JP2005146316A - Method and apparatus for hardening rolling contact surface of metallic rotating ring - Google Patents

Method and apparatus for hardening rolling contact surface of metallic rotating ring Download PDF

Info

Publication number
JP2005146316A
JP2005146316A JP2003383177A JP2003383177A JP2005146316A JP 2005146316 A JP2005146316 A JP 2005146316A JP 2003383177 A JP2003383177 A JP 2003383177A JP 2003383177 A JP2003383177 A JP 2003383177A JP 2005146316 A JP2005146316 A JP 2005146316A
Authority
JP
Japan
Prior art keywords
contact surface
rolling contact
metal
inductor
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383177A
Other languages
Japanese (ja)
Inventor
Yasuo Watanabe
康男 渡辺
Tadanobu Miyagawa
忠伸 宮川
Michio Tanabe
道夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2003383177A priority Critical patent/JP2005146316A/en
Publication of JP2005146316A publication Critical patent/JP2005146316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Rolling Contact Bearings (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the voltage exceeding a regulated value from being applied to a worker when the induction-heating is performed with a large circle heating so as not to form a soft zone, even in the case of induction-heating a rolling-contact surface of a large diameter metallic rotating ring. <P>SOLUTION: When the rolling-contact surface 23a of the metallic rotating ring 23 is hardened by utilizing the induction-heating, the plurality of inductors 30a, 30b, 30c are connected in the annular state so as to be faced to the rolling-contact surface 23a, and the large circle heating is performed by supplying the high-frequency current to these inductors 30. At this time, the voltage having ≤600V is applied to each of the inductors 30a, 30b, 30c and the voltage exceeding 600V in the total is applied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、大型機械の旋回部に使用する大径金属旋回輪の転動接触面を焼入れするための方法および装置に関する。旋回部を有する大型機械としては、パワーショベルや,ブルドーザー,大型クレーンといった建設機械・土木機械が典型的であるが、大型の風車なども挙げられる。
なお、本明細書でいう「金属旋回輪」は、転がり軸受の軌道輪(ベアリングレース)の内の、外径が1m以上の大径のものを指しており、大径であるが故に特殊な製法で製造されている。
The present invention relates to a method and apparatus for quenching a rolling contact surface of a large-diameter metal turning wheel used in a turning part of a large machine. As a large machine having a swivel unit, a construction machine and a civil engineering machine such as a power shovel, a bulldozer, and a large crane are typical, but a large windmill is also included.
The “metal swivel ring” in this specification refers to a rolling bearing bearing ring (bearing race) having a large diameter with an outer diameter of 1 m or more, and is special because it has a large diameter. It is manufactured by the manufacturing method.

すなわち、汎用的な軸受に用いられる外径が1m未満の軌道輪であれば、上記焼入れが、例えばガス炉や浸炭炉等で全体加熱し、小物の場合には複数体を纏めて加熱するなどして量産的に行われるのに対し、大径の金属旋回輪では、設備の経済性,加熱不要部を含めたスケールアップに伴う無駄なエネルギー消費の増大,大型化による難ハンドリング性(特に、変形しやすい加熱時)などが相まって全体加熱には適さないので、耐摩耗性の向上が必要な転動接触面の而も表層部のみを対象として、誘導加熱を利用した一品的な焼入れ処理が行われる。そして、上記大径由来の諸々の特徴は、誘導加熱方式の焼入れ処理に対しても種々の技術的課題をもたらしてきた。   In other words, if the outer ring used for a general-purpose bearing has an outer diameter of less than 1 m, the above quenching is performed, for example, in a gas furnace or a carburizing furnace, and in the case of small articles, a plurality of bodies are heated together. In contrast to mass production, large-sized metal swivel wheels are economical in equipment, wasteful energy consumption associated with scale-up including parts that do not require heating, and difficult handling due to large size (especially, Because it is not suitable for overall heating due to the combination of heating that is easy to deform, etc., a single quenching process using induction heating is applied only to the surface layer of the rolling contact surface that requires improved wear resistance. Done. And the various features derived from the above-mentioned large diameter have brought various technical problems to the induction heating type quenching treatment.

大型機械の旋回部に使用する金属旋回輪には外径が3mを超える大径のものもあることから、金属旋回輪の転動接触面の焼入れには、良く知られた周方向移動焼入方式が多用されている。この周方向移動焼入方式は(図13参照)、金属旋回輪10の転動接触面11(図の例では内周面)の周方向の一部区間を占める小領域を誘導加熱する比較的小さな誘導子12を転動接触面に対向させて、転動接触面と誘導子12とを相対的に周方向へ移動させながら行うものであり、建設機械や土木機械などの旋回部に使用される金属旋回輪に関しては、満足のいく効果を挙げている。   Some metal turning wheels used for turning parts of large machines have a large diameter exceeding 3 m. Therefore, the well-known circumferential moving hardening is used for quenching the rolling contact surface of metal turning wheels. The method is heavily used. In this circumferential movement quenching method (see FIG. 13), a relatively small area that occupies a partial section in the circumferential direction of the rolling contact surface 11 (in the illustrated example, the inner peripheral surface) of the metal turning wheel 10 is relatively heated. The small inductor 12 is opposed to the rolling contact surface, and the rolling contact surface and the inductor 12 are moved relative to each other in the circumferential direction, and are used for turning parts such as construction machines and civil engineering machines. Satisfactory effects are given for the metal turning wheels.

周方向移動焼入方式では、転動接触面11の一箇所から焼入れを開始し、環状の転動接触面11のほぼ全周を焼入れした後、焼入れを終了するが、その際に焼入れのスタート部13とストップ部14とが重なると焼割れが生じることがあるため、スタート部(焼入れ開始点)とストップ部(焼入れ終了点)との間に、非焼入部であるソフトゾーン15が入れられる(例えば特許文献1参照)。   In the circumferential direction moving quenching method, quenching is started from one place on the rolling contact surface 11, and the quenching is finished after quenching almost the entire circumference of the annular rolling contact surface 11. If the part 13 and the stop part 14 overlap, quench cracks may occur, so that a soft zone 15 that is a non-quenched part is inserted between the start part (quenching start point) and the stop part (quenching end point). (For example, refer to Patent Document 1).

その他、金属旋回輪の焼入れではないが、誘導加熱の応用例として、使用済みブラウン管に装着されている防爆ベルトの加熱が知られている(例えば特許文献2参照)。これは、大径金属旋回輪に対する転動接触面の部分焼入れと異なり、小径の汎用軸受の場合と同じくベルト全体を加熱するが、到達温度が低い点では小径の汎用軸受の焼入れとも異なり、さらに、ブラウン管の角形に対応してコイルエレメントが4個に分割されている点や、ブラウン管の各種サイズに適合すべくコイルエレメントの位置を変化させるシリンダ装置等の位置決め手段が設けられている点も、特徴的である。   In addition, heating of an explosion-proof belt attached to a used cathode ray tube is known as an application example of induction heating, although it is not quenching of a metal swirl wheel (see, for example, Patent Document 2). This is different from the partial quenching of the rolling contact surface for the large-diameter metal swirling wheel, but the entire belt is heated as in the case of the small-diameter general-purpose bearing, but it differs from the quenching of the small-diameter general-purpose bearing in that the ultimate temperature is low. The point that the coil element is divided into four parts corresponding to the square shape of the cathode ray tube, and the positioning means such as a cylinder device that changes the position of the coil element to suit various sizes of the cathode ray tube are provided. It is characteristic.

その通電態様は直列の他に並列や直並列も可能であり、それに関する具体例として一対の給電線から適宜分岐して給電する接続例が開示されている(特許文献2図5参照)。
また、複数の誘導子に高周波通電を行うに際して並列接続を利用した例は他にも知られている(例えば特許文献3参照)。これには電源装置も明記されており、各誘導子に至る給電線が分岐点で接続されて一対に纏められ、この一対の給電線を介して一台の電源装置から高周波電流が供給されるようになっている。
In addition to serial connection, the power supply mode may be parallel or series-parallel, and a specific example relating thereto is disclosed a connection example in which power is appropriately branched from a pair of power supply lines (see FIG. 5 of Patent Document 2).
In addition, another example in which parallel connection is used when performing high-frequency energization to a plurality of inductors is also known (see, for example, Patent Document 3). The power supply device is also specified in this, and the power supply lines leading to each inductor are connected at a branch point to be combined into a pair, and high frequency current is supplied from one power supply device through the pair of power supply lines. It is like that.

特公平2−48604号公報 (第1頁、第5図)Japanese Examined Patent Publication No. 2-48604 (Page 1, Fig. 5) 特開2000−3778号公報 (第1頁、図5)JP 2000-3778 (first page, FIG. 5) 特開平11−209865号公報 (図7)JP-A-11-209865 (FIG. 7)

ところで、上述したソフトゾーンは焼入れされた部分に比べて摩耗しやすいが、パワーショベルやブルドーザー等には旋回角度・旋回範囲を360゜未満に制限する死点があることから、この死点に転動接触面のソフトゾーンを合わせて金属旋回輪を使用すれば、ソフトゾーンへの力学的負荷を軽減できるので、転動に伴うソフトゾーンの摩耗によって金属旋回輪の寿命が不都合に縮まるといった問題は実質的に無い。また、これらの機械は、間欠運転が常態であって稼働時間が短いため、ソフトゾーンに対する摩耗や載荷の機会が少ないことも、金属旋回輪の寿命に幸いしている。   By the way, the soft zone described above is more easily worn than the hardened part. However, power shovels and bulldozers have dead points that limit the turning angle and turning range to less than 360 °. If the metal swivel wheel is used with the soft zone of the dynamic contact surface, the mechanical load on the soft zone can be reduced, so there is a problem that the life of the metal swirl wheel is inconveniently shortened due to wear of the soft zone due to rolling. There is virtually no. Moreover, since these machines are in an intermittent operation and the operation time is short, the wear of the soft zone and the chance of loading are also small, and the metal swirling wheel has a long life.

これに対し、風力発電所の風車等の旋回部には、そのような死点が無く、間欠運転も望めない。風力発電用風車は旋回角度・旋回範囲の制限がなく自由に而も長時間回転するが、このような機械・装置の旋回部に、ソフトゾーンを有する金属旋回輪を使用すると、転動接触面の摩耗については、当然ながら、焼入れしてないソフトゾーン部分が、焼入れ済みの他の部分に比較して、はやく摩耗する。そのため、金属旋回輪の寿命がソフトゾーンの摩耗に支配され、焼入れされた転動接触面が殆ど正常なままであるにもかかわらず金属旋回輪が使用不能になる、といった極めて不所望な事態に至る。
このようなソフトゾーンの摩耗に対しては、ソフトゾーンを斜めに形成してソフトゾーンの集中的な摩耗を緩和する(例えば特許文献1参照)等のことで、かなりの程度まで、事態を改善することができる。
On the other hand, a turning part such as a windmill of a wind power plant does not have such a dead point, and intermittent operation cannot be expected. Wind turbines for wind power generation are free to rotate for a long time without restrictions on the turning angle and turning range, but if a metal turning wheel with a soft zone is used for the turning part of such a machine or device, the rolling contact surface As a matter of course, the soft zone portion that has not been hardened wears faster than other portions that have been hardened. As a result, the life of the metal swirling wheel is dominated by the wear of the soft zone, and the metal swirling wheel becomes unusable even though the hardened rolling contact surface remains almost normal. It reaches.
For such soft zone wear, the situation is improved to a considerable extent by forming the soft zone diagonally to alleviate intensive wear of the soft zone (see, for example, Patent Document 1). can do.

しかしながら、近年、風車の大形化が進んできて、転動接触面に掛かる負荷が増大してきたため、上記ソフトゾーンの影響緩和程度の施策では足りず、転動接触面からソフトゾーンそのものを無くすことが要請されることとなった。かかる要請に応えるには、従来より多用されてきた周方向移動焼入方式を諦めて、他の焼入方式の採用を考えなければならない。もっとも、外径が1mを超えるような大径の金属旋回輪の場合、汎用的なベアリングレースのような全体加熱は難しいので、表面だけ而もその一部を選択して加熱することができる誘導加熱の手法を改良して、転動接触面を焼入れしてもソフトゾーンが形成されないようにすることが基本的な課題となる。   However, in recent years, wind turbines have become larger, and the load on the rolling contact surface has increased. Therefore, measures to mitigate the effects of the soft zone are not sufficient, and the soft zone itself is eliminated from the rolling contact surface. Was requested. In order to respond to such a request, it is necessary to give up the circumferentially moving quenching method that has been widely used, and to adopt another quenching method. However, in the case of a large-diameter metal turning wheel with an outer diameter exceeding 1 m, it is difficult to heat the entire surface like a general-purpose bearing race, so induction can be performed by selecting only part of the surface and heating it. A fundamental problem is to improve the heating method so that no soft zone is formed even if the rolling contact surface is quenched.

そして、そのような基本課題を解決するには、誘導加熱を利用して金属旋回輪の転動接触面に焼入れ処理を施すに際して、前記転動接触面に環状の誘導子を対向させ、前記誘導子に高周波通電を行うことで、前記転動接触面の総て又は一部たとえば前記金属旋回輪の外周面,内周面,端面などを大円加熱し、それから、その加熱部位を冷却手段(第1冷却手段とする)にて冷却する、といったことが考えられる。なお、その誘導加熱に際して、前記誘導子には、誘導加熱に適した適宜な幅のものが用いられ、それを前記転動接触面に対向させるときには、誘導加熱に適した適宜な間隙がとられる。また、上記の「大円加熱」とは、環状の転動接触面を、その全周を閉ループ電路として周回(以下、大円周回という)する誘導電流を生じさせて全周同時に誘導加熱することを指している。   And in order to solve such a basic problem, when performing quenching treatment on the rolling contact surface of the metal swirl ring using induction heating, an annular inductor is made to face the rolling contact surface, and the induction By applying high-frequency energization to the child, all or a part of the rolling contact surface, for example, the outer peripheral surface, inner peripheral surface, end surface, etc. of the metal swirl ring is heated to a great circle, and then the heated portion is cooled by a cooling means ( It is conceivable that the first cooling means is used for cooling. In the induction heating, the inductor having an appropriate width suitable for induction heating is used, and when it is opposed to the rolling contact surface, an appropriate gap suitable for induction heating is taken. . In addition, the above-mentioned “large circle heating” means that the annular rolling contact surface is inductively heated all around the circumference simultaneously by generating an induction current that circulates around the entire circumference of the contact surface as a closed loop electric circuit (hereinafter referred to as a great circle circumference). Pointing.

この場合、誘導加熱時に誘導子によって転動接触面に電流が誘導されるが、誘導子が大円加熱の可能な環状になっているので、転動接触面の全周を周回する誘導電流が生じて、転動接触面の処理対象部は全周一様に隈なく加熱され、次いでその加熱部が冷却される。
これにより、転動接触面には周方向に切れ目のない形で全周一様に焼入れが施されることになり、そのため、ソフトゾーンは生じ得ないので、転動接触面にソフトゾーンの無い焼入れの施された金属旋回輪を提供することができる。
In this case, an electric current is induced on the rolling contact surface by the inductor during induction heating, but since the inductor has an annular shape that can be heated by a large circle, an induced current that circulates the entire circumference of the rolling contact surface is generated. As a result, the processing target portion of the rolling contact surface is uniformly heated all around, and then the heating portion is cooled.
As a result, the rolling contact surface is uniformly hardened in a circumferentially continuous shape, and therefore, a soft zone cannot be generated, so that the rolling contact surface has no soft zone. It is possible to provide a metal swirling wheel provided with the above.

ところが、このような大円加熱の手法で実際に金属旋回輪の転動接触面の焼入れを行ってみると、外径が1mや2mの金属旋回輪では満足できる結果が得られたが、金属旋回輪の外径が3m前後に及ぶ超大径のものとなると、技術的に解決すべき更なる課題が幾つか生じた。具体的には、(a)誘導加熱中の金属旋回輪外径変化が無視できないレベルに達して、硬度不足や硬度むらが生じやすくなったという問題の解消、(b)複数列の転動接触面を有する金属旋回輪の場合、或る転動接触面の焼入れ中に他の焼入れ済の転動接触面までが不所望に温度上昇して硬度が低下してしまうという問題の解消、(c)上記課題(a),(b)の解決を、作業者に重大な感電リスクが及ばないような誘導子への通電条件と両立させて実現する技術の提供、の3点である。   However, when the rolling contact surface of the metal slewing ring was actually quenched by such a method of heating with a great circle, satisfactory results were obtained with the metal slewing ring having an outer diameter of 1 m or 2 m. When the outer diameter of the swivel wheel becomes an extremely large diameter of about 3 m, several further problems to be solved technically occurred. Specifically, (a) the problem that the change in the outer diameter of the metal swirling wheel during induction heating has reached a level that cannot be ignored, and insufficient hardness or unevenness of hardness is likely to occur, (b) multiple rows of rolling contacts In the case of a metal swirling wheel having a surface, elimination of the problem that the hardness is undesirably increased during quenching of a certain rolling contact surface up to another quenched rolling contact surface and the hardness is reduced. (C 3) The provision of a technology that realizes the solution of the above-mentioned problems (a) and (b) in combination with the condition of energizing the inductor so that a significant electric shock risk does not reach the worker.

これらの技術的課題について補足すると、先ず(a)について云えば、上記外径変化は熱膨張起因のものであり、その内訳は外径寸法増とそれに伴う非真円化歪(素材に内在する微妙な異方性などに起因)とである。そして、上記外径変化が超大径に比例して高位に達する結果、外径寸法増が誘導子との間隙の平均寸法の変化(外周面では減少、内周面では増加)につながって主として内周面の硬度不足をもたらし、また、非真円化歪が間隙寸法のばらつきにつながって硬度斑をもたらすというものである。即ち、加熱時には必至の熱膨張という現象が、外径が1〜2mの金属旋回輪では大した障害とはならず、外径3m前後の超大径金属旋回輪では由々しい障害になるという寸法効果の問題であり、これを解決するためには、転動接触面の焼入れ温度への加熱を、熱膨張を抑制しながら行う等の新たな技術の提供が課題となる。   To supplement these technical issues, first, regarding (a), the change in the outer diameter is caused by thermal expansion, and the breakdown is the increase in the outer diameter and the accompanying non-rounded strain (inherent in the material). Due to subtle anisotropy). As a result of the outer diameter change reaching a higher level in proportion to the super-large diameter, the increase in the outer diameter leads to a change in the average dimension of the gap with the inductor (decrease on the outer peripheral surface and increase on the inner peripheral surface), mainly the inner diameter. This results in insufficient hardness of the peripheral surface, and non-rounding strain leads to variation in gap size, resulting in hardness spots. That is, the phenomenon that inevitable thermal expansion during heating is not a major obstacle for metal turning wheels with an outer diameter of 1 to 2 m, but a serious obstacle for ultra-large diameter metal turning wheels with an outer diameter of around 3 m. In order to solve this problem, it is necessary to provide a new technique such as heating the rolling contact surface to the quenching temperature while suppressing thermal expansion.

次に(b)は、加熱中の転動接触面から加熱対象外の他の転動接触面への伝熱の問題であるから、これを解決するためには、転動接触面の焼入れ温度への加熱を、伝熱による周囲の昇温が不都合なレベルに達しない短時間で行う技術の提供が課題となる。
また、(c)は、前記通電条件が特大の径と大円加熱に伴う総入熱量増の要請も同時に満たすことを要件とするものであることから、難度の高い課題である。
Next, (b) is a problem of heat transfer from the rolling contact surface during heating to another rolling contact surface that is not heated. To solve this, the quenching temperature of the rolling contact surface Therefore, it is a problem to provide a technique for performing heating in a short time in which the surrounding temperature rise due to heat transfer does not reach an inconvenient level.
Further, (c) is a highly difficult problem because the energization condition requires that an extra large diameter and a request for an increase in total heat input accompanying large circle heating be simultaneously satisfied.

さらに、(c)の課題は、電圧面の課題と電力面の課題を含んでいる。電圧面の課題とは、金属旋回輪の大径化に伴って転動接触面の周長が長くなると、大円加熱では環状誘導子に印加する電圧も高くなり、その電圧が電気設備基準の規定値を超えることがあるので、そのような高電圧が作業者に掛かることのないようにする、という課題である。また、電力面の課題とは、金属旋回輪の大径化に伴って周長が長くなると、大円加熱では環状誘導子に供給する電力も増大し、その電力が既存の高周波電源装置の最大出力を超えることもあるが、そのようなときでも所要の電力が供給されるようにする、という課題である。   Further, the problem (c) includes a voltage problem and a power problem. The problem of the voltage surface is that when the circumference of the rolling contact surface becomes longer as the diameter of the metal swirl wheel becomes larger, the voltage applied to the annular inductor also increases in the circular heating, and this voltage is based on the electrical equipment standard. Since the specified value may be exceeded, it is a problem to prevent such a high voltage from being applied to the worker. Also, the problem of power is that when the circumference increases with the diameter of the metal swirl wheel, the power supplied to the annular inductor increases with large circle heating, which is the maximum power of the existing high frequency power supply device. Although it may exceed the output, it is a problem that required power is supplied even in such a case.

本発明は、このような電圧面の課題を解決するものであり、焼入れのための誘導加熱を大円加熱で行う際に規定値超の印加電圧が作業者に掛かるおそれの無い金属旋回輪転動接触面の焼入れ方法を実現することを目的とする。
また、本発明の金属旋回輪転動接触面の焼入れ方法及び装置は、電圧面の課題に加えて電力面の課題も解決するものであり、高周波電源装置の最大出力を超える電力を供給できるようにすることも目的とする。
さらに、本発明の金属旋回輪転動接触面の焼入れ方法及び装置は、電圧面や電力面の課題に加えて伝熱の問題や寸法効果の問題を解決することまでも目的とする。
The present invention solves such a voltage problem, and when rotating induction heating for quenching by great circle heating, there is no risk that an applied voltage exceeding a specified value is applied to the operator. It aims at realizing the quenching method of the contact surface.
In addition, the method and apparatus for quenching the rolling contact surface of the metal swivel wheel of the present invention solves the problem of power in addition to the problem of voltage, so that power exceeding the maximum output of the high frequency power supply can be supplied. The purpose is to do.
Furthermore, the metal quenching wheel rolling contact surface quenching method and apparatus according to the present invention have an object to solve the problem of heat transfer and the problem of size effect in addition to the problems of voltage and power.

本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項1)は、このような課題を解決するために創案されたものであり、誘導加熱を利用して金属旋回輪の転動接触面を焼入れする金属旋回輪転動接触面の焼入れ方法において、前記誘導加熱を行うとき、前記転動接触面に対向させて複数の誘導子を環状に分断配列して、これらの誘導子に高周波通電して大円加熱し、その際、前記高周波通電に際して前記誘導子それぞれには600V以下の電圧を印加する条件の下で所望の誘導起電力が得られるように前記誘導子の複数化の数値を定めておくことを特徴とする。   The quenching method (initial claim 1) of the metal slewing ring rolling contact surface of the present invention was devised in order to solve such a problem, and the rolling contact surface of the metal slewing ring using induction heating. In the quenching method of the rolling contact surface of the metal swirl wheel that quenches the metal, when performing the induction heating, a plurality of inductors are arranged in a ring-like manner so as to face the rolling contact surface, and high frequency current is supplied to these inductors. In this case, the number of inductors is determined so that a desired induced electromotive force can be obtained under the condition that a voltage of 600 V or less is applied to each of the inductors during the high-frequency energization. It is characterized by keeping.

ここで、上記の「大円加熱」とは、上述したように、環状の転動接触面を大円周回する(即ち転動接触面の全周を閉ループ電路として周回する)誘導電流を生じさせて全周同時に誘導加熱することを指している。周方向に関して全周同時に誘導加熱すれば良く、幅方向に関しては、転動接触面の全幅が対象であってもよいし、一部の幅が対象であってもよい。具体的には、転動接触面の全域(全周全幅)の同時加熱は、大円加熱に該当する。転動接触面のうち金属旋回輪の外周面部分の全域や,内周面部分の全域,両端面の何れか一方または双方の全域を同時に加熱するのも、大円加熱に該当する。転動接触面を輪切り状に区割りした小幅環状領域のうち何れかについて周方向の全域を同時に加熱するのも、大円加熱に該当する。これに対し、転動接触面の周方向の一部分を局所加熱するような誘導加熱は、主としてその局所を周回する(即ち、前記大円周回ではない)誘導電流が生じることになるので本発明での大円加熱には該当しない。   Here, the “large circle heating” mentioned above, as described above, generates an induced current that makes a large circle around the annular rolling contact surface (that is, turns around the entire circumference of the rolling contact surface as a closed loop electric circuit). Induction heating at the same time around the entire circumference. The entire circumference may be induction-heated at the same time in the circumferential direction, and the entire width of the rolling contact surface may be the target or a part of the width may be the target in the width direction. Specifically, simultaneous heating of the entire rolling contact surface (entire full width) corresponds to great circle heating. Heating the entire outer peripheral surface portion, the inner peripheral surface portion, or both or both end surfaces of the metal swirling wheel in the rolling contact surface simultaneously corresponds to great circle heating. Heating the entire circumferential direction at the same time in any one of the narrow annular regions obtained by dividing the rolling contact surface into a ring shape also corresponds to great circle heating. On the other hand, the induction heating that locally heats a part of the rolling contact surface in the circumferential direction mainly generates an induced current that circulates locally (that is, not the large circle). This does not apply to the great circle heating.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項2)は、上記の当初請求項1の金属旋回輪転動接触面の焼入れ方法であって更に、前記高周波通電に際して相互に絶縁された複数の電源から同相の電流を供給することを特徴とする。
さらに、本発明の金属旋回輪転動接触面の焼入れ装置(当初請求項3)は、誘導加熱を利用して金属旋回輪の転動接触面を焼入れする金属旋回輪転動接触面の焼入れ装置において、前記金属旋回輪を支持する架台と、前記転動接触面に対向させうる状態で環状に列ねられた複数の誘導子と、出力電流の位相を制御可能な複数の電源装置と、それらの出力電流の位相を同じにする同相制御回路とを備えたものである。
In addition, the method of quenching a metal swirl ring rolling contact surface according to the present invention (initial claim 2) is the method of quenching a metal swirl ring rolling contact surface according to the initial claim 1 described above, and is further insulated from each other upon the high-frequency energization. In-phase current is supplied from a plurality of power supplies.
Further, the metal turning wheel rolling contact surface quenching device of the present invention (initial claim 3) is a metal turning wheel rolling contact surface quenching device that quenches the rolling contact surface of the metal turning wheel using induction heating. A pedestal for supporting the metal swirl wheel, a plurality of inductors arranged in a ring so as to face the rolling contact surface, a plurality of power supply devices capable of controlling the phase of the output current, and outputs thereof And a common-mode control circuit that makes the phases of the currents the same.

また、本発明の金属旋回輪転動接触面の焼入れ方法及び装置(当初請求項4)は、上記の当初請求項2記載の金属旋回輪転動接触面の焼入れ方法であって更に、前記金属旋回輪を前記誘導子に対して相対的に周方向へ回転させながら前記転動接触面の焼入れを行うことを特徴とする。
また、本発明の金属旋回輪転動接触面の焼入れ装置(当初請求項5)は、上記の当初請求項3記載の金属旋回輪転動接触面の焼入れ装置であって更に、前記金属旋回輪を前記誘導子に対して相対的に周方向へ回転させる回転機構を備えたことを特徴とする。
Moreover, the hardening method and apparatus (initial claim 4) of the metal turning wheel rolling contact surface of the present invention are the quenching method of the metal turning wheel rolling contact surface according to the above-mentioned initial claim 2, and further the metal turning wheel. The rolling contact surface is quenched while rotating in the circumferential direction relative to the inductor.
Moreover, the metal turning wheel rolling contact surface quenching device according to the present invention (initial claim 5) is the metal turning wheel rolling contact surface quenching device according to the above-mentioned initial claim 3, further comprising the metal turning wheel as the quenching device. A rotation mechanism that rotates in the circumferential direction relative to the inductor is provided.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項6)は、上記の当初請求項2,4記載の金属旋回輪転動接触面の焼入れ方法であって更に、前記金属旋回輪における前記誘導子との対向面の反対面を冷却装置にて冷却しながら前記転動接触面の焼入れを行うことを特徴とする。
また、本発明の金属旋回輪転動接触面の焼入れ装置(当初請求項7)は、上記の当初請求項3,5記載の金属旋回輪転動接触面の焼入れ装置であって更に、前記誘導子とは反対側から前記金属旋回輪を臨むところに設けられ前記金属旋回輪を周方向同時に冷却する冷却装置を備えたことを特徴とする。
Moreover, the quenching method (initial claim 6) of the metal turning ring rolling contact surface of the present invention is the quenching method of the metal turning ring rolling contact surface according to the initial claims 2 and 4, further comprising the metal turning ring. The rolling contact surface is quenched while cooling a surface opposite to the surface facing the inductor in a cooling device.
Further, a metal turning wheel rolling contact surface quenching device according to the present invention (initial claim 7) is the metal turning wheel rolling contact surface quenching device according to the above initial claims 3 and 5, further comprising the inductor and Is provided with a cooling device provided at a position facing the metal swivel ring from the opposite side to cool the metal swivel ring simultaneously in the circumferential direction.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項8)は、上記の当初請求項2,4,6記載の金属旋回輪転動接触面の焼入れ方法であって更に、前記誘導加熱を行うに際して、熱膨張による前記金属旋回輪の拡径に追従してその拡径方向に前記誘導子を移動させることを特徴とする。
また、本発明の金属旋回輪転動接触面の焼入れ装置(当初請求項9)は、上記の当初請求項3,5,7記載の金属旋回輪転動接触面の焼入れ装置であって更に、前記金属旋回輪の径方向に前記誘導子を移動させる移動機構と、前記金属旋回輪の拡径に応じて前記移動機構を作動させる追従制御手段とを備えたことを特徴とする。
Moreover, the quenching method (initial claim 8) of the metal turning wheel rolling contact surface according to the present invention is the quenching method of the metal turning wheel rolling contact surface according to the above initial claims 2, 4 and 6, further comprising the induction. When heating is performed, the inductor is moved in the diameter expansion direction following the diameter expansion of the metal swirl wheel due to thermal expansion.
Further, the metal turning wheel rolling contact surface quenching device of the present invention (initial claim 9) is the metal turning wheel rolling contact surface quenching device according to the above initial claims 3, 5 and 7, further comprising the metal A moving mechanism for moving the inductor in the radial direction of the turning wheel, and a follow-up control means for operating the moving mechanism according to the diameter expansion of the metal turning wheel are provided.

このような本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項1)にあっては、上述したように、誘導子が大円加熱の可能な環状になっていて、転動接触面の全周を周回する誘導電流が生じることから、転動接触面の処理対象部が全周一様に隈なく加熱され、次いでその加熱部が冷却されるので、転動接触面には周方向に切れ目のない形で全周一様に焼入れが施されるため、ソフトゾーンは生じ得ない。   In such a quenching method of the metal turning wheel rolling contact surface according to the present invention (initial claim 1), as described above, the inductor has an annular shape capable of heating with a great circle, and the rolling contact surface Since an induced current that circulates the entire circumference of the rolling contact surface is generated, the processing target portion of the rolling contact surface is heated uniformly throughout the entire circumference, and then the heated portion is cooled. Since quenching is performed uniformly on the entire circumference in an unbroken shape, a soft zone cannot occur.

しかも、それに止まらず、誘導子を複数に分割して列ねることで環状にするとともに、高周波通電に際して誘導子それぞれには600V以下の電圧を印加する条件の下で所望の誘導起電力が得られるように誘導子の複数化の数値を定めておくようにもしたことにより、誘導子それぞれの印加電圧が600V以下であっても合計では600Vを超える電圧を印加することも可能となる。そして、そのようにすることにより、転動接触面が長くても大円加熱が適切な電圧で行えるので、金属旋回輪の大径化に適合することができる。   In addition, the inductor is divided into a plurality of parts and arranged in a ring, and a desired induced electromotive force can be obtained under the condition that a voltage of 600 V or less is applied to each of the inductors during high-frequency energization. Thus, by setting the numerical value of the plural number of inductors, even if the applied voltage of each inductor is 600 V or less, it is possible to apply a voltage exceeding 600 V in total. And by doing so, even if a rolling contact surface is long, great circle heating can be performed with an appropriate voltage, so that it is possible to adapt to an increase in the diameter of the metal turning wheel.

さらには、個々の誘導子に印加する電圧すなわち各誘導子の両端電圧は何れも600Vを超えないようにもしたことにより、例え作業者が誘導子に誤って触れて感電したような場合でも作業者の安全が保たれるとともに、冷媒を安価な水道水等で済ませることができる。
したがって、この発明によれば、焼入れのための誘導加熱を大円加熱で行う際に規定値超の印加電圧が作業者に掛かるおそれが無いうえ冷媒も安価なもので足りる金属旋回輪転動接触面の焼入れ方法を実現することができる。
Furthermore, the voltage applied to each inductor, that is, the voltage across each inductor does not exceed 600V, so that even if the operator touches the inductor accidentally and gets an electric shock The safety of the person can be maintained, and the refrigerant can be used with inexpensive tap water or the like.
Therefore, according to the present invention, when performing induction heating for quenching by great circle heating, there is no risk that an applied voltage exceeding a specified value is applied to the worker, and the metal rotating wheel rolling contact surface that is sufficient for the refrigerant to be inexpensive. The quenching method can be realized.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項2)及び装置(当初請求項3)にあっては、誘導子ばかりか高周波電源装置までも複数化するとともに、それらの出力電流の位相が同じになるようにもしたことにより、大円加熱に必要な総電力を分割して各高周波電源装置には小電力を分担させることができるうえ、同位相の電流は協働して大円周回の誘導電流を生じさせるので、個々の高周波電源装置の最大出力を超える総電力を大円加熱のために供給することができるようになる。なお、誘導子と高周波電源装置の複数化は同数でも異数でも良く、複数の誘導子を適宜な群すなわち部分集合に分割して各群に一台以上の高周波電源装置を割り振る等のことで、電力を分担させても良い。   Further, in the quenching method (initial claim 2) and apparatus (initial claim 3) of the rolling contact surface of the metal swirling wheel according to the present invention, not only the inductor but also the high-frequency power supply device are made plural and their outputs are also made. By making the current phase the same, the total power required for heating the large circle can be divided so that each high frequency power supply can share small power, and the currents in the same phase work together. As a result, an inductive current of a great circle is generated, so that the total power exceeding the maximum output of each high frequency power supply device can be supplied for the great circle heating. Note that the number of inductors and high frequency power supply devices may be the same or different, such as by dividing the inductors into appropriate groups or subsets and allocating one or more high frequency power supply devices to each group. The power may be shared.

さらに、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項4)及び装置(当初請求項5)にあっては、大径の金属旋回輪を大円加熱するに際して金属旋回輪を誘導子に対して周方向へ相対回転させるようにしたことにより、金属旋回輪が熱膨張で変形や変位しても、その影響が周方向に平均化されるので、焼入れ状態が均一化して、焼むら等の発現が抑制される。特に、誘導子が周方向に分割されている本発明にあっては、分割箇所では、局所的ではあるが誘導子が存在しないため誘導電流が分散しがちで、誘導子の存在するところと加熱状態が多少は異なるので、その影響を周方向に平均化することにより、確実に焼入れ状態を均一化することができる。   Further, according to the method of quenching the rolling contact surface of the metal swirl ring of the present invention (initial claim 4) and the apparatus (initial claim 5), the metal swirl ring is guided when the large-diameter metal swirl ring is heated to a great circle. By rotating relative to the circumferential direction with respect to the child, even if the metal swirling wheel is deformed or displaced due to thermal expansion, the influence is averaged in the circumferential direction. The expression of unevenness is suppressed. In particular, in the present invention in which the inductor is divided in the circumferential direction, the induction current tends to be dispersed because the inductor is not present at the divided portion, and the inductor is present and heated. Since the states are somewhat different, the quenching state can be made uniform evenly by averaging the influence in the circumferential direction.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項6)及び装置(当初請求項7)にあっては、大径の金属旋回輪を大円加熱するに際して反対側は冷やすようにしたことにより、全入熱量が多くても金属旋回輪の平均温度の上昇は抑制されるので、金属旋回輪の変形量が小さくなる。焼入れ済み部位の硬度低下の防止にも役立つ。したがって、この発明によれば、電圧面や電力面の課題に加えて伝熱の問題までも解決することができる。   Moreover, in the quenching method (initial claim 6) and the apparatus (initial claim 7) of the rolling contact surface of the metal swirl ring of the present invention, the opposite side is cooled when the large-diameter metal swirl ring is heated to a great circle. As a result, even if the total heat input amount is large, an increase in the average temperature of the metal swirl wheel is suppressed, so that the deformation amount of the metal swirl wheel is reduced. It also helps prevent the hardness of the hardened parts from decreasing. Therefore, according to the present invention, it is possible to solve the problem of heat transfer in addition to the problems of voltage and power.

また、本発明の金属旋回輪転動接触面の焼入れ方法(当初請求項8)及び装置(当初請求項9)にあっては、誘導子が分割され環状に配置されて各々が径方向へ無理なく移動可能になっているのを利用して、誘導加熱にて金属旋回輪が熱膨張してその径が拡がると、誘導加熱の最中でも金属旋回輪の拡径に追従して誘導子が移動するようにもしたことにより、金属旋回輪の転動接触面とそれぞれの誘導子との対向距離が常に適正距離に保たれる。したがって、この発明によれば、電圧面や電力面の課題に加えて寸法効果の問題までも解決することができる。   Moreover, in the quenching method (initial claim 8) and the apparatus (initial claim 9) of the metal turning wheel rolling contact surface of the present invention, the inductors are divided and arranged in an annular shape, and each of them is effortless in the radial direction. When the metal swirling wheel is thermally expanded by induction heating and its diameter is expanded by utilizing the fact that it is movable, the inductor moves following the diameter expansion of the metal swirling wheel even during induction heating. By doing so, the facing distance between the rolling contact surface of the metal turning wheel and each inductor is always kept at an appropriate distance. Therefore, according to the present invention, it is possible to solve not only the problem of voltage and power but also the problem of size effect.

本発明の金属旋回輪転動接触面の焼入れ方法及び装置の一実施形態を、図面を引用して説明する。先ず図1,図2を参照して焼入れ対象の金属旋回輪20を説明し、次に図3〜図6を参照して焼入れ装置40の構造を説明する。そのうち図3は端面加熱用の誘導子30の構造を示し、図4は焼入れ装置40の全体構造を示し、図5は高周波電源装置50の構成を示し、図6は第1,第2冷却手段を示している。   One embodiment of a quenching method and apparatus for a metal turning wheel rolling contact surface of the present invention will be described with reference to the drawings. First, the metal turning wheel 20 to be quenched will be described with reference to FIGS. 1 and 2, and the structure of the quenching device 40 will be described with reference to FIGS. 3 shows the structure of the inductor 30 for end face heating, FIG. 4 shows the overall structure of the quenching device 40, FIG. 5 shows the configuration of the high-frequency power supply device 50, and FIG. 6 shows the first and second cooling means. Is shown.

先ず、図1,図2に具体例を示した金属旋回輪20を説明する。図1は、(a)及び(b)が組み上がった状態、(c)及び(d)が展開状態を示し、(a)が金属旋回輪20の斜視図、(b)がその一部の断面拡大図、(c)が金属旋回輪20を構成する各リングの展開斜視図、(d)がその一部の断面拡大図である。図2は、(a)がリテイニングリングとその転動接触面を示す一部断面拡大図、(b)がノーズリングとその転動接触面を示す一部断面拡大図、(c)がサポートリングとその転動接触面を示す一部断面拡大図である。   First, the metal turning wheel 20 whose specific example is shown in FIGS. 1 and 2 will be described. 1A and 1B show the assembled state, FIGS. 1C and 1D show the unfolded state, FIG. 1A is a perspective view of the metal turning wheel 20, and FIG. An enlarged sectional view, (c) is an exploded perspective view of each ring constituting the metal turning wheel 20, and (d) is a partially enlarged sectional view thereof. 2A is a partially enlarged sectional view showing the retaining ring and its rolling contact surface, FIG. 2B is a partially enlarged sectional view showing the nose ring and its rolling contact surface, and FIG. It is a partial cross section enlarged view which shows a ring and its rolling contact surface.

金属旋回輪20は(図1参照)、外輪の上半分をなすリテイニングリング21と、内輪をなすノーズリング22と、外輪の下半分をなすサポートリング23と、リテイニングリング21とノーズリング22とに介在して転動する多数のローラ24と、ノーズリング22とサポートリング23とに介在して転動する多数のローラ25,26とを具えている。各リング21〜23にはローラ24〜26の転動する転動接触面があり、それを焼入れにて強化するために、リング21〜23はSCMやSNCM等の鉄鋼やその他の焼入れ可能な金属で作られる。   The metal turning wheel 20 (see FIG. 1) includes a retaining ring 21 that forms the upper half of the outer ring, a nose ring 22 that forms the inner ring, a support ring 23 that forms the lower half of the outer ring, a retaining ring 21 and a nose ring 22. And a large number of rollers 24 that roll while being interposed between the nose ring 22 and the support ring 23. Each ring 21 to 23 has a rolling contact surface on which rollers 24 to 26 roll, and in order to strengthen it by quenching, rings 21 to 23 are made of steel such as SCM and SNCM, and other quenchable metals. Made with.

転動接触面は、円環状に連続した帯状面であり、端面のものと内周面のものと外周面のものとに大別される。具体的には、リテイニングリング21の下向き端面のうちローラ24と接触する部分が転動接触面21aであり(図2(a)参照)、ノーズリング22の外周面は全部がローラ26と接触する転動接触面22aであり(図2(b)参照)、ノーズリング22の上下端面のうちローラ24,25と接触する部分が転動接触面22bであり(図2(b)参照)、サポートリング23の上向き端面のうちローラ25と接触する部分が転動接触面23aであり(図2(c)参照)、サポートリング23の内周面のうちローラ26と接触する部分が転動接触面23bである(図2(c)参照)。なお、下向き端面は、焼入れ時にリングを上下反転することで、上向き端面と同様に処理することができる(図2(a)二点鎖線を参照)。   The rolling contact surface is an annular continuous belt-like surface, and is roughly classified into an end surface, an inner peripheral surface and an outer peripheral surface. Specifically, the portion of the downward end surface of the retaining ring 21 that contacts the roller 24 is the rolling contact surface 21a (see FIG. 2A), and the entire outer peripheral surface of the nose ring 22 contacts the roller 26. Rolling contact surface 22a (refer to FIG. 2 (b)), and portions of the upper and lower end surfaces of the nose ring 22 that are in contact with the rollers 24 and 25 are rolling contact surfaces 22b (refer to FIG. 2 (b)). A portion of the upward end surface of the support ring 23 that contacts the roller 25 is a rolling contact surface 23a (see FIG. 2C), and a portion of the inner peripheral surface of the support ring 23 that contacts the roller 26 is rolling contact. It is the surface 23b (refer FIG.2 (c)). The downward end face can be treated in the same manner as the upward end face by turning the ring upside down during quenching (see the two-dot chain line in FIG. 2A).

図3に具体例を示した端面加熱用の誘導子30の構造を説明する。図3は、(a)がサポートリング23とその上向き端面に位置する転動接触面23aに対応した誘導子30との斜視図であり、(b)がその誘導子30の一部断面拡大図、(c)が対向状態の誘導子30とサポートリング23との縦断面図、(d)がその一部拡大図である。
誘導子30は、ほぼ一巻き分のコイルを複数の誘導子30a,30b,30cに分割して、それらを環状に列ねて配置したものである。以下、分割された個々の誘導子を識別するときは符号「30a」,「30b」,「30c」を付して示し、区別せずに何れか適宜の誘導子を指す場合や,誘導子の列を指す場合は、符号「30」を付して示す。
The structure of the inductor 30 for end face heating shown in FIG. 3 will be described. 3A is a perspective view of the support ring 23 and the inductor 30 corresponding to the rolling contact surface 23a positioned on the upward end surface thereof, and FIG. 3B is an enlarged partial cross-sectional view of the inductor 30. FIG. (C) is a longitudinal cross-sectional view of the inductor 30 and the support ring 23 in an opposed state, and (d) is a partially enlarged view thereof.
The inductor 30 is obtained by dividing a coil for approximately one turn into a plurality of inductors 30a, 30b, and 30c and arranging them in a ring. In the following, when identifying each of the divided inductors, reference numerals “30a”, “30b”, and “30c” are attached, and when referring to any appropriate inductor without distinction, When referring to a column, the reference numeral “30” is attached.

誘導子30a,30b,30cは、何れも、高周波通電のため銅等の良導体からなり、それぞれの通電端31,32のところは別として、その他のところは連続している。図示の例では、誘導子30を三個に分割したが、誘導子30の分割数は、三個に限られる訳でなく、誘導子30への高周波通電の合計電圧に基づいて決められる。すなわち、合計電圧が600V以下のときには、分割するしないは任意の選択事項であるが、合計電圧が600Vを超えるときには、直ちに分割し、分割した何れの誘導子も600V以下の電圧を印加すれば足りるようにする。   The inductors 30a, 30b, and 30c are all made of a good conductor such as copper for high-frequency energization, and other than the energization ends 31 and 32, the other portions are continuous. In the illustrated example, the inductor 30 is divided into three, but the number of divisions of the inductor 30 is not limited to three, and is determined based on the total voltage of high-frequency energization to the inductor 30. In other words, when the total voltage is 600 V or less, it is optional to not divide, but when the total voltage exceeds 600 V, it is sufficient to divide immediately and apply any voltage of 600 V or less to any of the divided inductors. Like that.

誘導子30の分割は不等でも良いが通常は等分割されるので、合計電圧を600Vで割って端数を切り上げると最小の分割数が得られる。図示の三分割は、合計電圧が1200V超で1800V以下のときの典型例であり、誘導子30a,30b,30cが何れも中心角120゜弱の弧状になっている。
誘導子30への高周波通電の合計電圧は、サポートリング23(金属旋回輪)の材質と転動接触面23aの幅および長さと焼入れ条件とで決まる。そのうち材質や,幅,長さは一般に外部からの要求仕様で決まっているが、焼入れ条件、特に加熱条件は、硬度等の要求仕様を満たすよう選定されるので、大径の金属旋回輪を大円加熱する際には、表面電力密度が200W/cm以上になるような高周波通電を行うことが望ましい。
The division of the inductor 30 may be unequal, but is usually divided equally. Therefore, dividing the total voltage by 600V and rounding up the fraction results in the minimum division number. The three divisions shown are typical examples when the total voltage is more than 1200V and less than 1800V, and the inductors 30a, 30b, and 30c are all arcuate with a central angle of less than 120 °.
The total voltage of high-frequency energization to the inductor 30 is determined by the material of the support ring 23 (metal turning wheel), the width and length of the rolling contact surface 23a, and the quenching conditions. Of these, the material, width, and length are generally determined by the required specifications from the outside, but the quenching conditions, especially the heating conditions, are selected so as to satisfy the required specifications such as hardness. When performing circular heating, it is desirable to perform high-frequency energization so that the surface power density is 200 W / cm 2 or more.

そうすれば、加熱面が急速に昇温するため、焼入れに必要な加熱が短時間で済むことから、全入熱量が少なくなるので、金属旋回輪の平均温度の上昇が抑制されて、金属旋回輪の変形量が小さくなる。しかも、焼入れ済み部位の硬度低下の防止にも役立つ。
そして、表面電力密度が決まると、それと転動接触面23aの面積とから高周波通電の電力が決まり、更に加熱深さ等を考慮して適宜選定した高周波通電の周波数や上述の材質・幅・長さ等から合計電圧が決まる。
Then, since the heating surface rapidly rises in temperature, the heating required for quenching can be completed in a short time, so the total amount of heat input is reduced. The deformation amount of the ring is reduced. In addition, it is useful for preventing a decrease in hardness of the quenched part.
When the surface power density is determined, the power of the high-frequency energization is determined from the surface contact area 23a and the area of the rolling contact surface 23a. Further, the frequency of the high-frequency energization appropriately selected in consideration of the heating depth, etc. From this, the total voltage is determined.

誘導子30は、転動接触面23aを大円加熱で一発加熱するために、転動接触面23aとほぼ同じ大径の環状に列設されていて転動接触面23aのほぼ全周に対して対峙しうるようになっている。また、誘導子30の下面は、各部が転動接触面23aのほぼ全周に亘って等距離で対向するよう、平らになっている。さらに、この誘導子30は、後述の第1冷却手段の作用部を兼ねているので、冷却用の通水を担うために中空の管体からなり、転動接触面23a対向面である下面には、多数の噴射口34が貫通して穿孔されている。   Inductors 30 are arranged in an annular shape having substantially the same diameter as the rolling contact surface 23a in order to heat the rolling contact surface 23a by one-round heating. It can be confronted. In addition, the lower surface of the inductor 30 is flat so that the respective portions face each other at an equal distance over substantially the entire circumference of the rolling contact surface 23a. Furthermore, since this inductor 30 also serves as an action part of the first cooling means described later, it is formed of a hollow tube to carry water for cooling, and is formed on the lower surface that is the surface facing the rolling contact surface 23a. A large number of injection holes 34 are perforated.

図4に正面図と左側面図を示した焼入れ装置40は、誘導子30a,30b,30cを環状に列ねた誘導子30を保持するために基台部41と昇降機構42と位置調整機構43と吊持機構44とを具え、焼入れ対象の金属旋回輪たとえばサポートリング23を支持するために架台45を具えている。
架台45の頭頂部の円板46は、水平に設けられ、上面には適宜な留め具たとえば突起等が付設されていて、転動接触面23aを上に向けてサポートリング23を乗せるとそれを横たえた状態で安定支持するようになっている。
The quenching device 40 shown in FIG. 4 as a front view and a left side view includes a base 41, a lifting mechanism 42, and a position adjusting mechanism for holding the inductor 30 in which the inductors 30a, 30b, 30c are arranged in an annular shape. 43 and a suspension mechanism 44, and a gantry 45 for supporting a metal turning wheel to be quenched, for example, the support ring 23.
The disk 46 at the top of the gantry 45 is provided horizontally, and an appropriate fastener such as a protrusion is attached to the upper surface. When the support ring 23 is placed with the rolling contact surface 23a facing upward, It is designed to provide stable support while lying down.

そのサポートリング23の転動接触面23aに誘導子30の下面を対向させるために、誘導子30を円板46の上方に吊り下げる吊持機構44は、位置調整機構43と昇降機構42とを介して、基台部41に連結され支持されている。基台部41は干渉しない程度に架台45から離れたところに設置されており、昇降機構42は位置調整機構43を鉛直方向に昇降させるものであり、位置調整機構43は吊持機構44を水平方向すなわち前後左右に移動させるものであり、吊持機構44は軽量なリンク機構からなり誘導子30を水平に吊持するための長さ調整用ねじ等も組み込まれている。   In order to make the lower surface of the inductor 30 face the rolling contact surface 23 a of the support ring 23, the suspension mechanism 44 that suspends the inductor 30 above the disk 46 includes a position adjustment mechanism 43 and a lifting mechanism 42. And is connected to and supported by the base 41. The base part 41 is installed at a position away from the gantry 45 so as not to interfere. The elevating mechanism 42 elevates and lowers the position adjusting mechanism 43 in the vertical direction. The position adjusting mechanism 43 moves the suspension mechanism 44 horizontally. The suspension mechanism 44 is a lightweight link mechanism and includes a length adjusting screw for horizontally suspending the inductor 30.

ここでは図示を割愛したが、後述する高周波電源装置(50)から誘導子30すなわち誘導子30a,30b,30cの通電端31,32に至る三本の高周波ケーブル(三対の二次側電路56)や、誘導子30すなわち誘導子30a,30b,30cへの給水管(第1冷却手段)も、吊持機構44を利用してサポートリング23と干渉しないように配線,配管されている。   Although illustration is omitted here, three high-frequency cables (three pairs of secondary-side electric paths 56) extending from a high-frequency power supply device (50), which will be described later, to the current-carrying ends 31, 32 of the inductor 30, that is, the inductors 30a, 30b, 30c ) And the water supply pipe (first cooling means) to the inductor 30, that is, the inductors 30 a, 30 b, and 30 c are also wired and piped so as not to interfere with the support ring 23 using the suspension mechanism 44.

図5にブロック図を示した高周波電源装置50は絶縁タイプのものであって更に周波数も可変設定できるものである。高周波電源装置50は、交流源51から供給された既定周波数の交流電力を整流部52で直流にし、それをインバータ53で所望周波数の高周波に変換して出力するものであり、その出力ラインである一対の電源電路54(一次側電路)と、誘導子30すなわち誘導子30a,30b,30cの通電端31,32に分かれて接続される三対の二次側電路56との間に、変圧器55が介挿接続されている。三対の二次側電路56に出力される電流が同相になるよう、絶縁変圧器55の二次側巻線は捲回方向が一次側巻線に対して同じに揃えられている。   The high-frequency power supply device 50 shown in the block diagram of FIG. 5 is of an insulation type and can further variably set the frequency. The high frequency power supply device 50 converts the AC power of a predetermined frequency supplied from the AC source 51 into a direct current by the rectifying unit 52, converts it into a high frequency of a desired frequency by the inverter 53, and outputs it. A transformer between a pair of power supply circuits 54 (primary side circuit) and three pairs of secondary side circuits 56 connected to the inductors 30, that is, the current-carrying ends 31 and 32 of the inductors 30 a, 30 b, and 30 c. 55 is inserted and connected. The secondary windings of the insulation transformer 55 are aligned in the same winding direction with respect to the primary windings so that the currents output to the three pairs of secondary electric paths 56 are in phase.

もしも高周波電源装置に非絶縁変圧器を組み入れると、誘導子30の対地電圧が、高いところではインバータ53の出力電圧に等しくなるか、非絶縁変圧器の巻き数比によってはインバータ53の出力電圧より高くなる。二次側電路56は絶縁ケーブル等で隠蔽されるが、誘導子30は露出しているので、作業者の安全のためには、誘導子30の対地電圧が高くならないようにすることが望ましい。   If a non-insulated transformer is incorporated in the high frequency power supply device, the ground voltage of the inductor 30 is equal to the output voltage of the inverter 53 at a high place, or the output voltage of the inverter 53 depends on the turn ratio of the non-insulated transformer. Get higher. Although the secondary side electric circuit 56 is concealed by an insulated cable or the like, since the inductor 30 is exposed, it is desirable that the ground voltage of the inductor 30 does not increase for the safety of the operator.

その点、この高周波電源装置50にあっては絶縁変圧器55が組み入れられ、その絶縁変圧器55が、30kHzを超えない通電周波数に関して、電源電路54と二次側電路56とを絶縁することから、誘導子30a,30b,30cが何れも大地から電気的に浮いた状態になるうえ600V以下の電圧しか印加されないので、焼入れのための誘導加熱に多用される上記低周波寄りの周波数であれば、対地電圧も含めて、作業者が誘導子30の何処に触れたときでも、600Vを超える電圧が作業者に掛かることはない。   In this respect, the high frequency power supply device 50 incorporates an insulation transformer 55, and the insulation transformer 55 insulates the power supply circuit 54 and the secondary side circuit 56 with respect to the energization frequency not exceeding 30 kHz. Inductors 30a, 30b, and 30c are all floated from the ground, and only a voltage of 600V or less is applied. Therefore, if the frequency is close to the low frequency, which is frequently used for induction heating for quenching. The voltage exceeding 600V is not applied to the worker regardless of where the worker touches the inductor 30, including the ground voltage.

そのため、例え作業者が誤って誘導子30に接触しても大した感電にはならないので、比較的安全であるから、この実施形態では絶縁変圧器55を組み込んだ高周波電源装置50を用いる。
また、高周波電源装置50のインバータ53は、図示しない制御装置(コントローラ)によって高周波通電の開始や停止が制御される他、その高周波の周波数も可変制御されるようになっている。すなわち、高周波電源装置50は、作業者が制御装置に所望の時間と周波数とを指定・設定すると、その周波数の高周波を誘導子30に指定時間だけ供給するようになっている。
For this reason, even if an operator accidentally touches the inductor 30, there is no great electric shock, so it is relatively safe. In this embodiment, the high frequency power supply device 50 incorporating the insulating transformer 55 is used.
The inverter 53 of the high-frequency power supply device 50 is controlled to start and stop high-frequency energization by a control device (controller) (not shown), and the high-frequency frequency is variably controlled. That is, when the operator designates and sets a desired time and frequency to the control device, the high frequency power supply device 50 supplies the inductor 30 with a high frequency of that frequency for the designated time.

さらに、高周波電源装置50は、分割した誘導子30の両端電圧Vcすなわち二次側電路56を介して誘導子30a,30b,30cそれぞれの通電端31,32に印加する供給電圧を600V以下にするため、誘導子30a,30b,30cの両端電圧Vcを測定している。両端電圧Vcを測定するには絶縁変圧器55の二次電圧を図示しない高周波電圧計で測るのが正確で良い。又、高周波電源装置50の出力電圧を絶縁変圧器55の巻き数比で割った値を用いても良い。インピーダンス降下分だけ誘導子30の両端電圧Vcは低くなるが安全側なので問題ない。   Further, the high-frequency power supply device 50 reduces the voltage Vc across the divided inductor 30, that is, the supply voltage applied to the current-carrying ends 31 and 32 of the inductors 30 a, 30 b, and 30 c via the secondary side electric circuit 56 to 600 V or less. Therefore, the voltage Vc across the inductors 30a, 30b, and 30c is measured. To measure the voltage Vc at both ends, it is accurate to measure the secondary voltage of the insulation transformer 55 with a high-frequency voltmeter (not shown). Alternatively, a value obtained by dividing the output voltage of the high-frequency power supply device 50 by the turn ratio of the insulation transformer 55 may be used. The voltage Vc across the inductor 30 is lowered by the amount of the impedance drop, but there is no problem because it is on the safe side.

図6(a)に断面構造を示した第1冷却手段は、作動部が誘導子30と一体化されたものであり、加熱面を冷却するために、誘導子30の中空に供給された冷却水35(冷媒)を噴射口34から加熱後の転動接触面23aに吹き付けるようになっている。
図6(b)に断面構造を示した冷却装置70(第2冷却手段)は、作動部が円板46と一体化されたものであり、サポートリング23において加熱対象の転動接触面23aと反対側に位置する反対面を冷却するために、サポートリング23の下面を支承する円板46の上面のうち上記反対面が当たるところに通水溝46aが彫り込み形成され、そこに給水管71から冷却水72を供給して通水するようになっている。誘導子30の両端電圧Vcが600V以下なので、冷却水35,72には安価な水道水が使われる。
The first cooling means whose sectional structure is shown in FIG. 6 (a) is one in which the operating part is integrated with the inductor 30, and the cooling supplied to the hollow of the inductor 30 to cool the heating surface. Water 35 (refrigerant) is sprayed from the injection port 34 to the rolling contact surface 23a after heating.
The cooling device 70 (second cooling means) whose cross-sectional structure is shown in FIG. 6B has an operating part integrated with the disk 46, and in the support ring 23, the rolling contact surface 23a to be heated and In order to cool the opposite surface located on the opposite side, a water flow groove 46a is carved and formed in the upper surface of the disk 46 that supports the lower surface of the support ring 23 where the opposite surface hits. Cooling water 72 is supplied and water is passed. Since the voltage Vc across the inductor 30 is 600 V or less, inexpensive tap water is used for the cooling water 35 and 72.

このような焼入れ装置40を使用してサポートリング23の転動接触面23aを焼入れする方法を説明する。   A method of quenching the rolling contact surface 23a of the support ring 23 using such a quenching apparatus 40 will be described.

金属旋回輪の端面の焼入れに先だち、表面電力密度が200W/cm以上になるような高周波通電を行うために、その表面電力密度と転動接触面23aの面積とから高周波通電の電力を決めるとともに、加熱深さ等を考慮して高周波通電の周波数を選定し、更に、サポートリング23(金属旋回輪)の材質や転動接触面23aの幅・長さ等から、誘導子30に印加する電圧の合計を求める。ここでは、合計電圧が1800V以下で、誘導子30を誘導子30a,30b,30cに三分割すれば良いものとする。電力も例えば1000kW程度で一台の高周波電源装置50から無理なく供給できるものとする。周波数も例えば3kHzや6kHz程度で通常のインバータ53に設定できるものとする。 Prior to quenching the end face of the metal swirl ring, in order to perform high-frequency energization such that the surface power density is 200 W / cm 2 or more, the power for high-frequency energization is determined from the surface power density and the area of the rolling contact surface 23a. At the same time, the frequency of high-frequency energization is selected in consideration of the heating depth and the like, and is further applied to the inductor 30 from the material of the support ring 23 (metal swirl ring) and the width / length of the rolling contact surface 23a. Find the total voltage. Here, it is assumed that the total voltage is 1800 V or less and the inductor 30 is divided into the inductors 30a, 30b, and 30c. It is assumed that the power can be supplied without difficulty from one high-frequency power supply device 50 at, for example, about 1000 kW. It is assumed that the frequency can be set to the normal inverter 53 at, for example, about 3 kHz or 6 kHz.

このような高周波電源装置50を選定したら、一発加熱にて転動接触面23aの焼入れを行う。具体的には、上述した焼入れ装置40にやはり上述の誘導子30すなわち誘導子30a,30b,30cを環状に列ねて装着し、その三対の通電端31,32に選定済み高周波電源装置50のやはり三対の二次側電路56をそれぞれ接続し、サポートリング23を架台45の円板46に載置し、焼入れ装置40の昇降機構42及び位置調整機構43を作動させて誘導子30を転動接触面23aに適切な空隙たとえば15mmで対向させる。それから、高周波電源装置50を作動させて上記周波数の高周波を上記出力電圧で出力させる。   If such a high frequency power supply device 50 is selected, the rolling contact surface 23a is quenched by one-time heating. Specifically, the above-described inductor 30, that is, the inductors 30 a, 30 b, and 30 c are also annularly mounted on the quenching device 40 described above, and the selected high-frequency power supply device 50 is connected to the three energization ends 31 and 32. Are connected to each other, the support ring 23 is placed on the disk 46 of the gantry 45, and the lifting mechanism 42 and the position adjusting mechanism 43 of the quenching device 40 are operated so that the inductor 30 is moved. It is made to oppose with the suitable space | gap, for example, 15 mm, to the rolling contact surface 23a. Then, the high frequency power supply device 50 is operated to output a high frequency of the above frequency at the output voltage.

そして、焼入れ条件に対応して予め決定しておいた所定時間、又は加熱面すなわち転動接触面23aの温度を測定しながらその温度が焼入れ条件の所定温度に到達するまでの時間、誘導子30に高周波通電して誘導加熱を行い、その後、高周波通電を停止する。それから、冷却水35を噴射口34から吹き出させて転動接触面23aの冷却を行う。なお、焼入れ装置40の冷却手段は、誘導子30に冷却水35を供給する第1冷却手段で足り、第2冷却手段の冷却装置70は有ればその方が良いが必須ではない。昇降機構42や位置調整機構43も、誘導子30の位置決めを他の手段で行えれば無くても良い。
最後に、サポートリング23が冷えたら冷却水35の供給を止めて、サポートリング23を架台45から外す。
Then, a predetermined time corresponding to the quenching condition, or a time until the temperature reaches the predetermined temperature of the quenching condition while measuring the temperature of the heating surface, that is, the rolling contact surface 23a, the inductor 30 Inductive heating is performed by applying high-frequency current to, and then high-frequency current is stopped. Then, the cooling water 35 is blown out from the injection port 34 to cool the rolling contact surface 23a. Note that the cooling means of the quenching apparatus 40 may be the first cooling means for supplying the cooling water 35 to the inductor 30 and the cooling apparatus 70 of the second cooling means is better but not essential. The lifting mechanism 42 and the position adjusting mechanism 43 may be omitted as long as the inductor 30 can be positioned by other means.
Finally, when the support ring 23 is cooled, the supply of the cooling water 35 is stopped and the support ring 23 is removed from the gantry 45.

こうして、この実施形態にあっては、サポートリング23が大径であっても、無理なく大円加熱が行なえて、転動接触面23aを大きく一巡する誘導電流によって転動接触面23aは適切かつ十分に加熱されるとともに、サポートリング23の平均温度は不所望な変形を招くことのないよう適度に抑えられるので、ソフトゾーンの無い焼入れを行うことができる。なお、繰り返しとなる詳細な説明は割愛するが、リテイニングリング21の端面に位置する転動接触面21aや、ノーズリング22の両端面に位置する転動接触面22bについても、同様にして同様の焼入れを行うことができる。   Thus, in this embodiment, even if the support ring 23 has a large diameter, large-circle heating can be performed without difficulty, and the rolling contact surface 23a is appropriately and appropriately formed by an induced current that makes a large circuit around the rolling contact surface 23a. Since it is sufficiently heated and the average temperature of the support ring 23 is moderately suppressed so as not to cause undesired deformation, quenching without a soft zone can be performed. Although repeated detailed description is omitted, the same applies to the rolling contact surface 21 a located on the end face of the retaining ring 21 and the rolling contact face 22 b located on both end faces of the nose ring 22. Can be quenched.

本発明の金属旋回輪転動接触面の焼入れ方法及び装置の他の実施形態について、その構成を、図面を引用して説明する。図7は、ここで用いる高周波電源のブロック図である。
この電源は、三台の高周波電源装置60と一個の同相制御回路68とを組み合わせて構成されており、高周波電源装置60は、誘導子30a,30b,30cそれぞれに一台ずつ割り振られている。それ以外のもの例えば焼入れ装置40や誘導子30は上記実施形態で上述したのと同じである。
The configuration of another embodiment of the quenching method and apparatus for the rolling contact surface of a metal swivel wheel of the present invention will be described with reference to the drawings. FIG. 7 is a block diagram of the high-frequency power source used here.
This power supply is configured by combining three high-frequency power supply devices 60 and one in-phase control circuit 68, and one high-frequency power supply device 60 is allocated to each of the inductors 30a, 30b, and 30c. Other than that, for example, the hardening device 40 and the inductor 30 are the same as those described in the above embodiment.

高周波電源装置60が上述の高周波電源装置50と相違するのは、絶縁変圧器55に代わる複数の絶縁変圧器65の各々が一つの二次側電路56を具えていれば足りるのでそうなっている点と、インバータ53に代わるインバータ63がスイッチング制御信号Aを同相制御回路68から受け取るようになっている点である。同相制御回路68は、インバータ53に含まれていたスイッチング制御回路を分離独立させたものであり、生成したスイッチング制御信号Aを三台の高周波電源装置60のインバータ63へ同時に送出するようになっている。   The high-frequency power supply device 60 is different from the above-described high-frequency power supply device 50 because each of the plurality of insulation transformers 65 in place of the insulation transformer 55 only needs to include one secondary side electric circuit 56. The point is that an inverter 63 in place of the inverter 53 receives the switching control signal A from the common-mode control circuit 68. The common-mode control circuit 68 is a switching control circuit included in the inverter 53 that is separated and independent, and sends the generated switching control signal A to the inverters 63 of the three high-frequency power supply devices 60 at the same time. Yes.

インバータ63は、インバータ53からスイッチング制御回路を省いて同相制御回路68からスイッチング制御信号Aを入力するようにしたものでも良く、あるいは、スイッチング制御回路を残したまま、内部生成したスイッチング制御信号と外部から入力したスイッチング制御信号Aとを切り替えて使用できるようにしたものでも良い。何れにしても、誘導子30aに高周波通電する高周波電源装置60と,誘導子30bに高周波通電する高周波電源装置60と,誘導子30cに高周波通電する高周波電源装置60との三台に同じスイッチング制御信号Aを与えて出力電流の周波数および位相を制御できるようにしたことにより、誘導子30a,30b,30cに同相の電流が供給されることとなる。   The inverter 63 may be configured such that the switching control circuit A is omitted from the inverter 53 and the switching control signal A is input from the common-mode control circuit 68. Alternatively, the switching control signal generated internally and the external circuit are left with the switching control circuit remaining. It is also possible to use the switching control signal A that has been input from In any case, the same switching control is performed on three units: the high frequency power supply device 60 for applying high frequency current to the inductor 30a, the high frequency power supply device 60 for supplying high frequency current to the inductor 30b, and the high frequency power supply device 60 for applying high frequency current to the inductor 30c. By providing the signal A so that the frequency and phase of the output current can be controlled, a current having the same phase is supplied to the inductors 30a, 30b, and 30c.

この場合、誘導子30に高周波通電するときの周波数は同相制御回路68に纏めて設定され、誘導子30a,30b,30cへの供給電力はそれぞれの高周波電源装置60に分けて設定される。そのため、例えば高周波電源装置60が単独では1200kWまでしか供給できないものであっても、三台が使用可能であれば、出力電流の位相を同じにして協動させることで、3600kWまでの誘導加熱を行うことができる。   In this case, the frequency when the inductor 30 is energized with high frequency is collectively set in the in-phase control circuit 68, and the power supplied to the inductors 30a, 30b, 30c is set separately for each high frequency power supply device 60. Therefore, for example, even if the high frequency power supply 60 can supply only up to 1200 kW, if three units can be used, induction heating up to 3600 kW can be achieved by cooperating with the same phase of the output current. It can be carried out.

なお、この実施形態では、高周波電源装置60,60,60と誘導子30a,30b,30cとを一対一で組み合わせたが、電圧条件および電力条件を満たせば他の組み合わせも可能である。例えば、小出力の高周波電源装置は一個の誘導子に接続し、大出力の高周波電源装置は二個の誘導子に接続する、といった組み合わせも可能である。誘導子30の分割を細分化すれば、より小さな出力の高周波電源装置も使用可能となる。そのため、高周波電源装置の選定は、装置台数が多いほど、容易になる。   In this embodiment, the high frequency power supply devices 60, 60, 60 and the inductors 30a, 30b, 30c are combined on a one-to-one basis, but other combinations are possible as long as the voltage condition and the power condition are satisfied. For example, a combination in which a small output high frequency power supply device is connected to one inductor and a high output high frequency power supply device is connected to two inductors is also possible. If the division of the inductor 30 is subdivided, a high-frequency power supply device with a smaller output can be used. Therefore, selection of a high frequency power supply device becomes easier as the number of devices increases.

図8に具体例を示した内周面加熱用の誘導子30の構造を説明する。図8は、(a)がサポートリング23とその内周面に位置する転動接触面23bに対応した誘導子30との斜視図であり、(b)がその誘導子30の一部断面拡大図、(c)が対向状態の誘導子30とサポートリング23との縦断面図、(d)がその一部拡大図である。
この誘導子30も、ほぼ一巻き分のコイルを複数の誘導子30a,30b,30cに分割して、それらを環状に列ねて配置したものである。誘導子30a,30b,30cは、何れも、高周波通電のため銅等の良導体からなり、それぞれの通電端31,32のところは別として、その他のところは連続している。
The structure of the inductor 30 for heating the inner peripheral surface whose specific example is shown in FIG. 8 will be described. 8A is a perspective view of the support ring 23 and the inductor 30 corresponding to the rolling contact surface 23b located on the inner peripheral surface of the support ring 23. FIG. 8B is an enlarged partial cross-sectional view of the inductor 30. FIG. FIG. 4C is a longitudinal sectional view of the inductor 30 and the support ring 23 in an opposed state, and FIG.
This inductor 30 is also formed by dividing a coil for approximately one turn into a plurality of inductors 30a, 30b, and 30c and arranging them in a ring. The inductors 30a, 30b, and 30c are all made of a good conductor such as copper for high-frequency energization, and other than the energization ends 31 and 32, the other portions are continuous.

この誘導子30は、転動接触面23bを内側から一発加熱するために、転動接触面23bより少し小径であるがそれに近い大径の環状に列設されていて転動接触面23bのほぼ全周に対して対峙しうるようになっている。また、誘導子30の外周面は、各部が転動接触面23bのほぼ全周に亘って等距離で対向するよう、平らになっている。さらに、この誘導子30は、やはり第1冷却手段の作用部を兼ねているので、冷却用の通水を担うために中空の管体からなり、転動接触面23b対向面である外周面には、多数の噴射口34が貫通して穿孔されている。   In order to heat the rolling contact surface 23b from the inside, the inductor 30 is arranged in an annular shape having a slightly smaller diameter than the rolling contact surface 23b but a large diameter close to the rolling contact surface 23b. It is possible to confront almost the entire circumference. Moreover, the outer peripheral surface of the inductor 30 is flat so that each part may oppose at equal distance over substantially the entire periphery of the rolling contact surface 23b. Furthermore, since this inductor 30 also serves as the action part of the first cooling means, it is formed of a hollow tube to carry water for cooling, and is formed on the outer peripheral surface that is the surface facing the rolling contact surface 23b. A large number of injection holes 34 are perforated.

図9に具体例を示した外周面加熱用の誘導子30の構造を説明する。図9は、(a)がノーズリング22とその外周面に位置する転動接触面22aに対応した誘導子30との斜視図、(b)がその誘導子30の一部断面拡大図、(c)が対向状態の誘導子30とノーズリング22との縦断面図、(d)がその一部拡大図である。
この誘導子30も、ほぼ一巻き分のコイルを複数の誘導子30a,30b,30cに分割して、それらを環状に列ねて配置したものである。誘導子30a,30b,30cは、何れも、高周波通電のため銅等の良導体からなり、それぞれの通電端31,32のところは別として、その他のところは連続している。
The structure of the outer peripheral surface heating inductor 30 whose specific example is shown in FIG. 9 will be described. 9A is a perspective view of the nose ring 22 and the inductor 30 corresponding to the rolling contact surface 22a located on the outer peripheral surface thereof, and FIG. 9B is a partially enlarged cross-sectional view of the inductor 30. c) is a longitudinal sectional view of the inductor 30 and the nose ring 22 in an opposed state, and (d) is a partially enlarged view thereof.
This inductor 30 is also formed by dividing a coil for approximately one turn into a plurality of inductors 30a, 30b, and 30c and arranging them in a ring. The inductors 30a, 30b, and 30c are all made of a good conductor such as copper for high-frequency energization, and other than the energization ends 31 and 32, the other portions are continuous.

この誘導子30は、転動接触面22aを外側から一発加熱するために、転動接触面22aより少し大径であるがそれに近い大径の環状に列設されていて転動接触面22aのほぼ全周に対して対峙しうるようになっている。また、誘導子30の内周面は、各部が転動接触面22aのほぼ全周に亘って等距離で対向するよう、平らになっている。さらに、この誘導子30は、やはり第1冷却手段の作用部を兼ねているので、冷却用の通水を担うために中空の管体からなり、転動接触面22a対向面である内周面には、多数の噴射口34が貫通して穿孔されている。   In order to heat the rolling contact surface 22a from the outside, the inductor 30 is arranged in an annular shape having a slightly larger diameter than the rolling contact surface 22a but close to the diameter, and the rolling contact surface 22a. It is possible to confront almost the entire circumference. Further, the inner peripheral surface of the inductor 30 is flat so that the respective portions face each other at an equal distance over substantially the entire circumference of the rolling contact surface 22a. Furthermore, since this inductor 30 also serves as the action part of the first cooling means, it is composed of a hollow tube for carrying water for cooling, and is an inner peripheral surface that is a surface facing the rolling contact surface 22a. A number of injection holes 34 are perforated therethrough.

このような誘導子30と焼入れ装置40と高周波電源装置50又は高周波電源装置60とを使用してノーズリング22の外周面に位置する転動接触面22aを焼入れする方法を、図面を引用して説明する。図10は、一発加熱での焼入れを工程順に示す一部断面拡大図であり、図11は、反対面冷却付き一発加熱での焼入れを工程順に示す一部断面拡大図である。   A method of quenching the rolling contact surface 22a located on the outer peripheral surface of the nose ring 22 using the inductor 30, the quenching device 40, the high frequency power supply device 50 or the high frequency power supply device 60 will be described with reference to the drawings. explain. FIG. 10 is a partial cross-sectional enlarged view showing quenching by single heating in the order of processes, and FIG. 11 is a partial cross-sectional enlarged view showing quenching in single heating with cooling on the opposite surface in the order of processes.

金属旋回輪の端面の焼入れに先だち、上述した実施形態と同様、表面電力密度が200W/cm以上になるように高周波通電の電力を決め、加熱深さ等を考慮して高周波通電の周波数を選定し、ノーズリング22の材質や転動接触面22aの幅・長さ等から誘導子30の印加電圧の合計を求め、誘導子30の分割数を決め、高周波電源装置50,60の選定および誘導子30との接続態様の確定を行う。ここでも、誘導子30を三個の誘導子30a,30b,30cに分割し、それらを環状に列ねて焼入れ装置40に装着して、一発加熱にて転動接触面22aの焼入れを行うものとする。 Prior to quenching the end face of the metal swirl ring, as in the above-described embodiment, the power of high-frequency energization is determined so that the surface power density is 200 W / cm 2 or more, and the frequency of high-frequency energization is determined in consideration of the heating depth and the like. The total voltage applied to the inductor 30 is determined from the material of the nose ring 22 and the width / length of the rolling contact surface 22a, the number of divisions of the inductor 30 is determined, and the high-frequency power supply devices 50 and 60 are selected. The connection mode with the inductor 30 is determined. Again, the inductor 30 is divided into three inductors 30a, 30b, 30c, which are arranged in a ring and mounted on the quenching device 40, and the rolling contact surface 22a is quenched by one-time heating. Shall.

そして、反対面からの冷却は省いて転動接触面22aの焼入れを行う場合は(図10参照)、適切な空隙を確保したうえでノーズリング22の転動接触面22aに誘導子30を対向させ(図10(a)参照)、その状態で誘導子30に高周波通電して転動接触面22aを誘導加熱し(図10(b)参照)、その後、冷却水35を誘導子30の噴射口34からノーズリング22の外周面に吹き付けて転動接触面22aを冷却する(図10(c)参照)。   And when cooling from the opposite surface is omitted and the rolling contact surface 22a is quenched (see FIG. 10), an appropriate gap is secured and the inductor 30 is opposed to the rolling contact surface 22a of the nose ring 22. In this state, the inductor 30 is energized with high frequency to inductively heat the rolling contact surface 22a (see FIG. 10B), and then the cooling water 35 is injected into the inductor 30. The rolling contact surface 22a is cooled by spraying from the mouth 34 to the outer peripheral surface of the nose ring 22 (see FIG. 10C).

一方、反対面冷却付き一発加熱で転動接触面22aの焼入れを行う場合は(図11参照)、ノーズリング22の転動接触面22aに誘導子30を対向させるとともに反対面22cに冷却装置70の給水管73を対向させる(図11(a)参照)。その状態で、冷却水72を給水管73の噴射口74からノーズリング22の内周面に吹き付けて反対面22cを冷却しながら、誘導子30に高周波通電して転動接触面22aを誘導加熱する(図11(b)参照)。その後、冷却水35を誘導子30の噴射口34からノーズリング22に吹き付けて転動接触面22aを冷却する(図11(c)参照)。   On the other hand, when the rolling contact surface 22a is quenched by one-shot heating with cooling on the opposite surface (see FIG. 11), the inductor 30 is opposed to the rolling contact surface 22a of the nose ring 22 and the cooling device is disposed on the opposite surface 22c. 70 water supply pipes 73 are opposed to each other (see FIG. 11A). In this state, cooling water 72 is sprayed from the injection port 74 of the water supply pipe 73 to the inner peripheral surface of the nose ring 22 to cool the opposite surface 22c, while the inductor 30 is energized with high frequency to induction-heat the rolling contact surface 22a. (See FIG. 11B). Thereafter, the cooling water 35 is sprayed from the injection port 34 of the inductor 30 to the nose ring 22 to cool the rolling contact surface 22a (see FIG. 11C).

この場合、誘導子30にはやはり図9の一発加熱用のものが採用され、昇降機構42も必須でないが、焼入れ装置40は、第1冷却手段だけでなく第2冷却手段(冷却装置70)も具備していることが必要である。
また、この場合も、誘導子30の分割数は、誘導子30a,30b,30cの何れにも600V以下の電圧しか印加されないように決められ、高周波電源装置50を使用するか又は高周波電源装置60を使用するか或いは両者を適宜組合わせて使用するかが、電圧条件に電力条件を加味して決められる。
In this case, the inductor 30 is also used for the one-time heating shown in FIG. 9 and the lifting mechanism 42 is not essential, but the quenching device 40 is not limited to the first cooling means but also the second cooling means (cooling device 70). ).
Also in this case, the number of divisions of the inductor 30 is determined such that only a voltage of 600 V or less is applied to any of the inductors 30a, 30b, 30c, and the high frequency power supply device 50 is used or the high frequency power supply device 60 is used. Is used, or a combination of the two is used as appropriate in consideration of the power condition and the voltage condition.

こうして、この実施形態にあっても、ノーズリング22が大径であろうと、確実に大円加熱が行なえて、転動接触面22aを大きく一巡する誘導電流によって転動接触面22aは適切かつ十分に加熱されるとともに、ノーズリング22の平均温度は不所望な変形を招くことのないよう適度に抑えられるので、ソフトゾーンの無い焼入れを、好ましい焼入れ品質を以て行うことができる。なお、繰り返しとなる詳細な説明は割愛するが、サポートリング23の内周面に位置する転動接触面23bについても、同様にして同様の焼入れを行うことができる。   Thus, even in this embodiment, even if the nose ring 22 has a large diameter, it is possible to surely carry out a great circle heating, and the rolling contact surface 22a is adequate and sufficient by the induced current that makes a large round of the rolling contact surface 22a. Since the average temperature of the nose ring 22 is moderately suppressed so as not to cause undesired deformation, quenching without a soft zone can be performed with preferable quenching quality. Although repeated detailed description is omitted, the same quenching can be performed on the rolling contact surface 23b located on the inner peripheral surface of the support ring 23 in the same manner.

本発明の金属旋回輪転動接触面の焼入れ方法及び装置の他の実施形態について、その構
成を、図面を引用して説明する。図12は、対向するサポートリング23及び誘導子30と、それに付設された拡径手段80とに関し、その部分の平面図である。
The configuration of another embodiment of the quenching method and apparatus for the rolling contact surface of a metal swivel wheel of the present invention will be described with reference to the drawings. FIG. 12 is a plan view of portions of the support ring 23 and the inductor 30 that face each other and the diameter expanding means 80 attached thereto.

この焼入れ装置が上述した実施形態のものと相違するのは、拡径手段80が追加されている点である。
拡径手段80は、誘導子30が誘導子30a,30b,30cに三分割されていることに対応して、三組が設けられている。何れの拡径手段80も、変位計81と、追従制御回路82と移動機構83とを具えている。
This quenching apparatus is different from the above-described embodiment in that a diameter expanding means 80 is added.
The diameter expanding means 80 is provided with three sets corresponding to the fact that the inductor 30 is divided into the inductors 30a, 30b and 30c. Each of the diameter expanding means 80 includes a displacement meter 81, a follow-up control circuit 82, and a moving mechanism 83.

変位計81は、設置状態等が分かり易いよう接触式のものを図示したが、測定対象のサポートリング23が高温に加熱されるので、熱の影響を受けにくい非接触式の方が使いやすい。変位計81の設置位置は、誘導子30a,30b,30cの中間部位に対向するサポートリング23の変位を検出するところでも良いが、図示の場合は、誘導子30の分割部位すなわち誘導子30a,30bの間と誘導子30b,30cの間と誘導子30c,30aの間とに対向するサポートリング23の変位を検出するところになっている。   The displacement meter 81 is shown as a contact type so that the installation state and the like can be easily understood. However, since the support ring 23 to be measured is heated to a high temperature, the non-contact type is less likely to be affected by heat. The position of the displacement meter 81 may be a place where the displacement of the support ring 23 facing the intermediate portion of the inductors 30a, 30b, 30c may be detected. In the illustrated case, the divided portion of the inductor 30, that is, the inductor 30a, The displacement of the support ring 23 facing between 30b, between the inductors 30b and 30c, and between the inductors 30c and 30a is detected.

追従制御回路82は、例えばオエペレーショナルアンプとパワーアンプとからなり、変位計81の出力を入力してパワー増幅し、それを移動機構83に送出して、サポートリング23(金属旋回輪)が拡径して変位計81のところで径方向に移動すると、その拡径移動と同じ距離だけ、移動機構83を作動させるようになっている。
移動機構83は、位置決め可能なシリンダ装置や,ボールねじ機構,カム機構などで構成され、吊持機構44と誘導子30a,30b,30cの両端部とに介装されて、誘導子30を径方向に移動させるようになっている。
The follow-up control circuit 82 includes, for example, an operational amplifier and a power amplifier. The output of the displacement meter 81 is input to amplify the power, and the amplified power is sent to the moving mechanism 83. When the diameter is expanded and moved in the radial direction at the displacement meter 81, the moving mechanism 83 is operated by the same distance as the diameter expansion movement.
The moving mechanism 83 includes a positionable cylinder device, a ball screw mechanism, a cam mechanism, and the like. The moving mechanism 83 is interposed between the suspension mechanism 44 and both ends of the inductors 30a, 30b, and 30c so that the inductor 30 has a diameter. It is designed to move in the direction.

この場合、誘導加熱が行われて、サポートリング23が熱膨張して拡径すると、三カ所でサポートリング23の拡径量が変位計81にて検出され、それに基づく追従制御回路82の自動制御によって移動機構83が拡径方向に伸張するよう作動する。その際、移動機構83の伸張量が、より好ましくはその伸張量を径方向に射影した距離が、対応位置の変位計81で検出した拡径量に等しくされるので、誘導子30a,30b,30cの両端部は一定距離を保ってサポートリング23と対向しつづける。   In this case, when induction heating is performed and the support ring 23 expands due to thermal expansion, the expansion amount of the support ring 23 is detected by the displacement meter 81 at three locations, and the automatic control of the follow-up control circuit 82 based on the detected amount. Accordingly, the moving mechanism 83 operates to extend in the diameter expansion direction. At this time, since the extension amount of the moving mechanism 83 is more preferably equal to the diameter expansion amount detected by the displacement meter 81 at the corresponding position, the distance obtained by projecting the extension amount in the radial direction is equal to the inductor 30a, 30b, Both ends of 30c continue to face the support ring 23 at a constant distance.

また、それに伴って誘導子30a,30b,30cの中間部もサポートリング23の拡径方向に移動するので、そこの対向距離の変動も僅かなものに抑制される。しかも、サポートリング23が非真円状に変形したときでも、或る程度は追従して適合する。
なお、誘導子30a,30b,30cそれぞれに連結される一対の移動機構83のうち一方については、例えば吊持機構44や誘導子30と連結をヒンジ等で行って、周方向への傾きが或る程度は許容されるようにしておけば、サポートリング23の拡径に応じて移動機構83が作動したときに、誘導子30の分割箇所の距離が変化して誘導子30が拡径するので、誘導子30に無理な変形を生じさせることが無い。
In addition, the intermediate portions of the inductors 30a, 30b, and 30c are also moved in the diameter increasing direction of the support ring 23, so that the variation in the facing distance is suppressed to a slight amount. In addition, even when the support ring 23 is deformed into a non-circular shape, it is adapted to follow to some extent.
Note that one of the pair of moving mechanisms 83 connected to each of the inductors 30a, 30b, and 30c is connected to the suspension mechanism 44 or the inductor 30 with a hinge or the like, for example, and is inclined in the circumferential direction. If the movement mechanism 83 is operated in accordance with the diameter expansion of the support ring 23, the distance of the divided portion of the inductor 30 changes and the diameter of the inductor 30 increases. The inductor 30 is not deformed excessively.

[その他]
上述の実施形態において焼入れ装置40を確保する際、その架台45に、円板46を軸回転させる回転機構が組み込まれているものを採用して、誘導加熱時に回転機構を作動させて円板46上の金属旋回輪を回転させるようにしても良い。対向状態を維持しながら環状の誘導子30と金属旋回輪とを相対回転させることにより、熱変形等に起因する対向距離の局所変動などの不所望な影響が周方向に平均化される。誘導子30aの通電端31と誘導子30bの通電端32との間隙や,誘導子30bの通電端31と誘導子30cの通電端32との間隙,誘導子30cの通電端31と誘導子30aの通電端32との間隙で、誘導電流が少し広がることの影響も分散緩和される。
[Others]
When securing the quenching apparatus 40 in the above-described embodiment, a structure in which a rotating mechanism for rotating the disk 46 is incorporated in the gantry 45 is adopted, and the rotating mechanism is operated during induction heating to thereby operate the disk 46. The upper metal turning wheel may be rotated. By rotating the annular inductor 30 and the metal turning wheel relative to each other while maintaining the facing state, undesired effects such as local variations in the facing distance caused by thermal deformation or the like are averaged in the circumferential direction. The gap between the conducting end 31 of the inductor 30a and the conducting end 32 of the inductor 30b, the gap between the conducting end 31 of the inductor 30b and the conducting end 32 of the inductor 30c, the conducting end 31 of the inductor 30c and the inductor 30a The influence of a slight spread of the induced current in the gap with the energization end 32 is also reduced.

本発明の一実施形態について、金属旋回輪の具体例を示し、(a)が金属旋回輪の斜視図、(b)がその一部の断面拡大図、(c)がリングの展開斜視図、(d)がその一部の断面拡大図である。About one embodiment of the present invention, a specific example of a metal swirl wheel is shown, (a) is a perspective view of the metal swirl wheel, (b) is a partially enlarged sectional view, (c) is a developed perspective view of the ring, (D) is the one part expanded sectional view. (a)がリテイニングリングとその転動接触面を示す一部断面拡大図、(b)がノーズリングとその転動接触面を示す一部断面拡大図、(c)がサポートリングとその転動接触面を示す一部断面拡大図である。(A) is a partial cross-sectional enlarged view showing the retaining ring and its rolling contact surface, (b) is a partial cross-sectional enlarged view showing the nose ring and its rolling contact surface, and (c) is the support ring and its rolling contact surface. It is a partial cross section enlarged view which shows a dynamic contact surface. (a)がサポートリングの端面に位置する転動接触面に対応した誘導子(すなわち環状に配置した誘導子の列)の斜視図、(b)がその誘導子の一部断面拡大図、(c)が対向状態の誘導子とサポートリングとの縦断面図、(d)がその一部拡大図である。(A) is a perspective view of the inductor corresponding to the rolling contact surface located on the end face of the support ring (that is, a row of inductors arranged in an annular shape), (b) is a partially enlarged cross-sectional view of the inductor, c) is a longitudinal sectional view of the inductor and the support ring in the opposed state, and (d) is a partially enlarged view thereof. 焼入れ装置の構造を示し、(a)が正面図、(b)が左側面図である。The structure of a hardening apparatus is shown, (a) is a front view, (b) is a left view. 高周波電源装置のブロック図である。It is a block diagram of a high frequency power supply device. (a)は加熱面の冷却手段の構成例を示す断面図、(b)は反対面の冷却装置の構成例を示す断面図である。(A) is sectional drawing which shows the structural example of the cooling means of a heating surface, (b) is sectional drawing which shows the structural example of the cooling device of an opposite surface. 本発明の他の実施形態について、高周波電源装置のブロック図である。It is a block diagram of a high frequency power unit about other embodiments of the present invention. 本発明の他の実施形態について、(a)がサポートリングの内周面に位置する転動接触面に対応した誘導子の斜視図、(b)がその誘導子の一部断面拡大図、(c)が対向状態の誘導子とサポートリングとの縦断面図、(d)がその一部拡大図である。(A) is the perspective view of the inductor corresponding to the rolling contact surface located in the internal peripheral surface of a support ring about other embodiment of this invention, (b) is the partial cross section enlarged view of the inductor, c) is a longitudinal sectional view of the inductor and the support ring in the opposed state, and (d) is a partially enlarged view thereof. 本発明の他の実施形態について、(a)がノーズリングの外周面に位置する転動接触面に対応した誘導子(すなわち環状に配置した誘導子の列)の斜視図、(b)がその誘導子の一部断面拡大図、(c)が対向状態の誘導子とノーズリングとの縦断面図、(d)がその一部拡大図である。In another embodiment of the present invention, (a) is a perspective view of inductors corresponding to rolling contact surfaces located on the outer peripheral surface of the nose ring (that is, a row of inductors arranged in an annular shape), and (b) is The partial cross-sectional enlarged view of an inductor, (c) is a longitudinal cross-sectional view of the inductor and nose ring of the opposing state, (d) is the partially expanded view. 一発加熱での焼入れを工程順に示す一部断面拡大図である。It is a partial cross section enlarged view which shows hardening by one-shot heating in order of a process. 反対面冷却付き一発加熱での焼入れを工程順に示す一部断面拡大図である。It is a partial cross section enlarged view which shows hardening by the one-shot heating with opposite surface cooling in order of a process. 本発明の他の実施形態について、対向するサポートリング23及び誘導子30とそれに付設された拡径手段80との平面図である。It is a top view of support ring 23 and inductor 30 which oppose, and diameter-expansion means 80 attached to it about other embodiments of the present invention. 従来の幅方向移動加熱での焼入れを示す斜視図である。It is a perspective view which shows the hardening by the conventional width direction moving heating.

符号の説明Explanation of symbols

10…金属旋回輪、15…ソフトゾーン、
20…金属旋回輪、
21…リテイニングリング(外輪)、21a…転動接触面(端面)、
22…ノーズリング(内輪)、22a…転動接触面(外周面)、
22b…転動接触面(端面)、22c…反対面、23…サポートリング(外輪)、
23a…転動接触面(端面)、23b…転動接触面(内周面)、
24,25,26…ローラ(ころ)、
30…誘導子(複数の誘導子、環状に配置した誘導子の列)、
30a,30b,30c…誘導子(三分割した加熱コイル)、
31,32…通電端、34…噴射口(第1冷却手段)、35…冷却水(冷媒)、
40…焼入れ装置、
41…基台部、42…昇降機構(移動装置)、
43…位置調整機構、44…吊持機構、45…架台(回転機構)、
46…円板(回転体)、46a…通水溝(第2冷却手段)、
50…高周波電源装置、
51…交流源、52…整流部、53…インバータ(直交変換部)、
54…電源電路(一次側電路)、55…絶縁変圧器、56…二次側電路、
60…高周波電源装置、
63…インバータ(直交変換部)、65…絶縁変圧器、68…同相制御回路、
70…冷却装置(第2冷却手段)、
71…給水管、72…冷却水(冷媒)、73…給水管、74…噴射口、
80…拡径手段、
81…変位計、82…追従制御回路、83…移動機構
10 ... Metal swivel wheel, 15 ... Soft zone,
20 ... Metal swivel wheel,
21 ... Retaining ring (outer ring), 21a ... Rolling contact surface (end surface),
22 ... Nose ring (inner ring), 22a ... Rolling contact surface (outer peripheral surface),
22b ... rolling contact surface (end surface), 22c ... opposite surface, 23 ... support ring (outer ring),
23a ... rolling contact surface (end surface), 23b ... rolling contact surface (inner peripheral surface),
24, 25, 26 ... Rollers
30 ... Inductors (a plurality of inductors, a row of inductors arranged in a ring),
30a, 30b, 30c ... inductor (a heating coil divided in three),
31, 32 ... energization end, 34 ... injection port (first cooling means), 35 ... cooling water (refrigerant),
40 ... quenching device,
41 ... Base unit, 42 ... Elevating mechanism (moving device),
43 ... Position adjustment mechanism, 44 ... Suspension mechanism, 45 ... Mount (rotation mechanism),
46 ... disk (rotary body), 46a ... water flow groove (second cooling means),
50. High frequency power supply,
51 ... AC source, 52 ... Rectification unit, 53 ... Inverter (orthogonal transformation unit),
54 ... Power supply circuit (primary side circuit), 55 ... Insulation transformer, 56 ... Secondary side circuit,
60 ... high frequency power supply,
63 ... Inverter (orthogonal transformation unit), 65 ... Insulation transformer, 68 ... In-phase control circuit,
70 ... Cooling device (second cooling means),
71 ... water supply pipe, 72 ... cooling water (refrigerant), 73 ... water supply pipe, 74 ... injection port,
80 ... Diameter expanding means,
81 ... Displacement meter, 82 ... Tracking control circuit, 83 ... Moving mechanism

Claims (9)

誘導加熱を利用して金属旋回輪の転動接触面を焼入れする金属旋回輪転動接触面の焼入れ方法において、前記誘導加熱を行うとき、前記転動接触面に対向させて複数の誘導子を環状に分断配列して、これらの誘導子に高周波通電して大円加熱し、その際、前記高周波通電に際して前記誘導子それぞれには600V以下の電圧を印加する条件の下で所望の誘導起電力が得られるように前記誘導子の複数化の数値を定めておくことを特徴とする金属旋回輪転動接触面の焼入れ方法。   In the quenching method for a metal swirl ring rolling contact surface that quenches the rolling contact surface of a metal swirl ring using induction heating, when performing the induction heating, a plurality of inductors are annularly opposed to the rolling contact surface. These inductors are subjected to high-frequency energization and heated to a great circle. At that time, a desired induced electromotive force is applied under the condition that a voltage of 600 V or less is applied to each of the inductors during the high-frequency energization. A method for quenching a rolling contact surface of a metal swivel wheel, wherein a numerical value of plural inductors is determined so as to be obtained. 前記高周波通電に際して相互に絶縁された複数の電源から同相の電流を供給することを特徴とする請求項1記載の金属旋回輪転動接触面の焼入れ方法及び装置。   The method and apparatus for quenching a metal swivel rolling contact surface according to claim 1, wherein in-phase currents are supplied from a plurality of power sources insulated from each other during the high-frequency energization. 誘導加熱を利用して金属旋回輪の転動接触面を焼入れする金属旋回輪転動接触面の焼入れ装置において、前記金属旋回輪を支持する架台と、前記転動接触面に対向させうる状態で環状に列ねられた複数の誘導子と、出力電流の位相を制御可能な複数の電源装置と、それらの出力電流の位相を同じにする同相制御回路とを備えたことを特徴とする金属旋回輪転動接触面の焼入れ装置。   In a quenching apparatus for a metal swirl ring rolling contact surface that quenches a rolling contact surface of a metal swirl ring using induction heating, a ring that supports the metal swirl wheel and is capable of facing the rolling contact surface. And a plurality of power supply devices that can control the phase of the output current, and a common-phase control circuit that makes the phases of the output currents the same. Hardening device for moving contact surface. 前記金属旋回輪を前記誘導子に対して相対的に周方向へ回転させながら前記転動接触面の焼入れを行うことを特徴とする請求項2記載の金属旋回輪転動接触面の焼入れ方法。   The method of quenching a metal swivel rolling contact surface according to claim 2, wherein the rolling contact surface is quenched while rotating the metal swirl wheel in a circumferential direction relative to the inductor. 前記金属旋回輪を前記誘導子に対して相対的に周方向へ回転させる回転機構を備えたことを特徴とする請求項3記載の金属旋回輪転動接触面の焼入れ装置。   4. The quenching apparatus for a rolling contact surface of a metal swivel wheel according to claim 3, further comprising a rotation mechanism for rotating the metal swivel wheel in a circumferential direction relative to the inductor. 前記金属旋回輪における前記誘導子との対向面の反対面を冷却装置にて冷却しながら前記転動接触面の焼入れを行うことを特徴とする請求項2又は請求項4に記載された金属旋回輪転動接触面の焼入れ方法。   5. The metal turning according to claim 2, wherein the rolling contact surface is quenched while a surface opposite to the surface facing the inductor in the metal turning wheel is cooled by a cooling device. A method of quenching the rolling contact surface. 前記誘導子とは反対側から前記金属旋回輪を臨むところに設けられ前記金属旋回輪を周方向同時に冷却する冷却装置を備えたことを特徴とする請求項3又は請求項5に記載された金属旋回輪転動接触面の焼入れ装置。   6. The metal according to claim 3, further comprising a cooling device provided at a position facing the metal swivel ring from a side opposite to the inductor to simultaneously cool the metal swivel ring in a circumferential direction. Quenching device for rolling contact surface of swivel wheel. 前記誘導加熱を行うに際して、熱膨張による前記金属旋回輪の拡径に追従してその拡径方向に前記誘導子を移動させることを特徴とする請求項2,請求項4,及び請求項6のうち何れか一項に記載された金属旋回輪転動接触面の焼入れ方法。   When performing the induction heating, the inductor is moved in the diameter expansion direction following the diameter expansion of the metal swirl wheel due to thermal expansion. The quenching method of the metal turning wheel rolling contact surface described in any one of them. 前記金属旋回輪の径方向に前記誘導子を移動させる移動機構と、前記金属旋回輪の拡径に応じて前記移動機構を作動させる追従制御手段とを備えたことを特徴とする請求項3,請求項5,及び請求項7のうち何れか一項に記載された金属旋回輪転動接触面の焼入れ装置。   4. A moving mechanism that moves the inductor in a radial direction of the metal swirl wheel, and a follow-up control unit that operates the moving mechanism in accordance with an increase in diameter of the metal swirl wheel. A quenching device for a rolling contact surface of a metal swivel wheel according to any one of claims 5 and 7.
JP2003383177A 2003-11-12 2003-11-12 Method and apparatus for hardening rolling contact surface of metallic rotating ring Pending JP2005146316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383177A JP2005146316A (en) 2003-11-12 2003-11-12 Method and apparatus for hardening rolling contact surface of metallic rotating ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383177A JP2005146316A (en) 2003-11-12 2003-11-12 Method and apparatus for hardening rolling contact surface of metallic rotating ring

Publications (1)

Publication Number Publication Date
JP2005146316A true JP2005146316A (en) 2005-06-09

Family

ID=34691970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383177A Pending JP2005146316A (en) 2003-11-12 2003-11-12 Method and apparatus for hardening rolling contact surface of metallic rotating ring

Country Status (1)

Country Link
JP (1) JP2005146316A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082957A1 (en) * 2006-01-23 2007-07-26 Sms Elotherm Gmbh Process and apparatus for hardening a workpiece which describes a closed curve
JP2009287074A (en) * 2008-05-28 2009-12-10 Nsk Ltd Induction heat treatment apparatus, induction heat treatment method and rolling bearing with annular component having undergone induction heat treatment method
JP2011117487A (en) * 2009-12-01 2011-06-16 Ntn Corp Orbital ring and rolling bearing
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2012515430A (en) * 2009-01-17 2012-07-05 インダクトヒート インコーポレイテッド Induction heating treatment of workpieces with complex shapes
JP2013069523A (en) * 2011-09-22 2013-04-18 Mitsubishi Heavy Ind Ltd Induction heating apparatus and induction heating method
CN104254623A (en) * 2012-02-17 2014-12-31 蒂森克虏伯罗特艾德有限公司 Method and arrangement for progressive surface hardening
EP2666875A4 (en) * 2011-01-21 2015-11-18 Ntn Toyo Bearing Co Ltd Method for manufacturing bearing ring, bearing ring, and rolling bearing
CN110461051A (en) * 2019-08-27 2019-11-15 上海超导科技股份有限公司 Permanent magnet induction heating device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082957A1 (en) * 2006-01-23 2007-07-26 Sms Elotherm Gmbh Process and apparatus for hardening a workpiece which describes a closed curve
JP2009287074A (en) * 2008-05-28 2009-12-10 Nsk Ltd Induction heat treatment apparatus, induction heat treatment method and rolling bearing with annular component having undergone induction heat treatment method
JP2012515430A (en) * 2009-01-17 2012-07-05 インダクトヒート インコーポレイテッド Induction heating treatment of workpieces with complex shapes
JP2011117487A (en) * 2009-12-01 2011-06-16 Ntn Corp Orbital ring and rolling bearing
EP2666875A4 (en) * 2011-01-21 2015-11-18 Ntn Toyo Bearing Co Ltd Method for manufacturing bearing ring, bearing ring, and rolling bearing
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2011225998A (en) * 2011-06-30 2011-11-10 Neturen Co Ltd Apparatus and method for high-frequency induction heating
JP2013069523A (en) * 2011-09-22 2013-04-18 Mitsubishi Heavy Ind Ltd Induction heating apparatus and induction heating method
CN104254623A (en) * 2012-02-17 2014-12-31 蒂森克虏伯罗特艾德有限公司 Method and arrangement for progressive surface hardening
US10167527B2 (en) 2012-02-17 2019-01-01 Thyssenkrupp Rothe Erde Gmbh Method and arrangement for progressive surface hardening
CN110461051A (en) * 2019-08-27 2019-11-15 上海超导科技股份有限公司 Permanent magnet induction heating device and method
CN110461051B (en) * 2019-08-27 2021-07-30 上海超导科技股份有限公司 Permanent magnet induction heating device and method

Similar Documents

Publication Publication Date Title
CN103589846B (en) Quenching inductor for double steps of steering joint and quenching method for steering joint
WO2012137960A1 (en) Induction heating device, induction heating equipment, induction heating method, and heat treatment method
JP2008530460A (en) Production method of bearing ring for large dimension rolling bearing
CN104805276B (en) Whole induction heating temperature control method for support rollers
JP2005146316A (en) Method and apparatus for hardening rolling contact surface of metallic rotating ring
US20090188910A1 (en) Heat treatment system and method using active feedback
CN105648190B (en) A method of improving steel pipe inner wall hardness
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
CN112609051A (en) Hollow stepped shaft double-journal and transition fillet simultaneous quenching inductor and quenching method
KR100557309B1 (en) High frequency induction heating coil
JP2011117016A (en) Method for manufacturing bearing ring, bearing ring and rolling bearing
WO2017221963A1 (en) Method for manufacturing bearing parts
EP2915886B1 (en) Heat treatment method and method for manufacturing machine part
CN102027141B (en) Device for heating and method for heating rotationally symmetrical component
JP2007332411A (en) Method for manufacturing bearing ring of rolling bearing
US11846001B2 (en) Split multiple coil electric induction heat treatment systems for simultaneous heating of multiple features of a bearing component
CN204022876U (en) A kind of band steady arm adjustable TJ moves universal joint medium frequency quenching inductor block
JP2005310645A (en) High-frequency induction hardening device
JP2005325408A (en) High frequency heat treatment method and device
JP2005120415A (en) Method and device for quenching rolling contact face of metallic slewing ring
JP5021367B2 (en) Induction heating coil and induction heating device
JP2014095154A (en) Heat treatment method for ring-shaped member, method for producing ring-shaped member, ring-shaped member, bearing ring of rolling bearing, and rolling bearing
CN115704056A (en) Induction heating device and method suitable for multi-specification steel plates
US2757268A (en) Electrical heating apparatus
JP2016089183A (en) Heat treatment method for workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080409