JP2005147550A - Heat pump with adsorption type cooling device - Google Patents

Heat pump with adsorption type cooling device Download PDF

Info

Publication number
JP2005147550A
JP2005147550A JP2003386679A JP2003386679A JP2005147550A JP 2005147550 A JP2005147550 A JP 2005147550A JP 2003386679 A JP2003386679 A JP 2003386679A JP 2003386679 A JP2003386679 A JP 2003386679A JP 2005147550 A JP2005147550 A JP 2005147550A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
evaporator
heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003386679A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Hidesato Yamamoto
英里 山本
Takahiko Takewaki
隆彦 武脇
Masanori Yamazaki
正典 山崎
Nobu Watanabe
展 渡邊
Kenji Watanabe
健次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Chemical Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2003386679A priority Critical patent/JP2005147550A/en
Publication of JP2005147550A publication Critical patent/JP2005147550A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump allowing further improvement of a COP (coefficient of performance). <P>SOLUTION: In this heat pump, a main body has a booster 10 boosting a refrigerant, a condenser 11 condensing the refrigerant boosted by the booster by heat exchange with a heated fluid such as outside air, and an evaporator evaporating the refrigerant condensed in the condenser by heat exchange with a cooled fluid such as indoor air. An adsorption type cooling device A further cooling the refrigerant condensed in the condenser 11 by an adsorbate with heat of the refrigerant boosted by the booster 10 as a regenerative heat source of the adsorbing material is attached. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸着式冷却装置を備えたヒートポンプに関するものであり、詳しくは、吸着式冷却装置により冷媒の熱を有効利用し、COPを一層向上させることが出来るヒートポンプに関するものである。   The present invention relates to a heat pump including an adsorption cooling device, and more particularly to a heat pump that can effectively use the heat of a refrigerant by the adsorption cooling device to further improve COP.

周知の通り、ヒートポンプは、液体が気化するときには周囲の熱を奪い、逆に気体が凝縮して液化するときには熱を放出すると言う性質を利用し、冷却や加熱を行う装置である。ヒートポンプにおいては、一般的には冷媒の昇圧に電動昇圧機が用いられるが、ヒートポンプの性能は、成績係数(COP:Coefficient of performance)、すなわち、熱移動に要するエネルギー(昇圧機の動力エネルギー)に対する移動熱量で表され、省エネルギーの観点からは、COPのより高いヒートポンプが求められる。COPを高める最も簡便な方法は、凝縮器で冷媒の温度をより低下させることである。   As is well known, a heat pump is a device that cools and heats by utilizing the property that it takes away ambient heat when the liquid is vaporized, and conversely releases heat when the gas is condensed and liquefied. In the heat pump, an electric booster is generally used for boosting the refrigerant. However, the performance of the heat pump is based on a coefficient of performance (COP), that is, energy required for heat transfer (power energy of the booster). A heat pump with a higher COP is required from the viewpoint of energy saving, expressed in terms of the amount of heat transferred. The simplest way to increase COP is to lower the temperature of the refrigerant with a condenser.

凝縮器の冷却方法は乾式と湿式に大別される。湿式は、冷却効果が大きく、冷媒を外気温度(例えば35℃)より約5℃高い温度、すなわち、約40℃まで冷却でき、効果は優れているが、水を使用するため、 そのランニングコストの他、冷却塔の管理を含め、スケーリング防止などのメンテナンス費用が発生するなどの問題もある。一方、乾式は、メンテナンスも不要で簡便であるが、外気温度(例えば35℃)より約15℃高い温度、すなわち、約50℃までしか冷却できないと言う問題がある。河川近郊では、河川水を低温熱源としたヒートポンプも提案されているが、適応できる環境が必ずしも多いとは言えない。   The cooling method of the condenser is roughly classified into a dry type and a wet type. The wet type has a large cooling effect and can cool the refrigerant to a temperature about 5 ° C. higher than the outside air temperature (for example, 35 ° C.), that is, about 40 ° C., and the effect is excellent. There are also other problems such as maintenance costs such as scaling prevention, including cooling tower management. On the other hand, the dry method requires no maintenance and is simple, but has a problem that it can be cooled only to a temperature about 15 ° C. higher than the outside air temperature (for example, 35 ° C.), that is, about 50 ° C. In the vicinity of rivers, heat pumps using river water as a low-temperature heat source have been proposed, but it cannot be said that there are many environments that can be adapted.

COPを高めることを企図したヒートポンプとしては、昇圧機で昇圧された冷媒の熱を利用してデシカント冷却空調装置を動かすことにより、ヒートポンプの凝縮器へ供給される空気を冷却し、かつ、室内の空気を除湿する様になされたヒートポンプが提案されている。斯かるヒートポンプにおいて、COPを向上させる観点からすると、昇圧された冷媒の熱を利用すると言う思想は画期的である。しかしながら、昇圧した冷媒により熱交換器を介して空気を加熱し、その加熱された空気でデシカントロータの吸着材を再生するため、再生温度が低くなり、吸着材の除湿能力が十分得られず、結果として、デシカントロータが大きくなると言う問題が予見される。
特開2001―91080号公報
As a heat pump intended to increase COP, the air supplied to the condenser of the heat pump is cooled by moving the desiccant cooling air conditioner using the heat of the refrigerant boosted by the booster, and the indoor Heat pumps designed to dehumidify air have been proposed. In such a heat pump, from the viewpoint of improving COP, the idea of using the heat of the pressurized refrigerant is epoch-making. However, the air is heated via the heat exchanger with the increased pressure refrigerant, and the adsorbent of the desiccant rotor is regenerated with the heated air, so the regeneration temperature is lowered, and the dehumidifying capacity of the adsorbent cannot be sufficiently obtained. As a result, the problem of increasing the desiccant rotor is foreseen.
Japanese Patent Laid-Open No. 2001-91080

上記の様に、湿式の凝縮器を備えたヒートポンプはスケーリング防止などメンテナンスが煩雑であり、また、簡便な乾式の凝縮器を備えたヒートポンプは冷却効果が小さく、そして、デシカント冷却空調装置を備えたヒートポンプは装置が大きくなる等、それぞれに問題を抱えており、何れも総合的にCOPが優れているヒートポンプとは言えなかった。本発明の目的は、COPを一層向上させることが出来る新たな構造のヒートポンプを提供することにある。   As described above, heat pumps equipped with wet condensers are complicated to maintain such as scaling prevention, and heat pumps equipped with simple dry condensers have a small cooling effect and are equipped with a desiccant cooling air conditioner. Each heat pump has problems such as an increase in the size of the apparatus, and none of the heat pumps can be said to be excellent heat pumps. An object of the present invention is to provide a heat pump having a new structure capable of further improving COP.

本発明は、昇圧機、凝縮器および蒸発器から成るヒートポンプに吸着式冷却装置を組み合わせ、圧縮機で高温になった冷媒自身が持っている熱を吸着式冷却装置の吸着材の再生に使用し、蒸発器に供給される冷媒を吸着式冷却装置の吸着質によって直接冷却することにより凝縮温度よりも更に低くし、ヒートポンプのCOPを向上させる様にした。    The present invention combines an adsorption type cooling device with a heat pump comprising a booster, a condenser and an evaporator, and uses the heat of the refrigerant itself that has become high temperature in the compressor to regenerate the adsorbent of the adsorption type cooling device. The refrigerant supplied to the evaporator is directly cooled by the adsorbate of the adsorption cooling device so as to be lower than the condensation temperature, thereby improving the COP of the heat pump.

すなわち、本発明の要旨は、冷媒を昇圧する昇圧機と、当該昇圧機で昇圧された冷媒を被加熱流体との熱交換により凝縮させる凝縮器と、当該凝縮器で凝縮された冷媒を被冷却流体との熱交換により蒸発させる蒸発器とを本体に備えたヒートポンプであって、前記昇圧機で昇圧された冷媒の熱を吸着材の再生熱源とし、前記凝縮器で凝縮された冷媒を吸着質によって更に冷却する吸着式冷却装置が付設されていることを特徴とするヒートポンプに存する。   That is, the gist of the present invention is that a booster that boosts the refrigerant, a condenser that condenses the refrigerant boosted by the booster by heat exchange with the fluid to be heated, and the refrigerant condensed by the condenser is cooled. A heat pump having an evaporator for evaporating by heat exchange with a fluid, wherein the heat of the refrigerant boosted by the booster is used as a regeneration heat source for the adsorbent, and the refrigerant condensed by the condenser is used as an adsorbate In the heat pump, an adsorption type cooling device for further cooling is attached.

本発明のヒートポンプによれば、吸着式冷却装置の蒸発器で更に冷却された低温の冷媒が本体側の蒸発器に入る様になされており、蒸発器での被冷却流体に対する冷却効率が高く、循環させる冷媒量が削減できるため、昇圧機に加わる負荷を低減でき、COPを一層向上させることが出来る。   According to the heat pump of the present invention, the low-temperature refrigerant further cooled by the evaporator of the adsorption cooling device is made to enter the evaporator on the main body side, and the cooling efficiency with respect to the fluid to be cooled in the evaporator is high, Since the amount of refrigerant to be circulated can be reduced, the load applied to the booster can be reduced and the COP can be further improved.

本発明の実施形態を図面に基づいて説明する。図1は、本発明に係るヒートポンプの概念を示すフロー図である。図2は、本発明に係るヒートポンプの構成例を示すフロー図である。また、図3及び図4は、本発明のヒートポンプにおける運転中の冷媒の流れと吸着質の流れを示すフロー図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing the concept of the heat pump according to the present invention. FIG. 2 is a flowchart showing a configuration example of the heat pump according to the present invention. 3 and 4 are flowcharts showing the refrigerant flow and adsorbate flow during operation in the heat pump of the present invention.

本発明のヒートポンプは、昇圧機、凝縮器および蒸発器から成る基本的なヒートポンプの構造に吸着式冷却装置(吸着式ヒートポンプ)を組み合わせたものである。本発明のヒートポンプの本体の基本的な構造は、従来のものと同様であり、図1に示す様に、冷媒を昇圧する昇圧機(10)と、当該昇圧機で昇圧された冷媒の凝縮熱で被加熱流体を加熱する、すなわち、昇圧機で昇圧された冷媒を外気などの被加熱流体との熱交換により凝縮させる凝縮器(11)と、当該凝縮器で凝縮された冷媒の蒸発潜熱で被冷却流体を冷却する、すなわち、凝縮器で凝縮された冷媒を室内空気などの被冷却流体との熱交換により蒸発させる蒸発器(13)とから主に構成される。図中の符号(12)は、蒸発器(13)の上流側に付設された減圧弁(膨張弁)を示し、符号(31)、(32)、(33)、(34)及び(35)は、それぞれ冷媒流路を示す。   The heat pump of the present invention is a combination of a basic heat pump structure including a booster, a condenser and an evaporator with an adsorption cooling device (adsorption heat pump). The basic structure of the main body of the heat pump of the present invention is the same as that of the conventional one. As shown in FIG. 1, the booster (10) for boosting the refrigerant and the heat of condensation of the refrigerant boosted by the booster. The condenser (11) that heats the fluid to be heated by, that is, condenses the refrigerant pressurized by the booster by heat exchange with the fluid to be heated such as outside air, and the latent heat of vaporization of the refrigerant condensed by the condenser It mainly comprises an evaporator (13) that cools the fluid to be cooled, that is, evaporates the refrigerant condensed in the condenser by heat exchange with the fluid to be cooled such as room air. Reference numeral (12) in the figure denotes a pressure reducing valve (expansion valve) provided on the upstream side of the evaporator (13). Reference numerals (31), (32), (33), (34) and (35) Indicates refrigerant flow paths.

本発明の特徴は、図1に示す様に、昇圧機(10)で昇圧された冷媒の熱を吸着材の再生熱源とし、凝縮器(11)で凝縮された冷媒を吸着質によって更に冷却する吸着式冷却装置(A)が付設されている点にある。吸着式冷却装置(A)は、吸着質を吸着脱着する吸着器(40)と、当該吸着器で脱着された吸着質蒸気を凝縮液化する凝縮器(42)と、当該凝縮器で液化された吸着質を蒸発させてその蒸発潜熱で被冷却物(蒸発器(13)に供給される冷媒)を冷却する蒸発器(43)とから主として構成される。そして、本発明のヒートポンプにおいて、吸着式冷却装置(A)の上記の吸着器(40)は、昇圧機(10)と凝縮器(11)の間に配置されることにより、昇圧機(10)で昇圧された冷媒により吸着材を再生可能になされ、上記の蒸発器(43)は、凝縮器(11)と蒸発器(13)の間に配置されることにより、蒸発器(13)に供給される冷媒を更に冷却可能になされている。   As shown in FIG. 1, the feature of the present invention is that the heat of the refrigerant boosted by the booster (10) is used as a regeneration heat source for the adsorbent, and the refrigerant condensed by the condenser (11) is further cooled by the adsorbate. An adsorption cooling device (A) is attached. The adsorptive cooling device (A) includes an adsorber (40) that adsorbs and desorbs adsorbate, a condenser (42) that condenses and liquefies adsorbate vapor desorbed by the adsorber, and is liquefied by the condenser. It mainly comprises an evaporator (43) that evaporates the adsorbate and cools an object to be cooled (refrigerant supplied to the evaporator (13)) with its latent heat of vaporization. And in the heat pump of this invention, said adsorption device (40) of adsorption type cooling device (A) is arrange | positioned between a pressure | voltage riser (10) and a condenser (11), and pressure | voltage riser (10) The adsorbent can be regenerated by the refrigerant whose pressure has been increased by the above, and the evaporator (43) is disposed between the condenser (11) and the evaporator (13) to supply the evaporator (13). The refrigerant to be cooled can be further cooled.

なお、本発明において、ヒートポンプ本体を循環する冷媒、吸着式冷却装置(A)を循環する冷媒としては、クロロフルオロカーボン(CFC−11、CFC−12、CFC−113、CFC−114、CFC−115)、ハイドロクロロフルオロカーボン(HCFC−22、HCFC−123、HCFC−124、HCFC−141b、HCFC−142b、HCFC−225ca、HCFC−225cb)、ハイドロフルオロカーボン(HFC−23、HFC−32、HFC−125、HFC−134a、HFC−143a、HFC−152a、HFC−227ea、HFC−236fa、HFC−245ca)、フルオロカーボン(FC−14、FC−116、FC−218、FC−C318)、臭化メチル、アンモニア、二酸化炭素、水などが挙げられる。また。吸着式冷却装置(A)の吸着質としては、水、エタノール、アセトン等が挙げられる。   In the present invention, chlorofluorocarbons (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115) are used as the refrigerant circulating through the heat pump body and the refrigerant circulating through the adsorption cooling device (A). , Hydrochlorofluorocarbon (HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb), hydrofluorocarbon (HFC-23, HFC-32, HFC-125, HFC) -134a, HFC-143a, HFC-152a, HFC-227ea, HFC-236fa, HFC-245ca), fluorocarbon (FC-14, FC-116, FC-218, FC-C318), methyl bromide, ammonia, dioxide carbon Water and the like. Also. Examples of the adsorbate of the adsorption cooling device (A) include water, ethanol, and acetone.

以下、図2〜図4を参照し、本発明のヒートポンプのより詳細な構成を説明する。本発明のヒートポンプにおいては、図2に示す様に、昇圧機(10)の下流側の冷媒流路(31)に三方弁(21)が接続され、昇圧機(10)で昇圧された冷媒が三方弁(21)を介して吸着式冷却装置(A)に取り込まれる様になされている。吸着式冷却装置(A)においては、吸着器(40)が少なくとも2基設けられており、昇圧された冷媒が三方弁(21)の下流側の冷媒流路(61)及び(62)を通り、例えば二つの吸着器(40a)及び(40b)に流れ、吸着器(40a)及び(40b)においては、冷媒による加熱により吸着材を再生する様になされている。   Hereinafter, a more detailed configuration of the heat pump of the present invention will be described with reference to FIGS. In the heat pump of the present invention, as shown in FIG. 2, a three-way valve (21) is connected to the refrigerant flow path (31) on the downstream side of the booster (10), and the refrigerant pressurized by the booster (10) is It is adapted to be taken into the adsorption cooling device (A) via the three-way valve (21). In the adsorption cooling device (A), at least two adsorbers (40) are provided, and the pressurized refrigerant passes through the refrigerant flow paths (61) and (62) on the downstream side of the three-way valve (21). For example, it flows to two adsorbers (40a) and (40b), and in the adsorbers (40a) and (40b), the adsorbent is regenerated by heating with a refrigerant.

また、吸着器(40a)の冷媒出口には、三方弁(22)に至る冷媒流路(63)が接続され、吸着器(40b)の冷媒出口には、三方弁(22)に至る冷媒流路(64)が接続される。従って、吸着器(40a)及び(40b)で吸着材の再生熱源として使用された冷媒は、冷媒流路(63)及び(64)を通じ、三方弁(22)及びその下流側の冷媒流路(32)を介して凝縮器(11)に流れる様になされている。   The refrigerant outlet of the adsorber (40a) is connected to the refrigerant flow path (63) reaching the three-way valve (22), and the refrigerant outlet of the adsorber (40b) is connected to the refrigerant flow reaching the three-way valve (22). The path (64) is connected. Therefore, the refrigerant used as the regeneration heat source of the adsorbent in the adsorbers (40a) and (40b) passes through the refrigerant flow paths (63) and (64) and the refrigerant flow path ( 32) through the condenser (11).

凝縮器(11)においては、外気などの被加熱流体との熱交換により冷媒が冷却される様になされている。凝縮器(11)の下流側には、冷媒流路(33)を介して吸着式冷却装置(A)の蒸発器(43)が配置されており、凝縮器(11)で冷却された冷媒が冷媒流路(33)を介して吸着式冷却装置(A)の蒸発器(43)に流れ、蒸発器(43)内で蒸発する吸着質の蒸発潜熱により更に冷却される様になされている。   In the condenser (11), the refrigerant is cooled by heat exchange with a heated fluid such as outside air. The evaporator (43) of the adsorption cooling device (A) is disposed on the downstream side of the condenser (11) via the refrigerant flow path (33), and the refrigerant cooled by the condenser (11) The refrigerant flows into the evaporator (43) of the adsorption cooling device (A) through the refrigerant flow path (33) and is further cooled by the latent heat of vaporization of the adsorbate that evaporates in the evaporator (43).

吸着式冷却装置(A)の蒸発器(43)の下流側には、冷媒流路(34)、減圧弁(12)及び冷媒流路(35)を順次に介して蒸発器(13)が配置されており、蒸発器(43)で冷却された冷媒が冷媒流路(34)を通り、減圧弁(12)で減圧され、冷媒流路(35)を通じて蒸発器(13)に供給される様になされている。蒸発器(13)においては、冷媒の蒸発潜熱により室内空気などの被冷却流体を冷却する様になされている。蒸発器(13)の下流側には、上記の昇圧機(10)に至る冷媒流路(36)が接続されており、蒸発器(13)で蒸発した冷媒が冷媒流路(36)を通り、昇圧機(10)に戻る様になされている。   On the downstream side of the evaporator (43) of the adsorption cooling device (A), the evaporator (13) is arranged through the refrigerant channel (34), the pressure reducing valve (12) and the refrigerant channel (35) in this order. The refrigerant cooled by the evaporator (43) passes through the refrigerant flow path (34), is decompressed by the pressure reducing valve (12), and is supplied to the evaporator (13) through the refrigerant flow path (35). Has been made. In the evaporator (13), a fluid to be cooled such as room air is cooled by the latent heat of vaporization of the refrigerant. A refrigerant flow path (36) leading to the booster (10) is connected to the downstream side of the evaporator (13), and the refrigerant evaporated by the evaporator (13) passes through the refrigerant flow path (36). , And return to the booster (10).

すなわち、本発明のヒートポンプにおいては、昇圧機(10)、吸着式冷却装置(A)の吸着器(40)、凝縮器(11)、吸着式冷却装置(A)の蒸発器(43)、減圧弁(12)及び蒸発器(13)を冷媒が循環する一連のサイクルを繰り返す。従来のヒートポンプにおいては、冷媒が凝縮器で冷却されるだけなのに比べ、本発明のヒートポンプにおいては、吸着式冷却装置(A)の蒸発器(43)で更に冷媒が冷却されるため、昇圧機(10)に加わる負荷を低減でき、COPを一層向上させることが出来る。   That is, in the heat pump of the present invention, the booster (10), the adsorber (40) of the adsorption cooling device (A), the condenser (11), the evaporator (43) of the adsorption cooling device (A), the reduced pressure A series of cycles in which the refrigerant circulates through the valve (12) and the evaporator (13) is repeated. In the conventional heat pump, since the refrigerant is only cooled by the condenser, in the heat pump of the present invention, the refrigerant is further cooled by the evaporator (43) of the adsorption cooling device (A). 10) can be reduced, and COP can be further improved.

次に、吸着式冷却装置(A)の構成、および、当該吸着式冷却装置における加熱冷却用冷媒の流れならびに蒸発器(43)において冷媒を冷却する吸着質の流れについて説明する。吸着式冷却装置(A)においては、前述の通り、吸着器(40a)及び(40b)での吸着材の再生にヒートポンプ本体側の冷媒が使用されるが、吸着質を冷却するための冷媒としても、ヒートポンプ本体側の冷媒を使用することが出来る。   Next, the structure of the adsorption cooling device (A), the flow of the heating / cooling refrigerant in the adsorption cooling device, and the flow of the adsorbate for cooling the refrigerant in the evaporator (43) will be described. In the adsorption cooling device (A), as described above, the refrigerant on the heat pump main body side is used for regeneration of the adsorbent in the adsorbers (40a) and (40b), but as a refrigerant for cooling the adsorbate. Also, the refrigerant on the heat pump main body side can be used.

具体的には、吸着式冷却装置(A)においては、ポンプ(44)の下流側に冷却器(45)が配置されており、ヒートポンプ本体側の冷媒がポンプ(44)から冷却器(45)に供給され、冷却器(45)において外気などの被加熱流体との熱交換で冷却される様になされている。冷却器(45)の下流側には、吸着式冷却装置(A)の凝縮器(42)に至る冷媒流路(68)が接続されており、冷却器(45)で冷却された冷媒の一部が冷媒流路(68)を介して凝縮器(42)に流れる様になされている。そして、凝縮器(42)においては、冷媒との熱交換により吸着質を冷却凝縮させる様になされている。そして、凝縮器(42)の下流側には、ポンプ(44)へ至る冷媒流路(69)が接続されており、凝縮器(42)で昇温した冷媒が冷媒流路(69)を介してポンプ(44)に再び戻る様になされている。   Specifically, in the adsorption cooling device (A), a cooler (45) is disposed on the downstream side of the pump (44), and the refrigerant on the heat pump main body side is transferred from the pump (44) to the cooler (45). And cooled by heat exchange with a heated fluid such as outside air in a cooler (45). A refrigerant flow path (68) leading to the condenser (42) of the adsorption cooling device (A) is connected to the downstream side of the cooler (45), and one of the refrigerants cooled by the cooler (45) is connected. Part flows through the refrigerant flow path (68) to the condenser (42). In the condenser (42), the adsorbate is cooled and condensed by heat exchange with the refrigerant. And the refrigerant flow path (69) leading to the pump (44) is connected to the downstream side of the condenser (42), and the refrigerant whose temperature has been raised by the condenser (42) passes through the refrigerant flow path (69). Thus, the pump (44) is returned again.

また、上記の冷却器(45)の下流側には、三方弁(52)に至る冷媒流路(67)が接続され、三方弁(52)の下流側には、前述の吸着器(40a)の入口へ至る冷媒流路(80)と、前述の吸着器(40b)の入口へ至る冷媒流路(81)が接続され、また、吸着器(40a)の出口側には、ポンプ(44)の上流側の三方弁(51)へ至る冷媒流路(65)が接続され、吸着器(40b)の出口側には、前記の三方弁(51)へ至る冷媒流路(66)が接続される。   In addition, a refrigerant flow path (67) reaching the three-way valve (52) is connected to the downstream side of the cooler (45), and the adsorber (40a) is connected to the downstream side of the three-way valve (52). The refrigerant flow path (80) leading to the inlet of the adsorber and the refrigerant flow path (81) leading to the inlet of the adsorber (40b) are connected, and a pump (44) is connected to the outlet side of the adsorber (40a). The refrigerant flow path (65) leading to the upstream three-way valve (51) is connected, and the refrigerant flow path (66) leading to the three-way valve (51) is connected to the outlet side of the adsorber (40b). The

すなわち、冷却器(45)で冷却された冷媒の他の一部が冷媒流路(67)から三方弁(52)に流れ、三方弁(52)から冷媒流路(80)、吸着器(40a)、冷媒流路(65)及び三方弁(51)を介して再び冷却器(45)に循環するか、または、三方弁(52)から冷媒流路(81)、吸着器(40b)、冷媒流路(66)及び三方弁(51)を介して再び冷却器(45)に循環する様になされている。その場合、三方弁(52)の切り替えにより二つの経路の何れかに冷媒が流れ、一方の経路に冷媒が流れている間は他方の経路に冷媒が流れることはない。   That is, another part of the refrigerant cooled by the cooler (45) flows from the refrigerant flow path (67) to the three-way valve (52), from the three-way valve (52) to the refrigerant flow path (80), and the adsorber (40a). ), Circulates again to the cooler (45) via the refrigerant flow path (65) and the three-way valve (51), or from the three-way valve (52) to the refrigerant flow path (81), the adsorber (40b), the refrigerant It circulates again to the cooler (45) through the flow path (66) and the three-way valve (51). In that case, the refrigerant flows in one of the two paths by switching the three-way valve (52), and the refrigerant does not flow in the other path while the refrigerant flows in one path.

続いて、図3及び図4を参照し、運転中の冷媒の流れ(実線矢印)と吸着質の流れ(破線矢印)を更に具体的に説明する。図3に示す様に、本体流路から流入した冷媒は、三方弁(21)より冷媒流路(61)に流れ、吸着器(40a)を経て一部が冷媒流路(63)から三方弁(22)へと流れ、本体側の冷媒流路(32)へ戻る。一方、吸着式冷却装置(A)の冷却器(45)を流れた冷媒の一部は、三方弁(52)より冷媒流路(81)を経て、吸着器(40b)に流れ、吸着器(40b)を通過した冷媒の一部は、冷媒流路(66)を経てポンプ(44)の上流側の三方弁(51)へ流れる。   Subsequently, the refrigerant flow (solid arrow) and the adsorbate flow (broken arrow) during operation will be described more specifically with reference to FIGS. 3 and 4. As shown in FIG. 3, the refrigerant flowing in from the main body flow path flows from the three-way valve (21) to the refrigerant flow path (61), and partly passes from the refrigerant flow path (63) through the adsorber (40a). (22) and return to the refrigerant flow path (32) on the main body side. On the other hand, part of the refrigerant that has flowed through the cooler (45) of the adsorption cooling device (A) flows from the three-way valve (52) through the refrigerant flow path (81) to the adsorber (40b). Part of the refrigerant that has passed through 40b) flows to the three-way valve (51) on the upstream side of the pump (44) via the refrigerant flow path (66).

この際、吸着器(40a)は脱着過程にあり、吸着器(40a)の吸着材に吸着されていた吸着質は、蒸気の状態で吸着質流路(74)、三方弁(54)及び吸着質流路(76)を通り、凝縮器(42)に流れて当該凝縮器で冷却凝縮される。また、同時に、他方の吸着器(40b)は吸着過程にあり、蒸発器(43)において気化した吸着質は、蒸発器(43)から吸着質流路(71)、三方弁(53)及び吸着質流路(73)を通り、吸着器(40b)に流れ、吸着器(40b)の吸着材に吸着される。なお、凝縮器(42)で凝縮された吸着質は、液体の状態で吸着質流路(70)を通じて蒸発器(43)に再び供給される。   At this time, the adsorber (40a) is in the desorption process, and the adsorbate adsorbed on the adsorbent of the adsorber (40a) is in the form of vapor in the adsorbate flow path (74), the three-way valve (54) and the adsorbent. It passes through the quality channel (76), flows to the condenser (42), and is cooled and condensed by the condenser. At the same time, the other adsorber (40b) is in the adsorption process, and the adsorbate vaporized in the evaporator (43) is transferred from the evaporator (43) to the adsorbate flow path (71), the three-way valve (53), and the adsorbent. It passes through the mass flow path (73), flows to the adsorber (40b), and is adsorbed by the adsorbent of the adsorber (40b). The adsorbate condensed in the condenser (42) is supplied again to the evaporator (43) through the adsorbate flow path (70) in a liquid state.

吸着式冷却装置(A)において、吸着器(40a)と吸着器(40b)は、ある一定時間ごとに切り替えて運転される。上記の場合は、吸着器(40a)が再生工程、吸着器(40b)が吸着工程であったが、切り替えた後の冷媒の流れ(実線矢印)及び吸着質の流れ(破線矢印)は図4に示す通りである。すなわち、吸着器(40a)と吸着器(40b)の運転を切り替えた場合、図4に示す様に、冷媒は、三方弁(21)から冷媒流路(62)を経て吸着器(40b)に流れ、吸着器(40b)を通過した冷媒は、冷媒流路(64)を経て三方弁(22)へ流れ、本体側の冷媒流路(32)へ戻る。一方、吸着式冷却装置(A)の冷却器(45)を流れた冷媒の一部は、三方弁(52)より冷媒流路(80)を経て、吸着器(40a)に流れ、吸着器(40a)を通過した冷媒の一部は、冷媒流路(65)を経てポンプ(44)の上流側の三方弁(51)へ流れる。   In the adsorption cooling device (A), the adsorber (40a) and the adsorber (40b) are operated while being switched at certain intervals. In the above case, the adsorber (40a) was the regeneration process and the adsorber (40b) was the adsorption process, but the refrigerant flow (solid arrow) and adsorbate flow (broken arrow) after switching are shown in FIG. As shown in That is, when the operation of the adsorber (40a) and the adsorber (40b) is switched, as shown in FIG. 4, the refrigerant passes from the three-way valve (21) to the adsorber (40b) via the refrigerant flow path (62). The refrigerant that has flowed and passed through the adsorber (40b) flows through the refrigerant flow path (64) to the three-way valve (22) and returns to the refrigerant flow path (32) on the main body side. On the other hand, a part of the refrigerant that has flowed through the cooler (45) of the adsorption cooling device (A) flows from the three-way valve (52) through the refrigerant flow path (80) to the adsorber (40a), and the adsorber (40a) Part of the refrigerant that has passed through 40a) flows through the refrigerant flow path (65) to the three-way valve (51) on the upstream side of the pump (44).

この際、吸着器(40b)は脱着過程にあり、吸着器(40b)の吸着材に吸着されていた吸着質は、蒸気の状態で吸着質流路(75)、三方弁(54)及び吸着質流路(76)を通り、凝縮器(42)に流れて当該凝縮器で冷却凝縮される。また、同時に、一方の吸着器(40a)は吸着過程にあり、蒸発器(43)において気化した吸着質は、蒸発器(43)から吸着質流路(71)、三方弁(53)及び吸着質流路(72)を通り、吸着器(40a)に流れ、吸着器(40a)の吸着材に吸着される。なお、凝縮器(42)で凝縮された吸着質は、液体の状態で吸着質流路(70)を通じて蒸発器(43)に再び供給される。   At this time, the adsorber (40b) is in the desorption process, and the adsorbate adsorbed by the adsorbent of the adsorber (40b) is in the state of vapor in the adsorbate flow path (75), the three-way valve (54), It passes through the quality channel (76), flows to the condenser (42), and is cooled and condensed by the condenser. At the same time, one adsorber (40a) is in the adsorption process, and the adsorbate vaporized in the evaporator (43) is adsorbed from the evaporator (43) to the adsorbate flow path (71), the three-way valve (53), and the adsorbent. It passes through the mass channel (72), flows to the adsorber (40a), and is adsorbed by the adsorbent of the adsorber (40a). The adsorbate condensed in the condenser (42) is supplied again to the evaporator (43) through the adsorbate flow path (70) in a liquid state.

すなわち、吸着式冷却装置(A)において、吸着質は、吸着器(40a)又は(40b)の何れかの吸着操作により、蒸発器(43)において蒸発して吸着器(40a)又は(40b)に吸着され、吸着器(40a)又は(40b)の何れかの脱着操作により、吸着器(40a)又は(40b)から脱着されて凝縮器(42)に流れ、凝縮器(42)で冷却され且つ凝縮されて蒸発器(43)に戻る。そして、蒸発器(43)において蒸発する際、その蒸発潜熱により、冷媒流路(33)から冷媒流路(34)を流れる本体側の冷媒の温度を更に低下させる。   That is, in the adsorption cooling device (A), the adsorbate is evaporated in the evaporator (43) by the adsorption operation of either the adsorber (40a) or (40b), and the adsorber (40a) or (40b). Is desorbed from the adsorber (40a) or (40b) by the desorption operation of the adsorber (40a) or (40b), flows to the condenser (42), and is cooled by the condenser (42). And it is condensed and returns to the evaporator (43). And when evaporating in an evaporator (43), the temperature of the main body side refrigerant | coolant which flows through a refrigerant | coolant flow path (34) from a refrigerant | coolant flow path (33) is further reduced with the latent heat of vaporization.

次に、図4を参照し、装置全体における冷媒の温度、ならびに、吸着式冷却装置(A)を駆動するのに適した吸着材の条件について説明する。冷媒は、圧縮機(10)で圧縮されて温度が90度程度まで上昇する。冷媒は、三方弁(21)、冷媒流路(62)を通って吸着器(40b)に入り、吸着材を加熱するが、吸着器(40b)から流出するときの冷媒の温度は、流量にもよるが、発明者等の研究によれば60〜70℃である。再生される吸着材の温度は60〜70℃になる。   Next, with reference to FIG. 4, the temperature of the refrigerant in the entire apparatus, and the conditions of the adsorbent suitable for driving the adsorption cooling apparatus (A) will be described. The refrigerant is compressed by the compressor (10) and the temperature rises to about 90 degrees. The refrigerant enters the adsorber (40b) through the three-way valve (21) and the refrigerant flow path (62) and heats the adsorbent, but the temperature of the refrigerant when it flows out of the adsorber (40b) is the flow rate. However, according to the inventors' research, the temperature is 60 to 70 ° C. The temperature of the regenerated adsorbent is 60 to 70 ° C.

吸着材を加熱した後の冷媒は、冷媒流路(64)、三方弁(22)を通り、凝縮器(11)に流れて当該凝縮器で例えば大気により冷却され、凝縮器(11)の出口付近では43℃まで冷却される。一般的に、空冷システムでは外気温より10℃程度高い温度までしか冷却されないため、冷房が必要となる夏場の外気温を33℃と想定すると、上記の出口付近では43℃となる。   The refrigerant after heating the adsorbent passes through the refrigerant flow path (64) and the three-way valve (22), flows to the condenser (11), is cooled by the condenser, for example, by the atmosphere, and is discharged from the condenser (11). In the vicinity, it is cooled to 43 ° C. In general, the air cooling system cools only to a temperature about 10 ° C. higher than the outside air temperature. Therefore, assuming that the outside air temperature in summer when the cooling is required is 33 ° C., the temperature is 43 ° C. near the outlet.

冷媒は、冷媒流路(33)を通って吸着式冷却装置(A)の蒸発器(43)で更に冷却される。蒸発器(43)内の熱交換器の性能にもよるが、蒸発器(43)の入り口温度より15℃程度低い温度まで冷却されると、蒸発器(43)の出口温度では28℃となる。吸着式冷却装置(A)を具備しない従来のヒートポンプ(圧縮式冷凍機)の場合、蒸発器に43℃の冷媒が入るのに比べ、吸着式冷却装置(A)を具備した本発明のヒートポンプでは、15℃低い28℃の冷媒が蒸発器(13)に入るため、室内空気などの被冷却流体に対する冷却効率が高く、循環させる冷媒量が削減できるため、圧縮機(10)の動力が削減でき、COPを大きく向上させることが出来る。   The refrigerant is further cooled by the evaporator (43) of the adsorption cooling device (A) through the refrigerant flow path (33). Depending on the performance of the heat exchanger in the evaporator (43), when cooled to a temperature about 15 ° C. lower than the inlet temperature of the evaporator (43), the outlet temperature of the evaporator (43) becomes 28 ° C. . In the case of a conventional heat pump (compression refrigeration machine) that does not have an adsorption cooling device (A), the heat pump of the present invention that has an adsorption cooling device (A) has a 43 ° C refrigerant in the evaporator. Since the refrigerant of 28 ° C., which is 15 ° C. lower, enters the evaporator (13), the cooling efficiency of the fluid to be cooled such as room air is high, and the amount of refrigerant to be circulated can be reduced, so that the power of the compressor (10) can be reduced. , COP can be greatly improved.

また、吸着式冷却装置(A)における冷媒の温度について説明すると、冷却器(45)で冷媒が38℃に冷却されると、冷媒の一部は、凝縮器(42)に流れ、吸着質が凝縮するときに発生する凝縮熱で43℃程度まで上昇する。そして、高温の冷媒は、冷媒流路(69)及びポンプ(44)を通して冷却器(45)に戻り、再び38℃に冷却される。また、冷却器(45)で冷却された冷媒の他の一部は、三方弁(52)、冷媒流路(80)を通り、吸着器(40a)に入って吸着材を冷却する。このときも、吸着材が吸着質を吸着する際の吸着熱で温度が上昇するが、吸着器(40a)の出口では43℃程度まで上昇し、冷却器(45)に戻る。なお、上記の様な温度条件は、ある温度条件と熱交換器の組み合わせを想定した温度であり、本発明は、この条件のみに限定されるものではない。   Further, the temperature of the refrigerant in the adsorption cooling device (A) will be described. When the refrigerant is cooled to 38 ° C. by the cooler (45), a part of the refrigerant flows into the condenser (42), and the adsorbate is It rises to about 43 ° C. due to the heat of condensation generated during condensation. Then, the high-temperature refrigerant returns to the cooler (45) through the refrigerant flow path (69) and the pump (44), and is cooled again to 38 ° C. Further, another part of the refrigerant cooled by the cooler (45) passes through the three-way valve (52) and the refrigerant flow path (80) and enters the adsorber (40a) to cool the adsorbent. At this time, the temperature rises due to the heat of adsorption when the adsorbent adsorbs the adsorbate, but rises to about 43 ° C. at the outlet of the adsorber (40a) and returns to the cooler (45). In addition, the above temperature conditions are the temperature which assumed the combination of a certain temperature condition and a heat exchanger, and this invention is not limited only to this condition.

上記の冷媒の温度に基づき、吸着材に求められる吸着特性を説明すると以下の通りである。吸着工程において、例えば吸着器(40a)の吸着材は38〜43℃に冷却され、蒸発器(43)から供給される28℃程度の水蒸気などの吸着質を吸着する。吸着工程における吸着材の相対湿度φ2は、以下の式(1)から求められ、吸着材温度(T2)を43℃、水だめ温度(蒸発器(43)内の水の温度)(T0)を28℃とすると、相対湿度φ2は43.7%となる。従って、吸着式冷却装置(A)に使用する吸着材としては、通常、43℃の水蒸気吸着等温線において相対水蒸気圧が43.7%の所で十分に吸着する吸着材が使用される。好ましくは、40℃の水蒸気吸着等温線において相対水蒸気圧50.0%で十分吸着する吸着材が使用され、更に好ましくは45.0%で十分吸着する吸着材、より一層好ましくは43%で十分吸着する吸着材が使用される。   The adsorption characteristics required for the adsorbent based on the refrigerant temperature will be described as follows. In the adsorption step, for example, the adsorbent of the adsorber (40a) is cooled to 38 to 43 ° C. and adsorbs adsorbate such as water vapor of about 28 ° C. supplied from the evaporator (43). The relative humidity φ2 of the adsorbent in the adsorption step is obtained from the following equation (1), and the adsorbent temperature (T2) is 43 ° C. and the sump temperature (water temperature in the evaporator (43)) (T0). When it is 28 ° C., the relative humidity φ2 is 43.7%. Therefore, as the adsorbent used in the adsorption-type cooling device (A), an adsorbent that sufficiently adsorbs at a place where the relative water vapor pressure is 43.7% in the water vapor adsorption isotherm at 43 ° C. is usually used. Preferably, an adsorbent that sufficiently adsorbs at a relative water vapor pressure of 50.0% in a water vapor adsorption isotherm at 40 ° C. is used, more preferably an adsorbent that sufficiently adsorbs at 45.0%, and even more preferably 43% is sufficient. Adsorbents that adsorb are used.

Figure 2005147550
Figure 2005147550

また、脱着工程において、例えば吸着器(40b)の吸着材は60〜70℃に加熱され、吸着質は凝縮器(42)において38〜43℃で凝縮される。脱着工程の相対湿度φ1も、上記のφ2と同様に、以下の式2から求められる。脱着工程においては、吸着材が60℃に加熱され、凝縮器(42)の温度が43℃の場合、相対水蒸気圧は43.4%となる。従って、吸着材としては、通常、相対水蒸気圧43.4%であまり吸着しない吸着材が使用される。好ましくは、60℃の水蒸気脱着等温線において相対蒸気圧28.0%であまり吸着しない吸着材が使用され、更に好ましくは35.0%であまり吸着しない吸着材、より一層好ましくは43%であまり吸着しない吸着材が使用される。   In the desorption process, for example, the adsorbent of the adsorber (40b) is heated to 60 to 70 ° C, and the adsorbate is condensed at 38 to 43 ° C in the condenser (42). The relative humidity φ1 in the desorption process can also be obtained from the following equation 2 similarly to the above φ2. In the desorption process, when the adsorbent is heated to 60 ° C. and the temperature of the condenser (42) is 43 ° C., the relative water vapor pressure is 43.4%. Therefore, as the adsorbent, an adsorbent that does not adsorb so much at a relative water vapor pressure of 43.4% is usually used. Preferably, an adsorbent that does not adsorb much at a relative vapor pressure of 28.0% is used in a 60 ° C. water vapor desorption isotherm, more preferably an adsorbent that does not adsorb so much at 35.0%, even more preferably less at 43%. Adsorbents that do not adsorb are used.

Figure 2005147550
Figure 2005147550

相対湿度φ2で吸着する吸着量Q2と相対湿度φ1で吸着する吸着量Q1の差△Qは大きいほど好ましい。吸着量の差△Qは0.10g/g以上が好ましく、0.15g/g以上が更に好ましく、0.20g/g以上がより一層好ましい。吸着量の差△Qは大きいことが望まれるが、△Qが大きくなると吸着材にしめる細孔容積が多くなり、嵩密度が低下する。従って、吸着量の差△Qは1.00g/g以下が好ましい。   The difference ΔQ between the adsorption amount Q2 adsorbed at the relative humidity φ2 and the adsorption amount Q1 adsorbed at the relative humidity φ1 is preferably as large as possible. The difference ΔQ in the amount of adsorption is preferably 0.10 g / g or more, more preferably 0.15 g / g or more, and still more preferably 0.20 g / g or more. Although it is desirable that the difference ΔQ in the amount of adsorption is large, if ΔQ is large, the volume of pores to be made into the adsorbent increases, and the bulk density decreases. Therefore, the difference ΔQ in adsorption amount is preferably 1.00 g / g or less.

本発明においては、上記の特性を示すならば種々の吸着材を使用することができる。吸着材としては、例えば、シリカゲル、活性炭、メソポーラスシリカ、ゼオライト、活性アルミナ等が利用でき、これらのうち、メソポーラスシリカ、活性炭が好ましい。因に、幾つかの吸着材に関し、上記の相対湿度φ2及び相対湿度φ1での各吸着量ならびに吸着量の差△Qについて確認した結果を以下の表に示す。表中、試料1〜5が好ましい吸着材であり、試料6及び7が不適当な吸着材である。なお、表中の吸着材「SBA−1」は、代表的なメソポーラスシリカである。「カイノール」は、群栄化学社の商品名であり、フェノール樹脂を原料とした活性炭素繊維から成る吸着材である。また、硝酸処理とは、活性炭素繊維の表面を硝酸で酸化処理したものを示す。   In the present invention, various adsorbents can be used as long as they exhibit the above characteristics. As the adsorbent, for example, silica gel, activated carbon, mesoporous silica, zeolite, activated alumina and the like can be used, and among these, mesoporous silica and activated carbon are preferable. For some adsorbents, the following table shows the results of confirming each adsorption amount at the relative humidity φ2 and relative humidity φ1 and the difference ΔQ between the adsorption amounts. In the table, samples 1 to 5 are preferable adsorbents, and samples 6 and 7 are inappropriate adsorbents. In addition, the adsorbent “SBA-1” in the table is typical mesoporous silica. “Kinol” is a trade name of Gunei Chemical Co., Ltd., and is an adsorbent made of activated carbon fiber made from phenol resin. Nitric acid treatment refers to the surface of activated carbon fiber oxidized with nitric acid.

Figure 2005147550
Figure 2005147550

本発明に係るヒートポンプの概念を示すフロー図である。It is a flowchart which shows the concept of the heat pump which concerns on this invention. 本発明に係るヒートポンプの構成例を示すフロー図である。It is a flowchart which shows the structural example of the heat pump which concerns on this invention. 本発明のヒートポンプにおける運転中の冷媒の流れと吸着質の流れを示すフロー図である。It is a flowchart which shows the flow of the refrigerant | coolant in operation | movement in the heat pump of this invention, and the flow of adsorbate. 本発明のヒートポンプにおける運転中の冷媒の流れと吸着質の流れを示すフロー図である。It is a flowchart which shows the flow of the refrigerant | coolant in operation | movement in the heat pump of this invention, and the flow of adsorbate.

符号の説明Explanation of symbols

10:昇圧機
11:凝縮器
12:減圧弁(膨張弁)
13:蒸発器
40:吸着器
42:凝縮器
43:蒸発器
44:ポンプ
45:冷却器
10: Booster 11: Condenser 12: Pressure reducing valve (expansion valve)
13: Evaporator 40: Adsorber 42: Condenser 43: Evaporator 44: Pump 45: Cooler

Claims (2)

冷媒を昇圧する昇圧機と、当該昇圧機で昇圧された冷媒を被加熱流体との熱交換により凝縮させる凝縮器と、当該凝縮器で凝縮された冷媒を被冷却流体との熱交換により蒸発させる蒸発器とを本体に備えたヒートポンプであって、前記昇圧機で昇圧された冷媒の熱を吸着材の再生熱源とし、前記凝縮器で凝縮された冷媒を吸着質によって更に冷却する吸着式冷却装置が付設されていることを特徴とするヒートポンプ。   A booster that boosts the refrigerant, a condenser that condenses the refrigerant boosted by the booster by heat exchange with the fluid to be heated, and evaporates the refrigerant condensed by the condenser by heat exchange with the fluid to be cooled A heat pump having a main body with an evaporator, wherein the heat of the refrigerant boosted by the booster is used as a regeneration heat source for the adsorbent, and the refrigerant condensed by the condenser is further cooled by adsorbate Is a heat pump. 吸着式冷却装置は、吸着質を吸着脱着する吸着器と、当該吸着器で脱着された吸着質蒸気を液化する凝縮器と、当該凝縮器で液化された吸着質を蒸発させる蒸発器とを備え、かつ、前記吸着式冷却装置の吸着器は、本体の昇圧機と凝縮器の間に配置されることにより、前記本体の昇圧機で昇圧された冷媒により吸着材を再生可能になされ、前記吸着式冷却装置の蒸発器は、前記本体の凝縮器と蒸発器の間に配置されることにより、前記本体の蒸発器に供給される冷媒を冷却可能になされている請求項1に記載のヒートポンプ。   The adsorption cooling device includes an adsorber that adsorbs and desorbs the adsorbate, a condenser that liquefies the adsorbate vapor desorbed by the adsorber, and an evaporator that evaporates the adsorbate liquefied by the condenser. And, the adsorber of the adsorption type cooling device is disposed between the booster and the condenser of the main body, so that the adsorbent can be regenerated by the refrigerant boosted by the booster of the main body, and the adsorption 2. The heat pump according to claim 1, wherein the evaporator of the type cooling device is arranged between the condenser and the evaporator of the main body so that the refrigerant supplied to the evaporator of the main body can be cooled.
JP2003386679A 2003-11-17 2003-11-17 Heat pump with adsorption type cooling device Withdrawn JP2005147550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386679A JP2005147550A (en) 2003-11-17 2003-11-17 Heat pump with adsorption type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386679A JP2005147550A (en) 2003-11-17 2003-11-17 Heat pump with adsorption type cooling device

Publications (1)

Publication Number Publication Date
JP2005147550A true JP2005147550A (en) 2005-06-09

Family

ID=34694305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386679A Withdrawn JP2005147550A (en) 2003-11-17 2003-11-17 Heat pump with adsorption type cooling device

Country Status (1)

Country Link
JP (1) JP2005147550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775236A1 (en) 2013-03-07 2014-09-10 Indesit Company Beyaz Esya San.Ve Tic A.S. Adsorption cycle system for household type refrigerators
US9328931B2 (en) 2011-02-11 2016-05-03 Esg Pool Ventilation Ltd Heating and/or cooling system for maintaining an environment at a desired temperature
JP2019504276A (en) * 2015-12-18 2019-02-14 ブライ・エアー・アジア・ピーヴイティー・リミテッド Apparatus having a hybrid vapor compression-adsorption cycle and method for implementing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328931B2 (en) 2011-02-11 2016-05-03 Esg Pool Ventilation Ltd Heating and/or cooling system for maintaining an environment at a desired temperature
EP2775236A1 (en) 2013-03-07 2014-09-10 Indesit Company Beyaz Esya San.Ve Tic A.S. Adsorption cycle system for household type refrigerators
JP2019504276A (en) * 2015-12-18 2019-02-14 ブライ・エアー・アジア・ピーヴイティー・リミテッド Apparatus having a hybrid vapor compression-adsorption cycle and method for implementing the same

Similar Documents

Publication Publication Date Title
JP4767047B2 (en) Air conditioner
US5791157A (en) Heat pump device and desiccant assisted air conditioning system
JP2994303B2 (en) Air conditioning system and operating method thereof
JP2010131583A (en) Dehumidifying apparatus of low power consumption
JP2001235251A (en) Adsorbing type freezer machine
JP2005164165A (en) Air conditioning system
JP2005201624A (en) Dehumidifying method and dehumidifier
JPH11316061A (en) Air conditioning system and its operation method
JP4541965B2 (en) Air conditioner
JP4172088B2 (en) Refrigeration equipment
KR101933555B1 (en) Absorption hybrid deciccant colling system
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
JP2009154862A (en) Air conditioning system of electric vehicle
JP2002162130A (en) Air conditioner
JPH11132502A (en) Dehumidifying air conditioner system
JP2005147550A (en) Heat pump with adsorption type cooling device
JP4066485B2 (en) Refrigeration equipment
JP2002250573A (en) Air conditioner
JP4659775B2 (en) Air conditioner and control method of air conditioner
JP2006046776A5 (en)
JP2010121920A (en) Air conditioning system equipped with heat pump unit
JP2008201199A (en) Air conditioner for vehicle
JP4151095B2 (en) Refrigeration equipment
JP2004360931A (en) Refrigerating cycle
JP2002048428A (en) Adsorption type refrigerating machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206