JP2005146812A - High-strength concrete reinforcement and method for constructing concrete structure using the same - Google Patents
High-strength concrete reinforcement and method for constructing concrete structure using the same Download PDFInfo
- Publication number
- JP2005146812A JP2005146812A JP2003417275A JP2003417275A JP2005146812A JP 2005146812 A JP2005146812 A JP 2005146812A JP 2003417275 A JP2003417275 A JP 2003417275A JP 2003417275 A JP2003417275 A JP 2003417275A JP 2005146812 A JP2005146812 A JP 2005146812A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- strength
- reinforced
- base material
- strength concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Working Measures On Existing Buildindgs (AREA)
Abstract
Description
この発明は、強度および耐久性に富むコンクリート補強材と該補強材を用いたコンクリート構造物の施工法に関する。 The present invention relates to a concrete reinforcing material having high strength and durability, and a method for constructing a concrete structure using the reinforcing material.
従来より、建築物等のコンクリート構造物は、その内部に鉄筋を張り巡らす鉄筋コンクリート方式が主流であり、本発明にて示すように、鉄筋を用いずに形成したコンクリート構造体の外面に高強度部材を固着する方式は現在のところ見当たらない。 Conventionally, a concrete structure such as a building is mainly a reinforced concrete system in which a reinforcing bar is stretched inside. At present, there is no method to fix the.
コンクリート構造物は以前より一般住宅、ビル、公用建築物などに多用されているが、その耐久性・耐候性が問題視されている。これはその構成上、酸性雨による中性化、使用材料の品質低下、アルカリ骨材反応による亀裂の拡大等により、鉄筋の急激な酸化を招き、著しい強度低下を引き起こし、耐久性に難があることを意味している。すなわち、長年月の使用により、コンクリート構造物のひび割れ現象が発生する。
鉄筋コンクリート構造物は、その荷重により内部応力が発生し、鉄筋もこの力を受けるが鉄筋とコンクリートのヤング率すなわち伸び弾性率に差異があるため、鉄筋の伸びにコンクリートが追随しない。そのため、鉄筋の近傍からひび割れが発生し、時間の経過と共にこのひび割れはコンクリート構造物の表面に達することとなる。
するとこのひび割れ個所から酸性の雨が侵入し、本来はアルカリ性であるコンクリートを中性化し、イオン化現象により鉄筋の酸化すなわち錆の発生が始まる。
鉄筋が錆びるとその体積膨張をうながし、ひび割れをさらに助長し、大きくなったひび割れからさらに雨水が侵入することとなり、以上のような悪循環にてコンクリート構造物の劣化と破壊が進むことになる。
本発明は、以上のような従来からの鉄筋コンクリート構造物に関わる課題を解決するために発明されたもので、鉄筋を用いずとも十分な強度と耐久性を発生させるための新規な高強度コンクリート補強材と該補強材を用いたコンクリート構造物の施工法を提供することを目的として開発されたものである。Concrete structures have been used extensively in ordinary houses, buildings, public buildings, etc., but their durability and weather resistance are regarded as problems. Due to its structure, it is neutralized by acid rain, the quality of used materials is reduced, cracks are expanded due to alkali-aggregate reaction, etc., leading to rapid oxidation of the reinforcing bars, resulting in a significant decrease in strength and difficulty in durability. It means that. That is, the cracking phenomenon of the concrete structure occurs by using for many years.
In a reinforced concrete structure, internal stress is generated by the load, and the reinforcing bar also receives this force. However, since the Young's modulus, that is, the elastic modulus of elasticity of the reinforcing bar and the concrete is different, the concrete does not follow the elongation of the reinforcing bar. For this reason, a crack is generated from the vicinity of the reinforcing bar, and this crack reaches the surface of the concrete structure with the passage of time.
Then, acid rain invades from the cracked part, neutralizes the concrete that is originally alkaline, and the ionization phenomenon starts the oxidation of the reinforcing bars, that is, the generation of rust.
When the reinforcing bar rusts, the volume expansion is promoted, the cracks are further promoted, and rainwater enters from the enlarged cracks, and the deterioration and destruction of the concrete structure proceed in the above vicious cycle.
The present invention was invented in order to solve the problems related to the conventional reinforced concrete structures as described above, and is a novel high-strength concrete reinforcement for generating sufficient strength and durability without using reinforcing bars. It was developed for the purpose of providing a method for constructing a concrete structure using a reinforcing material.
課題を解決する手段として本発明は、剛性板材、高強度繊維集合体、補強される母材と親和性の強い材料を互いに固着してその主要部を構成した。
すなわち本発明は、剛性板材に高強度繊維集合体を固着し、該繊維集合体に補強される母材と親和性の強い材料を均一に固着したことを特徴とする高強度コンクリート補強材であり、また、地上に高強度コンクリート補強材を、補強される母材と親和性の強い材料固着面を向かい合わせて対向立設し、該補強材間に生コンクリートを注入し固化させることにより、高強度コンクリート補強材と固化コンクリートの一体化を可能とする高強度コンクリート補強材を用いたコンクリート構造物施工法である。As a means for solving the problems, the present invention comprises a rigid plate member, a high-strength fiber assembly, and a material having strong affinity with a base material to be reinforced to constitute a main part thereof.
That is, the present invention is a high-strength concrete reinforcing material characterized in that a high-strength fiber assembly is fixed to a rigid plate material, and a material having a strong affinity for the base material reinforced to the fiber assembly is uniformly fixed. Also, a high-strength concrete reinforcing material is placed on the ground with the material fixing surface having a strong affinity with the base material to be reinforced facing each other, and raw concrete is injected between the reinforcing materials to solidify it. It is a concrete structure construction method using high-strength concrete reinforcement that enables the integration of high-strength concrete reinforcement and solidified concrete.
本発明は下記の効果を有する。
1.コンクリート内部に鉄筋を有さないため、既述のような経年変化によるコンクリートのひび割れを生じない。
2.耐候性に富む高強度板材にてコンクリート表面を覆うため、コンクリートの劣化を防止することができる。
3.使用する板材によっては、コンクリート構造物を絶縁構造体とすることができ、電力に関わる個所においては損失電流の防止効果が期待できる。
4.鉄筋を用いないので、塩水によるコンクリートの練り混ぜができ、寒冷地における冬季施工の実施が可能となる。The present invention has the following effects.
1. Since there are no reinforcing bars inside the concrete, cracks of the concrete due to aging as described above do not occur.
2. Since the concrete surface is covered with a high-strength plate material rich in weather resistance, deterioration of the concrete can be prevented.
3. Depending on the plate material used, the concrete structure can be an insulating structure, and the effect of preventing loss current can be expected at places related to electric power.
4). Since no reinforcing bars are used, concrete can be mixed with salt water, enabling winter construction in cold regions.
以下、本発明の実施形態について説明する。
図において、1は剛性板材としてのFRP(ガラス繊維強化プラスチック)による外板、2は高強度繊維集合体としての炭素繊維シート、3は補強される母材と親和性の強い材料としての砂、4は打設コンクリートである。5はFRPと炭素繊維シートを固着している接着剤、6は炭素繊維シートと砂を固着している接着剤である。なお炭素繊維シートは、比強度・比弾性率が高く鉄と同等の強度を有しながらも軽量である炭素繊維を用いてストランドおよび編み込みを含んだシート状のものまたはメッシュ状のものである。
本発明の製法は以下の工程により行われる。
1.炭素繊維シートに接着剤を塗布し、接着剤の硬化反応終了時まで常温化にて放置する。
炭素繊維シートは、炭素繊維すなわち有機高分子繊維の段階的な熱処理によって、あるいは紡糸したものを熱処理して得られる炭素化した繊維を用いてシート状に構成したものであり、そのままでは剛性を有しない。この工程による接着剤の塗布と放置による硬化により剛性板体となる。接着剤は炭素繊維シートに十分染みこむ程度に塗布することが肝要である。
2.接着剤硬化面にさらに接着剤を塗布し、接着剤が硬化する前に、粒径選別した砂を均等に撒いて敷きつめ、塗布した接着剤の硬化終了まで放置する。Hereinafter, embodiments of the present invention will be described.
In the figure, 1 is an outer plate made of FRP (glass fiber reinforced plastic) as a rigid plate material, 2 is a carbon fiber sheet as a high-strength fiber assembly, 3 is sand as a material having a strong affinity with the base material to be reinforced, 4 is cast concrete.
The production method of the present invention is performed by the following steps.
1. An adhesive is applied to the carbon fiber sheet and left at room temperature until the end of the curing reaction of the adhesive.
The carbon fiber sheet is formed into a sheet shape by stepwise heat treatment of carbon fibers, that is, organic polymer fibers, or using carbonized fibers obtained by heat-treating a spun fiber and has rigidity as it is. do not do. A rigid plate body is obtained by applying the adhesive in this process and curing it by standing. It is important that the adhesive is applied to such an extent that the adhesive penetrates sufficiently into the carbon fiber sheet.
2. Further, an adhesive is applied to the adhesive-cured surface, and before the adhesive is cured, the sand whose particle size has been selected is spread evenly, and left until the applied adhesive is completely cured.
この工程に使用する砂は、前記のように粒径選別後のものである。
実験によれば、図5に示すように砂の粒径によりコンクリートに対する付着力に差異がある。図に示したように粒径0.85mm〜2mmまでの範囲ではコンクリートへの付着は良好であるが、2.5mm以上では付着に劣り、また図には示していないが0.85mm以下でも付着力に劣る結果が出ている。粒径が所定範囲以下では粒状よりも粉体状になり、図3で示す凹凸が小さくなり、コンクリートの付着が悪くなる。また、粒径が所定範囲以上では単位面積当たりの砂個数が減り、砂1個に働く力が大きくなるため同様に付着が悪くなる。
従って、実験結果から推測すれば、有効粒径範囲は0.84mm〜2.4mmであり、好ましくは0.85mm〜2mmの範囲と考えられるが、この範囲に限定するものではない。単位面積(平方センチメートル)当たりの砂付着個数は粒径が大きくなるにつれて減少し、適合範囲は1平方センチメートル当たり95〜20個であるが、この付着個数もこれに限定するものではない。なお、使用する接着剤強度が上がれば単位面積当たりの粒数を減らすことができ、0.84〜10mmの範囲での使用も十分考えられる。
以上の工程にて、炭素繊維シート面に砂が一面に固着した板状体が形成される。The sand used in this step is after particle size selection as described above.
According to the experiment, as shown in FIG. 5, there is a difference in the adhesion force to the concrete depending on the particle size of the sand. As shown in the figure, the adhesion to concrete is good in the range of particle size of 0.85 mm to 2 mm, but the adhesion is inferior at 2.5 mm or more, and it is not shown in the figure, but it is attached even at 0.85 mm or less. The result is inferior in wearing power. When the particle size is less than or equal to a predetermined range, the powder is more powdery than granular, and the unevenness shown in FIG. In addition, when the particle size is equal to or larger than a predetermined range, the number of sand per unit area is reduced, and the force acting on one sand is increased, so that adhesion is similarly deteriorated.
Therefore, if estimated from the experimental results, the effective particle size range is 0.84 mm to 2.4 mm, and preferably 0.85 mm to 2 mm. However, the range is not limited to this range. The number of sand deposits per unit area (square centimeter) decreases as the particle size increases, and the conforming range is 95 to 20 per square centimeter, but the number of deposits is not limited to this. In addition, if the adhesive strength to be used increases, the number of grains per unit area can be reduced, and use in the range of 0.84 to 10 mm is sufficiently conceivable.
Through the above steps, a plate-like body in which sand is fixed to one surface is formed on the carbon fiber sheet surface.
3.FRP板材に接着剤を塗布し、硬化前に前記処理後の炭素繊維シートを、砂固着面の反対側の面をFRP板材面に押しあて、放置硬化させる。
この工程により、FRP、炭素繊維シート、砂の3者が一体化した板状体が形成され、高強度コンクリート補強材が完成する。
本例の使用時は、一般の型枠の代わりとして本品を用いてコンクリート打設を行う。
すなわち、任意に選択した間隔にて適宜支持部材を用いて本品を地上に対向立設する。
このとき、砂固着面が対向する位置とする。
次ぎに、生コンクリートを本品板体間に注入し、所定時間の放置にてコンクリート固化を行う。生コンクリートは砂粒間に入り込んで固化するため、本品とコンクリートとは一体化する。
一般的なコンクリート打設は、型枠を設けてこの型枠間に生コンクリートを注入し、固化後に型枠を除去する作業が必要であるが、本発明によるコンクリート補強材はその剛性ゆえ型枠としての機能を有し、施工後においては補強主体となることから脱枠を要せず、1作業工程を減ずることができる。なお、図4は本発明の他例を示すものである。
前例が単なるシート状の炭素繊維を用いたのに対し、本例は一定間隔の切り欠き部分を有する略格子状のシートを併用したもので、炭素繊維シートの上に本シートを接着し、さらに本シート上に粒径選別した砂を接着剤にて固着したものであり、効果は前例と同様である。3. An adhesive is applied to the FRP plate material, and the cured carbon fiber sheet is cured by allowing the surface opposite to the sand fixing surface to be pressed against the FRP plate material surface before curing.
By this process, a plate-like body in which the three members of FRP, carbon fiber sheet, and sand are integrated is formed, and a high-strength concrete reinforcing material is completed.
When this example is used, concrete is cast using this product instead of a general formwork.
In other words, the product is erected on the ground with an appropriate support member at an arbitrarily selected interval.
At this time, it is set as the position where the sand fixing surface faces.
Next, ready-mixed concrete is poured between the plates and solidified by leaving for a predetermined time. Because ready-mixed concrete penetrates between sand grains and solidifies, this product and concrete are integrated.
In general concrete placement, it is necessary to provide a formwork, inject raw concrete between the formwork, and to remove the formwork after solidification. However, the concrete reinforcing material according to the present invention has a formwork because of its rigidity. Since it becomes a reinforcement main body after the construction, it is not necessary to remove the frame, and one work process can be reduced. FIG. 4 shows another example of the present invention.
Whereas the previous example used only a sheet-like carbon fiber, this example uses a substantially lattice-like sheet having notched portions at regular intervals, and this sheet is bonded onto the carbon fiber sheet. The sand whose particle size is selected is fixed on the sheet with an adhesive, and the effect is the same as in the previous example.
本発明の概要については既述したが、本発明はコンクリートの補強主体を金属から非金属に変換したところにその特徴がある。この変換は金属の酸化によるコンクリート強度低下の抑止を目的としてなされたものである。
鉄筋を用いずにコンクリート強度を保つためには他の何らかの手段が必要となるが、コンクリート構造体の外面に高強度部材を固着させることを発想し、実現化したのである。単にコンクリート構造物に接着剤を介してシートを貼着するだけでは、シートとコンクリート面との結合力が不十分であり、つまりコンクリートに対するシートの付着力が弱く、実験の結果その剥離現象を生じさせるに至った。
これを解消するため、シートにさらに粒状物を固着させて微細な凹凸面を形成し、この凹凸面にコンクリートを親和させることにより、満足できる結果となることを見いだし、また粒状物の粒径が重要なファクターであることを知るに至ったのである。
しかしながら、シートのみでは型枠代用性に劣るため、シートにさらにFRPなどの剛性材料を固着させることで、当初の目的を達成できることを認知し、本発明が創案されたのである。以上のことから、本発明は従来法と異なる画期的な内容であり、種々の利点を有するものとなった。なお、剛性板材としてはFRP以外に木材や他の合成樹脂など他の剛性素材を用いることができ、高強度部材は炭素繊維シート以外を用いてもよい。補強される母材と親和性の強い材料としては砂以外に、ガラスの小粒状物など他の物質も利用可能である。既述のFRPは平板以外に、曲面を有する任意形状の板体としての利用も可能である。また、FRP外面に着色や彫刻などを施すことで、都市景観の改善にも寄与することができる。
以上のごとく、本発明により耐久性および耐候性に富み、劣化の防止効果も有するコンクリート構造物を得るためのコンクリート補強材とこの補強材を用いたコンクリート構造物の施工法を得ることができる。Although the outline of the present invention has already been described, the present invention is characterized in that the reinforcing body of concrete is converted from metal to nonmetal. This conversion was made for the purpose of suppressing the deterioration of the concrete strength due to metal oxidation.
In order to maintain the strength of the concrete without using the reinforcing bars, some other means is required, but the idea was realized by fixing a high-strength member to the outer surface of the concrete structure. Simply adhering a sheet to a concrete structure with an adhesive does not provide sufficient bonding force between the sheet and the concrete surface, that is, the adhesion of the sheet to the concrete is weak, resulting in a peeling phenomenon as a result of experiments. I came to let you.
In order to solve this problem, we found that satisfactory results were obtained by forming a fine uneven surface by adhering the granular material to the sheet, and making concrete compatible with this uneven surface. It came to know that it was an important factor.
However, since the sheet alone is inferior to the formwork substitution, the present invention has been invented by recognizing that the original purpose can be achieved by further fixing a rigid material such as FRP to the sheet. From the above, the present invention has an epoch-making content different from the conventional method and has various advantages. In addition to the FRP, other rigid materials such as wood and other synthetic resins can be used as the rigid plate material, and the high-strength member may be other than the carbon fiber sheet. In addition to sand, other materials such as small glass particles can be used as the material having a strong affinity for the base material to be reinforced. The aforementioned FRP can be used as a plate having an arbitrary shape having a curved surface in addition to a flat plate. In addition, by coloring or engraving the outer surface of the FRP, it can contribute to the improvement of the cityscape.
As described above, according to the present invention, it is possible to obtain a concrete reinforcing material for obtaining a concrete structure that is rich in durability and weather resistance and also has an effect of preventing deterioration, and a method for constructing a concrete structure using the reinforcing material.
1 FRP外板
2 炭素繊維シート
3 砂
4 打設コンクリート
5 接着剤
6 接着剤
7 格子状シート
8 切り欠き部
9 接着剤DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003417275A JP4151011B2 (en) | 2003-11-11 | 2003-11-11 | High-strength concrete reinforcement and method for producing the reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003417275A JP4151011B2 (en) | 2003-11-11 | 2003-11-11 | High-strength concrete reinforcement and method for producing the reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005146812A true JP2005146812A (en) | 2005-06-09 |
JP4151011B2 JP4151011B2 (en) | 2008-09-17 |
Family
ID=34697031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003417275A Expired - Fee Related JP4151011B2 (en) | 2003-11-11 | 2003-11-11 | High-strength concrete reinforcement and method for producing the reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4151011B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014101674A (en) * | 2012-11-20 | 2014-06-05 | Taisei Corp | Shear reinforcement method |
JP2014101676A (en) * | 2012-11-20 | 2014-06-05 | Taisei Corp | Reinforced concrete structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7078483B2 (en) | 2018-07-25 | 2022-05-31 | 大成建設株式会社 | Reinforcement panels, reinforcement methods for concrete structures and manufacturing methods for reinforcement panels |
-
2003
- 2003-11-11 JP JP2003417275A patent/JP4151011B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014101674A (en) * | 2012-11-20 | 2014-06-05 | Taisei Corp | Shear reinforcement method |
JP2014101676A (en) * | 2012-11-20 | 2014-06-05 | Taisei Corp | Reinforced concrete structure |
Also Published As
Publication number | Publication date |
---|---|
JP4151011B2 (en) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1462325A (en) | Prestressed composite truss grider and construction method of the same | |
KR101021854B1 (en) | Half precast composite slab and this production technique | |
JP2023551857A (en) | Lightweight concrete deck with excellent strength and quality and its manufacturing method | |
CN111021599A (en) | Shear wall structure and construction method thereof | |
JPS60148956A (en) | Apparatus for plate shaped structural member | |
JP4151011B2 (en) | High-strength concrete reinforcement and method for producing the reinforcement | |
CN107311571A (en) | The preparation method of nanometer enhancing TRC composites | |
JP2011094476A (en) | Method for manufacturing reinforced concrete member | |
JP6249267B2 (en) | Repair method for existing concrete structures | |
CZ188092A3 (en) | Connector spacer for concrete reinforcement and process for producing thereof | |
US8297026B1 (en) | Construction system and method having integrated plank and framing members | |
CN105672599A (en) | Decoration plate | |
KR101293407B1 (en) | A large size artificial rock manufacturing method | |
JP2010065393A (en) | Method for placing concrete while dispersing crack caused by temperature stress | |
JPH10121730A (en) | Reduction construction method for crack due to temperature of concrete | |
CN109930726A (en) | A kind of concreting process applied in hollow floor construction | |
CN205577464U (en) | Be used for reinforced (rfd) fibrage of concrete flexural component net refinforced cement base composite board | |
CN221001936U (en) | Concrete shaping plate convenient to equipment | |
JP2628959B2 (en) | Manufacturing method of lightweight concrete board | |
JPH10249844A (en) | Fiber-reinforced polymer cement composition and its forming method | |
CN221878527U (en) | Prefabricated building board of pre-buried reinforcing bar | |
CN207392473U (en) | A kind of insulation board assembly for having the function of to reinforce and building | |
JPH0455549A (en) | Concrete form | |
JP3892953B2 (en) | Lightweight formwork material | |
JPH07276327A (en) | Permanently embedded form for high durability concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A977 | Report on retrieval |
Effective date: 20071019 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A521 | Written amendment |
Effective date: 20080108 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080619 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |