the capacitance of the variable capacitor 44 is C. For example, in the LC resonance circuit 46, the coil 42 and the variable capacitor 44 are connected in parallel. Assuming
Figure 2005149238
It becomes. Therefore, it is possible to oscillate at a desired frequency by changing the capacitance of the variable capacitor 44.

ここで、このLC共振回路46は、コイル42及び可変コンデンサ44の並列回路に限られず直列回路等でもよい。また、可変コンデンサ44に代えてキャパシタンスが固定されたコンデンサを使用し、コイル42に代えてインダクタンスを調節可能な可変コイルを周波数変更部34として採用しても良い。さらに、可変コンデンサ44を採用すると共に可変コイルを採用しても良い。   Here, the LC resonance circuit 46 is not limited to the parallel circuit of the coil 42 and the variable capacitor 44 but may be a series circuit or the like. Alternatively, a capacitor with a fixed capacitance may be used in place of the variable capacitor 44, and a variable coil whose inductance can be adjusted may be employed as the frequency changing unit 34 instead of the coil 42. Further, the variable capacitor 44 and the variable coil may be employed.

このような回路部40のノード48aには、スイッチ28を介して、二次電池24の正極及び太陽電池26の正極が接続されている。一方、回路部40のノード48bには、二次電池24及び太陽電池26の負極が接続されており、ノード48a及びノード48bを介して回路部40に電力が供給される。
さらに、回路部40のノード48c及びノード48dにはアンテナ32の両端が接続され、回路部40からの所定の周波数fの交流信号がアンテナ32に供給される。
The positive electrode of the secondary battery 24 and the positive electrode of the solar battery 26 are connected to the node 48 a of the circuit unit 40 through the switch 28. On the other hand, the negative electrode of the secondary battery 24 and the solar battery 26 is connected to the node 48b of the circuit unit 40, and power is supplied to the circuit unit 40 via the node 48a and the node 48b.
Further, both ends of the antenna 32 are connected to the node 48 c and the node 48 d of the circuit unit 40, and an AC signal having a predetermined frequency f from the circuit unit 40 is supplied to the antenna 32.

続いて、本実施形態のICカード用充電装置20及びICカード50の構造について図3を参照して説明する。   Next, the structure of the IC card charging device 20 and the IC card 50 according to the present embodiment will be described with reference to FIG.

ICカード用充電装置20において、外装体38は、矩形の薄型の板状をなしており、互いに対向する主面38a、38b、及び、側面38cを有している。外装体38の材質としては、PVC、ポリエステル、PET等の樹脂を利用できる。このような外装体38の大きさは、例えば、縦54mm×横86mm×厚み3mmである。   In the IC card charging device 20, the exterior body 38 has a rectangular thin plate shape, and has main surfaces 38 a and 38 b and side surfaces 38 c facing each other. As the material of the exterior body 38, resins such as PVC, polyester, and PET can be used. The size of the exterior body 38 is, for example, 54 mm long × 86 mm wide × 3 mm thick.

そして、アンテナ32、二次電池24、可変コンデンサ44(図2参照)としてのダイヤル回転型可変コンデンサ44a、回路部40及びコイル42(図2参照)が一つにまとめられた発振チップ31、太陽電池26、スイッチ28(図2参照)としての押下スイッチ28aが、外装体38内に収容されている。   The antenna 32, the secondary battery 24, the dial rotation type variable capacitor 44 a as the variable capacitor 44 (see FIG. 2), the circuit unit 40, and the coil 42 (see FIG. 2) are combined into one. The battery 26 and a push switch 28a as a switch 28 (see FIG. 2) are accommodated in the exterior body 38.

アンテナ32はループコイル形状をなし、外装体38内において外装体38の主面38aに直交する軸周りに複数回巻き回されている。このアンテナ32は、外装体38の主面38aに垂直な方向から見たときに外装体38の主面38aの面積の1/2以上を占めている。   The antenna 32 has a loop coil shape, and is wound a plurality of times around an axis orthogonal to the main surface 38 a of the exterior body 38 in the exterior body 38. The antenna 32 occupies 1/2 or more of the area of the main surface 38a of the exterior body 38 when viewed from a direction perpendicular to the main surface 38a of the exterior body 38.

二次電池24は、薄型のボタン型形状をなしている。また、太陽電池26の受光面は外装体38の主面38a上に露出されている。さらに、押下スイッチ28aは、外装体38の主面38a上に露出するように配置されている。   The secondary battery 24 has a thin button shape. Further, the light receiving surface of the solar cell 26 is exposed on the main surface 38 a of the exterior body 38. Further, the push switch 28 a is disposed so as to be exposed on the main surface 38 a of the exterior body 38.

ダイヤル回転型可変コンデンサ44aは、キャパシタンスを変化させるための円盤状の回転ダイヤル77aを有しており、回転ダイヤル77aの回転によって電極(不図示)の対向部分の面積を変化させてキャパシタンスを変化させるものである。この回転ダイヤル77aの表面には、変化するキャパシタンスに対応した目盛り記号77bが円周方向に表示されている。そして、ダイヤル回転型可変コンデンサ44aは、この回転ダイヤル77aの一部が外装体38の側面38cから外部に突出するように、外装体38内に固定されている。そして、ユーザが、回転ダイヤル77aの目盛り記号77bを確認しつつこの回転ダイヤル77aを所望の位置に回転させることにより、ダイヤル回転型可変コンデンサ44aのキャパシタンスを所望の値に調節でき、アンテナ32から発振される電磁波の周波数を調節することができる。具体的な周波数の調節範囲は、例えば、4〜14MHzである。   The dial rotation type variable capacitor 44a has a disk-shaped rotation dial 77a for changing the capacitance. The rotation of the rotation dial 77a changes the area of the facing portion of the electrode (not shown) to change the capacitance. Is. On the surface of the rotary dial 77a, a scale symbol 77b corresponding to the changing capacitance is displayed in the circumferential direction. The dial rotation type variable capacitor 44a is fixed in the exterior body 38 so that a part of the rotary dial 77a protrudes from the side surface 38c of the exterior body 38 to the outside. Then, the user can adjust the capacitance of the dial rotating variable capacitor 44a to a desired value by rotating the rotary dial 77a to a desired position while checking the scale symbol 77b of the rotary dial 77a, and oscillates from the antenna 32. The frequency of the electromagnetic wave generated can be adjusted. A specific frequency adjustment range is, for example, 4 to 14 MHz.

一方、ICカード50の外装体68も、ICカード用充電装置20と同様の樹脂製の外装体68を有し、アンテナ64、IC部52、蓄電素子58、過充電防止部62、及び、表示素子60が、矩形板状の外装体68内に収容されている。表示素子60の表示面は、外装体68から露出している。また、アンテナ64は、外装体68内において外装体68の主面68aに垂直な軸回りに巻き回されている。ICカードの大きさは、縦54mm×横85.7mm×厚み0.76mm程度であり、ICカード用充電装置20とほぼ同様である。   On the other hand, the exterior body 68 of the IC card 50 also has a resin exterior body 68 similar to the IC card charging device 20, and includes an antenna 64, an IC unit 52, a power storage element 58, an overcharge prevention unit 62, and a display. The element 60 is accommodated in a rectangular plate-shaped exterior body 68. The display surface of the display element 60 is exposed from the exterior body 68. The antenna 64 is wound around an axis perpendicular to the main surface 68 a of the exterior body 68 in the exterior body 68. The size of the IC card is about 54 mm long × 85.7 mm wide × 0.76 mm thick, which is substantially the same as the IC card charging device 20.

このようなICカード用充電装置20やICカード50は、例えば、所定の樹脂製等のシート上に各部品をあらかじめ貼り込んでおき、この上にさらにシートを載せて熱圧着する方法や、各部品が張り込まれたシートを型内に載置し、この型内に樹脂を埋め込む方法等により容易に製造できる。   Such an IC card charging device 20 or IC card 50 is, for example, a method in which each component is previously pasted on a sheet made of a predetermined resin, and a sheet is further placed thereon to perform thermocompression bonding, It can be easily manufactured by a method in which a sheet on which a component is stuck is placed in a mold and a resin is embedded in the mold.

続いて、本実施形態のICカード用充電装置20の作用について説明する。   Then, the effect | action of the charging device 20 for IC cards of this embodiment is demonstrated.

まず、ICカード50の蓄電素子58を充電したいユーザは、ICカード用充電装置20の回転ダイヤル77aを回転させ、ICカード用充電装置20から出力される電磁波の周波数を、充電されるべきICカード50の電力受信用の周波数に合わせておく。   First, a user who wants to charge the storage element 58 of the IC card 50 rotates the rotary dial 77a of the IC card charging device 20 to set the frequency of the electromagnetic wave output from the IC card charging device 20 to the IC card to be charged. Match the frequency for 50 power reception.

続いて、ICカード用充電装置20の主面38bとICカード50の主面68aとを重ね合わせ、その状態で、ICカード用充電装置20の押下スイッチ28aを押下する。そうすると、発振器30に対して二次電池24から電力が供給されて発振が起こり、アンテナ32から所望の周波数fの電磁波が出力される。   Subsequently, the main surface 38b of the IC card charging device 20 and the main surface 68a of the IC card 50 are overlapped, and in this state, the push switch 28a of the IC card charging device 20 is pressed. Then, power is supplied from the secondary battery 24 to the oscillator 30 to oscillate, and an electromagnetic wave having a desired frequency f is output from the antenna 32.

このようにして出力された電磁波は、ICカード50のアンテナ64で受信されて電力に変換され、過充電防止部62を介して蓄電素子58に蓄えられる。このような充電は、ユーザが押下スイッチ28aを押下している限り継続する。そして、押下をやめて充電を完了した後、ユーザは、このようにして蓄電素子58に蓄えられた電力を用いて表示素子60に情報を表示させることができる。   The electromagnetic wave output in this way is received by the antenna 64 of the IC card 50 and converted into electric power, and is stored in the power storage element 58 via the overcharge prevention unit 62. Such charging continues as long as the user presses down the push switch 28a. And after stopping pressing and completing charge, the user can display information on the display element 60 using the electric power stored in the electrical storage element 58 in this way.

このような本実施形態のICカード用充電装置20によれば、電力を発生する二次電池24を備えているので、充電の際に外部からの電源の供給を必要としない。したがって、このICカード用充電装置20をユーザが携帯することにより、ユーザが所望する時・場所においてICカード50の蓄電素子58を手軽に充電することができる。さらに、二次電池24として、ボタン型のものを利用しているので、ICカード用充電装置20が小型軽量となってICカード用充電装置20の携帯性がさらに良くなる。さらに、二次電池24として、小型でありながら容量が大きいリチウムイオン電池やニッケル水素電池を採用しているので、長時間、多数回の利用が可能である。   According to the IC card charging device 20 of this embodiment, since the secondary battery 24 that generates electric power is provided, it is not necessary to supply power from the outside during charging. Therefore, by carrying the IC card charging device 20 by the user, the power storage element 58 of the IC card 50 can be easily charged at the time and place desired by the user. Further, since a button type battery is used as the secondary battery 24, the IC card charging device 20 is reduced in size and weight, and the portability of the IC card charging device 20 is further improved. Furthermore, since the secondary battery 24 employs a lithium-ion battery or a nickel-metal hydride battery that is small but has a large capacity, it can be used many times for a long time.

また、二次電池24から発振器30への電力の供給/遮断を制御することができる押下スイッチ28aを備えているので、ユーザが所望する時に所望の時間だけ充電操作ができる。したがって、無駄な電力の消費を抑制できる。   Further, since the push switch 28a capable of controlling the supply / cutoff of power from the secondary battery 24 to the oscillator 30 is provided, the charging operation can be performed for a desired time when the user desires. Therefore, wasteful power consumption can be suppressed.

また、ICカード50の規格は現在複数存在し、ICカード50に充電するために必要とされる電磁波の周波数は、ICカード50の種類毎に異なる場合が多い。ところが、本実施形態においては、周波数変更部34を有しているので、充電用の電磁波の周波数を変えることにより多種のICカード50にそれぞれ充電することができ、ICカード用充電装置20の汎用性が高い。   In addition, there are currently a plurality of standards for the IC card 50, and the frequency of electromagnetic waves required for charging the IC card 50 is often different for each type of IC card 50. However, in the present embodiment, since the frequency changing unit 34 is provided, various IC cards 50 can be charged by changing the frequency of the electromagnetic wave for charging. High nature.

具体的には、発振器30が、コイル42及びダイヤル回転型可変コンデンサ44aを含むLC共振回路46を有しているので、可変コンデンサ44のキャパシタンスCを変更することによりLC共振回路46の共振周波数が変更可能となっている。このため、アンテナ32から発生する電磁波の周波数を極めて容易に変更できる。   Specifically, since the oscillator 30 includes the LC resonance circuit 46 including the coil 42 and the dial rotation type variable capacitor 44a, the resonance frequency of the LC resonance circuit 46 is changed by changing the capacitance C of the variable capacitor 44. It can be changed. For this reason, the frequency of the electromagnetic wave generated from the antenna 32 can be changed very easily.

また、本実施形態では、外装体38が板状であり、コイル状のアンテナ32は外装体38の主面38aに垂直な軸回りに巻き回されている。このため、アンテナ32のコイルの径を、外装体38の厚みと垂直な面内方向に大きく広げることができるため、薄型の板状の外装体38でもアンテナ32のコイルの径を十分に大きくできる。したがって、ICカード50におけるアンテナ64の位置や大きさの影響をそれほど受けることなくICカード50の充電が可能となる。   In the present embodiment, the exterior body 38 has a plate shape, and the coiled antenna 32 is wound around an axis perpendicular to the main surface 38 a of the exterior body 38. For this reason, the coil diameter of the antenna 32 can be greatly increased in the in-plane direction perpendicular to the thickness of the exterior body 38, and thus the coil diameter of the antenna 32 can be sufficiently increased even with a thin plate-shaped exterior body 38. . Therefore, the IC card 50 can be charged without being greatly affected by the position and size of the antenna 64 in the IC card 50.

特に、アンテナ32は、外装体38の主面38aに垂直な方向から見たときにこの主面38aの面積の1/2以上を占有する大きさである。したがって、ICカード50におけるアンテナ64の位置がさまざまな場所にあっても、少なくとも、ICカード50の表裏を一回裏返す、又は、ICカード50を主面68aと垂直な軸周りに180°回転させれば、ほぼ確実に、アンテナ32とアンテナ64とを対向させることができ、充電を確実に行える。   In particular, the antenna 32 has a size that occupies 1/2 or more of the area of the main surface 38a when viewed from a direction perpendicular to the main surface 38a of the exterior body 38. Therefore, even if the position of the antenna 64 on the IC card 50 is in various places, at least the front and back of the IC card 50 are turned over or the IC card 50 is rotated by 180 ° around an axis perpendicular to the main surface 68a. If so, the antenna 32 and the antenna 64 can be opposed to each other almost reliably, and charging can be performed reliably.

なお、アンテナ32の大きさが、主面38aの面積の1/4以上あれば、少なくとも、ICカード50を一回裏返し、かつ、主面68aと垂直な軸周りに180°回転させれば、ほぼ確実に、アンテナ32とアンテナ64とを対向させることができる。もちろん、ICカード50のアンテナ32が主面68aの面積のほとんどを占有する場合等には、アンテナ32の大きさは、特に問題とはならない。   If the size of the antenna 32 is ¼ or more of the area of the main surface 38a, at least if the IC card 50 is turned over once and rotated by 180 ° around an axis perpendicular to the main surface 68a, The antenna 32 and the antenna 64 can be opposed to each other almost certainly. Of course, when the antenna 32 of the IC card 50 occupies most of the area of the main surface 68a, the size of the antenna 32 is not particularly problematic.

また、ICカード用充電装置20の外装体38が板状であるので、パスケース等に収容することが容易なので携帯性が向上する。また、ICカード用充電装置20の外装体38が板状であると、板状であるICカード50と重ね合わせやすいため、充電の操作が容易に行える。特に本実施形態では、ICカード用充電装置20とICカード50とが略同サイズの矩形板状であるので、より重ねあわせやすい。   Moreover, since the exterior body 38 of the charging device 20 for IC cards is plate-shaped, it can be easily accommodated in a pass case or the like, so that portability is improved. Further, when the exterior body 38 of the IC card charging device 20 is plate-shaped, it is easy to superimpose it with the plate-shaped IC card 50, so that the charging operation can be easily performed. In particular, in the present embodiment, the IC card charging device 20 and the IC card 50 are rectangular plates having substantially the same size, so that they are more easily overlapped.

さらに、太陽電池26を備えているので、ICカード用充電装置20を太陽にかざすことにより、ICカード用充電装置20の二次電池24を予め充電しておくことができるので省エネルギー製に優れ、さらに、二次電池24の充電が簡易に行えるので利便性が極めて高い。   Furthermore, since the solar battery 26 is provided, the secondary battery 24 of the IC card charging device 20 can be charged in advance by holding the IC card charging device 20 over the sun, so that it is excellent in energy saving. Furthermore, since the secondary battery 24 can be easily charged, the convenience is extremely high.

(第二実施形態)
続いて、第二実施形態に係るICカード用充電装置120について、図4を参照して説明する。本実施形態に係るICカード用充電装置120が第一実施形態に係るICカード用充電装置20と異なる点は、ダイヤル回転型可変コンデンサ44aに代えて、スライド型可変コンデンサ44bを備えている点である。このスライド型可変コンデンサ44bは、外装体38の端面38dに沿って移動するスライド式のツマミ78aを有し、このツマミ78aをスライドさせると電極間の対向面積が変わりキャパシタンスを変更できる。したがって、アンテナ64から送信される電磁波の周波数を変更できる。
(Second embodiment)
Next, the IC card charging device 120 according to the second embodiment will be described with reference to FIG. The IC card charging device 120 according to this embodiment is different from the IC card charging device 20 according to the first embodiment in that a slide type variable capacitor 44b is provided instead of the dial rotation type variable capacitor 44a. is there. The slide-type variable capacitor 44b has a slide-type knob 78a that moves along the end surface 38d of the exterior body 38. When the knob 78a is slid, the facing area between the electrodes changes and the capacitance can be changed. Therefore, the frequency of the electromagnetic wave transmitted from the antenna 64 can be changed.

ここで、スライド式のツマミ78aには、外装体38の主面38aの一部を指示する指示針78bが設けられている。また、外装体38の主面38aには、指示針78bによって指示される部分に、各指示位置に対応する周波数を示す目盛り記号79が記されている。したがって、ユーザが、ツマミ78aの指示針78bが所望の目盛り記号79に合致するようにツマミ78aをスライドさせることによって、スライド型可変コンデンサ44bを所望のキャパシタンスとすることができ、ICカード用充電装置120から所望の周波数の電磁波を出力させることができる。上記以外の作用効果は、第一実施形態と同様である。   Here, the slide type knob 78a is provided with an indicating needle 78b for indicating a part of the main surface 38a of the exterior body 38. In addition, on the main surface 38a of the exterior body 38, a scale symbol 79 indicating a frequency corresponding to each indicated position is written in a portion indicated by the indicating needle 78b. Therefore, when the user slides the knob 78a so that the indicator needle 78b of the knob 78a matches the desired scale symbol 79, the slide-type variable capacitor 44b can have a desired capacitance, and the IC card charging device 120 can output an electromagnetic wave having a desired frequency. The effects other than the above are the same as in the first embodiment.

(第三実施形態)
続いて、第三実施形態に係るICカード用充電装置220について図5(a)及び図5(b)を参照して説明する。本実施形態に係るICカード用充電装置220が第一実施形態に係るICカード用充電装置20と異なる点は、ダイヤル回転型可変コンデンサ44aに代えて、周波数変更部34として、複数の個別コンデンサ130を梯子状に直列に接続した集合コンデンサ44cを備える点である。
(Third embodiment)
Next, the IC card charging device 220 according to the third embodiment will be described with reference to FIGS. 5 (a) and 5 (b). The IC card charging device 220 according to the present embodiment is different from the IC card charging device 20 according to the first embodiment in that a plurality of individual capacitors 130 are used as the frequency changing unit 34 instead of the dial rotation type variable capacitor 44a. The capacitor capacitor 44c is connected in series in a ladder shape.

各個別コンデンサ130は、それぞれ薄い樹脂フィルムを電極(金属膜)で挟んだ構造である(図示省略)。これら個別コンデンサ130は、外装体38内において外装体38の主面38aに沿って、発振チップ31から離れる方向に、かつ、端面38dと平行に並設されている。また、発振チップ31からは、外装体38の主面38aに沿って、併設された個別コンデンサ130を挟むように一対の共通ライン132,134が外装体38内を伸びている。   Each individual capacitor 130 has a structure in which a thin resin film is sandwiched between electrodes (metal films) (not shown). The individual capacitors 130 are arranged in parallel in the direction away from the oscillation chip 31 and in parallel with the end surface 38 d along the main surface 38 a of the exterior body 38 in the exterior body 38. A pair of common lines 132, 134 extend from the oscillation chip 31 along the main surface 38 a of the exterior body 38 so as to sandwich the individual capacitor 130 provided side by side.

各個別コンデンサ130の一方の電極は、個別ライン131によって共通ライン132に接続されている。一方、各個別コンデンサ130の他方の電極は、個別ライン133によって共通ライン134に接続されている。そして、共通ライン132,134、及び、個別ライン131,133が配線層135を構成しており、個別コンデンサ130、及び、配線層135が集合コンデンサ44cを構成している。   One electrode of each individual capacitor 130 is connected to the common line 132 by an individual line 131. On the other hand, the other electrode of each individual capacitor 130 is connected to a common line 134 by an individual line 133. The common lines 132 and 134 and the individual lines 131 and 133 constitute the wiring layer 135, and the individual capacitor 130 and the wiring layer 135 constitute the collective capacitor 44c.

そして、外装体38の主面38aにおいて、個別コンデンサ130と個別コンデンサ130との中間点に対応する位置には、個別コンデンサ130が並ぶ方向と直交する方向に縦線(標識)136がそれぞれ平行に描かれている。これらの縦線136は、それぞれ各共通ライン132、134を横切るように伸びている。縦線136の一端は、それぞれ外装体38の端面38dまで達している一方、各縦線136の他端は、共通ライン132,134を挟むように端面38dと平行に描かれた横線137と接続されている。   On the main surface 38a of the exterior body 38, vertical lines (labels) 136 are parallel to each other at a position corresponding to an intermediate point between the individual capacitors 130 and 130 in a direction orthogonal to the direction in which the individual capacitors 130 are arranged. It is drawn. These vertical lines 136 extend so as to cross the common lines 132 and 134, respectively. One end of each vertical line 136 reaches the end surface 38d of the exterior body 38, while the other end of each vertical line 136 is connected to a horizontal line 137 drawn parallel to the end surface 38d so as to sandwich the common lines 132 and 134 therebetween. Has been.

そして、ユーザが周波数fを変更したい場合には、いずれかの縦線136に沿ってICカード用充電装置20を切断し、さらに、横線137に沿ってこの縦線136までICカード用充電装置20を切断することにより、図5(b)に示すように、個別コンデンサ130を含む切片220a取り除く。これにより、この縦線136よりも発振チップ31から遠い側の個別コンデンサ130を無効化することができ、集合コンデンサ44cのキャパシタンスを変更することができ、したがって、発生する電磁波の周波数を変更できる。上記以外の作用効果は、第一実施形態と同様である。   When the user wants to change the frequency f, the IC card charging device 20 is cut along one of the vertical lines 136, and further, the IC card charging device 20 up to the vertical line 136 along the horizontal line 137. Is cut to remove the segment 220a including the individual capacitor 130, as shown in FIG. Thereby, the individual capacitor 130 farther from the oscillation chip 31 than the vertical line 136 can be invalidated, the capacitance of the collective capacitor 44c can be changed, and therefore the frequency of the generated electromagnetic wave can be changed. The effects other than the above are the same as in the first embodiment.

(第四実施形態)
続いて、第四実施形態に係るICカード用充電装置について、図6を参照して説明する。第四実施形態に係るICカード用充電装置320が第三実施形態と異なる点は、縦線136、横線137に代えて、第三実施形態において縦線136が共通ライン134を横切る位置に、共通ライン134の位置を示す丸印(標識)138が主面38aの表面に設けられている点である。
(Fourth embodiment)
Next, an IC card charging device according to a fourth embodiment will be described with reference to FIG. The IC card charging device 320 according to the fourth embodiment is different from the third embodiment in that, in place of the vertical line 136 and the horizontal line 137, the vertical line 136 crosses the common line 134 in the third embodiment. A circle (mark) 138 indicating the position of the line 134 is provided on the surface of the main surface 38a.

本実施形態においては、針(ピン)等によって、所望の丸印138の部分に穴をあけることにより、共通ライン134を切断して所望の個別コンデンサ130を無効化することができ、これにより、集合コンデンサ44cのキャパシタンスを変更でき、したがって第三実施形態と同様に電磁波の周波数を変更できる。   In the present embodiment, the desired individual capacitor 130 can be invalidated by cutting the common line 134 by making a hole in a desired circle mark 138 with a needle (pin) or the like. The capacitance of the collecting capacitor 44c can be changed, and therefore the frequency of the electromagnetic wave can be changed as in the third embodiment.

(第五実施形態)
続いて、本発明に係るパスケースについて説明する。
(Fifth embodiment)
Next, the pass case according to the present invention will be described.

このパスケース400は、上部シート402、中間シート404、及び、下部シート406を有している。これら上部シート402、中間シート404、及び、下部シート406は、互いに同サイズの矩形状をなし、それぞれ樹脂あるいは革等の可撓性材料により形成されている。   The pass case 400 includes an upper sheet 402, an intermediate sheet 404, and a lower sheet 406. The upper sheet 402, the intermediate sheet 404, and the lower sheet 406 have a rectangular shape of the same size, and are formed of a flexible material such as resin or leather.

中間シート404と上部シート402との間には第一実施形態に係るICカード用充電装置20が挟まれており、ICカード用充電装置20を挟んだ状態で、中間シート404及び上部シート402の四辺がヒートシールされている。ここで、中間シート404と上部シート402との間が第一収容部410とされている。   The IC card charging device 20 according to the first embodiment is sandwiched between the intermediate sheet 404 and the upper sheet 402. With the IC card charging device 20 sandwiched, the intermediate sheet 404 and the upper sheet 402 Four sides are heat sealed. Here, a space between the intermediate sheet 404 and the upper sheet 402 is a first accommodating portion 410.

上部シート402においてICカード用充電装置20の太陽電池26及び押下スイッチ28aと対面する部分には開口が形成されている。また、上部シート402において、ダイヤル回転型可変コンデンサ44aのダイヤルの部分と対面する部分も開口されている。したがって、ICカード用充電装置20を収容したまま、押下スイッチ28aの操作、太陽電池による充電、及び、周波数fの調整が可能となっている。   An opening is formed in a portion of the upper sheet 402 that faces the solar cell 26 and the push switch 28a of the IC card charging device 20. In the upper sheet 402, a portion facing the dial portion of the dial rotation type variable capacitor 44a is also opened. Therefore, the operation of the push switch 28a, the charging by the solar battery, and the adjustment of the frequency f can be performed while the IC card charging device 20 is accommodated.

中間シート404の下には、下部シート406が配置され、下部シート406の長手方向の一端側(図示手前側)を除く三辺が中間シート404に対してヒートシールされている。そして、ヒートシールされていない部分から、中間シート404と下部シート406との間にICカード50を挿入可能となっている。ここで、中間シート404と下部シート406との間が第二収容部420とされている。ICカード50は、パスケース400内で、ICカード用充電装置20と対向することとなる。   A lower sheet 406 is disposed under the intermediate sheet 404, and three sides of the lower sheet 406 except for one end side (the front side in the figure) in the longitudinal direction are heat sealed to the intermediate sheet 404. The IC card 50 can be inserted between the intermediate sheet 404 and the lower sheet 406 from a portion that is not heat-sealed. Here, a space between the intermediate sheet 404 and the lower sheet 406 serves as a second accommodating portion 420. The IC card 50 faces the IC card charging device 20 in the pass case 400.

このようなパスケース400によれば、ICカード50をパスケース400に入れたまま、ICカード用充電装置20によってICカード50の充電操作が行えるので極めて利便性が高い。   According to such a pass case 400, since the IC card 50 can be charged by the IC card charging device 20 while the IC card 50 is placed in the pass case 400, the convenience is extremely high.

また、ICカード用充電装置20は樹脂製の薄型の板状の外装体38を有しているので、ICカード50をこのパスケース400に入れたままリーダライタにかざしても、リーダライタからICカード50に到達する電磁波や、ICカード50からリーダライタに送信される電波を遮ったりせず、ICカードの動作が可能である。ここで、パスケース400において、第一実施形態のICカード用充電装置20に代えて、第二〜第四実施形態に係るICカード用充電装置120,220,320を利用しても良い。   Further, since the IC card charging device 20 has a thin plate-shaped outer package 38 made of resin, the IC card 50 can be placed from the reader / writer to the IC even if the IC card 50 is held in the pass case 400. The IC card can operate without blocking electromagnetic waves reaching the card 50 or radio waves transmitted from the IC card 50 to the reader / writer. Here, in the pass case 400, instead of the IC card charging device 20 of the first embodiment, the IC card charging devices 120, 220, and 320 according to the second to fourth embodiments may be used.

なお、本発明は上記実施形態には限定されず、さまざまな変形態様が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation aspect is possible.

例えば、上記実施形態では、電力源として二次電池を用いたが、化学反応により電気エネルギーを発生する電池であれば二次電池に限られず、例えば、アルカリ電池等の一次電池、燃料電池等でも構わない。また、電力源として、電池に代えて、電気二重層キャパシタや、セラミック積層キャパシタ等、化学反応によらずに蓄えた電気エネルギーを放出するキャパシタを用いても良い。もちろん、電力源として、電池及びキャパシタを両方備えていても良い。   For example, in the above embodiment, a secondary battery is used as a power source. However, the battery is not limited to a secondary battery as long as it generates electric energy by a chemical reaction. I do not care. Further, as a power source, a capacitor that discharges stored electric energy without using a chemical reaction, such as an electric double layer capacitor or a ceramic multilayer capacitor, may be used instead of the battery. Of course, both a battery and a capacitor may be provided as a power source.

また、上記実施形態では、LC共振回路を用いた発振器を採用しているが、もちろん、これ以外の、例えば、CR発信回路等の他の発振器を用いても動作は可能である。   In the above embodiment, an oscillator using an LC resonance circuit is employed. Of course, other oscillators such as a CR transmission circuit can be used for operation.

第一実施形態に係るICカード及びICカード用充電装置のブロック図である。It is a block diagram of the IC card which concerns on 1st embodiment, and the charging device for IC cards. 図1のICカード用充電装置の概略回路図である。It is a schematic circuit diagram of the charging device for IC cards of FIG. 図1のICカード及びICカード用充電装置の概略斜視図である。It is a schematic perspective view of the IC card of FIG. 1 and the charging device for IC cards. 第二実施形態に係るICカード用充電装置を示す概略斜視図である。It is a schematic perspective view which shows the charging device for IC cards which concerns on 2nd embodiment. 第三実施形態に係るICカード用充電装置を示す概略斜視図である。It is a schematic perspective view which shows the charging device for IC cards which concerns on 3rd embodiment. 第四実施形態に係るICカード用充電装置を示す概略斜視図である。It is a schematic perspective view which shows the charging device for IC cards which concerns on 4th embodiment. 第五実施形態に係るパスケースを示す概略斜視図である。It is a schematic perspective view which shows the pass case which concerns on 5th embodiment.

符号の説明Explanation of symbols

24…二次電池(電池)、26…太陽電池、28…スイッチ、30…発振器、32…アンテナ、34…周波数変更部(周波数変更手段)、38…外装体、42…コイル、44a…ダイヤル回転型可変コンデンサ(コンデンサ)、44b…スライド型可変コンデンサ(コンデンサ)、44c…集合コンデンサ(コンデンサ)、46…LC共振回路、50…ICカード、130…個別コンデンサ、132,134…配線層、136…点線(標識)、138…丸印(標識)、20,120,220,320…ICカード用充電装置、400…パスケース、410…第一収容部、420…第二収容部。   24 ... Secondary battery (battery), 26 ... Solar cell, 28 ... Switch, 30 ... Oscillator, 32 ... Antenna, 34 ... Frequency changing unit (frequency changing means), 38 ... Exterior body, 42 ... Coil, 44a ... Dial rotation Type variable capacitor (capacitor), 44b ... slide type variable capacitor (capacitor), 44c ... collective capacitor (capacitor), 46 ... LC resonance circuit, 50 ... IC card, 130 ... individual capacitor, 132,134 ... wiring layer, 136 ... Dotted lines (signs), 138... Round marks (signs), 20, 120, 220, 320... IC card charging device, 400... Pass case, 410.

Claims (11)

電力源と、
前記電力源からの電力の供給を受けて交流信号を発生する発振器と、
前記発振器からの交流信号を受けて電磁波を発生するコイル状のアンテナと、
前記電力源、前記発振器、及び、前記アンテナを収容する外装体と、
を備えるICカード用充電装置。
A power source,
An oscillator that generates an AC signal in response to power supplied from the power source;
A coiled antenna that generates an electromagnetic wave in response to an AC signal from the oscillator;
An exterior body that houses the power source, the oscillator, and the antenna;
IC card charging device comprising:
前記電力源から前記発振器への電力の供給/遮断を制御するスイッチを更に備える請求項1に記載のICカード用充電装置。   The charging device for an IC card according to claim 1, further comprising a switch for controlling supply / cutoff of power from the power source to the oscillator. 前記発振器が発生する交流信号の周波数を変更させる周波数変更手段を更に備える請求項1又は2に記載のICカード用充電装置。   The IC card charging device according to claim 1, further comprising frequency changing means for changing a frequency of an AC signal generated by the oscillator. 前記発振器は、コイル及びコンデンサを含むLC共振回路を有し、
前記コイルのインダクタンス、及び、前記コンデンサのキャパシタンスの少なくとも一方が可変である請求項3に記載のICカード用充電装置。
The oscillator has an LC resonance circuit including a coil and a capacitor,
The charging device for an IC card according to claim 3, wherein at least one of the inductance of the coil and the capacitance of the capacitor is variable.
前記LC共振回路のコンデンサは、複数の個別コンデンサ及びこれら複数の個別コンデンサを並列に接続する配線層を含む請求項4に記載のICカード用充電装置。   5. The charging device for an IC card according to claim 4, wherein the capacitor of the LC resonance circuit includes a plurality of individual capacitors and a wiring layer that connects the plurality of individual capacitors in parallel. 前記複数の個別コンデンサは、前記外装体内において前記外装体の表面に沿って並設されており、前記外装体の表面には、前記各個別コンデンサに接続された配線層の位置を示す標識が設けられている請求項5に記載のICカード用充電装置。   The plurality of individual capacitors are juxtaposed along the surface of the exterior body in the exterior body, and a sign indicating the position of the wiring layer connected to each individual capacitor is provided on the surface of the exterior body The charging device for IC cards according to claim 5. 前記外装体は板状であり、前記コイル状のアンテナは、前記外装体内において前記外装体の主面と交差する軸回りに巻き回されている請求項1〜6の何れか一項に記載のICカード用充電装置。   The said exterior body is plate shape, and the said coil-shaped antenna is wound around the axis | shaft which cross | intersects the main surface of the said exterior body in the said exterior body. IC card charger. 前記アンテナは、前記外装体の主面に垂直な方向から見たときに前記外装体の面積の1/4以上を占有する請求項7に記載のICカード用充電装置。   The charging device for an IC card according to claim 7, wherein the antenna occupies 1/4 or more of an area of the exterior body when viewed from a direction perpendicular to a main surface of the exterior body. 前記アンテナは、前記外装体の主面に垂直な方向から見たときに前記外装体の面積の1/2以上を占有する請求項8に記載のICカード用充電装置。   The charging device for an IC card according to claim 8, wherein the antenna occupies 1/2 or more of the area of the exterior body when viewed from a direction perpendicular to the main surface of the exterior body. 太陽電池を更に備え、前記電力源は前記太陽電池によって生じた電力によって充電される請求項1〜9の何れか一項に記載のICカード用充電装置。   The IC card charging device according to any one of claims 1 to 9, further comprising a solar cell, wherein the power source is charged by electric power generated by the solar cell. ICカード用充電装置と、前記ICカード用充電装置を収容する第一収容部と、充電されるべきICカードを前記ICカード用充電装置と対向するように収容可能な第二収容部と、を備え、
前記ICカード用充電装置は、
電力源と、
前記電力源からの電力の供給を受けて交流信号を発生する発振器と、
前記発振器からの交流信号を受けて電磁波を発生するコイル状のアンテナと、
前記電力源、前記発振器、及び、前記アンテナを収容する外装体と、を有するパスケース。
An IC card charging device, a first housing portion for housing the IC card charging device, and a second housing portion capable of housing an IC card to be charged so as to face the IC card charging device. Prepared,
The charging device for the IC card is
A power source,
An oscillator that generates an AC signal in response to power supplied from the power source;
A coiled antenna that generates an electromagnetic wave in response to an AC signal from the oscillator;
A path case having the power source, the oscillator, and an exterior body that houses the antenna.
JP2003387181A 2003-11-17 2003-11-17 IC card charger and pass case Expired - Fee Related JP4501416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387181A JP4501416B2 (en) 2003-11-17 2003-11-17 IC card charger and pass case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387181A JP4501416B2 (en) 2003-11-17 2003-11-17 IC card charger and pass case

Publications (2)

Publication Number Publication Date
JP2005149238A true JP2005149238A (en) 2005-06-09
JP4501416B2 JP4501416B2 (en) 2010-07-14

Family

ID=34694635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387181A Expired - Fee Related JP4501416B2 (en) 2003-11-17 2003-11-17 IC card charger and pass case

Country Status (1)

Country Link
JP (1) JP4501416B2 (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086196A (en) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd Wireless communications device
WO2010041321A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Non-contact power transmission device and vehicle having non-contact power transmission device
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system
US8294419B2 (en) 2008-11-21 2012-10-23 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
KR101500337B1 (en) 2013-06-11 2015-03-19 주식회사 에스원 Card Reader System of Energy Saving Type by Using RF Leading Frequency and Energy Collection Method
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
JP2016197408A (en) * 2015-04-03 2016-11-24 三菱電機株式会社 Non-contact communication medium, communication device, non-contact communication system, and microcomputer
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9710033B2 (en) 2014-02-28 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US9711994B2 (en) 2014-01-31 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device and its operation system
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
KR101862666B1 (en) * 2017-12-20 2018-07-04 주식회사 에이피메이트 Multipurpose card and card charging device
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
JP2019139311A (en) * 2018-02-06 2019-08-22 日鉄テックスエンジ株式会社 Communication device and power supply device
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
EP3624075A1 (en) * 2018-08-31 2020-03-18 Capital One Services, LLC Battery charger for a transaction card
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340231A (en) * 1997-06-05 1998-12-22 Kokusai Electric Co Ltd Ic card
JPH1198063A (en) * 1997-09-22 1999-04-09 Toshiba Corp Radio card adapter
JPH11266545A (en) * 1998-03-17 1999-09-28 Nippon Telegr & Teleph Corp <Ntt> Portable noncontact power-feeding device
JP2000172792A (en) * 1998-12-08 2000-06-23 Tamura Electric Works Ltd Non-contact type ic card reader

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340231A (en) * 1997-06-05 1998-12-22 Kokusai Electric Co Ltd Ic card
JPH1198063A (en) * 1997-09-22 1999-04-09 Toshiba Corp Radio card adapter
JPH11266545A (en) * 1998-03-17 1999-09-28 Nippon Telegr & Teleph Corp <Ntt> Portable noncontact power-feeding device
JP2000172792A (en) * 1998-12-08 2000-06-23 Tamura Electric Works Ltd Non-contact type ic card reader

Cited By (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8463332B2 (en) 2006-08-31 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Wireless communication device
KR101416507B1 (en) * 2006-08-31 2014-07-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Wireless communication device
JP2008086196A (en) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd Wireless communications device
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US9450456B2 (en) 2008-04-21 2016-09-20 Qualcomm Incorporated System and method for efficient wireless power transfer to devices located on and outside a charging base
US9979230B2 (en) 2008-04-21 2018-05-22 Qualcomm Incorporated Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
KR101946191B1 (en) * 2008-09-27 2019-02-08 위트리시티 코포레이션 Wireless energy transfer systems
JP2018174704A (en) * 2008-09-27 2018-11-08 ウィトリシティ コーポレーション Wireless energy transfer system
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
KR101789214B1 (en) * 2008-09-27 2017-10-23 위트리시티 코포레이션 Wireless energy transfer systems
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP4962621B2 (en) * 2008-10-09 2012-06-27 トヨタ自動車株式会社 Non-contact power transmission device and vehicle equipped with non-contact power transmission device
CN102177042B (en) * 2008-10-09 2013-10-23 丰田自动车株式会社 Non-contact power transmission device and vehicle having non-contact power transmission device
US8646585B2 (en) 2008-10-09 2014-02-11 Toyota Jidosha Kabushiki Kaisha Non contact power transfer device and vehicle equipped therewith
WO2010041321A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Non-contact power transmission device and vehicle having non-contact power transmission device
CN102177042A (en) * 2008-10-09 2011-09-07 丰田自动车株式会社 Non-contact power transmission device and vehicle having non-contact power transmission device
US8380380B2 (en) 2008-11-21 2013-02-19 Toyota Jidosha Kabushiki Kaisha Electric power reception apparatus and electrical powered vehicle
US8294419B2 (en) 2008-11-21 2012-10-23 Toyota Jidosha Kabushiki Kaisha Electrical powered vehicle
JP5083413B2 (en) * 2008-11-21 2012-11-28 トヨタ自動車株式会社 Electric vehicle
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
KR101500337B1 (en) 2013-06-11 2015-03-19 주식회사 에스원 Card Reader System of Energy Saving Type by Using RF Leading Frequency and Energy Collection Method
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11043851B2 (en) 2014-01-31 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Electronic device and its operation system
US10530189B2 (en) 2014-01-31 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device and its operation system
US9711994B2 (en) 2014-01-31 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device and its operation system
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10139879B2 (en) 2014-02-28 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US10809784B2 (en) 2014-02-28 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US9710033B2 (en) 2014-02-28 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US11474646B2 (en) 2014-02-28 2022-10-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US11899886B2 (en) 2014-02-28 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
JP2016197408A (en) * 2015-04-03 2016-11-24 三菱電機株式会社 Non-contact communication medium, communication device, non-contact communication system, and microcomputer
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
KR101862666B1 (en) * 2017-12-20 2018-07-04 주식회사 에이피메이트 Multipurpose card and card charging device
JP2019139311A (en) * 2018-02-06 2019-08-22 日鉄テックスエンジ株式会社 Communication device and power supply device
US11580343B2 (en) 2018-08-31 2023-02-14 Capital One Services, Llc Battery charger for a transaction card
US11106959B2 (en) 2018-08-31 2021-08-31 Capital One Services, Llc Battery charger for a transaction card
EP3624075A1 (en) * 2018-08-31 2020-03-18 Capital One Services, LLC Battery charger for a transaction card

Also Published As

Publication number Publication date
JP4501416B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4501416B2 (en) IC card charger and pass case
JP5270540B2 (en) Magnetostrictive / piezoelectric remote power generation, battery and method
US20030019942A1 (en) System and method for electronically readable card having power source
US10601232B1 (en) Systems and methods for hybrid energy harvesting for transaction cards
JP2003006592A (en) Information transmitter-receiver
JP2012500395A (en) Card pointing in the direction
JP2009512005A (en) Electrical energy transmission card and system
KR101568814B1 (en) Card capable of charging a battery by contact type or non-contact type
TWM396452U (en) Smart card apparatus containing touch display unit
CN110062967B (en) Battery pack
JP3820862B2 (en) Portable information processing apparatus and control method for portable information processing apparatus
US7575175B2 (en) Non-contact IC card
JP2007102280A (en) Card holder
US20120235958A1 (en) Chip card display system
US10483771B1 (en) Systems and methods for hybrid energy harvesting for transaction cards
JP5450370B2 (en) Mobile device with battery pack authenticity judgment function
CN201364474Y (en) Watch with IC card function
JP2012099893A (en) Portable terminal with batter pack authentication function
CN201365269Y (en) Mobile phone with IC card function
JP2003215271A (en) Electronic watch
KR100717576B1 (en) Improved RFID Tag
TWI335542B (en) Electric supplying sheath
JP4811549B2 (en) Information recording medium with auxiliary power
CN208589802U (en) Charging unit and electronic equipment
JP3089912U (en) Display type non-contact IC card

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees