JP2005146343A - Measuring method for concentration of additive, and plating method - Google Patents

Measuring method for concentration of additive, and plating method Download PDF

Info

Publication number
JP2005146343A
JP2005146343A JP2003384845A JP2003384845A JP2005146343A JP 2005146343 A JP2005146343 A JP 2005146343A JP 2003384845 A JP2003384845 A JP 2003384845A JP 2003384845 A JP2003384845 A JP 2003384845A JP 2005146343 A JP2005146343 A JP 2005146343A
Authority
JP
Japan
Prior art keywords
plating
concentration
additive
value
measured value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003384845A
Other languages
Japanese (ja)
Inventor
Shinji Tachibana
眞司 立花
Toshihiro Kawase
智弘 川瀬
Naoyuki Omura
直之 大村
Toshihisa Isono
敏久 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Uyemura and Co Ltd
Original Assignee
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Uyemura and Co Ltd filed Critical C Uyemura and Co Ltd
Priority to JP2003384845A priority Critical patent/JP2005146343A/en
Publication of JP2005146343A publication Critical patent/JP2005146343A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily measure the concentration of a nitrogen-containing additive in a plating liquid with high precision without previously measuring the concentration of the other additive, particularly, to perform the measurement and/control in the concentration of a nitrogen-containing additive in a plating liquid so as to impart satisfactory filling properties in damascene and via filling. <P>SOLUTION: Regarding the method, in a plating liquid comprising a sulfur based additive and/or a high polymer based additive and a nitrogen-containing additive, the concentration of the nitrogen-containing additive is measured by cyclic voltammetry without measuring the concentration of the sulfur based additive and/or high polymer additive. In this case, regarding the plating standard liquid containing the additive in a known concentration, a rotary electrode is rotated at different two rotating speeds to obtain measured values, a calibration curve is prepared by the difference in the characteristics values and/or ratios in the measured values and the concentration of the additive in the plating standard liquid to obtain a characteristic value regarding the plating liquid in which the concentration of the additive is unknown, and the concentration of the additive in the plating liquid is decided from the characteristic value of the plating liquid with the calibration curve as the standard. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、めっき液中の添加剤濃度の測定方法、特に複数の添加剤を含有するめっき液中の窒素含有化合物系添加剤の濃度をサイクリックボルタンメトリーにより測定する方法に関する。また、ビアフィリング等基材表面上の凹部にめっきを充填して金属配線を形成する際等に好適なめっき方法に関する。   The present invention relates to a method for measuring the concentration of an additive in a plating solution, and more particularly to a method for measuring the concentration of a nitrogen-containing compound-based additive in a plating solution containing a plurality of additives by cyclic voltammetry. The present invention also relates to a plating method suitable for forming a metal wiring by filling a plating on a concave portion on a substrate surface such as via filling.

半導体製造時のダマシン、ビアフィリング等に用いられる硫酸銅めっき液中には種々の添加剤が含まれ、これらのめっき液においては、添加剤の濃度管理が重要視されている。このようなめっき液中に含まれる添加剤は大きく3種に分類されている。即ち、高分子化合物からなるサプレッサー(ポリマー、ウェッター又はキャリアーとも呼ばれる)、イオウ系化合物からなるブライトナー(アクセレレーター、アディティブとも呼ばれる)、そして窒素含有化合物(特に、溶液中でカチオンとなる4級アンモニウム化合物)からなるレベラーの3種である。これらの添加剤のうち、ブライトナーにはめっき促進作用があり、サプレッサーとレベラーにはめっき抑制作用があることから、この作用の違いを利用して、サイクリックボルタンメトリー法の一種であるCVS(Cyclic Voltammetry Stripping)方式により添加剤濃度を測定する方法が提案されている。   Various additives are contained in the copper sulfate plating solution used for damascene, via filling, etc. at the time of semiconductor manufacture. In these plating solutions, the concentration control of the additive is regarded as important. Additives contained in such plating solutions are roughly classified into three types. That is, a suppressor made of a high molecular compound (also called a polymer, a wetter or a carrier), a brightener made of a sulfur compound (also called an accelerator or an additive), and a nitrogen-containing compound (particularly, a quaternary which becomes a cation in a solution) Three kinds of levelers made of an ammonium compound). Among these additives, Brightner has a plating accelerating action, and suppressors and levelers have a plating inhibiting action. Therefore, using this difference in action, CVS (Cyclic) is a kind of cyclic voltammetry method. There has been proposed a method for measuring an additive concentration by a Voltammetry Stripping method.

CVS方式は、作用極(回転電極)、参照極及び対極を、添加剤を含む測定液に浸漬し、回転電極(一般にPt電極)を任意の一定速度で回転させながら、電位を所定の電位間、所定の速度で掃引することにより、回転電極上にめっき膜を析出させ、これを剥離(溶解)させるときに示される電流値の変化を示すボルタモグラムから、その剥離ピークの面積Ar(Area rotating)値を求めて、これを添加剤濃度に対応する値とし、同様の方法で予め測定した検量線に基づき濃度を決定する方法として知られている(非特許文献1:「表面技術」,第54巻,第4号,p.278−280参照)。測定液中、めっき促進作用のある添加剤が多くなればAr値は大きくなり、めっき抑制作用のある添加剤が多くなればAr値は小さくなる。   In the CVS method, the working electrode (rotating electrode), reference electrode, and counter electrode are immersed in a measurement solution containing an additive, and the rotating electrode (generally a Pt electrode) is rotated at an arbitrary constant speed while the potential is set between a predetermined potential. From the voltammogram showing the change in the current value shown when the plating film is deposited on the rotating electrode by sweeping at a predetermined speed and peeled (dissolved), the peel peak area Ar (Area Rotating) It is known as a method of obtaining a value and making this a value corresponding to the additive concentration, and determining the concentration based on a calibration curve measured in advance by a similar method (Non-patent Document 1: “Surface Technology”, No. 54). Vol. 4, No. 4, pp. 278-280). In the measurement solution, the Ar value increases as the additive having the plating promoting action increases, and the Ar value decreases as the additive having the plating inhibiting action increases.

CVS方式を利用した添加剤濃度の測定は、この原理を利用したものであり、めっき促進作用により測定されるAr値をブライトナーの濃度に対応する値、めっき抑制作用により測定されるAr値をサプレッサー及びレベラーの濃度に対応する値として濃度を決定することができる。なお、実際のめっき液の測定では、測定する添加剤以外の添加剤の影響を受けないようにして、特定の添加剤の濃度のみを測定する。   The additive concentration measurement using the CVS method is based on this principle. The Ar value measured by the plating accelerating action is the value corresponding to the Brightener concentration, and the Ar value measured by the plating inhibiting action is used. The concentration can be determined as a value corresponding to the suppressor and leveler concentrations. In the actual measurement of the plating solution, only the concentration of a specific additive is measured without being influenced by additives other than the additive to be measured.

この場合、サプレッサー濃度に比べ、レベラー濃度がかなり低いため、めっき抑制作用により測定される値を、便宜的にサプレッサー濃度に対応する値として扱う場合が一般的である。従って、めっき促進作用により測定されるAr値をブライトナー濃度に対応する値、めっき抑制作用により測定されるAr値をサプレッサー濃度に対応する値としてブライトナー濃度及びサプレッサー濃度の測定は可能である。   In this case, since the leveler concentration is considerably lower than the suppressor concentration, the value measured by the plating suppression action is generally handled as a value corresponding to the suppressor concentration for convenience. Accordingly, it is possible to measure the Brightner concentration and the suppressor concentration by setting the Ar value measured by the plating accelerating action as a value corresponding to the Brightner concentration and the Ar value measured by the plating inhibiting action as a value corresponding to the suppressor concentration.

ここで、問題になるのはレベラー濃度である。レベラーは低濃度でありレスポンスが低いため、Ar値は小さく、また、ブライトナーやサプレッサーの影響を大きく受ける。つまり、測定されるAr値はブライトナー、サプレッサー、レベラーそれぞれのめっき促進作用、めっき抑制作用が相互に干渉した結果得られる値であるため、測定液中のレベラー濃度が同じであってもブライトナー濃度やサプレッサー濃度が異なると得られるAr値が大きく変化する。このため、サイクリックボルタンメトリーにより高精度にレベラー濃度を測定することは困難であった。一方、これらブライトナーやサプレッサーの濃度の影響を受けないようにしてレベラー濃度を測定する方法としては、特公昭60−19455号公報(特許文献1)、特公平8−20417号公報(特許文献2)、特許第3130112号公報(特許文献3)、特開2002−195983号公報(特許文献4)、特開2001−73183号公報(特許文献5)に、サイクリックボルタンメトリー法であるCV(Cyclic Voltammetry)方式、CPV(Cyclic Pulse Voltammetry)方式、CVS方式、CPVS(Cyclic Pulse Voltammetry Stripping)方式による方法が開示されている。しかし、これらの方法は、ブライトナー濃度やサプレッサー濃度を決定するための検量線式の作成が必要となる上、レベラー濃度を測定する前にはブライトナー濃度やサプレッサー濃度を予め測定して決定しておかなければならず、作業が繁雑である。   Here, the problem is the leveler concentration. Since the leveler has a low concentration and a low response, the Ar value is small, and it is greatly affected by the brightener and suppressor. In other words, the measured Ar value is a value obtained as a result of interference between the brightening, suppressor, and leveler plating accelerating action and plating suppressing action, so even if the leveler concentration in the measurement liquid is the same, the brightener When the concentration and the suppressor concentration are different, the obtained Ar value changes greatly. For this reason, it has been difficult to measure the leveler concentration with high accuracy by cyclic voltammetry. On the other hand, as a method for measuring the leveler concentration without being influenced by the concentration of these brighteners and suppressors, Japanese Patent Publication No. 60-19455 (Patent Document 1) and Japanese Patent Publication No. 8-20417 (Patent Document 2). ), Japanese Patent No. 3130112 (Patent Document 3), Japanese Patent Application Laid-Open No. 2002-195983 (Patent Document 4), Japanese Patent Application Laid-Open No. 2001-73183 (Patent Document 5), and a cyclic voltammetry CV (Cyclic Voltammetry). ) Method, CPV (Cyclic Pulse Voltammetry) method, CVS method, and CPVS (Cyclic Pulse Voltammetry Stripping) method. However, these methods require the creation of a calibration curve formula for determining the Brightner concentration and suppressor concentration.Besides measuring the leveler concentration, the Brightner concentration and suppressor concentration are determined in advance. It has to be kept and the work is complicated.

また、「表面技術」,第54巻,第4号,p.278−280(非特許文献1)には、ブライトナー濃度やサプレッサー濃度の測定を必要としない方法として、ブライトナーやサプレッサーを飽和させた溶液を用いてこれら2成分の影響を排除するRC法が紹介されている。しかし、この方法では飽和処理に手間がかかる上、添加剤の種類によってはレベラー以外の添加剤、即ち、サプレッサーとブライトナーの双方を飽和させることができない場合があり、この場合、満足のいく精度でレベラー濃度を測定できない。   “Surface Technology”, Vol. 54, No. 4, p. In 278-280 (Non-Patent Document 1), as a method that does not require measurement of Brightner concentration or suppressor concentration, there is an RC method that eliminates the influence of these two components using a solution saturated with Brightner or suppressor. It has been introduced. However, this method requires time and effort for the saturation treatment, and depending on the type of additive, additives other than the leveler, i.e., both the suppressor and the brightener may not be saturated. Cannot measure the leveler concentration.

ところで、プリント基板やウェハ基板に金属配線を形成する方法として、ダマシンやビアフィリングといった基板表面に形成されたビアホールやトレンチ等の凹部内に銅めっきを充填する方法が採用されている。ダマシンやビアフィリングにおいて硫酸銅めっき液等の銅めっき液を用いて銅めっきする場合、ビアフィリングを例に挙げれば、ビアホール内部のビア底部のような拡散層が厚い部分ではレベラーがほとんど作用しないことにより、めっき促進剤が優位に作用してめっきが促進され、ビアホール外部のような拡散層が薄い部分ではレベラーが作用するためめっき抑制剤が優位に作用してめっきが抑制される。このレベラーの作用により効率的にビアホールを穴埋めすることができ(非特許文献2参照)、これは、拡散層が厚い部分と拡散層が薄い部分では、レベラーの存在量によりめっきの進行に差が生じることとを意味している。このため、銅めっき液中のレベラー濃度管理が重要となるが、上記測定方法を用いてレベラー濃度を管理してもめっきした場合には安定して良好な穴埋め性を得られない場合がある。   By the way, as a method for forming a metal wiring on a printed circuit board or a wafer substrate, a method of filling copper plating into recesses such as via holes and trenches formed on the substrate surface, such as damascene and via filling, is employed. When using copper plating solution such as copper sulfate plating solution in damascene or via filling, if the via filling is taken as an example, the leveler hardly acts on the thick diffusion layer such as the bottom of the via inside the via hole. Thus, the plating accelerator acts predominately to promote the plating, and the leveler acts on the thin diffusion layer such as the outside of the via hole. Therefore, the plating inhibitor acts predominately to suppress the plating. Via holes can be filled efficiently by the action of this leveler (see Non-Patent Document 2). This is because there is a difference in the progress of plating between the thick diffusion layer and the thin diffusion layer due to the presence of the leveler. It means to occur. For this reason, the leveler concentration management in the copper plating solution is important. However, even when the leveler concentration is controlled using the above-described measurement method, there may be a case where stable hole filling properties cannot be obtained stably.

また、めっき促進作用乃至めっき抑制作用を有する添加剤を併用することは銅めっき液以外のめっき液でも実施されており、このめっき液についてサイクリックボルタンメトリーによる測定を行う場合にも、同様に作業が煩雑であったり、高い精度で添加剤濃度を特定することが困難であったりする。   In addition, the use of an additive having a plating accelerating action or a plating inhibitory action is also carried out in a plating solution other than a copper plating solution, and the same operation can be performed when measuring this plating solution by cyclic voltammetry. It may be complicated or it may be difficult to specify the additive concentration with high accuracy.

特公昭60−19455号公報Japanese Patent Publication No. 60-19455 特公平8−20417号公報Japanese Patent Publication No. 8-20417 特許第3130112号公報Japanese Patent No. 3130112 特開2002−195983号公報JP 2002-195983 A 特開2001−73183号公報JP 2001-73183 A 小谷秀人,「CVS分析装置による電解銅めっき液の分析」,表面技術,社団法人表面技術協会,2003年,第54巻,第4号,p.278−280Hideto Otani, “Analysis of Electrolytic Copper Plating Solution Using CVS Analyzer”, Surface Technology, Surface Technology Association of Japan, 2003, Vol. 54, No. 4, p. 278-280 松波卓史,他3名,「ビアフィリング対応の硫酸銅めっき添加剤」,METEC2003(第10回マイクロエレクトロニクスシンポジウム)論文集,社団法人エレクトロニクス実装学会,2000年,p39−42Takufumi Matsunami, 3 others, “Culphate plating additive for via filling”, METEC 2003 (10th Microelectronics Symposium) Proceedings, Japan Institute of Electronics Packaging, 2000, p39-42

本発明は、上記問題を解決するためになされたものであり、添加剤、特に複数の添加剤を有するめっき液中の窒素含有化合物系添加剤等の添加剤濃度、とりわけ、半導体製造時のダマシン、ビアフィリング等に用いられる硫酸銅電気めっき液等の銅めっき液中に含まれるレベラーの濃度をサイクリックボルタンメトリーにより高精度に測定する方法を提供することを目的とする。また、ビアフィリング等基材表面上の凹部にめっきを充填して金属配線を形成する際に、安定的にめっきを充填することができるめっき方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and has an additive concentration, particularly an additive concentration such as a nitrogen-containing compound-based additive in a plating solution having a plurality of additives. Another object of the present invention is to provide a method for measuring the concentration of a leveler contained in a copper plating solution such as a copper sulfate electroplating solution used for via filling or the like with high accuracy by cyclic voltammetry. It is another object of the present invention to provide a plating method capable of stably filling a plating when filling a concave portion on a substrate surface such as via filling to form a metal wiring.

本発明は、硫酸銅めっき液中のレベラー濃度をサイクリックボルタンメトリーにより測定するにあたり、既知濃度のレベラー含有めっき標準液を、回転電極を異なる2の回転数α及びβで回転させて測定して測定値a及びbを求め、この測定値a及びbの差をレベラー濃度についての特性値とし、該特性値とレベラー濃度との関係式を検量線とすることを基本思想としてなされたものである。   In the present invention, when measuring the leveler concentration in a copper sulfate plating solution by cyclic voltammetry, the leveler-containing plating standard solution having a known concentration is measured by rotating the rotating electrode at two different rotation speeds α and β. The basic idea is that the values a and b are obtained, the difference between the measured values a and b is used as a characteristic value for the leveler concentration, and the relational expression between the characteristic value and the leveler concentration is used as a calibration curve.

サイクリックボルタンメトリー法によって測定される測定値(電気量、電流量のピーク値又はめっき量)は、ブライトナー、サプレッサー、レベラーそれぞれのめっき促進作用、めっき抑制作用が相互に干渉した結果得られる値(ブライトナーの作用+サプレッサーの作用+レベラーの作用の合計値)であり、このうちブライトナー及びサプレッサーの作用は回転数に影響されず一定である。このことから本発明者は、回転電極の回転数を変化させて上記測定値を測定し、これから導き出されるレベラーのめっき進行への効果の差を利用した値、即ち、異なる2の回転数での測定値の差を特性値として利用することで、ブライトナー及びサプレッサーの作用による影響を排除して、レベラー濃度を測定できると考えた。   The measured value (the amount of electricity, the peak value of the current amount or the plating amount) measured by the cyclic voltammetry method is the value obtained as a result of the interference of the plating promoting action and the plating inhibiting action of the brightener, suppressor and leveler ( Brighter action + suppressor action + leveler action), of which the action of the brightener and suppressor is constant regardless of the rotational speed. From this, the present inventor measured the measured value by changing the number of rotations of the rotating electrode, and a value obtained by using the difference in the effect of the leveler on the plating progress derived therefrom, that is, at two different numbers of rotations. It was considered that the leveler concentration can be measured by using the difference between the measured values as the characteristic value, eliminating the influence of the action of the brightener and the suppressor.

また、ダマシンやビアフィリングにおいてめっきする場合、ビア底部でのめっき進行と基材表面でのめっき進行がバランスすることが特に重要であり、めっき液中のレベラー濃度はこのめっき進行のバランスが達成できるように調整されている。例えば、めっき液中のレベラー濃度が当初設定された濃度よりも少なくなると、レベラーの作用が小さいビア底部のめっき進行は変化がなかったとしても、レベラーの作用が大きい基材表面のめっき進行が速くなってビアホール開口部周辺のめっき進行も速くなり、結果としてボイドなどが発生して良好な穴埋めができないおそれがある。このように、ダマシンやビアフィリングに用いられるめっき液では、ビア底部と基材表面へのレベラーの作用がバランスするレベラー濃度に調整することが重要となる。ところで、サイクリックボルタンメトリー法においては回転電極の回転数を変化させることで電極表面の拡散層の厚さを調整することが可能であり、高回転であれば拡散層は薄く(レベラーの作用が大きい擬似状態)、低回転であれば上記拡散層は厚く(レベラーの作用が小さい擬似状態)なる。即ち、高回転であれば基材表面でのめっき進行の擬似状態、低回転ではビア底部でのめっき進行の擬似状態をつくり出すことができる。このことから本発明者は、高回転時の測定値と低回転時の測定値を高回転時の測定値で割った比率を利用することで、基材表面のめっき進行(レベラーの作用効果)を1としてビア底部のめっき進行(レベラーの作用効果)を相対値として捉えることができ、さらに、その比の差を特性値としてめっき液中のレベラー濃度を測定することで、ビアホールやトレンチの外部と、ビアホールやトレンチ内部との間のめっき進行のバランスとレベラー濃度との関係に基づきレベラー濃度の測定・管理が高精度にできると考えた。   In addition, when plating in damascene or via filling, it is particularly important to balance the progress of plating at the bottom of the via and the progress of plating on the substrate surface, and the leveler concentration in the plating solution can achieve this balance of the progress of plating. Have been adjusted so that. For example, if the leveler concentration in the plating solution is lower than the initially set concentration, even if the progress of plating at the bottom of the via where the leveler action is small does not change, the plating progress on the substrate surface where the leveler action is large is fast. As a result, the progress of plating around the opening of the via hole is accelerated, and as a result, voids or the like are generated, and there is a possibility that satisfactory filling cannot be performed. Thus, in the plating solution used for damascene or via filling, it is important to adjust the leveler concentration so that the action of the leveler on the via bottom and the substrate surface is balanced. By the way, in the cyclic voltammetry method, it is possible to adjust the thickness of the diffusion layer on the electrode surface by changing the rotation speed of the rotating electrode. If the rotation is high, the diffusion layer is thin (the effect of the leveler is large). If the rotation is low, the diffusion layer becomes thick (a pseudo state where the action of the leveler is small). That is, if the rotation is high, a pseudo state of the progress of plating on the surface of the substrate can be created, and if the rotation is low, a pseudo state of the progress of plating on the bottom of the via can be created. Therefore, the present inventor uses the ratio obtained by dividing the measured value at the high rotation and the measured value at the low rotation by the measured value at the high rotation, thereby proceeding the plating on the surface of the substrate (the effect of the leveler). 1 can be used as a relative value for the plating progress (leveler effect) at the bottom of the via, and by measuring the leveler concentration in the plating solution using the difference in the ratio as a characteristic value, Based on the relationship between the level of plating and the balance of plating progress between via holes and trenches, the leveler concentration can be measured and managed with high accuracy.

上記考えに基づき本発明者は、サイクリックボルタンメトリー法において回転電極の回転数を変化させたときの測定値(電気量、電流量のピーク値又はめっき量)の差を指標とした特性値をめっき液中の添加剤濃度を求める検量線に利用すれば、めっき液中の窒素含有化合物系等の添加剤濃度を簡便にかつ高精度に測定できると考え、鋭意検討を重ねた結果、サイクリックボルタンメトリーを利用して、異なる2の回転数α及びβで回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される測定値a及びb(測定値A及びB)の差を利用した値を上記添加剤の特性値とし、上記添加剤を既知の濃度で含有するめっき標準液について上記特性値を求めてこの特性値とこれを与える添加剤濃度とにより検量線を作成し、添加剤濃度が未知であるめっき液について上記特性値を求め、この添加剤濃度が未知であるめっき液の特性値から上記検量線を基準としてめっき液中の窒素含有添加剤の濃度を高い精度で簡便に測定することができることを見出した。   Based on the above idea, the present inventor plated the characteristic value using the difference in the measured value (the amount of electricity, the peak value of the current amount or the plating amount) when the rotational speed of the rotating electrode is changed in the cyclic voltammetry method. Cyclic voltammetry is the result of extensive research, considering that the concentration of additives in the plating solution can be measured easily and with high accuracy by using it as a calibration curve for determining the concentration of additives in the solution. , Measured values a and b (measured values A and B) respectively measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at two different rotational speeds α and β. The characteristic value of the additive is used as a characteristic value of the additive, the characteristic value is obtained for a plating standard solution containing the additive at a known concentration, and a calibration curve is obtained by the characteristic value and the additive concentration that gives the characteristic value. make The characteristic value of the plating solution whose additive concentration is unknown is obtained, and the concentration of the nitrogen-containing additive in the plating solution is determined with high accuracy based on the calibration curve from the characteristic value of the plating solution whose additive concentration is unknown. It was found that the measurement can be performed easily.

また、異なる2の回転数α及びβで回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される測定値a及びb(測定値A及びB)の測定値a(測定値A)又は測定値b(測定値B)に対する比の差を利用した値を上記特性値とすれば、特にダマシンやビアフィリングにおいて、良好な埋め性を与えることができるように、めっき液中の添加剤濃度の測定、管理ができることを見出し、本発明をなすに至った。   Further, the measured values a and b (measured values A and B) measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at two different rotational speeds α and β. If the value using the difference in ratio to a (measured value A) or measured value b (measured value B) is the above characteristic value, particularly in damascene and via filling, good fillability can be given. It has been found that the additive concentration in the plating solution can be measured and managed, and the present invention has been made.

即ち、本発明は、以下の添加剤濃度の測定方法及びめっき方法を提供する。
請求項1:
イオウ系添加剤及び/又は高分子系添加剤と、窒素含有添加剤とを含むめっき液中において、当該イオウ系添加剤及び高分子添加剤の濃度を測定することなく当該窒素含有添加剤の濃度をサイクリックボルタンメトリーにより測定する方法であって、
上記添加剤を既知の濃度で含有する1種又は2種以上のめっき標準液の各々について、回転電極を異なる2の回転数α及びβで回転させて測定値a及びbを各々求め、
上記測定値a,bの差及び/又は比率を用いた特性値と上記めっき標準液の添加剤濃度とにより検量線を作成し、
上記添加剤濃度が未知であるめっき液について上記特性値を求め、該めっき液の特性値から上記検量線を基準として上記めっき液の添加剤濃度を決定することを特徴とする添加剤濃度の測定方法。
請求項2:
前記特性値が、下記(I)乃至(VI)
(I) 測定値a(測定値A)−測定値b(測定値B)
(II) 測定値b(測定値B)−測定値a(測定値A)
(III) 1−測定値a(測定値A)/測定値b(測定値B)
(IV) 1−測定値b(測定値B)/測定値a(測定値A)
(V) 測定値a(測定値A)/測定値b(測定値B)−1
(VI) 測定値b(測定値B)/測定値a(測定値A)−1
のいずれか1つを用いて求められる値であることを特徴とする請求項1記載の添加剤濃度の測定方法。
請求項3:
前記めっき液が前記窒素含有添加剤としてレベラーを含む銅めっき液であることを特徴とする請求項1又は2記載の添加剤濃度の測定方法。
請求項4:
請求項1乃至3のいずれか1項に記載の添加剤濃度の測定方法により添加剤濃度を測定して濃度を決定しためっき液を用い、基材の穴又は溝をめっきで充填することを特徴とするめっき方法。
That is, the present invention provides the following additive concentration measuring method and plating method.
Claim 1:
The concentration of the nitrogen-containing additive in the plating solution containing the sulfur-based additive and / or the polymer-based additive and the nitrogen-containing additive without measuring the concentration of the sulfur-based additive and the polymer additive. Is measured by cyclic voltammetry,
For each of one or more plating standard solutions containing the additive at a known concentration, the measured values a and b are determined by rotating the rotating electrode at two different rotational speeds α and β,
Create a calibration curve by the characteristic value using the difference and / or ratio of the measured values a and b and the additive concentration of the plating standard solution,
Determination of the additive concentration of the plating solution, wherein the characteristic value is determined for the plating solution having an unknown additive concentration, and the additive concentration of the plating solution is determined based on the calibration curve from the characteristic value of the plating solution. Method.
Claim 2:
The characteristic values are the following (I) to (VI)
(I) Measured value a (Measured value A) −Measured value b (Measured value B)
(II) Measured value b (Measured value B) −Measured value a (Measured value A)
(III) 1-Measured value a (Measured value A) / Measured value b (Measured value B)
(IV) 1-Measured value b (Measured value B) / Measured value a (Measured value A)
(V) Measured value a (Measured value A) / Measured value b (Measured value B) -1
(VI) Measured value b (Measured value B) / Measured value a (Measured value A) -1
The additive concentration measuring method according to claim 1, wherein the value is obtained using any one of the following.
Claim 3:
The method for measuring an additive concentration according to claim 1 or 2, wherein the plating solution is a copper plating solution containing a leveler as the nitrogen-containing additive.
Claim 4:
A plating solution in which the concentration is determined by measuring the additive concentration by the method for measuring an additive concentration according to any one of claims 1 to 3 is used to fill holes or grooves in the substrate with plating. Plating method.

本発明は、回転電極の回転数を変えて測定した値の差を用いることにより、めっきの進行に影響を与えるイオウ系添加剤や高分子系添加剤などの作用を排除して窒素を含有する添加剤の濃度を測定するものであり、
[1]他の添加剤の影響を受けにくい
という特徴を有しており、めっき液中の窒素を含有する添加剤、とりわけ硫酸銅めっき液中のレベラー濃度を高い精度で、かつ他の添加剤濃度を予め測定することなく簡便に測定することができる。
The present invention eliminates the effects of sulfur-based additives and polymer-based additives that affect the progress of plating by using the difference in values measured by changing the number of rotations of the rotating electrode, and contains nitrogen. Is to measure the concentration of additives,
[1] It has the feature of being hardly affected by other additives, and the additive containing nitrogen in the plating solution, particularly the leveler concentration in the copper sulfate plating solution, with high accuracy and other additives. The concentration can be easily measured without measuring in advance.

また、本発明は、回転電極の回転数を変えることにより生じためっき拡散層の厚さの違いによる窒素を含有する添加剤のめっき進行の促進・抑制効果の差を利用して窒素を含有する添加剤濃度を測定するものであり、
[2]実際のめっきにおける穴埋め性を反映した測定結果が得られる
という特徴を有しており、特にダマシンやビアフィリングなどにおいて、良好な埋め性を与えることができるように、めっき液中の窒素を含有する添加剤濃度の測定・管理ができる。
In addition, the present invention contains nitrogen by utilizing the difference in the promotion / suppression effect of the plating progress of the additive containing nitrogen due to the difference in the thickness of the plating diffusion layer caused by changing the rotation speed of the rotating electrode. Is to measure the additive concentration,
[2] It has a feature that a measurement result reflecting the hole filling property in actual plating can be obtained, and nitrogen in the plating solution can be provided particularly in damascene, via filling, etc. It is possible to measure and manage the concentration of additives containing.

以下、本発明について更に詳述する。
本発明の添加剤濃度の測定方法は、イオウ系添加剤及び/又は高分子系添加剤と、窒素含有添加剤とを含むめっき液中において、当該イオウ系添加剤及び高分子添加剤の濃度を測定することなく当該窒素含有添加剤の濃度をサイクリックボルタンメトリーにより測定する方法であって、上記添加剤を既知の濃度で含有する1種又は2種以上のめっき標準液の各々について、回転電極を異なる2の回転数α及びβで回転させて測定値a及びbを各々求め、上記測定値a,bの差及び/又は比率を用いた特性値と上記めっき標準液の添加剤濃度とにより検量線を作成し、上記添加剤濃度が未知であるめっき液について上記特性値を求め、該めっき液の特性値から上記検量線を基準として上記めっき液の添加剤濃度を決定するものである。
The present invention will be described in detail below.
The method for measuring the concentration of the additive according to the present invention is the method of measuring the concentration of the sulfur additive and the polymer additive in a plating solution containing a sulfur additive and / or a polymer additive and a nitrogen-containing additive. A method of measuring the concentration of the nitrogen-containing additive by cyclic voltammetry without measuring the rotating electrode for each of one or more plating standard solutions containing the additive at a known concentration. Measured values a and b are obtained by rotating at different two rotational speeds α and β, respectively, and calibration is performed based on the characteristic value using the difference and / or ratio between the measured values a and b and the additive concentration of the plating standard solution. A line is prepared, the characteristic value is determined for the plating solution whose additive concentration is unknown, and the additive concentration of the plating solution is determined from the characteristic value of the plating solution with reference to the calibration curve.

より具体的には、イオウ系添加剤及び/又は高分子系添加剤と、窒素を含有する添加剤(窒素含有添加剤)とを含有するめっき液中に浸漬した回転電極と対極との間で、回転電極を回転させながら電圧を掃引することにより回転電極上にめっきを析出させる、又は更にこの回転電極上に析出しためっきを溶解剥離させるサイクリックボルタンメトリーにより上記イオウ系添加剤及び高分子系添加剤の濃度を測定することなく、めっき液中の窒素含有添加剤濃度を測定する方法であり、上記窒素含有添加剤を既知の濃度で含有するめっき標準液を1種又は2種以上用意し、異なる2の回転数で回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される、回転電極上にめっきを析出させる際若しくはこの回転電極上に析出しためっきを溶解剥離させる際に要する電気量若しくは電流量のピーク値又は回転電極上に析出しためっき量の差及び/又は比率を利用した値を上記窒素含有添加剤の特性値とし、上記めっき標準液について上記特性値を求めてこの特性値とこれを与える窒素含有添加剤濃度とにより検量線を作成し、窒素含有添加剤濃度が未知であるめっき液について上記特性値を求め、この窒素含有添加剤濃度が未知であるめっき液の特性値から上記検量線を基準としてめっき液中の窒素含有添加剤濃度を決定するものである   More specifically, between a rotating electrode and a counter electrode immersed in a plating solution containing a sulfur-based additive and / or a polymer-based additive and an additive containing nitrogen (nitrogen-containing additive). Addition of the above sulfur-based additive and polymer system by cyclic voltammetry to deposit plating on the rotating electrode by sweeping the voltage while rotating the rotating electrode, or to dissolve and peel the plating deposited on the rotating electrode. It is a method of measuring the concentration of nitrogen-containing additive in the plating solution without measuring the concentration of the agent, and preparing one or more plating standard solutions containing the nitrogen-containing additive at a known concentration, Measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at different two rotation speeds, when plating is deposited on the rotating electrode or on the rotating electrode. A value using the peak value of the amount of electricity or current required to dissolve and peel the deposited plating or the difference and / or ratio of the amount of plating deposited on the rotating electrode is the characteristic value of the nitrogen-containing additive, and the plating Obtain the above characteristic value for the standard solution, create a calibration curve with this characteristic value and the concentration of the nitrogen-containing additive that gives it, determine the above characteristic value for the plating solution whose nitrogen-containing additive concentration is unknown, The concentration of the nitrogen-containing additive in the plating solution is determined based on the above calibration curve from the characteristic value of the plating solution whose additive concentration is unknown.

本発明においてめっき液は、窒素含有添加剤を含有する。特には、イオウ系添加剤及び/又は高分子系添加剤と、窒素含有添加剤とを含有する。ここで、イオウ系添加剤、高分子系添加剤、窒素含有添加剤とは、めっき液基本組成成分(水溶性金属塩、ベースとなる酸、錯化剤)や、pH調整やpH緩衝に用いられる添加剤の他に、析出するめっき皮膜の皮膜特性を向上させるために添加される添加剤で、それぞれイオウ系化合物であるもの、高分子化合物であるもの、窒素含有化合物であるものをいう。例えば、硫酸銅めっき液ではイオウ系添加剤としてはブライトナー、高分子系添加剤としてはサプレッサー、窒素含有化合物としてはレベラーが挙げられる。また、ニッケルめっき液では、イオウ系添加剤や高分子添加剤としては1次又は2次光沢剤が挙げられ、窒素含有添加剤としては上記1次又は2次光沢剤に加え、更に皮膜の各種特性を得るために添加される第4級アンモニウム塩などが挙げられる。これらイオウ系添加剤、高分子系添加剤、窒素含有添加剤は、めっき析出を促進又は抑制する作用を有しており、本発明は、サイクリックボルタンメトリーを用いて窒素含有添加剤濃度を決定する場合にイオウ系添加剤や高分子系添加剤の作用が影響し、従来の方法では窒素含有添加剤濃度を正確に測定できなかっためっき液において特に有効である。   In the present invention, the plating solution contains a nitrogen-containing additive. In particular, it contains a sulfur-based additive and / or a polymer-based additive and a nitrogen-containing additive. Here, the sulfur-based additive, polymer-based additive, and nitrogen-containing additive are used for plating solution basic composition components (water-soluble metal salt, base acid, complexing agent), pH adjustment and pH buffering. In addition to the additive to be added, the additive is added to improve the film properties of the deposited plating film, which is a sulfur compound, a polymer compound, or a nitrogen-containing compound. For example, in a copper sulfate plating solution, a bright additive is used as a sulfur additive, a suppressor is used as a polymer additive, and a leveler is used as a nitrogen-containing compound. In the nickel plating solution, the sulfur-based additive and the polymer additive include primary or secondary brighteners, and the nitrogen-containing additive includes the above primary or secondary brighteners, and various coating films. Examples include quaternary ammonium salts added to obtain characteristics. These sulfur-based additives, polymer-based additives, and nitrogen-containing additives have an action of promoting or suppressing plating deposition, and the present invention determines the concentration of nitrogen-containing additives using cyclic voltammetry. In particular, the effects of sulfur-based additives and polymer-based additives are affected, and this is particularly effective for plating solutions in which the nitrogen-containing additive concentration cannot be accurately measured by conventional methods.

窒素含有添加剤としては、構成元素として窒素を含有する化合物であり、上記基本組成成分以外のものであり、主としてpH調整やpH緩衝以外の目的で添加されるものであれば特に制限はないが、サイクリックボルタンメトリーにより従来の方法では測定値が大きく変動するようなもの、例えば、第4級アンモニウム塩が挙げられる。   The nitrogen-containing additive is a compound containing nitrogen as a constituent element, and other than the above basic composition components, and is not particularly limited as long as it is added mainly for purposes other than pH adjustment and pH buffering. In the conventional method by cyclic voltammetry, the measured value largely fluctuates, for example, a quaternary ammonium salt.

本発明において用いるサイクリックボルタンメトリーは、めっき液中に浸漬した回転電極と対極との間で、回転電極を回転させながら電圧を掃引することにより回転電極上にめっきを析出させる、又は更にこの回転電極上に析出しためっきを溶解剥離させるものであり、この際に要する(発生する)電気量や電流量を測定することにより、めっき液の析出・溶解剥離挙動を評価する手法である。   In the cyclic voltammetry used in the present invention, plating is deposited on the rotating electrode by sweeping the voltage while rotating the rotating electrode between the rotating electrode immersed in the plating solution and the counter electrode, or this rotating electrode. This is a technique for dissolving and peeling the plating deposited on the surface, and measuring the amount of electricity and current required (generated) at this time to evaluate the deposition / dissolution peeling behavior of the plating solution.

サイクリックボルタンメトリーには、めっき析出領域のみを対象とするCV(Cyclic Voltammetry:サイクリックボルタンメトリー)方式、めっき剥離領域及び/又はめっき剥離領域を対象とするCVS(Cyclic Voltammetry Stripping:サイクリックボルタンメトリー ストリッピング)方式があり、本発明においては、そのいずれの方式も採用し得る。また、電圧をパルス掃引して測定するCPV(Cyclic Pulse Voltammetry:サイクリックパルスボルタンメトリー)方式、CPVS(Cyclic Pulse Voltammetry Stripping:サイクリックパルスボルタンメトリー ストリッピング)方式によっても可能である。   For cyclic voltammetry, the CV (Cyclic Voltammetry) method for only the plating deposition region, CVS (Cyclic Voltammetry Stripping) for the plating stripping region and / or the plating stripping region. There are methods, and any of these methods can be adopted in the present invention. Further, a CPV (Cyclic Pulse Voltammetry) method and a CPVS (Cyclic Pulse Voltammetry Stripping) method of measuring the voltage by pulse sweeping are also possible.

本発明においては、めっき液中の窒素含有添加剤濃度を測定するために、窒素含有添加剤濃度に関する特性値(k)を用いる。この特性値(k)とは、サイクリックボルタンメトリーにより、所定の回転数で回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに測定された各種測定値を基に導き出されるめっきの進行の効果を表す値であり、具体的には、回転電極上にめっきを析出させる際若しくはこの回転電極上に析出しためっきを溶解剥離させる際に要する電気量若しくは電流量のピーク値又は回転電極上に析出しためっき量を異なる2の回転数α及びβにおいて測定した後、上記2の回転数α及びβ(高回転数及び低回転数)における窒素含有添加剤のめっき進行への効果の差を表す値である。   In the present invention, in order to measure the nitrogen-containing additive concentration in the plating solution, the characteristic value (k) relating to the nitrogen-containing additive concentration is used. This characteristic value (k) is derived from cyclic voltammetry based on various measured values measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at a predetermined number of rotations. It is a value representing the effect of the progress of plating, specifically, the peak value of the amount of electricity or current required when depositing the plating on the rotating electrode or dissolving and peeling the plating deposited on the rotating electrode, or After measuring the amount of plating deposited on the rotating electrode at two different rotational speeds α and β, the effect of the nitrogen-containing additive on the progress of plating at the above-mentioned two rotational speeds α and β (high and low rotational speeds) It is a value representing the difference between

本発明においては、このような特性値として、
〔1〕異なる2の回転数α及びβで回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される各々の測定値aとb(測定値AとB)との差、又はこれらに任意の数又は数式で加減乗除した値、或いは
〔2〕異なる2の回転数α及びβで回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される各々の測定値aとb(測定値AとB)の測定値a(測定値A)又は測定値b(測定値B)に対する比の差、又はこれらに任意の数又は数式で加減乗除した値
を適用することができる。
In the present invention, as such a characteristic value,
[1] Respective measured values a and b (measured values A and B) measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at two different rotational speeds α and β. Or a value obtained by adding / subtracting / dividing by an arbitrary number or mathematical expression, or [2] When the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at two different rotation speeds α and β Or the difference in the ratio of each measured value a and b (measured value A and B) to measured value a (measured value A) or measured value b (measured value B), or any number or formula The value obtained by adding / subtracting / dividing with can be applied.

上記特性値は、めっき標準液と窒素含有添加剤濃度が未知であるめっき液の両方で求める。具体的には、めっき標準液をサイクリックボルタンメトリーにより測定する際、回転電極の回転数αのときの測定値aと回転数βのときの測定値bを得て、これら測定値a及びbから
[1]測定値aと測定値bとの差、
[2]測定値aと測定値bの測定値a又は測定値bに対する比の差、
[3]上記[1]、[2]を指標とした値
を求め、この求めた値をめっき標準液の添加剤濃度の特性値として用いる。同様に、窒素含有添加剤濃度が未知であるめっき液をサイクリックボルタンメトリーにより測定する際には、めっき標準液のときと同じ回転電極の回転数α及びβのときの測定値A及びBを得て、この測定値A及びBから
[1’]測定値Aと測定値Bとの差、
[2’]測定値Aと測定値Bの測定値A又は測定値Bに対する比の差、
[3’]上記[1’]、[2’]を指標とした値を求め、この求めた値を上記めっき液の添加剤濃度の特性値として用いる。
The above characteristic values are obtained for both the plating standard solution and the plating solution whose nitrogen-containing additive concentration is unknown. Specifically, when the plating standard solution is measured by cyclic voltammetry, a measurement value a at the rotation number α of the rotating electrode and a measurement value b at the rotation number β are obtained, and from these measurement values a and b, [1] Difference between measured value a and measured value b,
[2] Difference in ratio of the measured value a and the measured value b to the measured value a or the measured value b,
[3] A value using the above [1] and [2] as an index is obtained, and this obtained value is used as a characteristic value of the additive concentration of the plating standard solution. Similarly, when measuring the plating solution whose nitrogen-containing additive concentration is unknown by cyclic voltammetry, the measured values A and B at the same rotation electrode rotation speeds α and β as in the case of the plating standard solution are obtained. From the measured values A and B, [1 ′] the difference between the measured value A and the measured value B,
[2 ′] A difference in ratio of the measured value A and the measured value B to the measured value A or the measured value B,
[3 ′] A value using [1 ′] and [2 ′] as an index is obtained, and the obtained value is used as a characteristic value of the additive concentration of the plating solution.

ここで、めっき標準液の特性値とは上記[1]〜[3]のいずれかであるが、[1]測定値aと測定値bとの差とは、下記式(1)又は(2)で表される値をいう。この式(1)又は(2)は、上述のとおりイオウ系添加剤と高分子系添加剤の影響を排除して、イオウ系添加剤及び高分子系添加剤の濃度を予め測定することなく、窒素含有添加剤の濃度を測定することを意図している。   Here, the characteristic value of the plating standard solution is any one of the above [1] to [3]. [1] The difference between the measured value a and the measured value b is the following formula (1) or (2 ). This formula (1) or (2) eliminates the influence of the sulfur-based additive and the polymer-based additive as described above, without measuring the concentration of the sulfur-based additive and the polymer-based additive in advance, It is intended to measure the concentration of nitrogen-containing additives.

測定値a−測定値b…(1)
測定値b−測定値a…(2)
Measured value a-measured value b (1)
Measured value b-measured value a (2)

上記[2]測定値aと測定値bの測定値a又は測定値bに対する比の差とは、下記(3)乃至(6)のいずれかで表される値をいう。この式(3)乃至(6)は、測定値a/測定値a、測定値b/測定値a、測定値a/測定値b、測定値b/測定値bといった比を利用することで、ダマシンやビアフィリングにおけるトレンチやビアホール内外部のめっき進行の相対比較を基に窒素含有添加剤濃度を推定しようとするものである。さらに、上記比の差を利用することで、上記式(1)、(2)と同様にイオウ系添加剤及び高分子系添加剤の濃度を予め測定することなく、窒素含有添加剤のめっき進行への作用と窒素含有添加剤濃度との関係から窒素含有添加剤の濃度を推定しようとするものである。例えば、下記式(3)において、測定値a及びbを測定したときの回転数αとβがα>βである場合、ビアホール外部のめっき進行を1として、ビアホール内部とのめっき進行の相対差を窒素含有添加剤の作用として見ていることになる。従って、α<βの場合、ビアホール内部のめっき進行を1としてビアホール外部とのめっき進行の相対差を見る場合等の組合せによって、下記式(4)〜(6)も利用することができる。   [2] The difference in the ratio of the measurement value a and the measurement value b to the measurement value a or the measurement value b refers to a value represented by any one of (3) to (6) below. Equations (3) to (6) are obtained by using ratios such as measurement value a / measurement value a, measurement value b / measurement value a, measurement value a / measurement value b, measurement value b / measurement value b. It is intended to estimate the concentration of nitrogen-containing additive based on the relative comparison of plating progress inside and outside trenches and via holes in damascene and via filling. Furthermore, by utilizing the difference in the ratio, the plating progress of the nitrogen-containing additive can be performed without measuring the concentrations of the sulfur-based additive and the polymer-based additive in advance as in the above formulas (1) and (2). The concentration of the nitrogen-containing additive is to be estimated from the relationship between the effect on the concentration and the concentration of the nitrogen-containing additive. For example, in the following formula (3), when the rotational speeds α and β when the measurement values a and b are measured are α> β, the plating progress outside the via hole is set to 1, and the relative difference in the plating progress from the inside of the via hole is 1 As an action of the nitrogen-containing additive. Therefore, in the case of α <β, the following formulas (4) to (6) can also be used depending on combinations such as the case where the plating progress inside the via hole is set to 1 and the relative difference in plating progress from the outside of the via hole is seen.

1−測定値b/測定値a…(3)
1−測定値a/測定値b…(4)
測定値b/測定値a−1…(5)
測定値a/測定値b−1…(6)
1-Measured value b / Measured value a (3)
1-Measured value a / Measured value b (4)
Measurement value b / measurement value a-1 (5)
Measured value a / Measured value b-1 (6)

そして、[3]上記[1]、[2]を指標とした値とは、上記[1]、[2]の値を任意の数又は数式で加減乗除した値をいう。これは、上記式[1]乃至[6]の意図を崩さない範囲で、式(1)乃至(6)から得られる値を適宜加減乗除した値を特性値とすることを意味している。また、めっき標準液が1種である場合には特に制限はないが、めっき標準液が2種以上の場合には、めっき標準液全てについて同じ数又は同じ数式で、同じ加減乗除をするものである。   [3] The values using [1] and [2] as indexes are values obtained by adding, subtracting, and dividing the values of [1] and [2] by an arbitrary number or mathematical expression. This means that a value obtained by appropriately adding, subtracting, and dividing the values obtained from the formulas (1) to (6) is set as the characteristic value within a range not detracting from the intention of the formulas [1] to [6]. In addition, there is no particular limitation when there is one type of plating standard solution, but when there are two or more types of plating standard solutions, the same number or the same mathematical expression is used for all the plating standard solutions, and the same addition, subtraction, multiplication and division are performed. is there.

窒素含有添加剤が未知であるめっき液の特性値は上記[1’]〜[3’]のいずれかであるが、上記[1’]測定値Aと測定値Bとの差とは、下記式(1’)又は(2’)で表される値をいう。
測定値A−測定値B…(1’)
測定値B−測定値A…(2’)
The characteristic value of the plating solution in which the nitrogen-containing additive is unknown is any one of the above [1 ′] to [3 ′], and the difference between the above [1 ′] measured value A and measured value B is as follows. The value represented by the formula (1 ′) or (2 ′).
Measured value A-measured value B (1 ')
Measured value B-measured value A (2 ')

上記[2’]測定値Aと測定値Bの測定値A又は測定値Bのいずれかに対する比の差とは、下記(3’)乃至(6’)のいずれかで表される値をいう。
1−測定値B/測定値A…(3’)
1−測定値A/測定値B…(4’)
測定値B/測定値A−1…(5’)
測定値A/測定値B−1…(6’)
[2 ′] The difference in the ratio of the measured value A and the measured value B to either the measured value A or the measured value B refers to a value represented by any of the following (3 ′) to (6 ′). .
1-Measured value B / Measured value A (3 ')
1-Measured value A / Measured value B (4 ')
Measurement value B / measurement value A-1 (5 ')
Measured value A / Measured value B-1 (6 ′)

そして、[3’]上記[1’]、[2’]を指標とした値とは、上記[1’]、[2’]の値を任意の数又は数式で加減乗除した値をいう。ここで、任意の数とはめっき標準液の特性値を求める際に用いた任意の数と同じ数を意味し、任意の数式とはめっき標準液の特性値を求める際に用いた任意の数式と同じ数式を意味する。また、加減乗除するとは、めっき標準液で用いた加減乗除と同じ加減乗除を行うことを意味する。   [3 '] The value using [1'] and [2 '] as an index means a value obtained by adding, subtracting, and dividing the values of [1'] and [2 '] by an arbitrary number or mathematical expression. Here, the arbitrary number means the same number as the arbitrary number used when determining the characteristic value of the plating standard solution, and the arbitrary numerical expression is an arbitrary numerical expression used when determining the characteristic value of the plating standard solution Means the same formula. Further, “addition / subtraction / division” means performing the same addition / subtraction / division as the addition / subtraction / division used in the plating standard solution.

具体的例としては、異なる2種の回転数(高回転数及び低回転数)における各々の測定値を用い、上記式(1)乃至(6)(上記式(1’)乃至(6’))のいずれかを用いた式に代入して得られる値を特性値(k)とするものである。この特性値(k)を求める式(窒素含有添加剤によるめっき進行への効果の差を表す式)は、上記異なる回転数で測定した測定値に基づく窒素含有添加剤によるめっき進行への効果の差を利用するものであれば特に制限はなく、測定するめっき液に応じて適宜決定できる。例えば、上記[1]([1’]の値を特性値とする場合は下記式(7)、上記[2]([2’])の値を特性値とする場合は下記式(8)、上記[3]([3’])の値を特性値とする場合は下記式(9)のような式を挙げることができる。   As specific examples, the measured values at two different rotation speeds (high rotation speed and low rotation speed) are used, and the above equations (1) to (6) (the above equations (1 ′) to (6 ′)). The value obtained by substituting it into an equation using any one of () is the characteristic value (k). The formula for calculating the characteristic value (k) (expression expressing the difference in the effect on the plating progress by the nitrogen-containing additive) is the effect of the effect on the plating progress by the nitrogen-containing additive based on the measured values measured at the different rotational speeds. There is no particular limitation as long as the difference is utilized, and it can be appropriately determined according to the plating solution to be measured. For example, when the value of [1] ([1 ′] is a characteristic value, the following equation (7), and when the value of [2] ([2 ′]) is a characteristic value, the following equation (8) When the value of [3] ([3 ′]) is used as a characteristic value, an equation such as the following equation (9) can be given.

k=Av1−Av2…(7)
k=(Av1−Av2)/Av2…(8)
k=(1−Av1/Av2)/(R2−R1)…(9)
(式中、Av1,Av2は回転電極上にめっきを析出させる際若しくはこの回転電極上に析出しためっきを溶解剥離させる際に要する電気量若しくは電流量のピーク値又は回転電極上に析出しためっき量であり、Av1は回転数が少ない方の値、Av2は回転数が多い方の値である。また、R1は回転数が少ない方の回転数、R2は回転数が多い方の回転数である。)
k = Av 1 −Av 2 (7)
k = (Av 1 −Av 2 ) / Av 2 (8)
k = (1-Av 1 / Av 2) / (R 2 -R 1) ... (9)
(In the formula, Av 1 and Av 2 were deposited on the rotating electrode or the peak value of the amount of electricity or current required for depositing the plating on the rotating electrode or dissolving and peeling the plating deposited on the rotating electrode. The amount of plating, Av 1 is the value with the smaller number of revolutions, Av 2 is the value with the larger number of revolutions, R 1 is the number of revolutions with the smaller number of revolutions, and R 2 is the number of revolutions. ).

このように、前記特性値を利用することで、銅めっき液中のブライトナーやサプレッサーのようなイオウ系添加剤や高分子系添加剤の影響を排除して窒素含有添加剤濃度を決定できる上、イオウ系添加剤や高分子系添加剤の濃度を測定せずに窒素含有添加剤の濃度を決定できる。更には、窒素含有添加剤によるめっき進行への効果の差により窒素含有添加剤濃度を決定することができるため、この方法によって窒素含有添加剤濃度を測定すれば、ダマシンやビアフィリングにおいて良好な埋め性を安定して得ることができるめっき液を調製することができる。   Thus, by using the above characteristic values, it is possible to determine the concentration of the nitrogen-containing additive while eliminating the influence of sulfur-based additives and polymer-based additives such as brighteners and suppressors in the copper plating solution. The concentration of the nitrogen-containing additive can be determined without measuring the concentration of the sulfur-based additive or the polymer-based additive. Furthermore, since the concentration of the nitrogen-containing additive can be determined by the difference in the effect of the nitrogen-containing additive on the plating progress, if the nitrogen-containing additive concentration is measured by this method, good filling in damascene and via filling is possible. It is possible to prepare a plating solution capable of stably obtaining the properties.

ここで、回転電極上にめっきを析出させる際若しくはこの回転電極上に析出しためっきを溶解剥離させる際に要する電気量とは、サイクリックボルタンメトリーにより測定される電流量の変化を示すボルタモグラムのピーク面積に相当する値で一般にAr値と呼ばれるものであり、電流量のピーク値とは、上記ボルタモグラムが示す電気量のピーク値(最大値又は最小値)である。また、回転電極上に析出しためっき量とは、サイクリックボルタンメトリーにより回転電極上に析出しためっきの質量である。   Here, when the plating is deposited on the rotating electrode or when the plating deposited on the rotating electrode is dissolved and peeled, the electric quantity required is the peak area of the voltammogram indicating the change in the amount of current measured by cyclic voltammetry. The peak value of the current amount is the peak value (maximum value or minimum value) of the electric quantity indicated by the voltammogram. The plating amount deposited on the rotating electrode is the mass of the plating deposited on the rotating electrode by cyclic voltammetry.

なお、CVS方式やCPVS方式のようなめっき析出領域及びめっき剥離領域双方を対象とする測定方式の場合は、双方の領域の電気量、電流量のピーク値又はめっき量を対象とする。一方、CV方式やCPV方式のようなめっき析出領域のみを対象とする測定方式の場合は、めっき析出領域の電気量、電流量のピーク値又はめっき量のみを対象とする。   In the case of a measurement method that targets both the plating deposition region and the plating peeling region, such as the CVS method and the CPVS method, the amount of electricity, the peak value of the current amount, or the amount of plating in both regions is targeted. On the other hand, in the case of a measurement method that targets only the plating deposition region, such as the CV method or the CPV method, only the electric amount, the peak value of the current amount, or the plating amount of the plating deposition region is targeted.

次に、この特性値を用いて窒素含有添加剤濃度が未知であるめっき液の窒素含有添加剤濃度を測定する方法について説明する。
本発明の方法に用いる装置としては、サイクリックボルタンメトリー測定装置として市販されている従来公知の装置を用いることができる。
Next, a method for measuring the nitrogen-containing additive concentration of a plating solution whose nitrogen-containing additive concentration is unknown using this characteristic value will be described.
As an apparatus used in the method of the present invention, a conventionally known apparatus commercially available as a cyclic voltammetry measuring apparatus can be used.

本発明において、窒素含有添加剤濃度が未知であるめっき液の窒素含有添加剤濃度を求めるにあたり、まず、検量線を作成する。この検量線は、窒素含有添加剤を既知の濃度で含有するめっき標準液を1種又は2種以上用意し、このめっき標準液について上記特性値を求めてこの特性値とこれを与える窒素含有添加剤濃度とにより検量線を作成する。次に、窒素添加剤濃度が未知であるめっき液について特性値を求めて、この特性値から検量線を基準としてめっき液中の添加剤濃度を決定する。   In the present invention, in order to determine the nitrogen-containing additive concentration of the plating solution whose nitrogen-containing additive concentration is unknown, first, a calibration curve is created. This calibration curve is prepared by preparing one or more plating standard solutions containing a nitrogen-containing additive at a known concentration, obtaining the above characteristic values for this plating standard solution, and giving this characteristic value and nitrogen-containing addition A calibration curve is created according to the agent concentration. Next, a characteristic value is obtained for the plating solution whose nitrogen additive concentration is unknown, and the additive concentration in the plating solution is determined based on the calibration curve from this characteristic value.

上記めっき標準液は、少なくとも窒素含有添加剤が既知の濃度で含有されていればよいが、通常、上記窒素含有添加剤以外の成分も既知の濃度とし、窒素含有添加剤の濃度が未知であるめっき液(以下、被検めっき液と略称することがある)と同じ組成・濃度とすることが好ましい。例えば、被検めっき液が、硫酸銅、硫酸、塩酸、ブライトナー(イオウ系添加剤)、サプレッサー(高分子系添加剤)、レベラー(窒素含有添加剤)を含有する硫酸銅めっき液である場合、レベラー以外の成分を被検めっき液と同じ組成・濃度で含有するめっき標準液を用いることが好ましい。こうすることにより高精度にレベラー(窒素含有添加剤)濃度を測定することができる。なお、本発明の方法では、ブライトナーのようなイオウ系添加剤やサプレッサーのような高分子系添加剤の作用による影響を排除して測定できるため、めっき標準液中の窒素含有添加剤以外の成分の組成・濃度を被検めっき液と同じにしなくても、又めっき標準液を複数用いる場合において、それぞれのめっき標準液中の窒素含有添加剤以外の成分の組成・濃度を同じにしなくても被検めっき液の濃度測定は十分可能である。   The plating standard solution only needs to contain at least a nitrogen-containing additive at a known concentration. Usually, components other than the nitrogen-containing additive are also known concentrations, and the concentration of the nitrogen-containing additive is unknown. It is preferable to have the same composition and concentration as the plating solution (hereinafter sometimes abbreviated as the test plating solution). For example, when the test plating solution is a copper sulfate plating solution containing copper sulfate, sulfuric acid, hydrochloric acid, brightener (sulfur-based additive), suppressor (polymer-based additive), and leveler (nitrogen-containing additive) It is preferable to use a plating standard solution containing components other than the leveler in the same composition and concentration as the test plating solution. By doing so, the leveler (nitrogen-containing additive) concentration can be measured with high accuracy. In the method of the present invention, since it is possible to measure without the influence of the action of a sulfur-based additive such as Brightner or a polymer-based additive such as a suppressor, other than the nitrogen-containing additive in the plating standard solution Even if the composition and concentration of the components are not the same as the plating solution to be tested, and when multiple plating standard solutions are used, the composition and concentration of the components other than the nitrogen-containing additive in each plating standard solution must be the same. However, the concentration of the test plating solution can be measured sufficiently.

測定の具体的一例としては、硫酸銅、硫酸、塩酸、ブライトナー、サプレッサー、及び窒素含有添加剤であるレベラーを含有するめっき液を被検めっき液とする場合、硫酸銅、硫酸、塩酸、ブライトナー、サプレッサーが被検めっき液と同じ濃度で含有され、かつ任意の濃度でレベラーを含有するめっき標準液Aを用意し、このめっき標準液Aについて2の異なる回転数で例えばAr(剥離ピークの面積(電気量))を各々測定してその測定値を上記式(8)に代入して特性値を求める。次いで、上記めっき標準液Aとはレベラー濃度のみが異なるめっき標準液Bを用意し、めっき標準液Aについて測定したときと同じ回転数でArを各々測定してその測定値を同じく上記式(8)に代入して特性値を求める。更に、必要に応じて、レベラー濃度が他のめっき標準液と異なるめっき標準液C,D,・・・を用意して同様に特性値を求める。これら得られためっき標準液A,B,C,D,・・・のそれぞれの特性値とレベラー濃度から、後述するような方法によりこれら特性値とレベラー濃度との間の関係式を求め検量線とする。このとき、用意するめっき標準液のレベラー濃度(窒素含有添加剤濃度)としては、被検めっき液を用いて実際にめっきする際に支障が生じないようにする観点から、少なくとも、被検めっき液を用いて実際にめっきを行う際の窒素含有添加剤管理濃度範囲内の濃度、当該範囲を超える濃度、当該範囲を下回る濃度の3種の濃度を選択することが好ましい。   As a specific example of measurement, copper sulfate, sulfuric acid, hydrochloric acid, brightener, suppressor, and a plating solution containing a leveler that is a nitrogen-containing additive are used as the test plating solution. A plating standard solution A is prepared in which a toner and a suppressor are contained at the same concentration as the test plating solution, and a leveler is contained at an arbitrary concentration. For this plating standard solution A, Ar (exfoliation peak Area (electric quantity)) is measured and the measured value is substituted into the above equation (8) to obtain the characteristic value. Next, a plating standard solution B that differs only in the leveler concentration from the plating standard solution A is prepared, and each Ar is measured at the same rotational speed as that measured for the plating standard solution A, and the measured values are similarly expressed by the above formula (8 ) To obtain the characteristic value. Furthermore, if necessary, a standard plating solution C, D,... Whose leveler concentration is different from other plating standard solutions is prepared, and the characteristic values are obtained in the same manner. From the respective characteristic values and leveler concentrations of the obtained plating standard solutions A, B, C, D,..., A calibration curve is obtained by calculating a relational expression between these characteristic values and the leveler concentration by a method as described later. And At this time, as a leveler concentration (nitrogen-containing additive concentration) of the plating standard solution to be prepared, at least from the viewpoint of preventing trouble when actually plating using the test plating solution, at least the test plating solution It is preferable to select three concentrations: a concentration within the nitrogen-containing additive management concentration range, a concentration exceeding the range, and a concentration below the range when actually performing plating using Pt.

また、めっき標準液についてサイクリックボルタンメトリーにより測定する場合、より高い精度で測定するためには、先に低回転で測定し、次に高回転で測定することが好ましい。これはめっき標準液中のイオウ系添加剤が回転電極表面に吸着して測定精度が悪くなる場合があるためである。また、めっき標準液を希釈又はブライトナー、サプレッサーを飽和させた後に測定してもよい。CV法やCPV法を用いる場合は、1種のめっき標準液について測定した後、電極上のめっきを剥離し、電極を洗浄した後に、次のめっき標準液について測定することが好ましい。更には、実際にめっきする際のめっき標準温度で測定することが好ましい。   When measuring the plating standard solution by cyclic voltammetry, in order to measure with higher accuracy, it is preferable to measure at a low rotation first and then at a high rotation. This is because the sulfur-based additive in the plating standard solution may be adsorbed on the surface of the rotating electrode and the measurement accuracy may deteriorate. Alternatively, the measurement may be carried out after diluting the plating standard solution or saturating the brightener or suppressor. When using the CV method or the CPV method, it is preferable to measure the following plating standard solution after measuring the plating standard solution and then peeling the plating on the electrode and washing the electrode. Furthermore, it is preferable to measure at the standard plating temperature when actually plating.

次に、上記方法で得た特性値とこれを与える窒素含有添加剤濃度とにより検量線を作成するが、窒素含有添加剤濃度が既知である1種のめっき標準液の特性値を求め、検量線式を、原点を通る一次関数とすることもできるが、より高い精度の検量線式とするためには、窒素含有添加剤濃度が異なる2種以上、好ましくは3〜5種程度の窒素含有添加剤の濃度が既知であるめっき標準液を用いて特性値を求め、それらの特性値とこの特性値を与える窒素含有添加剤濃度の間の検量線式を最小自乗法による回帰計算により1次関数、2次関数等に近似して決定することが好ましい。特に、窒素含有添加剤濃度が異なる3種以上、好ましくは3〜5種程度の窒素含有添加剤の濃度が既知であるめっき標準液を用いて特性値を求め、それらの特性値とこの特性値を与える窒素含有添加剤濃度の間の検量線式を最小自乗法による回帰計算により2次関数に近似して決定することが好ましい。この場合、検量線を求めるために特性値と共に用いる窒素含有添加剤濃度としては、めっき標準液中の窒素含有添加剤の実際の濃度を用いても、ある基準濃度からのどれだけ多いか少ないかという値を用いてもよい。   Next, a calibration curve is prepared by the characteristic value obtained by the above method and the concentration of the nitrogen-containing additive that gives the characteristic value. The characteristic value of one plating standard solution having a known nitrogen-containing additive concentration is obtained, and the calibration is performed. The linear equation can be a linear function passing through the origin, but in order to obtain a higher accuracy calibration curve equation, two or more, preferably about 3 to 5 types of nitrogen containing different nitrogen-containing additive concentrations are contained. Characteristic values are determined using plating standard solutions with known additive concentrations, and a calibration curve formula between the characteristic values and the nitrogen-containing additive concentration that gives this characteristic value is first-order by regression calculation using the least squares method. It is preferable to determine by approximating a function, a quadratic function, or the like. In particular, the characteristic values are obtained using a plating standard solution having a known concentration of 3 or more, preferably 3 to 5 nitrogen-containing additives having different nitrogen-containing additive concentrations. It is preferable to determine a calibration curve equation between the nitrogen-containing additive concentrations that gives an approximation to a quadratic function by regression calculation using the method of least squares. In this case, the nitrogen-containing additive concentration used together with the characteristic value to obtain the calibration curve is how much more or less than a certain reference concentration, even if the actual concentration of the nitrogen-containing additive in the plating standard solution is used. May be used.

また、回転電極を回転する際の回転数α及びβは特に限定されるものではないが、200〜3000rpm、特に500〜2500rpmの範囲から、めっき液中の各成分の種類や濃度に応じて、更には実際にめっき液と使用する際のビアホールやトレンチのアスペクト比を想定して、適宜回転数を2点選定して測定することができる。   Further, the rotational speeds α and β when rotating the rotating electrode are not particularly limited, but from 200 to 3000 rpm, particularly from 500 to 2500 rpm, depending on the type and concentration of each component in the plating solution, Furthermore, assuming the aspect ratio of via holes and trenches when actually used with a plating solution, the number of rotations can be appropriately selected and measured.

最後に、窒素含有添加剤濃度が未知であるめっき液の窒素含有添加剤濃度は、めっき標準液と同様に、窒素含有添加剤濃度が未知であるめっき液について上記特性値を求め、上記した方法により決定した検量線式に、窒素含有添加剤濃度が未知であるめっき液の特性値を代入すれば求めることができる。このとき、窒素含有添加剤濃度が未知であるめっき液をサイクリックボルタンメトリーで測定する際、測定値A及び測定値Bを求める回転電極の回転数は、めっき標準液を測定するときと同じ回転数α及びβとする。また、特性値k)を求める場合、めっき標準液で用いた式に対応する式を用いて(例えば、めっき標準液の特性値を上記式(3)で求めた場合には、上記式(3’)を用いて)窒素含有添加剤濃度が未知であるめっき液の特性値を求める。さらには、測定時の溶液温度等の測定条件もめっき標準液と同じにすることが好ましい。   Finally, the nitrogen-containing additive concentration of the plating solution whose nitrogen-containing additive concentration is unknown is the same as the plating standard solution, the above characteristic values are obtained for the plating solution whose nitrogen-containing additive concentration is unknown, and the method described above Substituting the characteristic value of the plating solution whose nitrogen-containing additive concentration is unknown into the calibration curve equation determined by (1) can be obtained. At this time, when the plating solution whose nitrogen-containing additive concentration is unknown is measured by cyclic voltammetry, the rotation speed of the rotating electrode for obtaining the measurement value A and the measurement value B is the same as that for measuring the plating standard solution. Let α and β be. Further, when the characteristic value k) is obtained using an equation corresponding to the equation used in the plating standard solution (for example, when the characteristic value of the plating standard solution is obtained by the above equation (3), the above equation (3) Using '), determine the characteristic value of the plating solution whose nitrogen-containing additive concentration is unknown. Furthermore, the measurement conditions such as the solution temperature at the time of measurement are preferably the same as the plating standard solution.

本発明の測定方法は、例えば、硫酸銅等の銅塩、硫酸等の無機酸及び塩化物イオンを含有する銅めっき液に微量添加される、レベラーと呼ばれる溶液中でカチオンとなる4級アンモニウム化合物などの窒素含有添加剤の濃度測定用として好適である。特に、上記銅めっき液中に、レベラーと共に、ブライトナーと呼ばれるイオウ系添加剤及び/又はサプレッサーとよばれる高分子系添加剤を含有する銅めっき液中のレベラーの濃度測定用として好適である。   The measurement method of the present invention includes, for example, a quaternary ammonium compound that becomes a cation in a solution called a leveler, which is added in a trace amount to a copper plating solution containing a copper salt such as copper sulfate, an inorganic acid such as sulfuric acid, and a chloride ion. It is suitable for measuring the concentration of nitrogen-containing additives such as In particular, it is suitable for measuring the concentration of a leveler in a copper plating solution containing a sulfur-based additive called brightener and / or a polymeric additive called suppressor together with the leveler in the copper plating solution.

本発明の測定方法により窒素含有添加剤濃度を調整しためっき液を用いためっき方法は、ダマシンやビアフィリング等の基材表面の凹部にめっきを充填して金属配線を形成する方法として好適である。この場合、先述の測定方法により窒素含有添加剤濃度を測定し、この測定した値を基にめっき液中の窒素含有添加剤濃度を予め実際のめっきにおいて規定された濃度に調整した後、該調整後のめっき液中に基材を浸漬する等してめっきすればよい。特に、ブライトナー及び/又はサプレッサーとレベラーとを含有する銅めっき液は、ビアホールの内部のような拡散層が厚い部分では、レベラーがほとんど作用しないことにより、めっき促進剤が優位に作用してめっきが促進され、ビアホール外部のような拡散層が薄い部分ではレベラーが作用することによりめっきが抑制されるという特徴を有している。従って、この場合、本発明の測定方法において用いるサイクリックボルタンメトリーにおいて回転数を適宜調整してやれば、回転電極を高回転としたときに測定される電気量、電流量のピーク値又はめっき量の値をビアホール外部のような拡散層の薄い状態に相当する値として、また、回転電極を低回転としたときに測定される電気量、電流量のピーク値又はめっき量の値をビアホール内部のような拡散層の厚い状態に相当する値として得ることができるため、実際のめっき進行状態を擬似的に生み出してめっきを管理することができ、安定した埋め性を実現することができる。   A plating method using a plating solution in which the concentration of a nitrogen-containing additive is adjusted by the measurement method of the present invention is suitable as a method for forming a metal wiring by filling a plating on a concave portion of a substrate surface such as damascene or via filling. . In this case, the nitrogen-containing additive concentration is measured by the measurement method described above, and the nitrogen-containing additive concentration in the plating solution is adjusted to a concentration specified in advance in the actual plating based on the measured value, and then the adjustment is performed. What is necessary is just to plate by immersing a base material in the subsequent plating solution. In particular, a copper plating solution containing a brightener and / or a suppressor and a leveler has a plating accelerator acting preferentially because the leveler hardly acts in a thick diffusion layer such as the inside of a via hole. This is characterized in that the plating is suppressed by the action of the leveler in a portion where the diffusion layer is thin like the outside of the via hole. Therefore, in this case, if the number of revolutions is appropriately adjusted in the cyclic voltammetry used in the measurement method of the present invention, the amount of electricity, the peak value of the current amount, or the value of the plating amount measured when the rotating electrode is rotated at a high speed can be obtained. The value corresponding to the thin state of the diffusion layer, such as the outside of the via hole, and the amount of electricity, the peak value of the current amount, or the amount of plating measured when the rotating electrode is set to low rotation are diffused as in the inside of the via hole. Since it can be obtained as a value corresponding to the thick state of the layer, it is possible to manage the plating by creating an actual plating progress state in a pseudo manner, and to realize a stable filling property.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
添加剤無添加のめっき液(以下、めっき原液という)、ブライトナー液A(下記式(10)で示される化合物)、サプレッサー液A(PEG)、及びめっき原液にレベラーA(ポリアルキルポリアミン誘導体)を所定濃度で添加しためっき液又はレベラーを添加していないめっき液を混合して表1に示される検量線作成用標準液1−1〜1−3を作成した。
[Example 1]
Additive-free plating solution (hereinafter referred to as plating solution), Brightner solution A (compound represented by the following formula (10)), suppressor solution A (PEG), and leveler A (polyalkylpolyamine derivative) in the plating solution Standard solutions 1-1 to 1-3 shown in Table 1 were prepared by mixing a plating solution with a predetermined concentration added or a plating solution not added with a leveler.

Figure 2005146343
Figure 2005146343

次に、米国ECIテクノロジー社製のCVS測定装置により、回転電極の回転数2500rpm、1500rpmでの各標準液のAr値[mC]を求め、得られた各々の回転数でのAr値を用いて、下記式(11)
(1−Ar1500rpm/Ar2500rpm)/(2500−1500)…(11)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により1次関数近似してレベラー濃度の下記検量線式(12)
y=(−1.694×105)x…(12)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.998であった。)、
下記式(13)
Ar2500rpm−Ar1500rpm…(13)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により1次関数近似してレベラー濃度の下記検量線式(14)
y=−116.941x…(14)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.997であった。)
を各々算出した。
Next, the Ar value [mC] of each standard solution at the rotational speeds of 2500 rpm and 1500 rpm of the rotating electrode was obtained by a CVS measuring device manufactured by ECI Technology, USA, and the obtained Ar values were used. The following formula (11)
(1-Ar 1500rpm / Ar 2500rpm ) / (2500-1500) ... (11)
The k value is calculated by the following equation, and the relational equation between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a linear function by regression calculation, and the following calibration curve formula (12 )
y = (− 1.694 × 10 5 ) x (12)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 998)),
Following formula (13)
Ar 2500rpm -Ar 1500rpm (13)
The k value is calculated by the following equation, and the relational expression between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a linear function by regression calculation, and the following calibration curve formula (14 )
y = −1166.941x (14)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 997.)
Was calculated respectively.

Figure 2005146343
Figure 2005146343

次に、表1に示されるレベラー濃度既知のめっき液1−4,1−5について、上記標準液の場合と同様に、回転電極の回転数2500rpm、1500rpmでの各めっき液のAr値[mC]を求め、得られたAr値を用いて、上記式(11)によりk値を算出し、これを上記検量線式(12)に代入してレベラー濃度を求めた。また、上記式(13)によりk値を算出し、これを上記検量線式(14)に代入してレベラー濃度を求めた。   Next, for plating solutions 1-4 and 1-5 with known leveler concentrations shown in Table 1, as in the case of the standard solution, the Ar value [mC of each plating solution at 2500 rpm and 1500 rpm of the rotating electrode. The k value was calculated by the above equation (11) using the obtained Ar value, and this was substituted into the calibration curve equation (12) to determine the leveler concentration. Further, the k value was calculated by the above equation (13), and this was substituted into the calibration curve equation (14) to obtain the leveler concentration.

その結果、表1に示されるように、誤差が、測定誤差の影響により実際のめっきで支障が発生するおそれのない±15%以内に収まっている上、めっき液に対してブライトナーやサプレッサーの飽和処理をすることなく式(11)及び(12)によれば誤差範囲±5%以内、式(13)及び(14)によれば誤差範囲±11%以内という従来に比べ高い精度でめっき液中のレベラー濃度を測定することができた。   As a result, as shown in Table 1, the error is within ± 15% so that there is no risk of trouble in actual plating due to the influence of the measurement error, and the brightener and suppressor of the plating solution are not affected. Without saturation processing, the plating solution has a higher accuracy than the prior art, with an error range within ± 5% according to equations (11) and (12), and within an error range within ± 11% according to equations (13) and (14). The leveler concentration in the medium could be measured.

[実施例2]
めっき原液、ブライトナー液B(下記式(15)で示される化合物)、サプレッサー液A(PEG)、及びめっき原液にレベラーB(ポリアミド誘導体)を所定濃度で添加しためっき液又はレベラーを添加していないめっき液を混合して表2に示される検量線作成用標準液2−1〜2−3を作成した。
[Example 2]
The plating solution, the brightener solution B (compound represented by the following formula (15)), the suppressor solution A (PEG), and the plating solution or leveler in which the leveler B (polyamide derivative) is added to the plating solution at a predetermined concentration are added. Standard solutions for preparing a calibration curve 2-1 to 2-3 shown in Table 2 were prepared by mixing a non-plating solution.

Figure 2005146343
Figure 2005146343

次に、米国ECIテクノロジー社製のCVS測定装置により、回転電極の回転数2000rpm、500rpmでの各標準液のAr値[mC](剥離領域の面積、以下同じ)を求め、得られた各々の回転数でのAr値を用いて、下記式(16)
(1−Ar500rpm/Ar2000rpm)/(2000−500)…(16)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により1次関数近似してレベラー濃度の下記検量線式(17)
y=(−4.803×104)x…(17)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.997であった。)
を算出した。
Next, the Ar value [mC] (area of the peeled area, the same applies hereinafter) of each standard solution at the rotation speed of the rotating electrode of 2000 rpm and 500 rpm was determined by a CVS measuring apparatus manufactured by ECI Technology, USA, and the obtained each Using the Ar value at the rotational speed, the following formula (16)
(1-Ar 500 rpm / Ar 2000 rpm ) / (2000-500) (16)
The k value is calculated by the following equation, and the relational expression between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a linear function by regression calculation, and the following calibration curve formula (17 )
y = (− 4.803 × 10 4 ) x (17)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 997.)
Was calculated.

Figure 2005146343
Figure 2005146343

次に、表3に示されるレベラー濃度既知のめっき液2−4〜2−10について、上記標準液の場合と同様に、回転電極の回転数2000rpm、500rpmでの各めっき液のAr値[mC]を求め、得られたAr値を用いて、上記式(16)によりk値を算出し、これを上記検量線式(17)に代入してレベラー濃度を求めた。   Next, for the plating solutions 2-4 to 2-10 with known leveler concentrations shown in Table 3, as in the case of the standard solution, the Ar value [mC of each plating solution at the rotational speed of the rotating electrode of 2000 rpm and 500 rpm] The k value was calculated by the above equation (16) using the obtained Ar value, and this was substituted into the calibration curve equation (17) to determine the leveler concentration.

Figure 2005146343
Figure 2005146343

その結果、表3に示されるように、誤差が、測定誤差の影響により実際のめっきで支障が発生するおそれのない±15%以内に収まっている上、めっき液に対してブライトナーやサプレッサーの飽和処理をすることなく誤差範囲±8%以内という従来に比べ高い精度でめっき液中のレベラー濃度を測定することができた。   As a result, as shown in Table 3, the error is within ± 15%, which does not cause a problem in actual plating due to the influence of the measurement error, and the brightener and suppressor of the plating solution are not affected. It was possible to measure the leveler concentration in the plating solution with higher accuracy than the conventional case where the error range was within ± 8% without performing saturation treatment.

[実施例3]
めっき原液、ブライトナー液C(下記式(18)で示される化合物)、サプレッサー液A、及びめっき原液にレベラーC(ポリアミン誘導体)を所定濃度で添加しためっき液又はレベラーを添加していないめっき液を混合して表4に示される検量線作成用標準液3−1〜3−5を作成した。
[Example 3]
Plating solution, Brightener solution C (compound represented by the following formula (18)), suppressor solution A, and plating solution in which leveler C (polyamine derivative) is added to the plating solution at a predetermined concentration, or a plating solution in which no leveler is added The standard solutions for preparing a calibration curve shown in Table 4 were prepared.

Figure 2005146343
Figure 2005146343

次に、作製した標準液3−1〜3−5をめっき原液で1/2に希釈した後、米国ECIテクノロジー社製のCVS測定装置により、回転電極の回転数2000rpm、500rpmでの各標準液のAr値[mC]を求め、得られた各々の回転数でのAr値を用いて、下記式(16)
(1−Ar500rpm/Ar2000rpm)/(2000−500)…(16)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により2次関数近似してレベラー濃度の下記検量線式(19)
y=(6.215×107)x2−(3.640×104)x…(19)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.999であった。)、
下記式(20)
1−Ar500rpm/Ar2000rpm…(20)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により2次関数近似してレベラー濃度の下記検量線式(21)
y=27.624x2−24.270x…(21)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.999であった。)
を各々算出し、検量線(図1)を作成した。
Next, after diluting the prepared standard solutions 3-1 to 3-5 with the plating stock solution to 1/2, each standard solution at the rotational speed of the rotating electrode of 2000 rpm and 500 rpm was measured with a CVS measuring device manufactured by ECI Technology, USA. The Ar value [mC] was determined, and using the obtained Ar value at each rotation number, the following formula (16)
(1-Ar 500 rpm / Ar 2000 rpm ) / (2000-500) (16)
The k value is calculated by the following equation, and the relational equation between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a quadratic function by regression calculation, and the following calibration curve formula (19 )
y = (6.215 × 10 7 ) x 2 − (3.640 × 10 4 ) x (19)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 999),
Following formula (20)
1-Ar 500rpm / Ar 2000rpm (20)
The k value is calculated by the following equation, and the relational equation between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a quadratic function by regression calculation, and the following calibration curve formula (21 )
y = 27.624x 2 −24.270x (21)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 999.)
Was calculated, and a calibration curve (FIG. 1) was prepared.

Figure 2005146343
Figure 2005146343

次に、表5に示されるレベラー濃度既知のめっき液3−6〜3−12について、上記標準液の場合と同様に、回転電極の回転数2000rpm、500rpmでの各めっき液のAr値[mC]を求め、得られたAr値を用いて、上記式(16)によりk値を算出し、これを上記検量線式(19)に代入してレベラー濃度を求めた。また、上記式(20)によりk値を算出し、これを上記検量線式(21)に代入してレベラー濃度を求めた。   Next, as for the plating solutions 3-6 to 3-12 with known leveler concentrations shown in Table 5, as in the case of the standard solution, the Ar value [mC of each plating solution at a rotational speed of the rotating electrode of 2000 rpm and 500 rpm] The k value was calculated by the above equation (16) using the obtained Ar value, and this was substituted into the calibration curve equation (19) to determine the leveler concentration. Further, the k value was calculated by the above equation (20), and this was substituted into the calibration curve equation (21) to obtain the leveler concentration.

Figure 2005146343
Figure 2005146343

その結果、表5に示されるように、誤差が、測定誤差の影響により実際のめっきで支障が発生するおそれのない±15%以内に収まっている上、めっき液に対してブライトナーやサプレッサーの飽和処理をすることなく誤差範囲±6%以内という従来に比べ高い精度でめっき液中のレベラー濃度を測定することができた。   As a result, as shown in Table 5, the error is within ± 15%, which does not cause a problem in actual plating due to the influence of the measurement error, and the brightness of the brightener or suppressor with respect to the plating solution It was possible to measure the leveler concentration in the plating solution with higher accuracy than the conventional case where the error range was within ± 6% without performing saturation treatment.

[実施例4]
めっき原液、ブライトナー液A、サプレッサー液A、及びめっき原液にレベラーD(4級アルキルアミン)を所定濃度で添加しためっき液又はレベラーを添加していないめっき液を混合して表6に示される検量線作成用標準液4−1〜4−3を作成した。
[Example 4]
Table 6 shows a mixture of a plating solution, a brightener solution A, a suppressor solution A, and a plating solution in which leveler D (quaternary alkylamine) is added at a predetermined concentration to the plating solution or a plating solution in which no leveler is added. Standard solutions for preparing a calibration curve 4-1 to 4-3 were prepared.

次に、米国ECIテクノロジー社製のCVS測定装置により、回転電極の回転数2500rpm、1000rpmでの各標準液のAr値[mC]を求め、得られた各々の回転数でのAr値を用いて、下記式(22)
(1−Ar1000rpm/Ar2500rpm)/(2500−1000)…(22)
によりk値を算出し、各々の標準液で得られたk値と、そのk値を与えたレベラー濃度との関係式を回帰計算により1次関数近似してレベラー濃度の下記検量線式(23)
y=(−1.181×105)x…(23)
(式中、xはk値、yはレベラー濃度[mL/L]である。なお、近似は原点を通る式(y切片=0)として近似した。このときの相関係数R2は0.990であった。)
を算出した。
Next, the Ar value [mC] of each standard solution at the rotation speeds of 2500 rpm and 1000 rpm of the rotating electrode was obtained by a CVS measuring device manufactured by ECI Technology, USA, and the obtained Ar values were used. The following formula (22)
(1-Ar 1000 rpm / Ar 2500 rpm ) / (2500-1000) (22)
The k value is calculated by the following equation, and the relational expression between the k value obtained with each standard solution and the leveler concentration giving the k value is approximated by a linear function by regression calculation, and the following calibration curve formula (23 )
y = (− 1.181 × 10 5 ) x (23)
(Where x is the k value and y is the leveler concentration [mL / L]. The approximation is approximated as an expression passing through the origin (y intercept = 0). At this time, the correlation coefficient R 2 is 0. 990.)
Was calculated.

Figure 2005146343
Figure 2005146343

次に、表6に示されるレベラー濃度既知のめっき液4−4,4−5について、上記標準液の場合と同様に、回転電極の回転数2500rpm、1000rpmでの各めっき液のAr値[mC]を求め、得られたAr値を用いて、上記式(22)によりk値を算出し、これを上記検量線式(23)に代入してレベラー濃度を求めた。   Next, for the plating solutions 4-4 and 4-5 with known leveler concentrations shown in Table 6, as in the case of the standard solution, the Ar value [mC of each plating solution at 2500 rpm and 1000 rpm of the rotating electrode is used. The k value was calculated by the above equation (22) using the obtained Ar value, and this was substituted into the calibration curve equation (23) to determine the leveler concentration.

その結果、表6に示されるように、誤差が、測定誤差の影響により実際のめっきで支障が発生するおそれのない±15%以内に収まっている上、めっき液に対してブライトナーやサプレッサーの飽和処理をすることなく誤差範囲±3%以内という従来に比べ高い精度でめっき液中のレベラー濃度を測定することができた。   As a result, as shown in Table 6, the error is within ± 15%, which does not cause a problem in actual plating due to the influence of the measurement error, and the brightener and suppressor are not used for the plating solution. It was possible to measure the leveler concentration in the plating solution with a higher accuracy than the conventional case where the error range was within ± 3% without performing saturation treatment.

[比較例1]
めっき原液、ブライトナー液A、サプレッサー液A、及びめっき原液にレベラーAを所定濃度で添加しためっき液又はレベラーを添加していないめっき液を混合して表7に示される検量線作成用標準液R−1〜R−4を作成した。
[Comparative Example 1]
Standard solution for preparing calibration curve shown in Table 7 by mixing plating solution, brightener solution A, suppressor solution A, plating solution with leveler A added to plating solution or plating solution without leveler added to plating solution R-1 to R-4 were prepared.

次に、米国ECIテクノロジー社製のCVS測定装置により、回転電極の回転数2500rpmで各標準液のAr値[mC]を求め、そのAr値を与えたレベラー濃度との関係式を回帰計算により1次関数近似してレベラー濃度の下記検量線式(24)
y=−1.27z+11.47…(24)
(式中、zはAr値、yはレベラー濃度[mL/L]である。このときの相関係数R2は0.993であった。)
を算出した。
Next, the Ar value [mC] of each standard solution was obtained at a rotational electrode rotation speed of 2500 rpm using a CVS measuring device manufactured by ECI Technology, USA, and the relational expression with the leveler concentration giving the Ar value was calculated by regression calculation. The following calibration curve formula for leveler concentration by approximation of the next function (24)
y = −1.27z + 11.47 (24)
(In the formula, z is an Ar value, and y is a leveler concentration [mL / L]. The correlation coefficient R 2 at this time was 0.993.)
Was calculated.

Figure 2005146343
Figure 2005146343

次に、表8に示されるレベラー濃度既知のめっき液R−5〜R−8について、上記標準液の場合と同様に、回転電極の回転数2500rpmで各めっき液のAr値[mC]を求め、得られたAr値を上記検量線式(24)に代入してレベラー濃度を求めた。   Next, for the plating solutions R-5 to R-8 with known leveler concentrations shown in Table 8, the Ar value [mC] of each plating solution is obtained at a rotational speed of 2500 rpm of the rotating electrode, as in the case of the standard solution. The leveler concentration was determined by substituting the obtained Ar value into the calibration curve equation (24).

Figure 2005146343
Figure 2005146343

その結果、表8に示されるように、誤差が、測定誤差の影響により実際のめっきで支障が発生するおそれのない±15%以内を超える場合がある上、実施例に比べばらつきの多い結果となった。   As a result, as shown in Table 8, there are cases where the error exceeds ± 15% which does not cause a problem in actual plating due to the influence of the measurement error, and the results are more varied than the examples. became.

[実施例5,6、比較例2]
実施例1で用いた標準液を用い、各実施例及び比較例において下記のように、回帰計算により検量線式を求めて検量線を作成した。
実施例5:上記式(13)により算出したk値を用いて1次関数近似で検量線を作成
実施例6:上記式(20)により算出したk値を用いて2次関数近似で検量線を作成
比較例2:比較例1と同じ手法でAr値を用いて1次関数近似で検量線を作成
[Examples 5 and 6, Comparative Example 2]
Using the standard solution used in Example 1, in each Example and Comparative Example, as shown below, a calibration curve was obtained by regression calculation to create a calibration curve.
Example 5: A calibration curve is generated by approximation of a linear function using the k value calculated by the above equation (13). Example 6: A calibration curve is approximated by a quadratic function approximation by using the k value calculated by the above equation (20). Comparative Example 2: Create a calibration curve by linear function approximation using Ar value with the same method as Comparative Example 1

次に、ブライトナーA、サプレッサーA、レベラーAをそれぞれ未知濃度含有するめっき液を用意し、このめっき液について、対応する検量線を作成した方法と同様にk値を求め(実施例5,6)又はAr値そのものを用い(比較例2)、これらをそれぞれの検量線式に代入してレベラーの濃度を測定し、この測定値を基に、実際のめっきを行う上での規定のレベラー濃度となるようにその不足分をめっき液に添加して各実施例又は比較例において用いるめっき液を調製した。   Next, a plating solution containing unknown concentrations of Brightner A, Suppressor A, and Leveler A was prepared, and k values were obtained for this plating solution in the same manner as the corresponding calibration curve was prepared (Examples 5 and 6). ) Or the Ar value itself (Comparative Example 2), substituting these into the respective calibration curve formulas to measure the leveler concentration, and based on this measured value, the prescribed leveler concentration for performing actual plating The deficiency was added to the plating solution so that the plating solution used in each Example or Comparative Example was prepared.

次に、このレベラー濃度を調整しためっき液に、穴径120μm、深さ55μmであるビアホールを有する基材を浸漬し、基材表面の膜厚が15μmとなるように、それぞれの条件でビアフィリング銅めっきを施した。めっき後のビアホールの状態を、表面からのレーザー顕微鏡による基材表面部とビア開口部における皮膜高さの差(図2に示されるhの値。なお、図2中、1は基材、2は銅めっき皮膜を示す。)の測定と、断面観察によるボイドの有無で評価した結果を表9に示す。   Next, a base material having a via hole with a hole diameter of 120 μm and a depth of 55 μm is immersed in the plating solution with the adjusted leveler concentration, and via filling is performed under each condition so that the film thickness of the base material surface becomes 15 μm. Copper plating was applied. The state of the via hole after plating is the difference in film height between the surface of the base material and the via opening by a laser microscope from the surface (value of h shown in FIG. 2. In FIG. 2, 1 is the base material, 2 Shows the copper plating film.) Table 9 shows the results of the evaluation and the presence or absence of voids by cross-sectional observation.

Figure 2005146343
Figure 2005146343

表9の結果から、k値を用いたレベラー濃度測定によりめっき液のレベラー濃度を調整すれば、めっき液のレベラーの作用を簡便な方法で理想的な状態にすることができる。また、皮膜高低差が基材表面のめっき膜厚以下となっており、めっき液の埋め性を容易に確保することができる。特に、Arの所定値に対する比の差、即ち、異なる2種の回転数で回転電極を回転させながら回転電極と対極との間で電圧を掃引したときに各々測定される、回転電極上にめっきを析出させる際若しくはこの回転電極上に析出しためっきを溶解剥離させる際に要する電気量若しくは電流量のピーク値又は回転電極上に析出しためっき量の、上記2種の回転数のうちの高回転数時若しくは低回転数時の測定値に対する比、又は上記2種の回転数のうちの高回転数時若しくは低回転数時の測定値と、上記2種の回転数の差との積に対する比の、上記2種の回転数における比の差をk値とすることで、予めブライトナーやサプレッサーの濃度を測定しなくても、実際のめっきにおいて、より穴埋め性に優れた結果を得ることができることがわかる。これは、上述したArの所定値に対する比の差により表される拡散層でのレベラーの作用の違いに注目し、その作用の状態が反映された結果が得られるためであり、これにより、ビアホール外部と内部とのめっき成長のバランスを高精度に調整しためっき液を調製することが可能になる。   From the results of Table 9, if the leveler concentration of the plating solution is adjusted by measuring the leveler concentration using the k value, the leveler action of the plating solution can be brought into an ideal state by a simple method. Further, the difference in film height is equal to or less than the plating film thickness on the surface of the base material, and the fillability of the plating solution can be easily ensured. In particular, the difference in the ratio of Ar to a predetermined value, that is, plating on the rotating electrode, each measured when the voltage is swept between the rotating electrode and the counter electrode while rotating the rotating electrode at two different rotation speeds. Of the two kinds of rotation speeds of the peak value of the amount of electricity or current required for dissolving or peeling the plating deposited on the rotating electrode or the amount of plating deposited on the rotating electrode. The ratio to the measured value at the time of several times or low speed, or the ratio to the product of the measured value at the time of high speed or low speed of the two kinds of speeds and the difference between the two kinds of speeds. By making the difference between the ratios of the above two rotation speeds k value, it is possible to obtain more excellent hole filling performance in actual plating without measuring the concentration of brightener or suppressor in advance. I understand that I can do it. This is because the difference in the action of the leveler in the diffusion layer represented by the difference in the ratio of Ar to the predetermined value described above is noted, and a result reflecting the state of the action is obtained. It is possible to prepare a plating solution in which the balance of plating growth between the outside and the inside is adjusted with high accuracy.

実施例3における検量線である。4 is a calibration curve in Example 3. 基材表面部とビア開口部における皮膜高さの差を説明する図である。It is a figure explaining the difference in the film | membrane height in a base-material surface part and a via opening part.

符号の説明Explanation of symbols

1 基材
2 銅めっき皮膜
1 Base material 2 Copper plating film

Claims (4)

イオウ系添加剤及び/又は高分子系添加剤と、窒素含有添加剤とを含むめっき液中において、当該イオウ系添加剤及び高分子添加剤の濃度を測定することなく当該窒素含有添加剤の濃度をサイクリックボルタンメトリーにより測定する方法であって、
上記添加剤を既知の濃度で含有する1種又は2種以上のめっき標準液の各々について、回転電極を異なる2の回転数α及びβで回転させて測定値a及びbを各々求め、
上記測定値a,bの差及び/又は比率を用いた特性値と上記めっき標準液の添加剤濃度とにより検量線を作成し、
上記添加剤濃度が未知であるめっき液について上記特性値を求め、該めっき液の特性値から上記検量線を基準として上記めっき液の添加剤濃度を決定することを特徴とする添加剤濃度の測定方法。
The concentration of the nitrogen-containing additive in the plating solution containing the sulfur-based additive and / or the polymer-based additive and the nitrogen-containing additive without measuring the concentration of the sulfur-based additive and the polymer additive. Is measured by cyclic voltammetry,
For each of one or more plating standard solutions containing the additive at a known concentration, the measured values a and b are determined by rotating the rotating electrode at two different rotational speeds α and β,
Create a calibration curve by the characteristic value using the difference and / or ratio of the measured values a and b and the additive concentration of the plating standard solution,
Determination of the additive concentration of the plating solution, wherein the characteristic value is determined for the plating solution having an unknown additive concentration, and the additive concentration of the plating solution is determined based on the calibration curve from the characteristic value of the plating solution. Method.
前記特性値が、下記(I)乃至(VI)
(I) 測定値a(測定値A)−測定値b(測定値B)
(II) 測定値b(測定値B)−測定値a(測定値A)
(III) 1−測定値a(測定値A)/測定値b(測定値B)
(IV) 1−測定値b(測定値B)/測定値a(測定値A)
(V) 測定値a(測定値A)/測定値b(測定値B)−1
(VI) 測定値b(測定値B)/測定値a(測定値A)−1
のいずれか1つを用いて求められる値であることを特徴とする請求項1記載の添加剤濃度の測定方法。
The characteristic values are the following (I) to (VI)
(I) Measured value a (Measured value A) −Measured value b (Measured value B)
(II) Measured value b (Measured value B) −Measured value a (Measured value A)
(III) 1-Measured value a (Measured value A) / Measured value b (Measured value B)
(IV) 1-Measured value b (Measured value B) / Measured value a (Measured value A)
(V) Measured value a (Measured value A) / Measured value b (Measured value B) -1
(VI) Measured value b (Measured value B) / Measured value a (Measured value A) -1
The additive concentration measuring method according to claim 1, wherein the value is obtained using any one of the following.
前記めっき液が前記窒素含有添加剤としてレベラーを含む銅めっき液であることを特徴とする請求項1又は2記載の添加剤濃度の測定方法。   The method for measuring an additive concentration according to claim 1 or 2, wherein the plating solution is a copper plating solution containing a leveler as the nitrogen-containing additive. 請求項1乃至3のいずれか1項に記載の添加剤濃度の測定方法により添加剤濃度を測定して濃度を決定しためっき液を用い、基材の穴又は溝をめっきで充填することを特徴とするめっき方法。   A plating solution in which the concentration is determined by measuring the additive concentration by the method for measuring an additive concentration according to any one of claims 1 to 3 is used to fill holes or grooves in the substrate with plating. Plating method.
JP2003384845A 2003-11-14 2003-11-14 Measuring method for concentration of additive, and plating method Pending JP2005146343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384845A JP2005146343A (en) 2003-11-14 2003-11-14 Measuring method for concentration of additive, and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384845A JP2005146343A (en) 2003-11-14 2003-11-14 Measuring method for concentration of additive, and plating method

Publications (1)

Publication Number Publication Date
JP2005146343A true JP2005146343A (en) 2005-06-09

Family

ID=34693109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384845A Pending JP2005146343A (en) 2003-11-14 2003-11-14 Measuring method for concentration of additive, and plating method

Country Status (1)

Country Link
JP (1) JP2005146343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243840A (en) * 2011-05-17 2012-12-10 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
US9730337B2 (en) 2011-05-27 2017-08-08 C. Uyemura & Co., Ltd. Plating method
CN111650249A (en) * 2020-06-05 2020-09-11 麦德美科技(苏州)有限公司 Analysis method of through hole filling electroplating leveling agent of IC carrier plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243840A (en) * 2011-05-17 2012-12-10 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
US9730337B2 (en) 2011-05-27 2017-08-08 C. Uyemura & Co., Ltd. Plating method
CN111650249A (en) * 2020-06-05 2020-09-11 麦德美科技(苏州)有限公司 Analysis method of through hole filling electroplating leveling agent of IC carrier plate

Similar Documents

Publication Publication Date Title
US9856574B2 (en) Monitoring leveler concentrations in electroplating solutions
JP4221296B2 (en) Improved method for analyzing three types of organic additives in acidic copper plating baths
JP2009299193A (en) Analysis device for copper-electroplating solution
US20050072683A1 (en) Copper plating bath and plating method
WO2001016405A1 (en) Method for measuring leveler concentration of plating solution, and method and apparatus for controlling plating solution
US20050067297A1 (en) Copper bath for electroplating fine circuitry on semiconductor chips
US8535504B2 (en) Analysis of an auxiliary leveler additive in an acid copper plating bath
JP6129242B2 (en) Plating method
KR102192417B1 (en) Additive for copper electroplating bath, copper electroplating bath containing said additive, and copper electroplating method using said copper electroplating bath
EP1490675A2 (en) Reference electrode calibration for voltammetric plating bath analysis
WO2003014720A9 (en) Interference correction of additives concentration measurements in metal electroplating solutions
Manu et al. Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application
JP2005146343A (en) Measuring method for concentration of additive, and plating method
JP2001073183A (en) Method for measuring leveler concentration in copper sulfate plating liquid
US6592747B2 (en) Method of controlling additives in copper plating baths
KR101691949B1 (en) Measurement method of iodide in plating solution
TW201538974A (en) Electrolytic copper plating solution analysis device and electrolytic copper plating solution analysis method
KR101725456B1 (en) Measurement method of average molecular weight of polymeric suppressor in plation soultion
JP5028575B2 (en) Method for measuring nitrogen-containing organic compound concentration in copper sulfate plating solution
Rohde et al. Filling TSV of different dimension using galvanic copper deposition
JP4385824B2 (en) Method and apparatus for analyzing electrolytic copper plating solution
JP5365296B2 (en) Wet plating method and wet plating apparatus
Nagai et al. Electroplating copper filling for 3D packaging
KR102274872B1 (en) Measurement method of bromide concentration in plating solution
CN113960148B (en) Electrochemical method for predicting plating uniformity of plating solution, method for screening plating solution and application