JP2005148170A - Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device - Google Patents

Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device Download PDF

Info

Publication number
JP2005148170A
JP2005148170A JP2003381900A JP2003381900A JP2005148170A JP 2005148170 A JP2005148170 A JP 2005148170A JP 2003381900 A JP2003381900 A JP 2003381900A JP 2003381900 A JP2003381900 A JP 2003381900A JP 2005148170 A JP2005148170 A JP 2005148170A
Authority
JP
Japan
Prior art keywords
optical fiber
heat
reinforcing member
heating element
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003381900A
Other languages
Japanese (ja)
Inventor
Ryuichiro Sato
龍一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003381900A priority Critical patent/JP2005148170A/en
Priority to US10/986,158 priority patent/US7212718B2/en
Publication of JP2005148170A publication Critical patent/JP2005148170A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-treatment device and a heat treatment capable of performing heating with uniform temperature in which temperature difference on exothermic parts of a planar heating element is small in the heat-treatment of the optical fiber reinforcing member using a planar heating element. <P>SOLUTION: This heat-treatment device or the heat treatment of the optical fiber reinforcing member is a heat-treatment device or a heat treatment which performs heating contraction of the optical fiber reinforcing member 12 for protecting the fusion splicing part of an optical fiber 11 and it is constituted so that a heating part is formed with a planar heating element 13 which is curved in U-shape and a soaking plate 25 made of a metallic sheet is joined to the exothermic part 13b of the planar heating element. Moreover, the soaking plate 25 is joined at the side of the inner surface side of the planar heating element 13 which is curved in the U shape and further fluorinated carbon resin is coated on the surface of the soaking plate 25. Furthermore, the soaking plate 25 may be formed with a plurality of soaking plates which are thermally separated to the axial direction of the optical fiber reinforcing member 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバの融着接続部をスリーブ状の保護部材で覆い、加熱収縮させることにより補強する光ファイバ補強部材の加熱処理装置及び加熱処理方法並びに光ファイバ融着接続装置に関する。   The present invention relates to a heat treatment apparatus and a heat treatment method for an optical fiber reinforcing member that covers and reinforces an optical fiber fusion spliced portion with a sleeve-shaped protective member and heat shrinks the optical fiber fusion splicing apparatus.

従来、光ファイバの融着接続は、接続端のファイバ被覆を除去して、露出されたガラスの裸ファイバ部の突合せ端部を加熱溶融して行なわれる。ファイバ被覆が除去され、融着接続された裸ファイバ部は、機械的な強度が弱いため補強部材により保護される。この補強部材は、通常、加熱により径方向に収縮する熱収縮性チューブ内に抗張力体(補強棒ともいう)を添えて、熱溶融性の接着樹脂からなる熱溶融性チューブを収納して構成されている(例えば、特許文献1参照)。   Conventionally, fusion splicing of optical fibers is performed by removing the fiber coating at the connection end and heating and melting the exposed butted end portion of the bare glass portion of the glass. The bare fiber part, from which the fiber coating has been removed and fusion-spliced, is protected by a reinforcing member because of its low mechanical strength. This reinforcing member is usually configured by attaching a strength member (also called a reinforcing bar) in a heat-shrinkable tube that shrinks in the radial direction by heating and housing a heat-melting tube made of a heat-melting adhesive resin. (For example, refer to Patent Document 1).

図7は、上記特許文献1に開示された従来の融着接続部の加熱処理方法を示す図で、図7(A)は一般的な補強部材の一例を説明する図、図7(B)はV溝のヒータ台で加熱処理する例を示す図、図7(C)はU溝のヒータ台で加熱処理する例を示す図である。図中、1は単心の光ファイバ心線、1’はテープ状の光ファイバ心線、2は融着接続部、3は熱収縮性チューブ、4は熱溶融性チューブ、5,5’は抗張力体、6,6’は補強部材、7はV溝加熱面、8はU溝加熱面、9、9’はヒータ台を示す。   FIG. 7 is a diagram showing a conventional heat treatment method for a fusion splicing part disclosed in Patent Document 1, and FIG. 7A is a diagram for explaining an example of a general reinforcing member, and FIG. FIG. 7 is a diagram showing an example of heat treatment using a V-groove heater base, and FIG. 7C is a diagram showing an example of heat treatment using a U-groove heater base. In the figure, 1 is a single-core optical fiber, 1 'is a tape-shaped optical fiber, 2 is a fusion splicing part, 3 is a heat-shrinkable tube, 4 is a heat-meltable tube, and 5 and 5' are Strength members, 6 and 6 'are reinforcing members, 7 is a V-groove heating surface, 8 is a U-groove heating surface, and 9 and 9' are heater stands.

図7(A)に示す単心光ファイバの例において、互いに融着接続される双方の光ファイバ心線1は、接続端のファイバ被覆を除去して裸ファイバ部を露出し、その先端を突き合わせてアーク放電等により融着接続される。補強部材6は、裸ファイバ部の両側のファイバ被覆を所定範囲覆う長さを有し、熱収縮性チューブ3内に、熱溶融性の接着剤からなる熱溶融性チューブ4と半月状の抗張力体5を収納して構成される。融着接続された光ファイバ心線1は、熱溶融性チューブ4内に、融着接続部2が中央に位置するように挿入され、平坦なヒータ台9で加熱処理される。   In the example of the single-core optical fiber shown in FIG. 7A, both the optical fiber cores 1 that are fusion-spliced to each other remove the fiber coating at the connection end, expose the bare fiber portion, and butt the ends. Are fused and connected by arc discharge or the like. The reinforcing member 6 has a length that covers a predetermined range of the fiber coating on both sides of the bare fiber portion, and in the heat-shrinkable tube 3, a heat-meltable tube 4 made of a heat-meltable adhesive and a half-moon-shaped tensile body. 5 is configured. The spliced optical fiber core wire 1 is inserted into the heat-meltable tube 4 so that the fusion splicing portion 2 is located at the center, and is heated by a flat heater base 9.

図7(B)及び図7(C)では、多心テープ状の光ファイバ心線1’の融着接続部を補強する例である。この場合も、その補強部材6’は、図7(A)と同様に熱収縮性チューブ3内に、熱溶融性接着剤からなる熱溶融性チューブ4と抗張力体5’を収納して構成される。また、抗張力体5’の両側に光ファイバ心線1’を配して、複数の融着接続部を一括補強している。ヒータ台9’は、補強部材6’を収納載置する面が、図7(B)のようにV字形の断面を有するV溝7、或いは、図7(C)のようにU字形の断面を有するU溝8で形成されている。なお、図7(A)の単心光ファイバ心線1においても、V溝7又はU溝8のヒータ台9’を用いることもできる。   FIGS. 7B and 7C show examples in which the fusion spliced portion of the multi-fiber ribbon optical fiber core wire 1 ′ is reinforced. Also in this case, the reinforcing member 6 'is configured by housing the heat-meltable tube 4 made of a heat-meltable adhesive and the tensile body 5' in the heat-shrinkable tube 3 as in FIG. 7A. The Further, optical fiber cores 1 ′ are arranged on both sides of the strength member 5 ′ to collectively reinforce a plurality of fusion splicing portions. The heater base 9 ′ has a V-shaped groove 7 having a V-shaped cross section as shown in FIG. 7B or a U-shaped cross section as shown in FIG. 7C. It is formed of a U-groove 8 having In addition, also in the single-core optical fiber core wire 1 of FIG. 7 (A), the heater stand 9 'of the V-groove 7 or the U-groove 8 can be used.

補強部材6’は、V溝7又はU溝8からなる凹状の壁面からの熱によって加熱され、熱収縮性チューブ3が熱収縮してチューブ内の空隙容積を減少する。同時に熱溶融性チューブ4が溶融して熱収縮性チューブ3内の空隙を埋め、露出されている融着接続部とその周辺部を包囲する。この後、溶融した熱溶融性チューブ4が固化し、熱収縮性チューブ3、抗張力体5’、融着接続部を含む光ファイバ心線1’が一体化され補強が完了する。補強部材6’の加熱に際して、図7(B)及び図7(C)に示すようにヒータ台9’の加熱面をV溝7又はU溝8からなる凹状の壁面とすることにより、図7(A)に示すような平坦な加熱面を有するヒータ台9で加熱するものと比べて、均一で効率のよい加熱ができるとされている。
特開平9−297243号公報(図4及び図6とその説明参照)
The reinforcing member 6 ′ is heated by heat from the concave wall surface formed by the V-groove 7 or the U-groove 8, and the heat-shrinkable tube 3 is thermally contracted to reduce the void volume in the tube. At the same time, the heat-meltable tube 4 is melted to fill the voids in the heat-shrinkable tube 3 and surround the exposed fusion splicing portion and its peripheral portion. Thereafter, the melted heat-meltable tube 4 is solidified, and the heat-shrinkable tube 3, the strength member 5 ′, and the optical fiber core wire 1 ′ including the fusion splicing portion are integrated to complete reinforcement. When the reinforcing member 6 ′ is heated, the heating surface of the heater base 9 ′ is formed as a concave wall surface formed of the V-groove 7 or the U-groove 8 as shown in FIGS. 7B and 7C. It is said that uniform and efficient heating can be performed as compared with the case of heating with a heater base 9 having a flat heating surface as shown in FIG.
JP-A-9-297243 (refer to FIGS. 4 and 6 and the description thereof)

しかしながら、光ファイバ心線の融着接続の補強は、単心の光ファイバ心線から多心のテープ状光ファイバ心線まで多岐にわたる。これに伴って補強部材の太さも異なり、例えば、単心の光ファイバ心線用では収縮前の補強部材の断面直径は4mm程度であるとすると、多心の16〜24心用の補強部材では断面直径が8mm程度となる。このため、一般に金属、セラミック等で形成されるヒータも、種々の大きさの加熱凹部を有するものを製作して準備しておく必要があり、コスト、管理面での問題がある。   However, the fusion splicing of the optical fiber cores varies from a single optical fiber core to a multi-fiber ribbon optical fiber. Accordingly, the thickness of the reinforcing member is different. For example, when the cross-sectional diameter of the reinforcing member before contraction is about 4 mm for a single-core optical fiber, The cross-sectional diameter is about 8 mm. For this reason, it is necessary to prepare and prepare heaters having various sizes of heating recesses, which are generally made of metal, ceramic, etc., and there are problems in cost and management.

これに対し、可撓性のある面状発熱体をU字状に湾曲してヒータとし、補強部材の加熱処理に使用する例も知られている。この可撓性のある面状発熱体を用いることにより、太さの異なる補強部材にも対応が可能となり、また、ヒータの構成としても比較的シンプルで有用性がある。しかし、この面状発熱体は、通常、有機樹脂フィルムの表面に発熱体を接合した形状のもので、単位面積当たりの熱容量は比較的小さい。このため、面状発熱体の発熱部分において、補強部材と接触する部分と補強部材に接触しない部分があると、補強部材と接触する部分は伝熱作用によって比較的低い温度で一定となるが、補強部材に接触しない部分では伝熱による熱放散がないため、耐熱温度以上の温度となって焼損する恐れがある。   On the other hand, an example is also known in which a flexible sheet heating element is bent into a U shape to form a heater and used for heat treatment of a reinforcing member. By using this flexible planar heating element, it is possible to deal with reinforcing members having different thicknesses, and the heater configuration is relatively simple and useful. However, this planar heating element is usually in the form of a heating element bonded to the surface of an organic resin film, and the heat capacity per unit area is relatively small. For this reason, in the heat generating part of the planar heating element, if there are a part that contacts the reinforcing member and a part that does not contact the reinforcing member, the part that contacts the reinforcing member becomes constant at a relatively low temperature due to the heat transfer action, Since there is no heat dissipation due to heat transfer at the portion not in contact with the reinforcing member, there is a risk of burning at a temperature higher than the heat-resistant temperature.

本発明は、上述した実情に鑑みてなされたもので、面状発熱体を用いた光ファイバ補強部材の加熱処理で、面状発熱体の発熱部分における温度差が小さく均一な温度で加熱することができる加熱処理装置及び加熱処理方法の提供を課題とする。   The present invention has been made in view of the above-described circumstances, and heating is performed at a uniform temperature with a small temperature difference in the heat generation portion of the planar heating element by heat treatment of the optical fiber reinforcing member using the planar heating element. It is an object of the present invention to provide a heat treatment apparatus and a heat treatment method that can perform heat treatment.

本発明による光ファイバ補強部材の加熱処理装置又は加熱処理方法は、光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理装置又は加熱処理方法であって、加熱部がU字状に湾曲された面状発熱体で形成され、面状発熱体の発熱部分に金属板からなる均熱板が接合されているようにしたものである。均熱板はU字状に湾曲された内側表面側に接合され、また、均熱板表面にフッ素樹脂をコーティングしている。さらに、均熱板は、補強部材の軸方向に対して熱的に分離された複数の均熱板で形成してもよい。   A heat treatment apparatus or a heat treatment method for an optical fiber reinforcing member according to the present invention is a heat treatment apparatus or a heat treatment method for heat-shrinking an optical fiber reinforcing member that protects a fusion spliced portion of an optical fiber, wherein the heating unit is U It is formed of a sheet heating element curved in a letter shape, and a heat equalizing plate made of a metal plate is joined to the heat generating portion of the sheet heating element. The soaking plate is joined to the inner surface side curved in a U shape, and the soaking plate surface is coated with a fluororesin. Furthermore, the soaking plate may be formed of a plurality of soaking plates that are thermally separated with respect to the axial direction of the reinforcing member.

面状発熱体の発熱部分に接合された均熱板が、光ファイバ補強部材が接触する部分と接触しない部分の温度差を小さくすると共に、光ファイバ補強部材が接触しない部分の温度上昇を抑制し、面状発熱体が焼損するのを防止することができる。また、均熱板の表面にフッ素樹脂をコーティングしておくことにより、熱溶融性チューブが溶融して発熱体上に付着しても容易に拭取ることができる。   The heat equalizing plate joined to the heat generating part of the planar heating element reduces the temperature difference between the part where the optical fiber reinforcing member contacts and the part where the optical fiber reinforcing member does not contact, and suppresses the temperature rise of the part where the optical fiber reinforcing member does not contact. It is possible to prevent the sheet heating element from burning out. In addition, by coating the surface of the soaking plate with a fluororesin, it can be easily wiped even if the hot-melt tube melts and adheres to the heating element.

図により本発明の実施の形態を説明する。図1は本発明の概略を説明するための加熱処理装置の一例を示す図、図2は図1の一部を除去して断面構造で示した図である。図中、10は加熱処理装置、11は光ファイバ心線、12は補強部材、13は面状発熱体、13aは非発熱部分、13bは発熱部分、14はベース部、15は発熱体支持部、15aは支持フレーム、16はクランプ台部、16aは溝部、17はクランプ部片、18は取手部、19は把持パッド、20は押え部材、21はカバー、22は回路基板を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an example of a heat treatment apparatus for explaining the outline of the present invention, and FIG. 2 is a view showing a sectional structure with a part of FIG. 1 removed. In the figure, 10 is a heat treatment apparatus, 11 is an optical fiber core, 12 is a reinforcing member, 13 is a planar heating element, 13a is a non-heating part, 13b is a heating part, 14 is a base part, and 15 is a heating element support part. , 15a is a support frame, 16 is a clamp base part, 16a is a groove part, 17 is a clamp part piece, 18 is a handle part, 19 is a grip pad, 20 is a pressing member, 21 is a cover, and 22 is a circuit board.

加熱処理装置10は、単心又は多心テープ状の光ファイバ心線11の融着接続部、及び、その近傍を保護するように配された補強部材12を加熱する面状発熱体13を収納支持して構成される。補強部材12は、図7で示したのと同様に熱収縮性チューブ内に、ホットメルト接着樹脂からなる熱溶融性チューブと、ステンレスまたはガラス、セラミック等で形成された抗張力体(補強棒ともいう)を収納して構成されたものである。面状発熱体13の詳細については後述するが、耐熱性のポリイミドフィルム等に発熱体(例えば、抵抗線材を貼り付け)を接合した構成のもので、湾曲可能な可撓性を有しているものが用いられる。   The heat treatment apparatus 10 accommodates a fusion splicing portion of a single-core or multi-fiber ribbon optical fiber core wire 11 and a planar heating element 13 for heating a reinforcing member 12 arranged to protect the vicinity thereof. Constructed with support. In the same manner as shown in FIG. 7, the reinforcing member 12 is a heat-shrinkable tube made of hot-melt adhesive resin and a tensile body (also called a reinforcing bar) formed of stainless steel, glass, ceramic, or the like. ). Although details of the planar heating element 13 will be described later, the heating element 13 has a structure in which a heating element (for example, a resistance wire is pasted) is joined to a heat-resistant polyimide film or the like, and has flexibility capable of bending. Things are used.

加熱処理装置10の本体部は、ベース部14上に面状発熱体13を支持するための発熱体支持部15を備え、ベース部14の両側に光ファイバ心線11を把持するクランプ台部16を備えている。発熱体支持部15は、互いに平行な1対の支持フレーム15a(図2参照)から成り、この支持フレーム上にU字状に湾曲された面状発熱体13の両側の非発熱部分13aを載せ、上から断面L字状に形成された押え部材20で押えることにより取付られる。面状発熱体13のU字状に湾曲された発熱部分13bは、1対の支持フレーム15a間に位置して、U字状の内側に補強部材12が収納載置される。補強部材12の両端から延びている光ファイバ心線11は、クランプ台部16の溝部16aから引出される。   The main body of the heat treatment apparatus 10 includes a heating element support 15 for supporting the planar heating element 13 on the base 14, and a clamp base 16 that holds the optical fiber core wire 11 on both sides of the base 14. It has. The heating element support portion 15 is composed of a pair of support frames 15a (see FIG. 2) parallel to each other, and the non-heating portions 13a on both sides of the planar heating element 13 curved in a U shape are mounted on the support frame. It is attached by pressing with a pressing member 20 having an L-shaped cross section from above. The heating portion 13b of the planar heating element 13 curved in a U shape is positioned between the pair of support frames 15a, and the reinforcing member 12 is housed and placed inside the U shape. The optical fiber core wire 11 extending from both ends of the reinforcing member 12 is drawn out from the groove portion 16 a of the clamp base portion 16.

クランプ台部16には、クランプ部片17が回動可能に設けられていて、取手部18を掴んで操作される。光ファイバ心線11を把持する部分には、光ファイバ心線11を確実に把持でき、且つ、傷つけないような弾性体を用いた把持パッド19が設けられている。また、クランプ部片17は、マグネットを用いた吸着で固定する構成とすることができる。クランプ部片17を閉じたときに、光ファイバ心線11が、融着接続部を含めてほぼ直線状に成るように把持されることが好ましい。この場合、補強部材12の太さはファイバ心数によって異なるが、発熱体支持部15での押え位置を調整することで、補強部材12の支持高さを調整することはできる。また、クランプ部片17を閉じて光ファイバ心線11の支持を固定するまでは、光ファイバ心線11に一定の張力を加える構成(図示せず)を付加するようにしてもよい。   The clamp base part 16 is provided with a clamp part piece 17 so as to be rotatable, and is operated by gripping the handle part 18. A gripping pad 19 using an elastic body that can securely grip the optical fiber core wire 11 and does not damage the optical fiber core wire 11 is provided at a portion that grips the optical fiber core wire 11. Moreover, the clamp part piece 17 can be set as the structure fixed by adsorption | suction using a magnet. When the clamp piece 17 is closed, the optical fiber core wire 11 is preferably gripped so as to be substantially linear including the fusion splicing portion. In this case, although the thickness of the reinforcing member 12 varies depending on the number of fiber cores, the supporting height of the reinforcing member 12 can be adjusted by adjusting the pressing position of the heating element support portion 15. Further, a configuration (not shown) for applying a constant tension to the optical fiber core 11 may be added until the clamp portion 17 is closed and the support of the optical fiber core 11 is fixed.

ベース部14の上面側には、開閉可能にカバー21が設けられていて、加熱処理中に加熱部に手が触れたり、外囲気で加熱状態が影響されないようにしている。また、このカバー21は透明樹脂で形成して、補強部材12の熱収縮性チューブの収縮状態や熱溶融性チューブの溶融状態を監視することができる。ベース部14の下面側にはスペースが設けられ、制御用の回路基板22等を搭載される。   A cover 21 is provided on the upper surface side of the base portion 14 so as to be openable and closable so that the heating portion is not touched by the hand during the heat treatment or the heating state is not affected by the ambient air. Further, the cover 21 is formed of a transparent resin, and the contraction state of the heat-shrinkable tube of the reinforcing member 12 and the melted state of the heat-meltable tube can be monitored. A space is provided on the lower surface side of the base portion 14, and a control circuit board 22 and the like are mounted thereon.

図3は本発明による補強部材の加熱方法の概略を説明する図である。図4は本発明による面状発熱体の具体例を示す図で、図4(A)は湾曲されない状態の面状発熱体の平面図、図4(B)は面状発熱体のa−a部分断面図、図4(C)は面状発熱体をU字状に湾曲する状態を説明する図である。図中、23は発熱素子、24a,24bは絶縁フィルム、25は均熱板、26は補助板、27はリード端子、28は半田、29は封止樹脂を示す。その他の符号は、図1及び図2で用いたのと同じ符号を用いることにより説明を省略する。   FIG. 3 is a view for explaining the outline of the heating method of the reinforcing member according to the present invention. 4A and 4B are diagrams showing a specific example of the planar heating element according to the present invention. FIG. 4A is a plan view of the planar heating element in an uncurved state, and FIG. 4B is aa of the planar heating element. FIG. 4C is a partial cross-sectional view illustrating a state where the planar heating element is bent in a U shape. In the figure, 23 is a heating element, 24a and 24b are insulating films, 25 is a soaking plate, 26 is an auxiliary plate, 27 is a lead terminal, 28 is solder, and 29 is a sealing resin. Description of other reference numerals is omitted by using the same reference numerals as those used in FIGS.

図3に示すように、面状発熱体13は、補強部材12の軸方向と直交する面の断面がU字状になるように湾曲され、U字状態が維持されるように、図1〜2で示したように両側の非発熱部分13aを、発熱体支持部と押さえ部材で固定する。U字状にされた中央の発熱部分13bには、融着接続された光ファイバ心線11と共に補強部材12が収納載置される。このとき、U字状の湾曲底部には補強部材12が接触した状態となるが、側面は非接触の状態となる。なお、補強部材12が未だ加熱収縮されていない初期状態においては、非接触部分の接触面積は比較的大きいが、加熱が進んで補強部材12の外径が縮小してくると、接触部分の面積が少なくなり、非接触部分の面積が増大してくる。   As shown in FIG. 3, the planar heating element 13 is curved so that the cross section of the surface orthogonal to the axial direction of the reinforcing member 12 is U-shaped, and the U-shaped state is maintained. As shown by 2, the non-heat generating portions 13 a on both sides are fixed by the heating element support portion and the pressing member. The reinforcing member 12 is housed and placed in the U-shaped heat generating portion 13b at the center together with the optical fiber core wire 11 that is fused and connected. At this time, the reinforcing member 12 is in contact with the U-shaped curved bottom, but the side surface is in a non-contact state. In the initial state where the reinforcing member 12 is not yet heated and shrunk, the contact area of the non-contact portion is relatively large. However, when the outer diameter of the reinforcing member 12 is reduced due to heating, the area of the contact portion is reduced. And the area of the non-contact portion increases.

本発明においては、発熱部分13bのほぼ全域を覆うように、アルミニウム又は銅などの熱伝導性がよく可撓性のある金属板からなる均熱板25を接着等により接合させている。均熱板25は、U字状に湾曲される内側に設けるのが好ましく、補強部材12は均熱板25に直接接するように収納載置される。補強部材12は、均熱板25を介してU字状の底部からは熱伝導により加熱され、側方からは熱輻射により加熱される。この加熱により、熱収縮性チューブを熱収縮させてチューブ内の空隙容積を縮小すると共に、熱溶融性チューブを溶融させて縮小された空隙容積を満たすことができる。   In the present invention, a soaking plate 25 made of a flexible metal plate having a good thermal conductivity such as aluminum or copper is joined by bonding or the like so as to cover almost the entire region of the heat generating portion 13b. The soaking plate 25 is preferably provided on the inner side curved in a U shape, and the reinforcing member 12 is housed and placed so as to be in direct contact with the soaking plate 25. The reinforcing member 12 is heated by heat conduction from the U-shaped bottom through the heat equalizing plate 25 and heated by heat radiation from the side. By this heating, the heat-shrinkable tube can be thermally shrunk to reduce the void volume in the tube, and the heat-meltable tube can be melted to fill the reduced void volume.

ここで、均熱板25を有しない構成においては、補強部材12との接触部分では熱伝導により発熱部分13bからの熱が補強部材12に放熱されるが、非接触部分では輻射による放熱のみで熱伝導による放熱と比べるとかなり少ない。このため、補強部材12の非接触部分と接触部分とでは温度差が生じ、非接触部分では面状発熱体13の温度を耐熱温度以上に押し上げる可能性があり、場合によっては焼損する恐れがある。
しかしながら、本発明のように均熱板25を備えることにより、補強部材12の非接触部分と接触部分との温度差を小さくすることができ、この結果、発熱部分13b全体の温度を均一にして、面状発熱体13の損傷を防止することができる。
Here, in the configuration that does not include the soaking plate 25, heat from the heat generating portion 13b is radiated to the reinforcing member 12 by heat conduction at the contact portion with the reinforcing member 12, but only heat radiation by radiation at the non-contact portion. Much less than heat dissipation due to heat conduction. For this reason, a temperature difference occurs between the non-contact portion and the contact portion of the reinforcing member 12, and the temperature of the planar heating element 13 may be increased to a temperature higher than the heat-resistant temperature at the non-contact portion. .
However, by providing the heat equalizing plate 25 as in the present invention, the temperature difference between the non-contact portion and the contact portion of the reinforcing member 12 can be reduced, and as a result, the temperature of the entire heat generating portion 13b is made uniform. Further, it is possible to prevent the planar heating element 13 from being damaged.

また、補強部材12の加熱によって、ホットメルト接着樹脂からなる熱溶融性チューブが溶融して外部に垂れ落ちることがある。この場合、面状発熱体13の表面に付着した接着剤を除去するのに苦労することがある。このため、本発明においては、均熱板25の表面にフッ素樹脂のコーティングを施した構成とすることができる。フッ素樹脂の皮膜を設けておくことにより、例え、溶融した接着剤が付着しても容易に除去することができ、作業性をよくすることができる。   Further, the heating of the reinforcing member 12 may cause the hot-melt tube made of hot-melt adhesive resin to melt and sag outside. In this case, it may be difficult to remove the adhesive adhered to the surface of the sheet heating element 13. For this reason, in this invention, it can be set as the structure which gave the coating of the fluororesin to the surface of the soaking | uniform-heating board 25. FIG. By providing a film of fluororesin, for example, even if a molten adhesive adheres, it can be easily removed and workability can be improved.

図4により面状発熱体13の具体例を説明すると、図4(A)に示すように、湾曲されていない平坦状態での面状発熱体13は、中央の主たる領域に発熱素子23による発熱部分13bを有し、その両側に発熱素子を有しない非発熱部分13aを有する。面状発熱体13は、例えば、平坦状態で横幅が36mm程度、軸方向幅が70mm程度の長方形状で、発熱部分13bの横幅は20mm程度で形成される。発熱素子23は、例えば、厚み32μm程度のステンレス薄板をジグザグ状にカットして形成される。これを、例えば、厚み25μm程度の耐熱性のポリイミドフィルムからなる絶縁フィルム24a,24bでサンドイッチ状に挟んで、可撓性のある面状の発熱体とされる。また、図4(B)に示すように、発熱素子23の両端にはリード端子27が、半田28により接続される。この接続部は耐熱性の封止樹脂29により保護される。   A specific example of the planar heating element 13 will be described with reference to FIG. 4. As shown in FIG. 4A, the planar heating element 13 in a flat state that is not curved is heated by the heating element 23 in the central main region. It has the part 13b, and has the non-heating part 13a which does not have a heat generating element in the both sides. The planar heating element 13 is formed in, for example, a rectangular shape having a lateral width of about 36 mm and an axial width of about 70 mm in a flat state, and the heating portion 13b having a lateral width of about 20 mm. The heating element 23 is formed by, for example, cutting a stainless thin plate having a thickness of about 32 μm into a zigzag shape. This is sandwiched between insulating films 24a and 24b made of a heat-resistant polyimide film having a thickness of, for example, about 25 μm to form a flexible planar heating element. Further, as shown in FIG. 4B, lead terminals 27 are connected to both ends of the heat generating element 23 by solder 28. This connecting portion is protected by a heat resistant sealing resin 29.

発熱素子23が存在する発熱部分13bの全域を覆うように、例えば、厚さ0.2mm程度のアルミニウム板を均熱板25として接着等により接合する。なお、均熱板25は、絶縁フィルム24a,24bの両面側に接合してもよいが、一方のみであってもよい。しかし、一方のみに設ける場合は、U字状に湾曲された内側表面側に接合されているのが好ましい。また、面状発熱体13の両側の非発熱部分13aには、発熱体支持部への設置や取扱いを容易にするために、補助板26を接合してもよい。この補助板26は、均熱板25とは独立したもので、絶縁フィルム24a,24bの両面側に接合してもよいが、一方のみであってもよく、また、均熱板25と同じ金属板で形成してもよいが、異なっていてもよい。   For example, an aluminum plate having a thickness of about 0.2 mm is bonded as a soaking plate 25 by bonding or the like so as to cover the entire heating portion 13b where the heating element 23 exists. The soaking plate 25 may be bonded to both sides of the insulating films 24a and 24b, but may be only one. However, when it is provided only on one side, it is preferably joined to the inner surface side curved in a U-shape. In addition, auxiliary plates 26 may be joined to the non-heat generating portions 13a on both sides of the planar heating element 13 in order to facilitate installation and handling on the heating element support. The auxiliary plate 26 is independent of the soaking plate 25 and may be joined to both sides of the insulating films 24a and 24b, but may be only one or the same metal as the soaking plate 25. Although it may be formed of a plate, it may be different.

面状発熱体13は、図4(C)に示すように平板状からU字状に湾曲され、図3で説明したように、両側の非発熱部分13aを発熱体支持部で保持して、中央のU字状の発熱部分13b内に補強部材を包むように収納載置できる形状とされる。発熱素子23に加熱電力を供給するための端子27は、図2で示した回路基板22に接続され加熱制御される。また、発熱素子23に近接して、サーミスタ等の温度検出素子(図示せず)を設けることにより、加熱温度の自動制御を行なうこともできる。   The planar heating element 13 is curved from a flat plate shape to a U-shape as shown in FIG. 4C, and as explained in FIG. 3, the non-heating part 13a on both sides is held by the heating element support portion, It is set as the shape which can be accommodated and mounted so that a reinforcing member may be wrapped in the center U-shaped heat-emitting part 13b. A terminal 27 for supplying heating power to the heating element 23 is connected to the circuit board 22 shown in FIG. Further, by providing a temperature detection element (not shown) such as a thermistor in the vicinity of the heat generating element 23, the heating temperature can be automatically controlled.

図5は面状発熱体の他の具体例を示す図である。この面状発熱体13’は、図4の例では発熱部分13bの全体をカバーする1枚の均熱板25を用いるのに対し、軸方向に対して複数に分割され、軸方向には熱的には分離された均熱板25’を用いる例である。図3で説明したように、発熱部分13bにおける補強部材12の接触部分と非接触部分は、補強部材12の軸方向と直行する側面方向で生じる。したがって、面状発熱体13’の側面方向となる横幅方向で温度が均熱化されればよく、補強部材の軸方向の中央部と両端部では、温度差をつけることが有利な場合がある。   FIG. 5 is a diagram showing another specific example of the planar heating element. In the example of FIG. 4, the planar heating element 13 ′ uses a single heat equalizing plate 25 that covers the entire heating portion 13 b, whereas the planar heating element 13 ′ is divided into a plurality of parts in the axial direction, Specifically, this is an example of using a separated soaking plate 25 '. As described with reference to FIG. 3, the contact portion and the non-contact portion of the reinforcing member 12 in the heat generating portion 13 b are generated in the side surface direction perpendicular to the axial direction of the reinforcing member 12. Therefore, it is only necessary to equalize the temperature in the width direction that is the side surface direction of the sheet heating element 13 ′, and it may be advantageous to provide a temperature difference between the central portion and both end portions in the axial direction of the reinforcing member. .

図5(B)は、補強部材12の中央部側の加熱温度を高く、両端部側に行くにしたがって加熱温度を低くして使用する例である。図示のような温度パターンは、中央部側の発熱素子23の形成密度を大きくすることにより容易に実現するこができる。しかし、通常、両端部側の放熱が大きいことから、発熱素子23の密度が均一に形成されている場合であっても、多少は中央部側の加熱温度が高くなっている。中央部側の加熱温度を高くすることにより、補強部材12は中央部側から加熱収縮が始まり、熱収縮性チューブは順次両端部側に向かって収縮が進行する。また、内部の熱溶融性チューブも中央部側から溶融が始まり、順次両端側に向けて接着剤を押出していくため、補強部材内に気泡が残りにくくなる。このため、気泡による光ファイバに対する側圧発生等が軽減される。   FIG. 5B is an example in which the heating temperature at the central portion side of the reinforcing member 12 is increased and the heating temperature is decreased as it goes to both end portions. The temperature pattern as shown in the figure can be easily realized by increasing the formation density of the heating elements 23 on the center side. However, since the heat radiation at both end portions is usually large, the heating temperature at the central portion side is somewhat higher even when the density of the heat generating elements 23 is formed uniformly. By increasing the heating temperature on the center side, the reinforcing member 12 starts to heat shrink from the center side, and the heat shrinkable tube sequentially shrinks toward both end sides. In addition, since the internal heat-meltable tube starts to melt from the center side and the adhesive is sequentially pushed out toward the both end sides, it is difficult for bubbles to remain in the reinforcing member. For this reason, generation | occurrence | production of the side pressure with respect to the optical fiber by a bubble, etc. are reduced.

図5(A)に示したように、補強部材12の軸方向に対して熱的に分離され、複数に分割された均熱板25’を接合する構成とすることにより、面状発熱体13’は、補強部材12の接触部分と非接触部分が生じる側面方向に対しては均熱化されるが、軸方向に対しては温度差をつけることができる。したがって、均熱板を用いて面状発熱体の焼損を防止すると同時に、図5(B)のような温度パターンでの加熱処理を行なうこともできる。   As shown in FIG. 5A, the sheet heating element 13 is formed by joining the heat equalizing plates 25 ′ that are thermally separated in the axial direction of the reinforcing member 12 and divided into a plurality of parts. 'Is soaked in the lateral direction in which the contact portion and the non-contact portion of the reinforcing member 12 are generated, but a temperature difference can be given to the axial direction. Therefore, it is possible to perform the heat treatment with the temperature pattern as shown in FIG. 5B while simultaneously preventing the planar heating element from being burned by using the soaking plate.

図6は、本発明による加熱処理装置を融着接続装置に搭載した構成例を示す図である。図中、30は融着接続装置、31はモニタ装置、32は融着機構部、33はクランプ部を示す。その他の符号は、図1及び図2に用いた符号を用いることにより説明を省略する。融着機構部32(詳細構成は省略)は、アーク放電を用いた単心の融着接続、或いは、多心一括融着接続等が行なえる各種構成のものを用いることができる。本発明では、この融着接続装置30の融着機構部32に対して、上述した加熱処理装置10を平行に設置することで、作業性のよいものとすることができる。   FIG. 6 is a diagram showing a configuration example in which the heat treatment apparatus according to the present invention is mounted on the fusion splicing apparatus. In the figure, 30 is a fusion splicing device, 31 is a monitor device, 32 is a fusion mechanism portion, and 33 is a clamp portion. Description of other reference numerals is omitted by using the reference numerals used in FIGS. As the fusion mechanism part 32 (detailed configuration is omitted), various structures that can perform single-core fusion connection using arc discharge, multi-core batch fusion connection, or the like can be used. In the present invention, the heat treatment device 10 described above is installed in parallel with the fusion mechanism portion 32 of the fusion splicing device 30, thereby improving workability.

単心又は多心の光ファイバ心線11を融着機構部32に設置するに際しては、いずれか一方の光ファイバ心線11に予め補強部材12を通しておく。クランプ部33により光ファイバ心線11を保持整列させ、また、図示しない調心手段により光ファイバ接続端の調心を行なって融着接続が実施される。融着接続の各処理状態はモニタ装置31により、逐次表示される。この後、光ファイバ心線11をクランプ部33から外し、補強部材12を融着接続部分に移動させる。次いで、その状態を維持して隣接設置されている加熱処理装置10のU字状の面状発熱体13内に補強部材12を収納載置し、両側のクランプ台部16で光ファイバ心線11を把持固定し、所定の制御によって加熱処理を実施する。   When the single-core or multi-fiber optical fiber 11 is installed in the fusion mechanism 32, the reinforcing member 12 is passed through one of the optical fiber cores 11 in advance. The optical fiber core wire 11 is held and aligned by the clamp portion 33, and the optical fiber connection end is aligned by an aligning means (not shown) to perform the fusion connection. Each processing state of the fusion splicing is sequentially displayed by the monitor device 31. Thereafter, the optical fiber core wire 11 is removed from the clamp portion 33, and the reinforcing member 12 is moved to the fusion splicing portion. Next, the reinforcing member 12 is housed and placed in the U-shaped planar heating element 13 of the heat treatment apparatus 10 installed adjacently while maintaining the state, and the optical fiber core wire 11 is clamped by the clamp bases 16 on both sides. Is held and fixed, and heat treatment is performed under predetermined control.

本発明による光ファイバ補強部材の加熱処理装置の概略を説明する図である。It is a figure explaining the outline of the heat processing apparatus of the optical fiber reinforcement member by this invention. 図1の一部を除去した加熱処理装置の断面構造を示す図である。It is a figure which shows the cross-section of the heat processing apparatus which removed a part of FIG. 本発明による補強部材の加熱方法の概略を説明する図である。It is a figure explaining the outline of the heating method of the reinforcement member by this invention. 本発明による面状発熱体の具体例を示す図である。It is a figure which shows the specific example of the planar heating element by this invention. 本発明による面状発熱体の他の具体例を示す図である。It is a figure which shows the other specific example of the planar heating element by this invention. 本発明による加熱処理装置を融着接続装置に搭載した構成例を示す図である。It is a figure which shows the structural example which mounts the heat processing apparatus by this invention in the fusion splicing apparatus. 従来の光ファイバ補強部材の加熱処理方法を説明する図である。It is a figure explaining the heat processing method of the conventional optical fiber reinforcement member.

符号の説明Explanation of symbols

10…加熱処理装置、11…光ファイバ心線、12…補強部材、13,13’…面状発熱体、13a…非発熱部分、13b…発熱部分、14…ベース部、15…発熱体支持部、15a…支持フレーム、16…クランプ台部、16a…溝部、17…クランプ部片、18…取手部、19…把持パッド、20…押え部材、21…カバー、22…回路基板、23…発熱素子、24a,24b…絶縁フィルム、25,25’…均熱板、26…補助板、27…リード端子、28…半田、29…封止樹脂、30…融着接続装置、31…モニタ装置、32…融着機構部、33…クランプ部。 DESCRIPTION OF SYMBOLS 10 ... Heat processing apparatus, 11 ... Optical fiber core wire, 12 ... Reinforcing member, 13, 13 '... Planar heating element, 13a ... Non-heating part, 13b ... Heating part, 14 ... Base part, 15 ... Heating element support part 15a ... support frame, 16 ... clamp base, 16a ... groove, 17 ... clamp part piece, 18 ... grip part, 19 ... grip pad, 20 ... holding member, 21 ... cover, 22 ... circuit board, 23 ... heating element 24a, 24b ... insulating films, 25, 25 '... soaking plate, 26 ... auxiliary plate, 27 ... lead terminal, 28 ... solder, 29 ... sealing resin, 30 ... fusion splicing device, 31 ... monitor device, 32 ... Fusion mechanism part, 33 ... Clamp part.

Claims (6)

光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理装置であって、加熱部がU字状に湾曲された面状発熱体で形成され、前記面状発熱体の発熱部分に金属板からなる均熱板が接合されていることを特徴とする光ファイバ補強部材の加熱処理装置。   A heat treatment apparatus for heating and shrinking an optical fiber reinforcing member that protects a fusion spliced portion of an optical fiber, wherein the heating portion is formed of a planar heating element curved in a U shape, and the heating of the planar heating element A heat treatment apparatus for an optical fiber reinforcing member, characterized in that a soaking plate made of a metal plate is joined to the portion. 前記均熱板は、前記U字状に湾曲された面状発熱体の内側表面側に接合されていることを特徴とする請求項1に記載の光ファイバ補強部材の加熱処理装置。   The heat treatment apparatus for an optical fiber reinforcing member according to claim 1, wherein the heat equalizing plate is joined to an inner surface side of the U-shaped curved heating element. 前記均熱板の表面にフッ素樹脂がコーティングされていることを特徴とする請求項2に記載の光ファイバ補強部材の加熱処理装置。   The heat treatment apparatus for an optical fiber reinforcing member according to claim 2, wherein a surface of the soaking plate is coated with a fluororesin. 前記均熱板は、補強部材の軸方向に対して熱的に分離された複数の均熱板で形成されていることを特徴とする請求項1〜3のいずれか1項に記載の光ファイバ補強部材の加熱処理装置。   The optical fiber according to any one of claims 1 to 3, wherein the heat equalizing plate is formed of a plurality of heat equalizing plates that are thermally separated in the axial direction of the reinforcing member. Heat treatment apparatus for reinforcing members. 光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理方法であって、前記光ファイバ補強部材は、U字状に湾曲され、且つ、発熱部分に金属板からなる均熱板を接合した面状発熱体に収納載置されて加熱収縮されることを特徴とする光ファイバ補強部材の加熱処理方法。   A heat treatment method for heating and shrinking an optical fiber reinforcing member that protects a fusion spliced portion of an optical fiber, wherein the optical fiber reinforcing member is curved in a U shape and has a heat-generating portion made of a metal plate. A heat treatment method for an optical fiber reinforcing member, wherein the heat treatment method is carried out by being stored and mounted on a planar heating element joined with a plate. 請求項1〜4のいずれか1項に記載の光ファイバ補強部材の加熱処理装置を搭載したことを特徴とする光ファイバ融着接続装置。   An optical fiber fusion splicer comprising the optical fiber reinforcing member heat treatment apparatus according to any one of claims 1 to 4.
JP2003381900A 2003-11-12 2003-11-12 Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device Pending JP2005148170A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003381900A JP2005148170A (en) 2003-11-12 2003-11-12 Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device
US10/986,158 US7212718B2 (en) 2003-11-12 2004-11-12 Apparatus and method for heat-treatment of optical fiber reinforcing member and optical fiber fusion splicing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381900A JP2005148170A (en) 2003-11-12 2003-11-12 Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device

Publications (1)

Publication Number Publication Date
JP2005148170A true JP2005148170A (en) 2005-06-09

Family

ID=34691104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381900A Pending JP2005148170A (en) 2003-11-12 2003-11-12 Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device

Country Status (1)

Country Link
JP (1) JP2005148170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300846A (en) * 2008-06-16 2009-12-24 Furukawa Electric Co Ltd:The Method of heating reinforcement sleeve, heating apparatus and fusion splicing machine
JP2015141298A (en) * 2014-01-28 2015-08-03 Seiオプティフロンティア株式会社 Strengthening device for optical fiber connection section
CN107045159A (en) * 2017-06-08 2017-08-15 诺仪器(中国)有限公司 Optical fiber splicer new and effective heating tank and optical fiber splicer
WO2023176771A1 (en) * 2022-03-17 2023-09-21 住友電工オプティフロンティア株式会社 Optical fiber positioning component, and optical fiber fusion splicing machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300846A (en) * 2008-06-16 2009-12-24 Furukawa Electric Co Ltd:The Method of heating reinforcement sleeve, heating apparatus and fusion splicing machine
JP2015141298A (en) * 2014-01-28 2015-08-03 Seiオプティフロンティア株式会社 Strengthening device for optical fiber connection section
WO2015114927A1 (en) * 2014-01-28 2015-08-06 Seiオプティフロンティア株式会社 Reinforcement device for optical-fiber splice sections
US10048442B2 (en) 2014-01-28 2018-08-14 Sei Optifrontier Co., Ltd. Reinforcement device for optical-fiber spliced section
CN107045159A (en) * 2017-06-08 2017-08-15 诺仪器(中国)有限公司 Optical fiber splicer new and effective heating tank and optical fiber splicer
WO2023176771A1 (en) * 2022-03-17 2023-09-21 住友電工オプティフロンティア株式会社 Optical fiber positioning component, and optical fiber fusion splicing machine

Similar Documents

Publication Publication Date Title
US7212718B2 (en) Apparatus and method for heat-treatment of optical fiber reinforcing member and optical fiber fusion splicing apparatus
EP1065536B1 (en) An apparatus and a method for heating a protective member for an optical fiber fusion splicing part
JP5233511B2 (en) Protective sleeve, protective sleeve manufacturing apparatus and manufacturing method
JP5799471B2 (en) Method of reinforcing fusion part and fusion splicer
JP5309403B2 (en) Optical fiber reinforcement heater and optical fiber fusion splicer
WO2008059843A1 (en) Holder, fusion splicer, and method of assembling optical connector
EP1022596B1 (en) Heat-shrinkable tube for protection of optical fiber splices
JP2005257855A (en) Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion
US10935725B2 (en) Fusion splicing device and optical fiber reinforcing method
JP2005148170A (en) Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device
JP4165375B2 (en) Heat treatment apparatus and heat treatment method for optical fiber reinforcing member, and optical fiber fusion splicing apparatus
JP4477526B2 (en) Heating apparatus and method for reinforcing optical fiber fusion spliced part
JP2007140190A (en) Optical fiber joint reinforcing sleeve, and its fixing method and device
WO2014002558A1 (en) Protective sleeve
JP4161821B2 (en) Fusion splicing reinforcement method
JP2011112785A (en) Optical fiber fusion splicing machine and fusion splicing method
JP4532251B2 (en) Heating method of optical fiber connection portion reinforcing sleeve and heating apparatus used therefor
JP2003315596A (en) Method for splicing optical fibers
JPH10332979A (en) Device and method for heating heat-shrinkable sleeve for optical fiber connection part reinforcement
WO2020071166A1 (en) Reinforcement device for optical fiber fusion splicing section and fusion splicer provided with same
JPS63271208A (en) Method for reinforcing light-fusing coupler
JP2007286321A (en) Reinforcing sleeve for optical fiber connection
JPH07134218A (en) Fusion splicing device for multiple optical fiber
JPS61259206A (en) Optical fiber connecting method and jig used therefor
JPH10319270A (en) Heating device for heat-shrinkage sleeve for optical fiber connection reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401