JP2005147723A - Reactor building and method for constructing it - Google Patents

Reactor building and method for constructing it Download PDF

Info

Publication number
JP2005147723A
JP2005147723A JP2003381918A JP2003381918A JP2005147723A JP 2005147723 A JP2005147723 A JP 2005147723A JP 2003381918 A JP2003381918 A JP 2003381918A JP 2003381918 A JP2003381918 A JP 2003381918A JP 2005147723 A JP2005147723 A JP 2005147723A
Authority
JP
Japan
Prior art keywords
containment vessel
shielding wall
steel plate
reactor
reactor containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003381918A
Other languages
Japanese (ja)
Inventor
Kinji Nakano
欣治 中野
Kenji Tominaga
研司 富永
Yoshinori Iimura
芳則 飯村
Shigeru Yokouchi
滋 横内
Yuji Yasuda
雄二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003381918A priority Critical patent/JP2005147723A/en
Publication of JP2005147723A publication Critical patent/JP2005147723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To downsize a reactor building and shorten the construction period of it by decreasing the width of a gap between a reactor containment vessel and a biological shielding wall installed for radiation shield around a reactor containment vessel. <P>SOLUTION: In the reactor building 4 consisting of the reactor containment vessel 2 and the biological shielding wall 3 installed outside the vessel 2, a horizontal gap 6 between the lower tiers of the vessel 2 and the wall 3 is set at a width (50mm to 300mm) narrower than a width of 800mm which is accessible to human workers. Moreover, a module whose constituting members are the lower tiers of the vessel 2 and the wall 3 is formed by setting the horizontal gap 6 between the lower tiers of the vessel 2 and the wall 3 at a narrow width (50mm to 300mm) and the constituting members are installed in the lump in an installation position by hoisting the module and carrying it in the position. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子炉の原子炉格納容器及び生体遮蔽壁が設置される原子炉建屋及びその建設方法に関する。   The present invention relates to a reactor building in which a nuclear reactor containment vessel and a biological shielding wall are installed, and a construction method thereof.

軽水を冷却材として用いる沸騰水型原子炉の原子炉建屋は、原子炉格納容器とその外周囲を覆う生体遮蔽壁とを備えている。原子炉格納容器は鋼板製で自立し、その原子炉格納容器の外周囲には、空間のギャップを介して生体遮蔽壁が設けられている(例えば、特許文献1参照)。   A reactor building of a boiling water reactor that uses light water as a coolant includes a reactor containment vessel and a biological shielding wall that covers the outer periphery of the reactor containment vessel. The reactor containment vessel is made of a steel plate and is self-supporting, and a biological shielding wall is provided around the outer periphery of the reactor containment vessel via a space gap (see, for example, Patent Document 1).

一般的には、原子炉格納容器と生体遮蔽壁の間は原子炉格納容器と生体遮蔽壁の施工スペースの確保及び原子炉格納容器の塗装等の作業スペースを確保するため、原子炉格納容器と生体遮蔽壁の間には人員がアクセスできるスペースとして約800mmのギャップ幅が確保されている。   Generally, between the reactor containment vessel and the biological shielding wall, in order to secure a working space for the reactor containment vessel and the biological shielding wall and to secure work space such as painting of the reactor containment vessel, A gap width of about 800 mm is secured between the biological shielding walls as a space accessible to personnel.

また、原子炉格納容器と鋼製の生体遮蔽壁を建設する際に、上下方向と周方向とに分割された原子炉格納容器本体ブロックと鋼製の生体遮蔽壁ブロックを一体的に吊り上げて移動し、建設位置で既設の原子炉格納容器本体ブロック及び鋼製の生体遮蔽壁ブロックの上もしくは周方向の所定位置に配置し、原子炉格納容器本体ブロック及び鋼製の生体遮蔽壁ブロックを同時に周方向と上下方向に据付ける原子炉建屋の建設工程が知られている(例えば、特許文献2参照)。   Also, when constructing a reactor containment vessel and a steel biological shielding wall, the reactor containment vessel main body block and the steel biological shielding wall block divided in the vertical direction and the circumferential direction are lifted and moved together. At the construction position, the reactor containment vessel main body block and the steel biological shielding wall block are placed on or in a predetermined position in the circumferential direction, and the reactor containment vessel main body block and the steel biological shielding wall block are simultaneously surrounded. A construction process of a reactor building that is installed in a vertical direction is known (for example, see Patent Document 2).

特許第2934341号公報Japanese Patent No. 2934341 特開平7−260978号公報JP-A-7-260978

従来例のように、原子炉格納容器と生体遮蔽壁との間に約800mmものギャップを設定する建設方法によれば、そのギャップの確保のために生体遮蔽壁やその生体遮蔽壁を包含する原子炉建屋が大型化する。   According to the construction method in which a gap of about 800 mm is set between the reactor containment vessel and the biological shielding wall as in the conventional example, the biological shielding wall and the atoms including the biological shielding wall are secured to secure the gap. The furnace building becomes larger.

また、鋼製の生体遮蔽壁は放射線遮蔽機能を鋼板に求める要素が大きくなるので、生体遮蔽壁の鋼板が厚く大きく大重量になる。このようになると、生体遮蔽壁と原子炉格納容器とを円筒状に組み立ててから建設位置に吊り込んで上方に組み付ける工法が、生体遮蔽壁と原子炉格納容器とを円筒状にすることで起重機の作業能力を超える重量となって、採用できないケースがある。   In addition, since the steel biomedical shielding wall has a large factor for obtaining a radiation shielding function from the steel plate, the bioshielding wall steel plate is thick and large in weight. In this case, the method of assembling the biological shielding wall and the reactor containment vessel into a cylindrical shape and then hanging it up to the construction position and assembling the hoisting machine by making the biological shielding wall and the reactor containment vessel into a cylindrical shape There are cases in which the weight exceeds the work capacity of and cannot be adopted.

従って、生体遮蔽壁と原子炉格納容器とを建設位置に同時に吊り込んで据付ける場合には、原子炉格納容器と生体遮蔽壁とを上下方向ばかりか周方向にも複数に分割して建設位置に吊り込むことになり、建設作業工程が長引く上、建設位置で鋼板を周方向に合わせる作業やその合わせた部位を溶接する作業が発生し、原子炉格納容器と生体遮蔽壁との間に約800mmものギャップを設定することが必要となる。   Therefore, when the biological shielding wall and the reactor containment vessel are suspended and installed at the construction position at the same time, the reactor containment vessel and the biological shielding wall are divided into a plurality of parts in the vertical direction as well as in the circumferential direction. As a result, the construction work process is prolonged and the work of aligning the steel sheets in the circumferential direction at the construction position and the work of welding the combined parts occur. It is necessary to set a gap of 800 mm.

尚、生体遮蔽壁を鉄筋コンクリート製にすることも想定できるが、鉄筋の設置に手間がかかる上、コンクリートの形枠を設置したり撤去したりする作業が余分に発生する上、その作業を行うために原子炉格納容器と生体遮蔽壁との間に約800mmものギャップを設定することが必要となる。   In addition, although it can be assumed that the biological shielding wall is made of reinforced concrete, it takes time to install the rebar, and the work of installing and removing the concrete formwork is extraneous and the work is done. In addition, it is necessary to set a gap of about 800 mm between the reactor containment vessel and the biological shielding wall.

このように、従来の原子炉建屋は大形で建設工期も長引く傾向にある。   Thus, conventional reactor buildings are large and tend to prolong the construction period.

従って、本発明の目的は、原子炉建屋の小型化と建設工期の短縮を達成することにある。   Accordingly, an object of the present invention is to achieve downsizing of the reactor building and shortening of the construction period.

本発明の原子炉建屋は、鋼板製の原子炉格納容器と、前記原子炉格納容器を囲う鋼板コンクリート製の生体遮蔽壁と、前記原子炉格納容器の円筒形状部の外周囲と前記生体遮蔽壁との間に形成された50mm〜300mmの幅のギャップを有する原子炉建屋であり、その原子炉建屋を建設する方法として、原子炉格納容器を構成する円筒状の第1の鋼板と、鋼板コンクリート製の生体遮蔽壁を構成する内側円筒状と外側円筒状の多重円筒状の第2の鋼板とを、第1の鋼板の外周囲に50mm〜300mmのギャップをつけて第2の鋼板が位置するように配置したモジュールを構成し、前記モジュールを前記原子炉格納容器と前記生体遮蔽壁の建設位置に吊り入れて据付け、しかる後に前記モジュールよりも上方の原子炉格納容器及び生体遮蔽壁の部分の建設及び前記内側と外側との第2の鋼板の間にコンクリートを注入する原子炉建屋の建設方法が採用される。   A reactor building according to the present invention includes a steel plate containment vessel, a bioshield wall made of steel plate concrete surrounding the reactor containment vessel, an outer periphery of a cylindrical portion of the reactor containment vessel, and the bioshield wall A reactor building having a gap of 50 mm to 300 mm formed between the first and second cylindrical steel plates constituting the reactor containment vessel and steel plate concrete as a method of constructing the reactor building The second steel plate is located with a gap of 50 mm to 300 mm around the outer periphery of the first steel plate between the inner cylindrical shape and the outer cylindrical multi-cylindrical second steel plate constituting the living body shielding wall made of metal. The module is arranged in such a manner that the module is suspended and installed at the construction position of the reactor containment vessel and the biological shielding wall, and then the reactor containment vessel and the biological shielding wall portion above the module are installed. Set and the second reactor construction method of a building of injecting concrete between the steel and the inner and outer is adopted.

本発明によれば、原子炉建屋の建設工期の短縮と原子炉建屋の小型化が達成できる。   According to the present invention, the construction period of the reactor building can be shortened and the reactor building can be downsized.

軽水を冷却材として用いた沸騰水型原子炉を採用した原子力発電所の原子炉建屋4は、図1のように、原子炉建屋4の基礎マット15上に原子炉格納容器2と、その外周囲の部屋33とを包含している。その外周囲の部屋33と原子炉格納容器2とは原子炉格納容器2側からの放射線を遮蔽する生体遮蔽壁3を介して隔離されている。その生体遮蔽壁3は、その上部の蓋までを含むと図1のハッチングで断面が示されている。その生体遮蔽壁3の垂直壁面部分は、水平断面が円筒状の形状を有し、その円筒状の範囲内に下部の水平断面が円筒状で上部がお碗を伏せたような半球形状の原子炉格納容器2が納められている。原子炉格納容器2は鋼板製であり、生体遮蔽壁3は二枚の鋼板とその内側に充填されたコンクリートにより構成される鋼板コンクリート構造(SC構造)である。   As shown in FIG. 1, a reactor building 4 of a nuclear power plant that employs a boiling water reactor using light water as a coolant includes a reactor containment vessel 2 on the basic mat 15 of the reactor building 4 and the outside. A surrounding room 33 is included. The surrounding room 33 and the reactor containment vessel 2 are isolated from each other via a biological shielding wall 3 that shields radiation from the reactor containment vessel 2 side. When the living body shielding wall 3 includes up to the upper lid, the cross section is shown by hatching in FIG. The vertical wall surface portion of the biological shielding wall 3 has a cylindrical shape in a horizontal section, a hemispherical atom in which the lower horizontal section is cylindrical and the upper part is faced in the cylindrical range. A furnace containment vessel 2 is accommodated. The reactor containment vessel 2 is made of a steel plate, and the biological shielding wall 3 has a steel plate concrete structure (SC structure) composed of two steel plates and concrete filled inside thereof.

生体遮蔽壁3の垂直部分は、原子炉格納容器2に面した円筒状の内側鋼板14aと反対側の円筒状の外側鋼板14bの二重円筒構造を有し、内側鋼板14aと外側鋼板14bとは、両側の鋼板の間隔が変化しないように互いに結合されている。その両側の鋼板の間隔間にはコンクリート液が固化状態で装備され、鋼板とコンクリートとで所望する放射線遮蔽機能を達成している。生体遮蔽壁3の上部水平部分(トップスラブ21)はハーフSC構造で構築される。ハーフSC構造は水平部分の厚さの半分が下面の鋼板とその上のコンクリートで構成され、それより上方の半分の厚さは鉄筋コンクリートで構成されている。この構成によって生体遮蔽壁3の上部水平部分においても所望する放射線遮蔽機能を達成している。生体遮蔽壁3の上部水平部分については、上部に各種プールを有するので、その水平部分の上部半分の厚さの範囲は鉄筋コンクリートで構成し、下半分の厚さの範囲を鋼板コンクリート製で構成する構造として適切な強度を確保することが好ましい。この場合の、下半分の厚さの範囲を鋼板コンクリート製で作る際には、鋼板は原子炉格納容器2に面した下面に採用し、その鋼板には壁厚側にチャンネル鋼製のリブを装着してコンクリート打設圧力に耐えさせる様に配慮する。   The vertical portion of the biological shielding wall 3 has a double cylindrical structure of a cylindrical outer steel plate 14b opposite to the cylindrical inner steel plate 14a facing the reactor containment vessel 2, and includes an inner steel plate 14a and an outer steel plate 14b. Are coupled to each other so that the distance between the steel plates on both sides does not change. A concrete liquid is provided between the steel plates on both sides in a solidified state to achieve a desired radiation shielding function between the steel plates and the concrete. The upper horizontal portion (top slab 21) of the biological shielding wall 3 is constructed with a half SC structure. In the half SC structure, half of the thickness of the horizontal portion is composed of the steel plate on the lower surface and the concrete thereon, and the thickness of the half above it is composed of reinforced concrete. With this configuration, a desired radiation shielding function is achieved also in the upper horizontal portion of the biological shielding wall 3. Since the upper horizontal portion of the biological shielding wall 3 has various pools at the upper portion, the thickness range of the upper half of the horizontal portion is made of reinforced concrete and the thickness range of the lower half is made of steel plate concrete. It is preferable to ensure an appropriate strength as a structure. In this case, when the lower half thickness range is made of steel plate concrete, the steel plate is adopted on the lower surface facing the reactor containment vessel 2, and the steel plate has channel steel ribs on the wall thickness side. Make sure to install and withstand the concrete casting pressure.

原子炉格納容器2の中には、円筒状の原子炉圧力容器基礎5が中央部底部に設置されている。その原子炉圧力容器基礎5には、原子炉圧力容器1が設置されている。その原子炉圧力容器1の外周囲には、原子炉圧力容器基礎5に設置した円筒状のγ線遮蔽壁22が配備され、そのγ線遮蔽壁22が原子炉圧力容器1の外周囲を囲っている。原子炉圧力容器基礎5と原子炉格納容器2との間には、ダイヤフラムフロア27が渡されている。そのダイヤフラムフロア27と原子炉圧力容器基礎5と原子炉格納容器2とで隔離された圧力抑制室8は、原子炉格納容器2内の他の空間から隔離され、事故時の原子炉格納容器2内の蒸気や原子炉圧力容器1内の過剰な蒸気を原子炉格納容器2や原子炉圧力容器1から引き込む配管がつながれ、それらの蒸気を圧力抑制室8内のプール水で凝縮する機能を担っている。   In the reactor containment vessel 2, a cylindrical reactor pressure vessel foundation 5 is installed at the bottom at the center. A reactor pressure vessel 1 is installed on the reactor pressure vessel foundation 5. A cylindrical γ-ray shielding wall 22 installed on the reactor pressure vessel base 5 is disposed around the outer periphery of the reactor pressure vessel 1, and the γ-ray shielding wall 22 surrounds the outer periphery of the reactor pressure vessel 1. ing. A diaphragm floor 27 is passed between the reactor pressure vessel foundation 5 and the reactor containment vessel 2. The pressure suppression chamber 8 isolated by the diaphragm floor 27, the reactor pressure vessel base 5 and the reactor containment vessel 2 is isolated from other spaces in the reactor containment vessel 2, and the reactor containment vessel 2 at the time of the accident. A pipe for drawing the steam in the reactor and the excess steam in the reactor pressure vessel 1 from the reactor containment vessel 2 and the reactor pressure vessel 1 is connected, and the steam is condensed by the pool water in the pressure suppression chamber 8. ing.

原子炉圧力容器基礎5の内側と生体遮蔽壁3の外側の部屋33内とは機材や人員が往来するトンネル31で接続されている。このトンネル31には原子炉格納容器2内の雰囲気が部屋33内に無秩序に出てこないように二重の扉で雰囲気の往来を抑制している。原子炉圧力容器1には、原子炉圧力容器1からタービン発電機へ通じる主蒸気配管32が接続され、その途中にはバルブ34が設置されている。その主蒸気配管32は、原子炉格納容器2から生体遮蔽壁3の外側の部屋33に至る配管貫通構造、即ちペネトレーション16内を通って引き回されている。   The inside of the reactor pressure vessel base 5 and the inside of the room 33 outside the living body shielding wall 3 are connected by a tunnel 31 through which equipment and personnel come and go. In this tunnel 31, the atmosphere in the reactor containment vessel 2 is prevented from coming out into the room 33 by a double door to prevent the atmosphere from coming and going. A main steam pipe 32 that leads from the reactor pressure vessel 1 to the turbine generator is connected to the reactor pressure vessel 1, and a valve 34 is installed in the middle thereof. The main steam pipe 32 is routed through a pipe penetration structure extending from the reactor containment vessel 2 to the room 33 outside the biological shielding wall 3, that is, through the penetration 16.

配管貫通構造であるペネトレーション16は、主蒸気配管32を通すことのできる径を有する円筒状構造物で、原子炉格納容器2内と原子炉格納容器2外との雰囲気の流通を阻止する構造の一部材として使用されている。同じように、原子炉格納容器2から生体遮蔽壁3の外側の部屋33に至るケーブル類の貫通させるケーブル貫通構造、即ちケーブル用のペネトレーション16も同様に装備されている。また、原子炉格納容器2の上部には、生体遮蔽壁3となる開閉自在な蓋35が設置されている。   The penetration 16 that is a pipe penetration structure is a cylindrical structure having a diameter through which the main steam pipe 32 can pass, and has a structure that prevents the circulation of the atmosphere between the reactor containment vessel 2 and the outside of the reactor containment vessel 2. It is used as one member. Similarly, a cable penetration structure through which cables from the reactor containment vessel 2 to the room 33 outside the living body shielding wall 3 penetrate, that is, the penetration 16 for the cable, is also provided. In addition, an openable / closable lid 35 serving as a biological shielding wall 3 is installed on the upper part of the reactor containment vessel 2.

尚、原子炉建屋4には、機器仮置きプール36や燃料貯蔵プール37や運転階38や建屋の屋根39を当然のように備えている。   The reactor building 4 is provided with a temporary equipment storage pool 36, a fuel storage pool 37, an operation floor 38, and a roof 39 of the building as a matter of course.

原子炉格納容器2は、低部からダイヤフラムフロア27の近傍の高さまでが、図1,図2のように、円筒状の形状となっている。これを便宜上原子炉格納容器2下段と称する。その下段より上の原子炉格納容器2部分は、図1,図9のように、お碗を伏せたような半球形の外観を有する。これを便宜上原子炉格納容器2上段と称する。その原子炉格納容器2下段の上端と上段の下端とは溶接されて一体化されている。原子炉格納容器2上段の最上方には、取外し自在な原子炉格納容器2の蓋40が設置されている。   The reactor containment vessel 2 has a cylindrical shape from a low part to a height near the diaphragm floor 27 as shown in FIGS. This is referred to as the lower containment vessel 2 for convenience. The reactor containment vessel 2 portion above the lower stage has a hemispherical appearance with the bowl lying down, as shown in FIGS. This will be referred to as the upper reactor containment vessel 2 for convenience. The upper end of the lower stage of the reactor containment vessel 2 and the lower end of the upper stage are welded and integrated. At the top of the upper stage of the reactor containment vessel 2, a removable lid 40 of the reactor containment vessel 2 is installed.

この原子炉格納容器2の円筒状の形状部分と生体遮蔽壁3との間の水平方向のギャップ6は50mm〜300mmの範囲の数値から選択して設計されている。その円筒状の形状部分よりも上方においては、原子炉格納容器2と生体遮蔽壁3との間の水平方向のギャップ6は50mm〜300mmの範囲から選択したその数値よりも大きな数値となる。しかし、大きな数値となる原因は、原子炉格納容器2上段が上部へいくに従って水平方向の直径が小さくなるのに対して生体遮蔽壁3の内側直径は低部からトップスラブ21までの高さに渡って変化していないからである。   The horizontal gap 6 between the cylindrical shape portion of the reactor containment vessel 2 and the biological shielding wall 3 is designed by selecting from numerical values in the range of 50 mm to 300 mm. Above the cylindrical shape portion, the horizontal gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is larger than the value selected from the range of 50 mm to 300 mm. However, the reason for the large numerical value is that the diameter in the horizontal direction becomes smaller as the upper stage of the containment vessel 2 goes upward, whereas the inner diameter of the biological shielding wall 3 is from the low part to the height from the top slab 21. This is because it has not changed.

本実施例の生体遮蔽壁3は、コンクリート形枠の設置や撤去を必要とする鉄筋コンクリート構造では無く、そのような形枠の設置や撤去を必要としない鋼板コンクリート製であるので、原子炉格納容器2と生体遮蔽壁3の間に型枠設置や撤去の作業スペースとして約800mmの水平方向のギャップ6を設ける必要が無く、原子炉格納容器2の熱膨張や圧力急増や地震時の挙動による形状変化の吸収等を考慮し、型枠設置や撤去の作業スペースの確保を考慮せずに、原子炉格納容器2と生体遮蔽壁3の内側鋼板14aとの間に50mm〜300mmの水平ギャップ6を設けた。   The living body shielding wall 3 of the present embodiment is not a reinforced concrete structure that requires the installation or removal of a concrete formwork, but is made of steel plate concrete that does not require the installation or removal of such formwork. It is not necessary to provide a horizontal gap 6 of about 800mm as a work space for installing and removing the formwork between the body 2 and the biological shielding wall 3, and the shape of the reactor containment vessel 2 due to thermal expansion, rapid increase in pressure, and behavior during an earthquake A horizontal gap 6 of 50 mm to 300 mm is formed between the reactor containment vessel 2 and the inner steel plate 14a of the biological shielding wall 3 without taking into account the change absorption and the like and securing the work space for the installation and removal of the formwork. Provided.

以上のように、原子炉格納容器2の円筒形状部の外周囲と生体遮蔽壁3との間に形成されたギャップ6の水平幅は800mmから50mm〜300mmに縮小するので、50mm〜300
mmの2倍に相当する寸法を原子炉建屋4の水平面内の縦横方向において縮小し、原子炉建屋4の敷地面積と工事面積を減少できる。
As described above, since the horizontal width of the gap 6 formed between the outer periphery of the cylindrical portion of the reactor containment vessel 2 and the biological shielding wall 3 is reduced from 800 mm to 50 mm to 300 mm, 50 mm to 300 mm.
The dimension equivalent to twice mm can be reduced in the vertical and horizontal directions in the horizontal plane of the reactor building 4 to reduce the site area and construction area of the reactor building 4.

原子炉格納容器2の低部と生体遮蔽壁3の低部との間の全周には、図3のように、原子炉格納容器2の熱膨張による変形の吸収及び原子炉格納容器2の熱応力を逃がすために砂で構成されるサンドクッション9が設けられる。サンドクッション9の水平方向のボリュームを稼ぎ、サンドクッション9設置スペースを確保するために、生体遮蔽壁3の下部は生体遮蔽壁3の厚み方向に一部切り欠いてサンドクッション9を設けるスペースを確保した。これにより、原子炉格納容器2と生体遮蔽壁3のギャップ6幅を狭くした場合でもサンドクッション9の設置が可能となる。また、生体遮蔽壁3の下部の切り欠き部には砂が放射線を遮蔽するように充填されるため、サンドクッション9部における放射線遮蔽の機能上の低下問題は生じない。   In the entire circumference between the lower part of the reactor containment vessel 2 and the lower part of the biological shielding wall 3, as shown in FIG. 3, absorption of deformation due to thermal expansion of the reactor containment vessel 2 and the reactor containment vessel 2 A sand cushion 9 made of sand is provided to release thermal stress. In order to increase the volume of the sand cushion 9 in the horizontal direction and secure a space for installing the sand cushion 9, the lower part of the biological shielding wall 3 is partially cut out in the thickness direction of the biological shielding wall 3 to secure a space for providing the sand cushion 9. did. Thereby, even when the gap 6 width between the reactor containment vessel 2 and the biological shielding wall 3 is narrowed, the sand cushion 9 can be installed. Moreover, since the notch part of the lower part of the biological shielding wall 3 is filled so that sand may shield a radiation, the functional shielding problem in the sand cushion 9 part does not deteriorate.

このような原子炉建屋4の建設方法の一例を以下に説明する。まず、岩盤に原子炉建屋4の基礎マット15を作る。次に、基礎マット15に原子炉格納容器2の低部ライナーを設ける。その低部ライナーを覆うようにモジュール17を設置する。   An example of the construction method of such a reactor building 4 will be described below. First, the foundation mat 15 of the reactor building 4 is made on the bedrock. Next, the lower liner of the reactor containment vessel 2 is provided on the basic mat 15. The module 17 is installed so as to cover the lower liner.

そのモジュール17は、図2のように、鋼製で円筒形状の原子炉格納容器2下段と、その原子炉格納容器2下段の外周囲に配備される生体遮蔽壁3の内側鋼板14aと外側鋼板14bと、図8のように、その原子炉格納容器2下段に固定されて内側鋼板14aと外側鋼板14bとに設けた貫通孔41に通した円筒状のペネトレーション16とを用いて構成される。その貫通孔41は、図8のように、ペネトレーション16の外径よりも大径に形成されて、建設位置への搬入作業中に、貫通孔41の縁とペネトレーション16とが接触を起こすことを予防している。生体遮蔽壁3の内側鋼板14aと外側鋼板14bとは両側の鋼板間隔、約1.5 メートル〜約2メートル、が変化しないように両側の鋼板を互いに両側の鋼板間隔間にセットした鋼材で固定してある。   As shown in FIG. 2, the module 17 is made of a steel-made cylindrical containment vessel 2 lower stage, and an inner steel plate 14 a and an outer steel plate of the biological shielding wall 3 disposed around the lower stage of the reactor containment vessel 2. 8b and a cylindrical penetration 16 that is fixed to the lower stage of the reactor containment vessel 2 and passes through a through hole 41 provided in the inner steel plate 14a and the outer steel plate 14b, as shown in FIG. As shown in FIG. 8, the through hole 41 is formed to have a larger diameter than the outer diameter of the penetration 16, and the edge of the through hole 41 and the penetration 16 are brought into contact with each other during the loading operation to the construction position. It is preventing. The inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 are fixed with steel plates set on both sides so that the distance between the steel plates on both sides, about 1.5 meters to about 2 meters, does not change. It is.

生体遮蔽壁3の内側鋼板14aと外側鋼板14bとの高さは、図2のように、原子炉格納容器2下段の高さよりも低くされている。即ち、原子炉格納容器2下段の上端は、生体遮蔽壁3の内側鋼板14aと外側鋼板14bとの上端よりも高所に位置している。このように高低差をつけることによって、両面側からの溶接接合が要求されている原子炉格納容器2下段の上端と原子炉格納容器2上段の下端との溶接接合を容易に達成できるように配慮してある。   The heights of the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 are set lower than the lower level of the reactor containment vessel 2 as shown in FIG. That is, the upper end of the lower stage of the containment vessel 2 is positioned higher than the upper ends of the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3. By giving such a height difference, consideration is given so that welding joint between the upper end of the lower part of the containment vessel 2 and the lower end of the upper part of the containment vessel 2 where welding joining from both sides is required can be easily achieved. It is.

これらの原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとペネトレーション16とは、一体に吊り上げれるように組みつけられる。即ち、図8のように、H型鋼を水平八方向に放射状に組み合わせた吊り天秤19に、鋼製の取り付け治具
23を溶接して固定し、原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとを最寄の取り付け治具23へ溶接で固定する。このようにしてモジュール17を構成する各部分は吊り天秤19と取り付け治具23でばらばらにならないように一体化される。この一体化された状態では、モジュール17を構成する各部分は据付け位置の関係に固定される。この吊り天秤19には、ワイヤーロープ20が結合され、そのワイヤーロープ20をクレーンで上方へ引くことによって原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとペネトレーション16とは一体化したモジュール17としてクレーンによって一括して吊り上げることができる。また、図9のように、モジュール17とした原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aとの間には、両者が接触しないように緩衝部材42が設置されている。
The lower stage of the reactor containment vessel 2, the inner steel plate 14a, the outer steel plate 14b, and the penetration 16 of the biological shielding wall 3 are assembled so that they can be lifted together. That is, as shown in FIG. 8, a steel mounting jig 23 is welded and fixed to a suspension balance 19 in which H-shaped steels are radially combined in eight horizontal directions, and the bottom of the reactor containment vessel 2 and the biological shielding wall 3 are fixed. The inner steel plate 14a and the outer steel plate 14b are fixed to the nearest mounting jig 23 by welding. In this way, each part constituting the module 17 is integrated by the suspension balance 19 and the mounting jig 23 so as not to be separated. In this integrated state, each part which comprises the module 17 is fixed to the installation position relationship. A wire rope 20 is coupled to the suspension balance 19. By pulling the wire rope 20 upward with a crane, the lower stage of the containment vessel 2, the inner steel plate 14 a, the outer steel plate 14 b and the penetration 16 of the biological shielding wall 3 are defined. The integrated module 17 can be lifted together by a crane. Further, as shown in FIG. 9, a buffer member 42 is installed between the lower stage of the reactor containment vessel 2 as the module 17 and the inner steel plate 14 a of the biological shielding wall 3 so that they do not come into contact with each other.

モジュール17にされた状態は、原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとペネトレーション16とはその相対位置関係が据付け時の相対位置関係と同じにされて工場または建設現場に隣接した場所で吊り天秤19や取り付け治具23で一体に作られる。そのモジュール17を作る以前には、原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとペネトレーション16に対して、塗装などの現時点で出来るだけの作業を加えて据付け後の作業を極力省略する。   The module 17 is in a state where the relative position relationship between the lower stage of the containment vessel 2 and the inner steel plate 14a, the outer steel plate 14b and the penetration 16 of the biological shielding wall 3 is the same as the relative position relationship at the time of installation. It is integrally made with a suspension balance 19 and a mounting jig 23 at a location adjacent to the construction site. Before the module 17 was made, the bottom of the containment vessel 2 and the inner steel plate 14a, the outer steel plate 14b, and the penetration 16 of the biological shielding wall 3 were subjected to work such as painting as much as possible at the present time after installation. Save work as much as possible.

吊り天秤19や取り付け治具23で一体化されたモジュール17は、クレーンで吊り上げられて、原子炉建屋4の基礎マット15上の低部ライナー上に運ばれて吊り降ろされる。その運搬途中において、原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとは吊り天秤19で固定されて位置が保持されるので、ふら付きや歪みが発生せず、モジュール17やモジュールを構成する各部品の型崩れが抑制出来る。   The module 17 integrated with the suspension balance 19 and the mounting jig 23 is lifted by a crane, and is carried on the lower liner on the foundation mat 15 of the reactor building 4 and suspended. During the transportation, the lower stage of the containment vessel 2 and the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 are fixed by the suspension balance 19 so that their positions are maintained. 17 and the shape of each component constituting the module can be suppressed.

モジュール17が吊り降ろされたら、次に、取り付け治具23に対する原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとの溶接接合部分を切り離して吊り天秤19をモジュール17から外すと共に、原子炉格納容器2下段と生体遮蔽壁3の内側鋼板14aと外側鋼板14bとを基礎マット15側に設定、即ち据付ける。次に、図9のように、円筒状に組み立てた原子炉圧力容器1基礎5の鋼板部分とダイヤフラムフロア27の鉄筋鉄骨等の鋼製部材を原子炉格納容器2下段内にクレーンで吊り込んで設定し原子炉圧力容器基礎5とダイヤフラムフロア27のコンクリートを施工する。更には、円筒状のγ線遮蔽壁22をクレーンで原子炉圧力容器基礎5上に吊り降ろして設定し、γ線遮蔽壁22のコンクリートを施工する。このγ線遮蔽壁22には、原子炉格納容器2内の範囲の主蒸気配管32やそれに付属する弁34が一緒に付けられて、このγ線遮蔽壁22と同時に吊り込まれる。   When the module 17 is suspended, the welding balance between the lower stage of the containment vessel 2 and the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 with respect to the mounting jig 23 is separated and the suspension balance 19 is removed from the module 17. At the same time, the lower stage of the reactor containment vessel 2 and the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 are set, that is, installed on the base mat 15 side. Next, as shown in FIG. 9, the steel plate portion of the reactor pressure vessel 1 foundation 5 assembled in a cylindrical shape and the steel member such as the reinforced steel frame of the diaphragm floor 27 are suspended in the lower stage of the reactor containment vessel 2 by a crane. Set and construct concrete for the reactor pressure vessel foundation 5 and the diaphragm floor 27. Furthermore, the cylindrical γ-ray shielding wall 22 is set by hanging down on the reactor pressure vessel foundation 5 with a crane, and the concrete of the γ-ray shielding wall 22 is constructed. A main steam pipe 32 in the range in the reactor containment vessel 2 and a valve 34 attached thereto are attached to the γ-ray shielding wall 22 and are suspended simultaneously with the γ-ray shielding wall 22.

次に、原子炉格納容器2下段よりも上方の鋼板製の原子炉格納容器2部分、即ち原子炉格納容器2上段を原子炉格納容器2下段の上端へクレーンで吊り降ろす。その後に、原子炉格納容器2上段の下端と原子炉格納容器2下段の上端とを原子炉格納容器2内側及び外側の両側から溶接して接合する。この溶接時点では、原子炉格納容器2上段の下端と原子炉格納容器2下段の上端との合わせ目、即ち溶接ラインは生体遮蔽壁3の各鋼板によって包囲されることが無いので、その溶接が確実に成せる上、溶接部の検査も容易である。   Next, the portion of the reactor containment vessel 2 made of steel plate above the lower stage of the reactor containment vessel 2, that is, the upper stage of the reactor containment vessel 2 is suspended by the crane to the upper end of the lower stage of the reactor containment vessel 2. After that, the lower end of the upper stage of the containment vessel 2 and the upper end of the lower stage of the containment vessel 2 are welded and joined from both the inside and outside of the containment vessel 2. At the time of this welding, since the joint line between the lower end of the upper stage of the containment vessel 2 and the upper end of the lower stage of the containment vessel 2, that is, the welding line is not surrounded by each steel plate of the biological shielding wall 3, the welding is performed. In addition to being sure, it is easy to inspect the weld.

次に、原子炉格納容器2の鋼製の蓋42を開けて、開けた部分から原子炉圧力容器1をクレーンで原子炉格納容器2内に吊り入れて原子炉圧力容器基礎5に設定する。その後に蓋42は閉じられ、設定された原子炉圧力容器1には主蒸気配管32が接続される。次に、既に基礎マット15上に設定した生体遮蔽壁3の内側鋼板14aと外側鋼板14bの部分を生体遮蔽壁3下段とした場合、それより上の生体遮蔽壁3の部分を生体遮蔽壁3上段とし、その生体遮蔽壁3上段の鋼板を一括してクレーンで吊って生体遮蔽壁3下段の内側鋼板14aと外側鋼板14bとに積み上げ、その境を溶接で接合する。この溶接に際しては、内側鋼板14aと外側鋼板14bとの水平間隔が約1.5メートル 〜約2メートルのいずれかの寸法に設定されているので、内側鋼板14aと外側鋼板14bとの水平間隔間に溶接作業員が入って内側鋼板14aの生体遮蔽壁3下段と下段の接合端を溶接する。外側鋼板14bの溶接については内側鋼板14aと外側鋼板14bとの水平間隔間に溶接作業員が入って行っても良いし、外側鋼板14bの外側から行っても良い。これら内側鋼板14aや外側鋼板14bの溶接は片側面からの溶接で行われる。   Next, the steel lid 42 of the reactor containment vessel 2 is opened, and the reactor pressure vessel 1 is suspended from the opened portion into the reactor containment vessel 2 by a crane and set to the reactor pressure vessel foundation 5. Thereafter, the lid 42 is closed, and the main steam pipe 32 is connected to the set reactor pressure vessel 1. Next, when the portion of the inner steel plate 14a and the outer steel plate 14b of the biological shielding wall 3 that has already been set on the base mat 15 is used as the lower stage of the biological shielding wall 3, the portion of the biological shielding wall 3 above the biological shielding wall 3 The upper stage, the upper steel plate of the living body shielding wall 3 is collectively suspended by a crane and stacked on the inner steel plate 14a and the outer steel plate 14b on the lower stage of the living body shielding wall 3, and the boundary is joined by welding. In this welding, since the horizontal interval between the inner steel plate 14a and the outer steel plate 14b is set to any dimension of about 1.5 meters to about 2 meters, the horizontal interval between the inner steel plate 14a and the outer steel plate 14b is set. A welding worker enters and welds the lower and lower joint ends of the biological shielding wall 3 of the inner steel plate 14a. The welding of the outer steel plate 14b may be performed with a welding worker entering the horizontal interval between the inner steel plate 14a and the outer steel plate 14b, or from the outside of the outer steel plate 14b. The inner steel plate 14a and the outer steel plate 14b are welded from one side.

また、ペネトレーション16の周囲に内側鋼板14a及び外側鋼板14bとの間で開いた隙間は、コンクリート液が漏れでないように鋼製の板を当てて塞いでおく。   Further, the gap opened between the inner steel plate 14a and the outer steel plate 14b around the penetration 16 is closed with a steel plate so that the concrete liquid does not leak.

このような生体遮蔽壁3の鋼板部分が溶接によって組立てられた後には、内側鋼板14aや外側鋼板14bとの間に、コンクリート液が注入されて、そのコンクリート液が固化するのを待って鋼板コンクリート構造となる。生体遮蔽壁3の鋼板はそのまま残存して生体遮蔽壁3の一部になる。   After the steel plate portion of the biological shielding wall 3 is assembled by welding, the concrete liquid is injected between the inner steel plate 14a and the outer steel plate 14b, and the steel plate concrete is waited for the concrete liquid to solidify. It becomes a structure. The steel plate of the biological shielding wall 3 remains as it is and becomes a part of the biological shielding wall 3.

生体遮蔽壁3上段の水平部分は、ハーフSC構造で作られる。この場合のハーフSC構造とは、その水平部分の厚みの下側半分が鋼板コンクリート作りで、上側半分が鉄筋コンクリート作りとされることを意味している。   The horizontal portion of the upper stage of the biological shielding wall 3 is made of a half SC structure. The half SC structure in this case means that the lower half of the horizontal portion is made of steel plate concrete and the upper half is made of reinforced concrete.

このようにして原子炉格納容器2と生体遮蔽壁3を建設し、その生体遮蔽壁3の外周囲には原子力発電所の機器が納まる複数の部屋33や燃料貯蔵プール37等の各区画や屋根39が建設される。   In this way, the reactor containment vessel 2 and the biological shielding wall 3 are constructed, and each compartment or roof such as a plurality of rooms 33 and fuel storage pools 37 in which the equipment of the nuclear power plant is placed around the biological shielding wall 3. 39 is built.

このようにして、生体遮蔽壁3下段の部分を鋼板コンクリート製で建設すると、コンクリート形枠の設置や撤去に必要な作業スペースを生体遮蔽壁3と原子炉格納容器2との間に設定する必要が無く、生体遮蔽壁3下段と原子炉格納容器2との間の水平ギャップ6は50mm〜300mmの間の寸法に設定できる。   In this way, when the lower part of the biological shielding wall 3 is constructed of steel plate concrete, it is necessary to set a work space necessary for installation and removal of the concrete form between the biological shielding wall 3 and the reactor containment vessel 2. The horizontal gap 6 between the lower stage of the biological shielding wall 3 and the reactor containment vessel 2 can be set to a dimension between 50 mm and 300 mm.

このように生体遮蔽壁3下段と原子炉格納容器2との間の水平ギャップ6が50mm〜
300mmと狭くなると、原子炉格納容器2から生体遮蔽壁3に加わる熱も大きくなり、水平ギャップ6空間の温度も下部で低く上部で上昇しやすい。また、原子炉格納容器2や生体遮蔽壁3に対する熱負荷の増大を防ぐためにも、必要に応じて次のような構成を加える。
Thus, the horizontal gap 6 between the lower stage of the biological shielding wall 3 and the reactor containment vessel 2 is 50 mm to
When it is as narrow as 300 mm, the heat applied from the reactor containment vessel 2 to the living body shielding wall 3 also increases, and the temperature of the horizontal gap 6 space tends to be low at the bottom and rise at the top. In order to prevent an increase in the thermal load on the reactor containment vessel 2 and the biological shielding wall 3, the following configuration is added as necessary.

即ち、原子炉格納容器2下段に面した生体遮蔽壁3には、図4のように、生体遮蔽壁3に隣接する部屋33と生体遮蔽壁3下段と原子炉格納容器2との間のギャップ6空間とを連通する上部連通孔5aと下部連通孔5bとが上下に分散して設けられる。上部連通孔
5aと下部連通孔5bとは図4に見られるように、二箇所で直角に屈曲した流路構造を有し、原子炉格納容器2側からの放射線が上部連通孔5aと下部連通孔5bを通して直線的に部屋33側に抜けることがない様に考慮されている。
That is, the living body shielding wall 3 facing the lower stage of the reactor containment vessel 2 has a gap between the room 33 adjacent to the living body shielding wall 3, the lower stage of the living body shielding wall 3, and the reactor containment vessel 2 as shown in FIG. Upper communication holes 5a and lower communication holes 5b communicating with the six spaces are provided in a vertically dispersed manner. As shown in FIG. 4, the upper communication hole 5a and the lower communication hole 5b have a flow path structure that is bent at right angles at two locations, and radiation from the reactor containment vessel 2 side communicates with the upper communication hole 5a. It is considered so that it does not go straight to the room 33 side through the hole 5b.

このような構造では、原子炉を通常運転中に原子炉格納容器2と生体遮蔽壁3のギャップ6部の雰囲気温度は、原子炉格納容器2からの放熱により原子炉建屋4内の雰囲気温度と比較して高くなっている。この温度差により、生体遮蔽壁3の上部と下部にギャップ6部と原子炉建屋4を連通する上部連通孔5a及び下部連通孔5bを設けておけば、ギャップ6部から上部連通孔5aを通って高温の軽い空気が部屋33側へ流出し、下部連通孔
5bから低温の空気が部屋33側からギャップ6部へ流入する。このような自然対流が生じることでギャップ6部の雰囲気は停滞することなく循環し、ギャップ6部の温度も湿度も原子炉建屋4の部屋33内とほぼ均一化され、ギャップ6部に熱がこもることなくギャップ6の水平幅寸法の縮減が可能となる。
In such a structure, during normal operation of the reactor, the ambient temperature of the gap 6 portion between the reactor containment vessel 2 and the biological shielding wall 3 is the same as the ambient temperature in the reactor building 4 due to heat radiation from the reactor containment vessel 2. It is higher compared. If an upper communication hole 5a and a lower communication hole 5b for communicating the gap 6 and the reactor building 4 are provided at the upper and lower portions of the biological shielding wall 3 due to this temperature difference, the gap 6 passes through the upper communication hole 5a. Then, hot light air flows out to the room 33 side, and low temperature air flows from the lower communication hole 5b into the gap 6 part from the room 33 side. As a result of such natural convection, the atmosphere in the gap 6 part circulates without stagnation, the temperature and humidity of the gap 6 part are almost equalized in the room 33 of the reactor building 4, and heat is generated in the gap 6 part. The horizontal width dimension of the gap 6 can be reduced without being trapped.

また、生体遮蔽壁3の上部と下部に複数個の上部連通孔5aと下部連通孔5bを設けることにより、ギャップ6部の換気が可能になり、湿度の高い空気の滞留を防ぐことができるから、ギャップ6部の底部に装備されるサンドクッション9の性能劣化を抑制することができる。さらに、万一の冷却材喪失事故時に原子炉格納容器2の壁面から放出される熱により、周囲の生体遮蔽壁3の温度を上昇して過度な熱応力が局部的に或いは全体に発生するのを防止できる。   Further, by providing a plurality of upper communication holes 5a and lower communication holes 5b at the upper and lower parts of the biological shielding wall 3, the gap 6 can be ventilated and retention of high humidity air can be prevented. The performance deterioration of the sand cushion 9 provided at the bottom of the gap 6 can be suppressed. Furthermore, the heat released from the wall of the reactor containment vessel 2 in the event of a loss of coolant accidents raises the temperature of the surrounding biological shielding wall 3 and causes excessive thermal stress locally or entirely. Can be prevented.

原子炉建屋の構造壁の従来設計において、冷却材喪失事故後の設計地震(S1地震)が生体遮蔽壁3の設計にとって過酷であったので、上部連通孔5aと下部連通孔5bを設置することにより生体遮蔽壁3の設計荷重を大幅に低減することができる。これにより、原子炉の通常運転時において原子炉格納容器2と生体遮蔽壁3の狭隘なギャップ6の熱滞留の防止及びギャップ6部の下部に設置されるサンドクッション9部に水分が溜まることを防止するとともに、万一の冷却材喪失事故時において原子炉格納容器2と生体遮蔽壁3のギャップ6部の温度上昇を抑え過度な熱応力が生体遮蔽壁に加わらないようにすることができる。   In the conventional design of the structural wall of the reactor building, since the design earthquake (S1 earthquake) after the loss of coolant accident was severe for the design of the biological shielding wall 3, the upper communication hole 5a and the lower communication hole 5b should be installed. Thus, the design load of the biological shielding wall 3 can be greatly reduced. As a result, during normal operation of the nuclear reactor, heat retention in the narrow gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is prevented, and moisture is collected in the sand cushion 9 part installed under the gap 6 part. It is possible to prevent the temperature increase in the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 and prevent excessive thermal stress from being applied to the biological shielding wall in the event of a coolant loss accident.

ここで、上部連通孔5aと下部連通孔5bの流路は図4に示すように屈曲した構造とすることで放射線遮蔽機能を生体遮蔽壁3が満足することができる。また、原子炉運転時には原子炉格納容器2の下部に圧力抑制室8内にプール水が貯蔵されるため、このプール水による放射線の水遮蔽機能が発揮されるから、下部連通孔5bについては流路が直線構造となるものを採用しても差し支えない。   Here, the biological shielding wall 3 can satisfy the radiation shielding function by making the flow path of the upper communication hole 5a and the lower communication hole 5b bent as shown in FIG. Further, since pool water is stored in the pressure suppression chamber 8 at the lower part of the reactor containment vessel 2 during the operation of the reactor, the water shielding function of radiation by this pool water is exhibited. It is acceptable to use a straight road structure.

原子炉建屋4の構造によっては各部屋33の構造上の問題や気密性の問題により上述の自然循環を生じ得ないことも考えられる。そのような場合は、図5に示すように、原子炉建屋4の部屋33に置かれた空調機7を用いてギャップ6部の雰囲気を強制循環を生じさせることができる構成とする。図5に示すように上部連通孔5aが連通する部屋33から空気を空調機7へ流入させ、空調機7からの排風を下部連通孔5bが連通する下側の他の部屋33へ送り込む構成とすることで、他の部屋33側から下部連通孔5bを通じてギャップ6部に向かって他の部屋33の雰囲気が流れ込むことになる。このような構成とすることでギャップ6部全体としては、ギャップ6部の雰囲気が上部連通孔5aから流出し、下部連通孔5bから流入することになり、強制的な雰囲気の循環を作り出すことができる。この強制循環が生じることで自然循環の場合と同様にギャップ6部の空気はこもることなく、湿度も原子炉建屋4内とほぼ均一化され、各部の熱負荷の低減及び均一化、並びにサンドクッション9が過度に水分を含むことの防止によるサンドクッション9の性能の劣化抑制ができる。   Depending on the structure of the reactor building 4, the above-described natural circulation may not occur due to the structural problem of each room 33 and the problem of airtightness. In such a case, as shown in FIG. 5, it is set as the structure which can produce the forced circulation of the atmosphere of gap 6 part using the air conditioner 7 placed in the room 33 of the reactor building 4. As shown in FIG. 5, the air flows into the air conditioner 7 from the room 33 that communicates with the upper communication hole 5 a, and the exhaust air from the air conditioner 7 is sent to the other room 33 below that communicates with the lower communication hole 5 b. By doing so, the atmosphere of the other room 33 flows from the other room 33 side toward the gap 6 through the lower communication hole 5b. By adopting such a configuration, as the entire gap 6 portion, the atmosphere of the gap 6 portion flows out from the upper communication hole 5a and flows in from the lower communication hole 5b, thereby creating a forced atmosphere circulation. it can. As a result of this forced circulation, the air in the gap 6 part is not trapped as in the case of natural circulation, the humidity is almost uniform in the reactor building 4, the heat load in each part is reduced and uniform, and the sand cushion It is possible to suppress the deterioration of the performance of the sand cushion 9 by preventing the 9 from containing excessive moisture.

また、図6に示すように、空調機7の替わりに部屋33に装備された非常用ガス処理系10(SGTS)を用いることで、冷却材喪失事故等の事故時にもギャップ6部の雰囲気を部屋33との間で強制循環を生じさせることができ、さらに生体遮蔽壁3のコンクリート部材に過度の熱荷重が加わることを緩和することができる。このとき、非常用ガス処理系10のフィルタ12より下流側から、下部連通孔5bが連通する他の部屋33への連絡ライン13を構成することで、ギャップ6部の雰囲気が非常用ガス処理系10のある部屋33へ上部連通孔5aを通じて流入し、その雰囲気が非常用ガス処理系10内にブロア
11で吸い込まれてフィルタ12を通じて他の部屋33へ配管で構成された連絡ライン
13を通じてブロア11で送り込まれ、フィルタ12で処理された雰囲気が下部連通孔
5bを通じてギャップ6部の下部に戻しいれられという強制循環が繰り返される。この強制循環が生じることで自然循環の場合と同様にギャップ6部の雰囲気はこもることなく、湿度も温度も原子炉建屋4内とほぼ均一化され、生体遮蔽壁や原子炉格納容器の壁の熱負荷の低減及び均一化が達成でき、更にサンドクッション9が過度に水分を含まないように出来るのでサンドクッション9の性能の劣化を抑えることができる。その上、冷却材喪失事故時において原子炉格納容器2から外部に漏えいする核分裂生成物を、非常用ガス処理系10のフィルタ12で優先的に除去できる効果も得られる。
Moreover, as shown in FIG. 6, by using the emergency gas treatment system 10 (SGTS) installed in the room 33 instead of the air conditioner 7, the atmosphere of the gap 6 part can be obtained even in an accident such as a coolant loss accident. Forced circulation can be generated between the room 33 and the excessive thermal load applied to the concrete member of the biological shielding wall 3 can be reduced. At this time, by forming a communication line 13 from the downstream side of the filter 12 of the emergency gas processing system 10 to the other room 33 that communicates with the lower communication hole 5b, the atmosphere of the gap 6 portion is made to be an emergency gas processing system. 10 flows into the room 33 with the upper communication hole 5a, the atmosphere is sucked into the emergency gas treatment system 10 by the blower 11 and passes through the filter 12 to the other room 33 through the communication line 13 configured by piping. The forced circulation is repeated, in which the atmosphere treated by the filter 12 is returned to the lower portion of the gap 6 through the lower communication hole 5b. As a result of this forced circulation, the atmosphere in the gap 6 is not confined, as in the case of natural circulation, and the humidity and temperature are substantially uniform in the reactor building 4, so that the walls of the biological shielding wall and the reactor containment vessel Reduction and uniformization of the thermal load can be achieved, and further, the sand cushion 9 can be made not to contain excessive moisture, so that deterioration of the performance of the sand cushion 9 can be suppressed. In addition, the fission product leaking outside from the reactor containment vessel 2 at the time of the coolant loss accident can be preferentially removed by the filter 12 of the emergency gas treatment system 10.

このような本発明の実施例によれば、以下の特徴点が掲げられる。   According to such an embodiment of the present invention, the following features are listed.

(1)原子炉格納容器2と生体遮蔽壁3のギャップ6幅について可能な限り縮小(50〜300mm)することができる。即ち、従来、原子炉格納容器2と生体遮蔽壁3の間は、生体遮蔽壁3工事の施工スペースを確保する観点等により人員がアクセスできるスペースとして約800mmが必要であった。本発明の実施例では、生体遮蔽壁3を従来の鉄筋コンクリート構造から鋼板コンクリート構造にすることで、原子炉格納容器2と生体遮蔽壁3の施工スペースの削減が可能となり、原子炉格納容器2と生体遮蔽壁3とのギャップ6部を可能な限り縮小(50〜300mm)することができる。   (1) The gap 6 width between the reactor containment vessel 2 and the biological shielding wall 3 can be reduced as much as possible (50 to 300 mm). That is, conventionally, between the reactor containment vessel 2 and the biological shielding wall 3, approximately 800 mm is necessary as a space that can be accessed by personnel from the viewpoint of securing a construction space for the biological shielding wall 3 construction. In the embodiment of the present invention, the living space shielding wall 3 is changed from the conventional reinforced concrete structure to the steel plate concrete structure, so that the construction space for the reactor containment vessel 2 and the living body shielding wall 3 can be reduced. The gap 6 with the living body shielding wall 3 can be reduced as much as possible (50 to 300 mm).

また、図2に示すように原子炉格納容器2と生体遮蔽壁3の鋼板をモジュール17化した場合に原子炉格納容器2と生体遮蔽壁3との間のギャップ6部が低減され多分、生体遮蔽壁3の鋼板の円筒形状の直径が縮減してモジュール17の小型化及び軽量化が可能となり、従来の建設用の大型揚重機を用いて搬入することで、揚重機の有効活用の実現,搬入回数の低減,搬入期間の短縮等が容易に可能となり、それに伴う工数低減により建設コストの低減を図ることができる。また、原子炉格納容器2と生体遮蔽壁3間とのギャップ6部の水平間隔が縮減されることで原子炉建屋4の小型化が可能になるとともに、原子炉建屋4の建設工程の短縮が可能となる。   Further, as shown in FIG. 2, when the steel plate of the reactor containment vessel 2 and the living body shielding wall 3 is made into the module 17, the gap 6 between the reactor containment vessel 2 and the living body shielding wall 3 is reduced, and maybe the living body. The diameter of the cylindrical shape of the steel plate of the shielding wall 3 is reduced, so that the module 17 can be made smaller and lighter. By using a conventional heavy lifting machine for construction, it is possible to effectively use the lifting machine. Reduction of the number of times of carrying in, shortening of the carrying-in period, etc. can be easily performed, and the construction cost can be reduced by reducing the number of man-hours associated therewith. Further, the horizontal gap of the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is reduced, so that the reactor building 4 can be downsized and the construction process of the reactor building 4 can be shortened. It becomes possible.

(2)原子炉格納容器2下段と生体遮蔽壁3下段の鋼板を含むモジュール17を作る際には、原子炉格納容器2下段の上端を生体遮蔽壁3下段の上端よりも上方に突き出るように原子炉格納容器2下段と生体遮蔽壁3下段の高さを調整した。このようにすると、原子炉格納容器2下段と原子炉格納容器2上段との溶接接合に際して、原子炉格納容器2の内側と外側とに溶接作業スペースを確実に確保できる。そのため、内外両面からの溶接を要求されている原子炉格納容器2の溶接や溶接部の検査に容易に対応できる。このようにして、原子炉格納容器2と生体遮蔽壁3とのギャップ6が狭くなっても原子炉格納容器2の溶接と溶接部の検査が行え、その溶接と検査の完了後に生体遮蔽壁3上段を生体遮蔽壁3下段に溶接接合できる。   (2) When making the module 17 including the steel plate in the lower stage of the containment vessel 2 and the lower stage of the biological shielding wall 3, the upper end of the lower stage of the reactor containment vessel 2 protrudes above the upper end of the lower stage of the biological shielding wall 3. The height of the lower stage of the containment vessel 2 and the lower stage of the biological shielding wall 3 were adjusted. If it does in this way, at the time of welding joining with the lower stage of the containment vessel 2, and the upper stage of the containment vessel 2, the welding work space can be ensured reliably inside and outside of the containment vessel 2. Therefore, it is possible to easily cope with the welding of the reactor containment vessel 2 and the inspection of the welded portion, which are required to be welded from both the inside and outside. In this way, even when the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is narrowed, the reactor containment vessel 2 can be welded and the welded portion can be inspected. The upper stage can be welded to the lower stage of the biological shielding wall 3.

(3)また、原子炉格納容器2は、その健全性を確認するために建設時において各種の溶接検査を実施するとともに最終的な耐圧試験を実施する。耐圧試験では、原子炉格納容器2を最高使用圧力の1.125 倍の圧力で加圧し、全体的に圧力が低下しないことと石鹸水を溶接部などに塗布して原子炉格納容器2の漏洩を確認していた。本発明の実施例では、外側から漏洩が確認できない部位については、真空箱による局部漏洩検査により漏洩試験を代替できる。この真空箱による局部漏洩検査は、透明な窓のある真空箱を試験面に載せ、真空箱の内部を真空にし、原子炉格納容器2の外側から内側の試験面へ通過してくる気体の有無と通過箇所を試験面に塗布した発砲液の泡の形成を観察することにより検知する漏洩検査方法を用いる。本発明の実施例のように、原子炉格納容器2と生体遮蔽壁3のギャップ6部を小さくした場合、原子炉格納容器2と生体遮蔽壁3の一体吊り込み後の原子炉格納容器2の溶接部においては、ギャップ6部が小さく検査のための作業員の原子炉格納容器2下段外周囲へのアクセスが不可となるため、原子炉格納容器2の外側からの耐圧後の漏洩確認が困難となるが、その場合には、原子炉格納容器2の内側から溶接線について上記の真空箱による局部漏洩検査を実施することで対応可能となる。   (3) In addition, the reactor containment vessel 2 performs various welding inspections at the time of construction and a final pressure test in order to confirm the soundness. In the pressure test, the containment vessel 2 was pressurized at a pressure 1.125 times the maximum operating pressure, and the pressure did not decrease as a whole. Had confirmed. In the embodiment of the present invention, the leak test can be replaced by a local leak test using a vacuum box for a site where the leak cannot be confirmed from the outside. In this local leakage inspection using a vacuum box, a vacuum box with a transparent window is placed on the test surface, the inside of the vacuum box is evacuated, and there is no gas passing from the outside of the reactor containment vessel 2 to the inside test surface. And a leakage inspection method that detects by detecting the formation of foam bubbles in the foaming liquid that has been applied to the test surface. When the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is reduced as in the embodiment of the present invention, the reactor containment vessel 2 after the reactor containment vessel 2 and the biological shielding wall 3 are integrally suspended. In the welded portion, the gap 6 is small and access to the outer periphery of the lower part of the reactor containment vessel 2 is impossible for inspection workers, so it is difficult to confirm leakage after pressure resistance from the outside of the reactor containment vessel 2. However, in that case, it can be dealt with by performing the above-mentioned local leakage inspection with the vacuum box on the weld line from the inside of the reactor containment vessel 2.

(4)鋼製の原子炉格納容器2においては、万一の事故時において原子炉格納容器2の温度上昇及び圧力上昇にともなう熱応力により原子炉格納容器2の本体への影響を及ぼす可能性がある。そのため、原子炉格納容器2と原子炉格納容器2の外周囲に設置される生体遮蔽壁3とのギャップ6の下部には、原子炉格納容器2の熱膨張による変形の吸収及び原子炉格納容器2の熱応力を逃がすために砂で構成されるサンドクッション9が設置される。しかし、原子炉格納容器2と生体遮蔽壁3のギャップ6部を小さくした場合、このサンドクッション9の設置スペースが確保できなくなる可能性がある。そこで、図4に示すようにサンドクッション9の設置スペースを確保するために、生体遮蔽壁3の下部を切り欠いてサンドクッション9を設けるスペースを確保した。これにより、原子炉格納容器2と生体遮蔽壁3のギャップ6部を小さくした場合でもサンドクッション9の設置が可能となる。また、生体遮蔽壁3の下部の切り欠き部には砂が充填されるため、生体遮蔽壁3に切り欠きが有っても、生体遮蔽壁3の放射線遮蔽機能上の大きな問題は生じない。   (4) In the steel reactor containment vessel 2, in the unlikely event of an accident, there is a possibility that the main body of the reactor containment vessel 2 will be affected by the thermal stress accompanying the temperature rise and pressure rise of the reactor containment vessel 2 There is. Therefore, in the lower part of the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 installed around the outer periphery of the reactor containment vessel 2, absorption of deformation due to thermal expansion of the reactor containment vessel 2 and the reactor containment vessel In order to release the thermal stress of 2, a sand cushion 9 made of sand is installed. However, when the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is reduced, there is a possibility that the installation space for the sand cushion 9 cannot be secured. Therefore, as shown in FIG. 4, in order to secure an installation space for the sand cushion 9, a space for providing the sand cushion 9 is secured by cutting out the lower part of the biological shielding wall 3. Thereby, even when the gap 6 between the reactor containment vessel 2 and the biological shielding wall 3 is reduced, the sand cushion 9 can be installed. Moreover, since the notch part of the lower part of the biological shielding wall 3 is filled with sand, even if the biological shielding wall 3 has a notch, a major problem in the radiation shielding function of the biological shielding wall 3 does not occur.

(5)原子炉格納容器2と生体遮蔽壁3のギャップ6部の雰囲気を生体遮蔽壁3の外側の部屋33を通じて自然循環乃至は強制循環させることが出来るので、ギャップ6部の雰囲気は停滞することなく、温度も湿度も生体遮蔽壁3の外側の部屋33内とほぼ均一化され、ギャップ6部に熱や湿気がこもることがない。そのため、熱や湿気がこもる対策としてギャップ6部を大幅に確保する必要性が無くなる。また、サンドクッション9の性能劣化を抑制することができる。さらに、万一の冷却材喪失事故時に原子炉格納容器2の壁面から放出される熱により、周囲の生体遮蔽壁33の温度を上昇して過度な熱応力が発生するのを防止できる。その分、原子力建屋の生体遮蔽壁3の設計荷重を大幅に低減することができる。   (5) Since the atmosphere in the gap 6 part between the reactor containment vessel 2 and the living body shielding wall 3 can be naturally circulated or forcedly circulated through the room 33 outside the living body shielding wall 3, the atmosphere in the gap 6 part is stagnant. In addition, both the temperature and the humidity are made almost uniform in the room 33 outside the living body shielding wall 3, and heat and moisture are not trapped in the gap 6 part. Therefore, it is not necessary to greatly secure the gap 6 as a countermeasure against heat and moisture. Moreover, the performance deterioration of the sand cushion 9 can be suppressed. Furthermore, it is possible to prevent excessive thermal stress from being generated by raising the temperature of the surrounding biological shielding wall 33 due to heat released from the wall of the reactor containment vessel 2 in the event of a coolant loss accident. Accordingly, the design load of the biological shielding wall 3 of the nuclear building can be greatly reduced.

また、ギャップ6部の雰囲気の循環を促進するために設けた上部連通孔5aと下部連通孔5bの屈曲した流路構造が放射線が直線的に抜けることを抑制するので、生体遮蔽壁3に先の上部連通孔5aと下部連通孔5bを設けることが可能となった。   In addition, since the bent channel structure of the upper communication hole 5a and the lower communication hole 5b provided to promote the circulation of the atmosphere in the gap 6 part prevents the radiation from coming out linearly, The upper communication hole 5a and the lower communication hole 5b can be provided.

(6)原子炉格納容器2の据え付けは、基礎マット15の工事完了後の施工開始となるが、原子炉格納容器2の周囲には原子炉格納容器2本体の施工,試験,塗装等の作業スペースを確保する必要があるため、原子炉格納容器2の周囲に設置される生体遮蔽壁3の据え付けは、原子炉格納容器2の工事完了後の施工となるため、従来の建設工法では原子炉格納容器2及び生体遮蔽壁3の建設工程が原子炉建屋4におけるクリティカル工程となっているが、原子炉格納容器2外側の生体遮蔽壁3に鋼板コンクリート構造(SC構造)を採用することにより、建設現地ヤードでの原子炉格納容器2と生体遮蔽壁3の鋼板部材のモジュール17化を可能とし、ペネトレーション16貫通部の施工性の向上,原子炉格納容器2と生体遮蔽壁3内側の型枠施工スペースの削除化,原子炉格納容器2工事と生体遮蔽壁3工事の併進化が可能となる。   (6) The installation of the reactor containment vessel 2 starts after the completion of the construction of the foundation mat 15, but work such as construction, testing and painting of the reactor containment vessel 2 body around the reactor containment vessel 2 Since it is necessary to secure space, the biological shielding wall 3 installed around the reactor containment vessel 2 is installed after the construction of the reactor containment vessel 2 is completed. The construction process of the containment vessel 2 and the biological shielding wall 3 is a critical process in the reactor building 4, but by adopting a steel plate concrete structure (SC structure) for the biological shielding wall 3 outside the reactor containment vessel 2, It is possible to make the module 17 of the steel plate member of the reactor containment vessel 2 and the biological shielding wall 3 in the construction site yard, improve the workability of the penetration 16 penetration portion, and the type inside the reactor containment vessel 2 and the biological shielding wall 3 Delete of construction space, the containment vessel 2 Construction and biological shield wall 3 translational of construction is possible.

また、生体遮蔽壁3を鋼板コンクリート構造とすることで鋼製の生体遮蔽壁3よりも鋼板を大幅に薄くすることができ、モジュール17の重量が軽量化されるため、原子炉格納容器2下段と生体遮蔽壁3下段の鋼板部材を一括で吊り込むことが可能となり、原子炉建屋4建設工程短縮化が図れる。このモジュール17を吊り込む方法としては、図8に示すように、吊り天秤19がモジュール17全体及びモジュール17構成メンバーの変形やモジュール17の型崩れを防止する。そのため、正確に原子炉建屋4を建設できる。   Further, since the biological shielding wall 3 has a steel plate concrete structure, the steel plate can be made much thinner than the steel biological shielding wall 3 and the weight of the module 17 is reduced. It is possible to suspend the steel plate member in the lower stage of the biological shielding wall 3 in a lump, and the construction process of the reactor building 4 can be shortened. As a method for suspending the module 17, as shown in FIG. 8, the suspension balance 19 prevents deformation of the entire module 17, the members constituting the module 17, and deformation of the module 17. Therefore, the reactor building 4 can be accurately constructed.

このように、モジュール17を用いることで原子炉建屋4の建設工程短縮が可能になるとともに据え付け精度及び信頼性の向上が可能となる。また、モジュール17は建設用の大形クレーンを用いて据付け位置に搬入することで、その大形クレーンの有効活用の実現,搬入回数の低減,搬入期間の短縮等が可能であり、それに伴う工数低減により建設コストの低減を図っている。   As described above, by using the module 17, the construction process of the reactor building 4 can be shortened and the installation accuracy and reliability can be improved. In addition, the module 17 can be carried into the installation position using a large crane for construction, so that the large crane can be effectively used, the number of times of loading can be reduced, and the loading period can be shortened. The construction cost is reduced by the reduction.

(7)原子炉格納容器2の鋼板と生体遮蔽壁3の鋼板の上段と下段との高さ方向の分割位置のレベルが、原子炉格納容器2の鋼板の分割位置が生体遮蔽壁3の鋼板の分割位置よりも高く設定されている。これは、原子炉格納容器2の分割上下端の溶接接合や溶接部検査の作業スペースの確保に貢献する。このような分割位置が上下にずれているもの同士を一つのモジュール17にして据付け位置に吊り込む場合には、吊り天秤19の固定した鋼製の取り付け治具23の上下方向の長さを調節することで対応可能となる。これにより、原子炉格納容器2と生体遮蔽壁3の併進工事が可能となり、原子炉建屋4の建設工程短縮が可能となる。   (7) The level of the division position in the height direction between the steel plate of the reactor containment vessel 2 and the steel plate of the biological shielding wall 3 and the division level of the steel plate of the reactor containment vessel 2 is the steel plate of the biological shielding wall 3. It is set higher than the division position. This contributes to securing a work space for welding and inspection of welded portions at the upper and lower ends of the division of the containment vessel 2. In the case where such divided parts are vertically shifted as one module 17 and suspended at the installation position, the vertical length of the steel mounting jig 23 to which the suspension balance 19 is fixed is adjusted. This will be possible. Thereby, the parallel construction of the reactor containment vessel 2 and the biological shielding wall 3 becomes possible, and the construction process of the reactor building 4 can be shortened.

本発明の実施例による原子炉建屋4の縦断面図である。It is a longitudinal cross-sectional view of the reactor building 4 by the Example of this invention. 本発明の実施例による建設用のモジュールの斜視図である。It is a perspective view of the module for construction by the example of the present invention. 本発明の実施例によるサンドクッション近傍の縦断面図である。It is a longitudinal cross-sectional view of the sand cushion vicinity by the Example of this invention. 本発明の実施例による原子炉格納容器と生体遮蔽壁の間のギャップ部の自然循環方式の冷却機構の縦断面図である。It is a longitudinal cross-sectional view of the cooling mechanism of the natural circulation system of the gap part between the reactor containment vessel and the biological shielding wall by the Example of this invention. 本発明の実施例による原子炉格納容器と生体遮蔽壁の間のギャップ部の強制循環方式の冷却機構の縦断面図である。It is a longitudinal cross-sectional view of the cooling mechanism of the forced circulation system of the gap part between the reactor containment vessel and the biological shielding wall by the Example of this invention. 本発明の実施例による原子炉格納容器と生体遮蔽壁の間のギャップ部の他の強制循環方式の冷却機構の縦断面図である。It is a longitudinal cross-sectional view of the cooling mechanism of the other forced circulation system of the gap part between the reactor containment vessel and the biological shielding wall by the Example of this invention. 本発明の実施例による原子炉格納容器下部と生体遮蔽壁下部のモジュール領域と、原子炉格納容器上段との領域をそれぞれ破線で囲って示した原子炉建屋の縦断面図である。It is the longitudinal cross-sectional view of the reactor building which showed the area | region of the reactor containment vessel lower part and the biological shielding wall lower part by the Example of this invention, and the area | region of the reactor containment vessel upper stage each enclosed with the broken line. 本発明の実施例による吊り天秤との一体化されたモジュールの斜視図である。FIG. 4 is a perspective view of a module integrated with a suspension balance according to an embodiment of the present invention. 本発明の実施例による原子炉建屋の建設時における原子炉格納容器及び生体遮蔽壁の据付け位置への搬入手順の一例を示す解説図である。It is explanatory drawing which shows an example of the carrying-in procedure to the installation position of the reactor containment vessel and the biological shielding wall at the time of construction of the reactor building by the Example of this invention.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…原子炉格納容器、3…生体遮蔽壁、4…原子炉建屋、5a…上部連通孔、5b…下部連通孔、6…ギャップ、7…空調機、8…圧力抑制室、9…サンドクッション、10…非常用ガス処理系(SGTS)システム、11…ブロア、12…フィルタ、13…連絡ライン、14a…内側鋼板、14b…外側鋼板、15…マット、16…ペネトレーション、17…モジュール、18…原子炉格納容器上段、19…吊り天秤、20…ワイヤーロープ、21…トップスラブ、22…γ線遮蔽壁、23…取り付け治具。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor containment vessel, 3 ... Living body shielding wall, 4 ... Reactor building, 5a ... Upper communication hole, 5b ... Lower communication hole, 6 ... Gap, 7 ... Air conditioner, 8 ... Pressure Suppression chamber, 9 ... Sand cushion, 10 ... Emergency gas treatment system (SGTS) system, 11 ... Blower, 12 ... Filter, 13 ... Communication line, 14a ... Inner steel plate, 14b ... Outer steel plate, 15 ... Mat, 16 ... Penetration , 17 ... Module, 18 ... Reactor containment upper stage, 19 ... Suspension balance, 20 ... Wire rope, 21 ... Top slab, 22 ... γ-ray shielding wall, 23 ... Mounting jig.

Claims (7)

鋼板製の原子炉格納容器と、前記原子炉格納容器を囲う鋼板コンクリート製の生体遮蔽壁と、前記原子炉格納容器の円筒形状部の外周囲と前記生体遮蔽壁との間に形成された
50mm〜300mmの幅のギャップを有する原子炉建屋。
A steel plate containment vessel, a biological shield wall made of steel plate concrete surrounding the reactor containment vessel, and a 50 mm formed between the outer periphery of the cylindrical portion of the reactor containment vessel and the biological shield wall Reactor building with a gap of ~ 300mm width.
請求項1において、前記原子炉格納容器と前記生体遮蔽壁との間にサンドクッションが設置され、前記原子炉格納容器の径方向での前記サンドクッションの幅が前記ギャップの幅よりも広い原子炉建屋。   2. The nuclear reactor according to claim 1, wherein a sand cushion is installed between the nuclear reactor containment vessel and the biological shielding wall, and the width of the sand cushion in the radial direction of the nuclear reactor containment vessel is wider than the width of the gap. Building. 請求項1において、前記生体遮蔽壁に前記ギャップと前記生体遮蔽壁の外側に配置された前記原子炉建屋の空間に連通する穴を上下に分散して備えている原子炉建屋。   The reactor building according to claim 1, wherein the biological shielding wall is provided with holes vertically communicating with the gap and a space of the nuclear reactor building disposed outside the biological shielding wall. 原子炉格納容器を構成する円筒状の第1の鋼板と、鋼板コンクリート製の生体遮蔽壁を構成する内側円筒状と外側円筒状の多重円筒状の第2の鋼板とを、第1の鋼板の外周囲に50mm〜300mmのギャップをつけて第2の鋼板が位置するように配置したモジュールを構成し、前記モジュールを前記原子炉格納容器と前記生体遮蔽壁の建設位置に吊り入れて据付け、前記モジュールよりも上方の原子炉格納容器及び生体遮蔽壁の部分の建設及び前記内側と外側との第2の鋼板の間にコンクリートを注入する原子炉建屋の建設方法。   The cylindrical first steel plate constituting the reactor containment vessel, and the inner cylindrical shape and the outer cylindrical multi-cylindrical second steel plate constituting the biological shielding wall made of steel plate concrete are made of the first steel plate. A module is arranged so that the second steel plate is positioned with a gap of 50 mm to 300 mm on the outer periphery, and the module is suspended and installed at the construction position of the reactor containment vessel and the biological shielding wall, The construction method of the reactor containment vessel and the part of the biological shielding wall above the module and the construction method of the reactor building in which concrete is injected between the inner and outer second steel plates. 請求項4において、前記第2の鋼板に配管またはケーブルの貫通部の構成を組み込んで前記モジュールを構成し、前記モジュールを建設位置に吊り入れて据付ける原子炉建屋の建設方法。   5. The method of constructing a reactor building according to claim 4, wherein the module is configured by incorporating a pipe or cable penetration portion into the second steel plate, and the module is suspended and installed at a construction position. 請求項4または請求項5において、前記第1の鋼板の上端を前記第2の鋼板の上端よりも高い位置にして前記モジュールを構成し、前記モジュールを前記原子炉格納容器と前記生体遮蔽壁の建設位置に一括して吊り入れて据付け、その後に前記第1の鋼板の上端にそれより上方の前記原子炉格納容器の鋼板を溶接接続する原子炉建屋の建設方法。   6. The module according to claim 4, wherein the module is configured such that an upper end of the first steel plate is higher than an upper end of the second steel plate, and the module is formed between the reactor containment vessel and the biological shielding wall. A method of constructing a reactor building in which the steel plate of the reactor containment vessel above the first steel plate is welded and connected to the upper end of the first steel plate after being suspended in a construction position. 請求項3から請求項6までのいずれか一項において、前記モジュールを据付け後、前記原子炉格納容器内の構造物及び機器設備を据付け、その後に前記モジュールよりも上方の原子炉格納容器及び生体遮蔽壁の部分をリング状の構造物にして前記モジュールの上方に据付ける原子炉建屋の建設方法。
7. The reactor containment vessel and living body above the module according to claim 3, wherein the module and the equipment in the reactor containment vessel are installed after the module is installed. A method of constructing a reactor building in which a shielding wall portion is a ring-shaped structure and is installed above the module.
JP2003381918A 2003-11-12 2003-11-12 Reactor building and method for constructing it Pending JP2005147723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381918A JP2005147723A (en) 2003-11-12 2003-11-12 Reactor building and method for constructing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381918A JP2005147723A (en) 2003-11-12 2003-11-12 Reactor building and method for constructing it

Publications (1)

Publication Number Publication Date
JP2005147723A true JP2005147723A (en) 2005-06-09

Family

ID=34691118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381918A Pending JP2005147723A (en) 2003-11-12 2003-11-12 Reactor building and method for constructing it

Country Status (1)

Country Link
JP (1) JP2005147723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297854A (en) * 2006-05-01 2007-11-15 Toshiba Corp Building structure
JP2012127935A (en) * 2010-12-10 2012-07-05 Westinghouse Electric Co Llc Nuclear reactor cavity arrangements for ice capacitor type plants
CN112530608A (en) * 2020-11-26 2021-03-19 中广核研究院有限公司 Near-stack shielding device for small stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297854A (en) * 2006-05-01 2007-11-15 Toshiba Corp Building structure
JP2012127935A (en) * 2010-12-10 2012-07-05 Westinghouse Electric Co Llc Nuclear reactor cavity arrangements for ice capacitor type plants
CN112530608A (en) * 2020-11-26 2021-03-19 中广核研究院有限公司 Near-stack shielding device for small stack
CN112530608B (en) * 2020-11-26 2024-03-01 中广核研究院有限公司 Near stack shielding device for small stacks

Similar Documents

Publication Publication Date Title
US20090159550A1 (en) System and method for the ventilated storage of high level radioactive waste in a clustered arrangement
US20160276046A1 (en) Reactor module support structure
US7684535B2 (en) Reactor containment vessel
JP4177987B2 (en) Reactor vessel handling
JP2005147723A (en) Reactor building and method for constructing it
JP4276808B2 (en) Equipment for carrying out nuclear power plant equipment
JP5232022B2 (en) Reactor building and its construction method
JPH11337675A (en) Reactor-containment vessel and its building method
JP3462911B2 (en) Reactor building
JPH0862368A (en) Carrying method at replacement of reactor pressure vessel and reactor internal structure, and reactor building
JP4264646B2 (en) Reactor containment vessel, reactor containment facility having the reactor containment vessel, and methods of construction thereof
JP4352071B2 (en) Construction method of reactor containment vessel
US6688057B2 (en) Structure of liner and primary containment vessel using its structure
JP6462501B2 (en) Drain sump protection structure and containment vessel
US20230082771A1 (en) Method of retrofitting a spent nuclear fuel storage system
JP6729209B2 (en) Shield port installation method and shield port
JP3658510B2 (en) Primary containment vessel
JP3601999B2 (en) Construction method of reactor containment vessel and its diaphragm floor
JP2945707B2 (en) Installation method of pedestal supporting reactor pressure vessel
JP2014174013A (en) Method of constructing dry wells and method of building reactor containment vessels
JP6712866B2 (en) Fuel pit reinforcement method and reinforcement structure
JPH09166684A (en) Structure of pool in reactor building
JP3309538B2 (en) Construction method of reactor containment diaphragm floor
JPH08179076A (en) Reactor container
JPS63284493A (en) Frame for supporting reactor pressure vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630