JP2005145094A - Driving force distribution device of four-wheel drive vehicle - Google Patents

Driving force distribution device of four-wheel drive vehicle Download PDF

Info

Publication number
JP2005145094A
JP2005145094A JP2003381143A JP2003381143A JP2005145094A JP 2005145094 A JP2005145094 A JP 2005145094A JP 2003381143 A JP2003381143 A JP 2003381143A JP 2003381143 A JP2003381143 A JP 2003381143A JP 2005145094 A JP2005145094 A JP 2005145094A
Authority
JP
Japan
Prior art keywords
hydraulic
driving force
hydraulic pump
clutch
wheel drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003381143A
Other languages
Japanese (ja)
Inventor
Kazunori Miyata
和典 宮田
Kanji Kita
貫二 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003381143A priority Critical patent/JP2005145094A/en
Publication of JP2005145094A publication Critical patent/JP2005145094A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To generate, by a simple structure, a specified hydraulic pressure for engaging the hydraulic clutch of the driving force distribution device of a four-wheel drive vehicle. <P>SOLUTION: The four-wheel drive vehicle V comprises the hydraulic clutch 20 distributing a drive force from front wheels Wf to rear wheels Wr, a hydraulic pump 30 generating hydraulic pressure for engaging the hydraulic clutch 20, and a control means 48 directly controlling hydraulic pressure generated by the hydraulic pump 30 based on the traveling state of the vehicle V. Since a control means 48 directly controls hydraulic pressure generated by the hydraulic pump 30, accumulators and regulators, which were required before, can be eliminated and the number of parts and cost can be reduced. Also, since a super-magnetostrictor 35 capable of generating a high output with low voltage and having high responsiveness is used in the hydraulic pump 30, not only a power consumption, weight, and space can be reduced less than in a case where the hydraulic pump 30 is driven by an electric motor but also the generated hydraulic pressure can be accurately controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、駆動源から主駆動輪に伝達される駆動力の一部を油圧クラッチを介して副駆動輪に配分可能な四輪駆動車両の駆動力配分装置に関する。   The present invention relates to a driving force distribution device for a four-wheel drive vehicle capable of distributing a part of driving force transmitted from a driving source to main driving wheels to sub driving wheels via a hydraulic clutch.

エンジンの駆動力を後輪にだけ伝達する後輪駆動状態と、エンジンの駆動力を前輪および後輪の両方に伝達する四輪駆動状態とを切り替え可能な四輪駆動車両において、エンジンおよび前輪間の駆動力伝達系に配置した油圧クラッチを、モータで駆動される油圧ポンプと、油圧ポンプが発生した油圧を蓄圧するアキュムレータと、アキュムレータに蓄圧した油圧を調圧するレギュレータとによって発生させた油圧で締結するものが、下記特許文献1により公知である。
特許第2913955号公報
In a four-wheel drive vehicle capable of switching between a rear wheel drive state in which the engine driving force is transmitted only to the rear wheels and a four wheel drive state in which the engine driving force is transmitted to both the front wheels and the rear wheels. The hydraulic clutch placed in the driving force transmission system is engaged with the hydraulic pressure generated by the hydraulic pump driven by the motor, the accumulator that accumulates the hydraulic pressure generated by the hydraulic pump, and the regulator that regulates the hydraulic pressure accumulated in the accumulator This is known from Patent Document 1 below.
Japanese Patent No. 2913955

しかしながら上記特許文献1に記載されたものは、油圧クラッチを締結する所定の油圧を得るために、油圧ポンプが発生した油圧を一旦アキュムレータに蓄圧し、それをレギュレータにより調圧しているので、アキュムレータやレギュレータが必要になって部品点数やコストが増加する問題があった。   However, in the above-mentioned Patent Document 1, the hydraulic pressure generated by the hydraulic pump is temporarily accumulated in an accumulator and is regulated by a regulator in order to obtain a predetermined hydraulic pressure for fastening the hydraulic clutch. There is a problem that the number of parts and the cost increase due to the necessity of a regulator.

本発明は前述の事情に鑑みてなされたもので、四輪駆動車両の駆動力配分装置の油圧クラッチを締結する所定の油圧を簡単な構造で発生させることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to generate a predetermined hydraulic pressure for fastening a hydraulic clutch of a driving force distribution device of a four-wheel drive vehicle with a simple structure.

上記目的を達成するために、請求項1に記載された発明によれば、駆動源から主駆動輪に伝達される駆動力の一部を油圧クラッチを介して副駆動輪に配分可能な四輪駆動車両の駆動力配分装置において、油圧クラッチを締結する油圧を発生する油圧ポンプと、車両の走行状態を検出する走行状態検出手段と、走行状態検出手段で検出した車両の走行状態に基づいて油圧ポンプが発生する油圧を直接制御することで、主駆動輪および副駆動輪間の駆動力の配分を制御する制御手段とを備えたことを特徴とする四輪駆動車両の駆動力配分装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, four wheels that can distribute a part of the driving force transmitted from the drive source to the main drive wheels to the sub drive wheels via the hydraulic clutch. In a driving force distribution device for a driving vehicle, a hydraulic pump that generates hydraulic pressure for engaging a hydraulic clutch, a traveling state detection unit that detects a traveling state of the vehicle, and a hydraulic pressure based on the traveling state of the vehicle detected by the traveling state detection unit Proposed a driving force distribution device for a four-wheel drive vehicle, comprising a control means for controlling the distribution of the driving force between the main driving wheel and the auxiliary driving wheel by directly controlling the hydraulic pressure generated by the pump Is done.

また請求項2に記載された発明によれば、請求項1の構成に加えて、油圧ポンプは超磁歪素子で駆動されることを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, a driving force distribution device for a four-wheel drive vehicle is proposed, in which the hydraulic pump is driven by a giant magnetostrictive element. .

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、油圧ポンプの吐出ポートと油圧クラッチの油室とを接続する吐出油路の油圧を検出する油圧センサを備え、制御手段は油圧センサで検出した油圧が目標油圧に一致するように油圧ポンプの作動を制御することを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1 or claim 2, the hydraulic pressure for detecting the hydraulic pressure of the discharge oil passage connecting the discharge port of the hydraulic pump and the oil chamber of the hydraulic clutch. A driving force distribution device for a four-wheel drive vehicle is proposed, which includes a sensor, and the control means controls the operation of the hydraulic pump so that the hydraulic pressure detected by the hydraulic sensor matches the target hydraulic pressure.

また請求項4に記載された発明によれば、請求項3の構成に加えて、油圧クラッチの油室とリザーバとを接続する排出油路に可変オリフィスを設けたことを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 4, in addition to the structure of claim 3, a four-wheel drive characterized in that a variable orifice is provided in a discharge oil passage connecting an oil chamber of a hydraulic clutch and a reservoir. A vehicle driving force distribution device is proposed.

また請求項5に記載された発明によれば、請求項2の構成に加えて、油圧ポンプは超磁歪素子を伸縮させる磁界を発生するコイルを備え、制御手段はコイルに供給する電流の大きさを制御することを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the fifth aspect of the present invention, in addition to the configuration of the second aspect, the hydraulic pump includes a coil that generates a magnetic field for expanding and contracting the giant magnetostrictive element, and the control means is a magnitude of a current supplied to the coil. A driving force distribution device for a four-wheel drive vehicle is proposed.

また請求項6に記載された発明によれば、請求項2の構成に加えて、油圧ポンプは超磁歪素子を伸縮させる磁界を発生するコイルを備え、制御手段はコイルに供給する電流の周波数を制御することを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 6, in addition to the configuration of claim 2, the hydraulic pump includes a coil that generates a magnetic field for expanding and contracting the giant magnetostrictive element, and the control means sets the frequency of the current supplied to the coil. A driving force distribution device for a four-wheel drive vehicle characterized by control is proposed.

また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、左右の副駆動輪の各々に油圧クラッチを設けたことを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to a seventh aspect of the present invention, in addition to the configuration of any one of the first to sixth aspects, a hydraulic clutch is provided for each of the left and right auxiliary drive wheels. A driving force distribution device for a wheel drive vehicle is proposed.

また請求項8に記載された発明によれば、請求項1の構成に加えて、油圧クラッチに作動油を供給する第1油圧ポンプと、油圧クラッチから作動油を吸入する第2油圧ポンプとを設けたことを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 8, in addition to the structure of claim 1, the first hydraulic pump that supplies the hydraulic oil to the hydraulic clutch and the second hydraulic pump that sucks the hydraulic oil from the hydraulic clutch are provided. A driving force distribution device for a four-wheel drive vehicle characterized by being provided is proposed.

また請求項9に記載された発明によれば、請求項7の構成に加えて、左右の副駆動輪にそれぞれ設けられた油圧クラッチに供給される作動油を三方弁により制御することを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the ninth aspect of the present invention, in addition to the configuration of the seventh aspect, the hydraulic oil supplied to the hydraulic clutch provided on each of the left and right auxiliary drive wheels is controlled by a three-way valve. A driving force distribution device for a four-wheel drive vehicle is proposed.

また請求項10に記載された発明によれば、請求項7の構成に加えて、左右の副駆動輪にそれぞれ設けられた油圧クラッチは、共通の油室を挟むように配置された左右のクラッチピストンによりそれぞれ締結されることを特徴とする四輪駆動車両の駆動力配分装置が提案される。   According to the invention described in claim 10, in addition to the structure of claim 7, the hydraulic clutches respectively provided on the left and right auxiliary drive wheels are the left and right clutches arranged so as to sandwich the common oil chamber. A driving force distribution device for a four-wheel drive vehicle characterized by being fastened by a piston is proposed.

尚、実施例のエンジンEは本発明の駆動源に対応し、実施例の前輪Wfは本発明の主駆動輪に対応し、実施例の後輪Wrは本発明の副駆動輪に対応し、また実施例の第1油圧センサ40は本発明の油圧センサに対応し、実施例の前輪速度センサ49、後輪速度センサ50、ヨーレートセンサ51および横加速度センサ52は本発明の走行状態検出手段に対応する。   The engine E of the embodiment corresponds to the drive source of the present invention, the front wheel Wf of the embodiment corresponds to the main drive wheel of the present invention, the rear wheel Wr of the embodiment corresponds to the auxiliary drive wheel of the present invention, The first hydraulic sensor 40 of the embodiment corresponds to the hydraulic sensor of the present invention, and the front wheel speed sensor 49, the rear wheel speed sensor 50, the yaw rate sensor 51, and the lateral acceleration sensor 52 of the embodiment are used as the traveling state detection means of the present invention. Correspond.

請求項1の構成によれば、四輪駆動車両の駆動力配分装置の油圧クラッチを締結すべく、走行状態検出手段で検出した車両の走行状態に基づいて制御手段が油圧ポンプが発生する油圧を直接制御するので、従来必要であったアキュムレータやレギュレータが不要になって部品点数およびコストを削減することができる。   According to the configuration of the first aspect, the hydraulic pressure generated by the hydraulic pump is controlled by the control unit based on the traveling state of the vehicle detected by the traveling state detecting unit in order to engage the hydraulic clutch of the driving force distribution device of the four-wheel drive vehicle. Since direct control is performed, accumulators and regulators that have been necessary in the past are unnecessary, and the number of parts and cost can be reduced.

請求項2の構成によれば、低電圧で高出力を発生可能であり、かつ応答性が高い超磁歪素子で油圧ポンプを駆動するので、電動モータで油圧ポンプを駆動する場合に比べて消費電力、重量およびスペースを削減することができるだけでなく、発生する油圧を精度良く制御することができる。   According to the configuration of the second aspect, since the hydraulic pump is driven by the giant magnetostrictive element that can generate a high output at a low voltage and has high responsiveness, the power consumption compared to the case where the hydraulic pump is driven by an electric motor. Not only can the weight and space be reduced, but also the generated hydraulic pressure can be accurately controlled.

請求項3の構成によれば、油圧ポンプの吐出ポートと油圧クラッチの油室とを接続する吐出油路の油圧を油圧センサで検出し、油圧センサで検出した油圧が目標油圧に一致するように制御手段が油圧ポンプの作動を制御するので、油圧ポンプが発生する油圧を精度良くフィードバック制御することができる。   According to the configuration of the third aspect, the oil pressure of the discharge oil passage connecting the discharge port of the hydraulic pump and the oil chamber of the hydraulic clutch is detected by the oil pressure sensor so that the oil pressure detected by the oil pressure sensor matches the target oil pressure. Since the control means controls the operation of the hydraulic pump, the hydraulic pressure generated by the hydraulic pump can be feedback-controlled with high accuracy.

請求項4の構成によれば、油圧クラッチの油室とリザーバとを接続する排出油路に可変オリフィスを設けたので、可変オリフィスの開度を変化させることで油圧クラッチの締結力の大きさや締結力の立ち上がりを任意に制御することができる。   According to the configuration of the fourth aspect, since the variable orifice is provided in the discharge oil passage connecting the oil chamber and the reservoir of the hydraulic clutch, the magnitude of the fastening force of the hydraulic clutch and the engagement can be changed by changing the opening of the variable orifice. The rise of force can be controlled arbitrarily.

請求項5の構成によれば、制御手段で油圧ポンプのコイルに供給する電流の大きさを制御することで超磁歪素子を往復伸縮させるので、その電流値に応じて油圧ポンプの吐出量を任意に制御することができ、しかも超磁歪素子は伸縮の応答性が高いので油圧の脈動を低減することができる。   According to the configuration of the fifth aspect, since the giant magnetostrictive element is reciprocated and expanded by controlling the magnitude of the current supplied to the coil of the hydraulic pump by the control means, the discharge amount of the hydraulic pump can be arbitrarily set according to the current value. In addition, since the giant magnetostrictive element has a high response to expansion and contraction, it is possible to reduce hydraulic pulsation.

請求項6の構成によれば、制御手段で油圧ポンプのコイルに供給する電流の周波数を制御することで超磁歪素子を往復伸縮させるので、その周波数に応じて油圧ポンプの吐出量を任意に制御することができ、しかも超磁歪素子は伸縮の応答性が高いので油圧の脈動を低減することができる。更に、電流の周波数の設定により油圧ポンプの作動に伴う車両の共振を回避することができる。   According to the configuration of the sixth aspect, since the giant magnetostrictive element is reciprocally expanded and contracted by controlling the frequency of the current supplied to the coil of the hydraulic pump by the control means, the discharge amount of the hydraulic pump is arbitrarily controlled according to the frequency. In addition, since the giant magnetostrictive element has a high response to expansion and contraction, the pulsation of hydraulic pressure can be reduced. Further, the resonance of the vehicle accompanying the operation of the hydraulic pump can be avoided by setting the current frequency.

請求項7の構成によれば、左右の副駆動輪の各々に油圧クラッチを設けたので、主駆動輪および副駆動輪を共に駆動して四輪駆動状態にできるだけでなく、左右の副駆動輪の一方を駆動して車両のヨーモーメントを制御することができる。   According to the configuration of the seventh aspect, since the hydraulic clutch is provided in each of the left and right auxiliary driving wheels, the main driving wheel and the auxiliary driving wheel can be driven together to be in a four-wheel driving state, and the left and right auxiliary driving wheels can be One of these can be driven to control the yaw moment of the vehicle.

請求項8の構成によれば、第1油圧ポンプで油圧クラッチに作動油を供給し、第2油圧ポンプで油圧クラッチから作動油を吸入するので、油圧クラッチを締結解除する際の応答性を大幅に高めることができる。   According to the configuration of the eighth aspect, since the hydraulic oil is supplied to the hydraulic clutch by the first hydraulic pump and the hydraulic oil is sucked from the hydraulic clutch by the second hydraulic pump, the responsiveness when releasing and engaging the hydraulic clutch is greatly increased. Can be increased.

請求項9の構成によれば、左右の副駆動輪の油圧クラッチに供給される作動油を三方弁により制御するので、左右の油圧クラッチにそれぞれ対応して左右の油圧ポンプを設ける必要をなくして部品点数を削減することができる。   According to the configuration of the ninth aspect, since the hydraulic oil supplied to the hydraulic clutches of the left and right auxiliary drive wheels is controlled by the three-way valve, there is no need to provide left and right hydraulic pumps corresponding to the left and right hydraulic clutches, respectively. The number of parts can be reduced.

請求項10の構成によれば、左右の油圧クラッチのクラッチピストンを共通の油室を挟むように配置したので、油圧クラッチの構造を簡素化して部品点数を削減することができ、しかも左右の油圧クラッチの締結トルクのアンバランスを解消することができる。   According to the configuration of the tenth aspect, since the clutch pistons of the left and right hydraulic clutches are arranged so as to sandwich the common oil chamber, the structure of the hydraulic clutch can be simplified and the number of parts can be reduced. The imbalance of the clutch engagement torque can be eliminated.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図3は本発明の第1実施例を示すもので、図1は四輪駆動車両の駆動力配分装置を示す図、図2は油圧ポンプに供給する電流の大きさと油圧ポンプが発生する油圧との関係を示すグラフ、図3は油圧ポンプに供給する電流の周波数と油圧ポンプが発生する油圧との関係を示すグラフである。   1 to 3 show a first embodiment of the present invention. FIG. 1 is a diagram showing a driving force distribution device for a four-wheel drive vehicle. FIG. 2 is a diagram showing the magnitude of current supplied to the hydraulic pump and the generation of the hydraulic pump. FIG. 3 is a graph showing the relationship between the frequency of the current supplied to the hydraulic pump and the hydraulic pressure generated by the hydraulic pump.

図1に示すように、四輪駆動車両Vは主駆動輪たる左右の前輪Wf,Wfと、副駆動輪たる左右の後輪Wr,Wrとを備える。エンジンEの駆動力は、トランスミッションM、ファイナルドライブギヤ11、ファイナルドリブンギヤ12、フロントディファレンシャルギヤ13および左右の車軸14,14を介して左右の前輪Wf,Wfに伝達される。ファイナルドリブンギヤ12の駆動力は、第1ベベルギヤ15、第2ベベルギヤ16、フロントユニバーサルジョイント17、プロペラシャフト18、リヤユニバーサルジョイント19、油圧クラッチ20、第3ベベルギヤ21、第4ベベルギヤ22、リヤディファレンシャルギヤ23および左右の車軸24,24を介して左右の後輪Wr,Wrに伝達される。油圧クラッチ20は油室25に作用する油圧でクラッチピストン26を駆動して摩擦係合部材27…を係合させることで、プロペラシャフト18を第3ベベルギヤ21に締結する。   As shown in FIG. 1, the four-wheel drive vehicle V includes left and right front wheels Wf and Wf as main drive wheels and left and right rear wheels Wr and Wr as auxiliary drive wheels. The driving force of the engine E is transmitted to the left and right front wheels Wf, Wf via the transmission M, the final drive gear 11, the final driven gear 12, the front differential gear 13, and the left and right axles 14,14. The driving force of the final driven gear 12 includes a first bevel gear 15, a second bevel gear 16, a front universal joint 17, a propeller shaft 18, a rear universal joint 19, a hydraulic clutch 20, a third bevel gear 21, a fourth bevel gear 22, and a rear differential gear 23. And it is transmitted to the left and right rear wheels Wr, Wr via the left and right axles 24, 24. The hydraulic clutch 20 fastens the propeller shaft 18 to the third bevel gear 21 by driving the clutch piston 26 with the hydraulic pressure acting on the oil chamber 25 to engage the friction engagement members 27.

油圧ポンプ30は円筒状のシリンダ31と、シリンダ31に摺動自在に嵌合するポンプピストン32と、シリンダ31およびポンプピストン32間に区画されたポンプ室33と、ポンプ室33に収納されてポンプピストン32を後退方向に付勢するリターンスプリング34と、ポンプピストン32の背部に接続された円柱状の超磁歪素子35と、シリンダ31の内面に超磁歪素子35を囲むように配置されたコイル36とを備える。シリンダ31のポンプ室33に連なる吐出ポート37は吐出油路38を介して油圧クラッチ20の油室25に接続される。吐出油路38には、油圧ポンプ30側から油圧クラッチ20側へのオイルの通過のみを許容するチェックバルブ39と、油圧を検出する第1油圧センサ40とが配置される。またシリンダ31のポンプ室33に連なる吸入ポート41は吸入油路42を介してリザーバ43に接続される。吸入油路42には、リザーバ43側から油圧ポンプ30側へのオイルの通過のみを許容するチェックバルブ44と、油圧を検出する第2油圧センサ45とが配置される。更に、油圧クラッチ20の油室25はオリフィス46を配置した排出油路47を介して吸入油路42に接続される。吸入油路42に接続された排出油路47の下流端はリザーバ43に接続されているのと実質的に同じであり、排出油路47を第2油圧センサ45を迂回させて直接リザーバ43に接続しても良い。   The hydraulic pump 30 includes a cylindrical cylinder 31, a pump piston 32 slidably fitted in the cylinder 31, a pump chamber 33 defined between the cylinder 31 and the pump piston 32, and a pump housed in the pump chamber 33. A return spring 34 for urging the piston 32 in the backward direction, a cylindrical super magnetostrictive element 35 connected to the back of the pump piston 32, and a coil 36 disposed on the inner surface of the cylinder 31 so as to surround the super magnetostrictive element 35. With. A discharge port 37 connected to the pump chamber 33 of the cylinder 31 is connected to the oil chamber 25 of the hydraulic clutch 20 via a discharge oil passage 38. A check valve 39 that allows only passage of oil from the hydraulic pump 30 side to the hydraulic clutch 20 side and a first hydraulic sensor 40 that detects oil pressure are disposed in the discharge oil passage 38. A suction port 41 connected to the pump chamber 33 of the cylinder 31 is connected to a reservoir 43 via a suction oil passage 42. A check valve 44 that allows only passage of oil from the reservoir 43 side to the hydraulic pump 30 side and a second hydraulic pressure sensor 45 that detects oil pressure are disposed in the suction oil passage 42. Further, the oil chamber 25 of the hydraulic clutch 20 is connected to the suction oil passage 42 through a discharge oil passage 47 in which an orifice 46 is disposed. The downstream end of the discharge oil passage 47 connected to the suction oil passage 42 is substantially the same as that connected to the reservoir 43, and the discharge oil passage 47 bypasses the second hydraulic sensor 45 and directly enters the reservoir 43. You may connect.

超磁歪素子35は、磁気モーメントの大きいランタノイド元素と鉄属元素とで構成されるラーベス型の立方晶素材であり、他の変位素材に比べて、磁界の強さに応じて生じる寸法変化量が大きく、変位と磁界の強さとの積である発生応力も大きいものである。この超磁歪素子35を使用したアクチュエータは、低電圧で作動可能でありながら、大きな出力と高い応答性を発揮することができる。   The giant magnetostrictive element 35 is a Laves-type cubic material composed of a lanthanoid element having a large magnetic moment and an iron group element, and the amount of dimensional change caused by the strength of the magnetic field is smaller than that of other displacement materials. The generated stress, which is a product of the displacement and the strength of the magnetic field, is large. The actuator using the giant magnetostrictive element 35 can exhibit a large output and high responsiveness while being operable at a low voltage.

マイクロコンピュータよりなる制御手段48は、第1油圧センサ40で検出した吐出油路38の油圧と、第2油圧センサ45で検出した吸入油路42油圧と、前輪速度センサ49で検出した前輪Wf,Wfの車輪速と、後輪速度センサ50で検出した後輪Wr,Wrの車輪速とに基づいて油圧ポンプ30のコイル36への通電を制御することで、油圧ポンプ30の吐出圧を制御する。   The control means 48 composed of a microcomputer includes the oil pressure of the discharge oil passage 38 detected by the first oil pressure sensor 40, the oil pressure of the suction oil passage 42 detected by the second oil pressure sensor 45, and the front wheels Wf detected by the front wheel speed sensor 49. The discharge pressure of the hydraulic pump 30 is controlled by controlling the energization of the coil 36 of the hydraulic pump 30 based on the wheel speed of Wf and the wheel speeds of the rear wheels Wr and Wr detected by the rear wheel speed sensor 50. .

次に、上記構成を備えた第1実施例の作用を説明する。   Next, the operation of the first embodiment having the above configuration will be described.

車両Vの急発進時や車両Vの急加速時に主駆動輪である前輪Wf,Wfがスリップし、前輪速度センサ49で検出した前輪Wf,Wfの車輪速が後輪速度センサ50で検出した後輪Wr,Wrの車輪速を上回ると、制御手段48からの指令で油圧ポンプ30のコイル36に通電される。コイル36に電流を供給すると超磁歪素子35が電流の周波数に応じて伸縮し、超磁歪素子35が伸長してポンプピストン32が前進したときに、ポンプ室33に発生した油圧で吸入ポート41側のチェックバルブ44が閉弁して吐出ポート37側のチェックバルブ39が開弁することで、吐出油路38を介して油圧クラッチ20の油室25にオイルが供給され、超磁歪素子35が収縮してポンプピストン32が後退したときに、ポンプ室33に発生した負圧で吸入ポート41側のチェックバルブ44が開弁して吐出ポート37側のチェックバルブ39が閉弁することで、吸入油路42を介してリザーバ43のオイルがポンプ室33に吸入される。このとき、油圧クラッチ20の油室25から排出油路47に排出されたオイルがオリフィス46を通過してリザーバ43に戻されるため、油圧クラッチ20の油室25に油圧が立ち上がってクラッチピストン26が前進し、摩擦係合部材27…が係合して油圧クラッチ20が締結状態になる。   After the vehicle V suddenly starts up or the vehicle V suddenly accelerates, the front wheels Wf and Wf, which are the main drive wheels, slip, and the wheel speeds of the front wheels Wf and Wf detected by the front wheel speed sensor 49 are detected by the rear wheel speed sensor 50. When the wheel speeds of the wheels Wr and Wr are exceeded, the coil 36 of the hydraulic pump 30 is energized by a command from the control means 48. When a current is supplied to the coil 36, the giant magnetostrictive element 35 expands and contracts according to the frequency of the current, and when the giant magnetostrictive element 35 extends and the pump piston 32 moves forward, the hydraulic pressure generated in the pump chamber 33 causes the suction port 41 side. When the check valve 44 is closed and the check valve 39 on the discharge port 37 side is opened, oil is supplied to the oil chamber 25 of the hydraulic clutch 20 via the discharge oil passage 38, and the giant magnetostrictive element 35 contracts. When the pump piston 32 moves backward, the check valve 44 on the suction port 41 side is opened by the negative pressure generated in the pump chamber 33 and the check valve 39 on the discharge port 37 side is closed, so that the suction oil Oil in the reservoir 43 is sucked into the pump chamber 33 through the passage 42. At this time, since the oil discharged from the oil chamber 25 of the hydraulic clutch 20 to the discharge oil passage 47 passes through the orifice 46 and is returned to the reservoir 43, the hydraulic pressure rises in the oil chamber 25 of the hydraulic clutch 20, and the clutch piston 26 The hydraulic clutch 20 is engaged by engaging the friction engagement members 27.

図2に示すように、油圧ポンプ30のコイル36に供給する電流の値を変化させると、その電流値に応じて超磁歪素子35の伸縮量が変化することで油圧ポンプ30が発生する油圧、つまり油圧クラッチ20の締結トルクが変化する。そして油圧クラッチ20の油室25に作用する油圧、つまり吐出油路38の油圧が第1油圧センサ40により監視されており、油圧クラッチ20の油室25の油圧が目標値になるように、つまり油圧クラッチ20の締結トルクが目標値になるように、油圧ポンプ30のコイル36に供給される電流値がフィードバック制御される。   As shown in FIG. 2, when the value of the current supplied to the coil 36 of the hydraulic pump 30 is changed, the amount of expansion and contraction of the giant magnetostrictive element 35 changes according to the current value, That is, the fastening torque of the hydraulic clutch 20 changes. The oil pressure acting on the oil chamber 25 of the hydraulic clutch 20, that is, the oil pressure of the discharge oil passage 38 is monitored by the first oil pressure sensor 40 so that the oil pressure of the oil chamber 25 of the hydraulic clutch 20 becomes a target value, that is, The current value supplied to the coil 36 of the hydraulic pump 30 is feedback-controlled so that the fastening torque of the hydraulic clutch 20 becomes a target value.

また図3に示すように、油圧ポンプ30のコイル36に供給する電流の周波数を変化させると、その周波数に応じてポンプピストン32の往復運動の周波数が変化することで油圧ポンプ30が発生する油圧、つまり油圧クラッチ20の締結トルクが変化する。そして第1油圧センサ40により検出された油圧が目標値になるように、つまり油圧クラッチ20の締結トルクが目標値になるように、油圧ポンプ30のコイル36に供給される電流の周波数がフィードバック制御される。   As shown in FIG. 3, when the frequency of the current supplied to the coil 36 of the hydraulic pump 30 is changed, the frequency of the reciprocating motion of the pump piston 32 is changed according to the frequency, and the hydraulic pressure generated by the hydraulic pump 30 is changed. That is, the fastening torque of the hydraulic clutch 20 changes. The frequency of the current supplied to the coil 36 of the hydraulic pump 30 is feedback controlled so that the hydraulic pressure detected by the first hydraulic sensor 40 becomes a target value, that is, the engagement torque of the hydraulic clutch 20 becomes the target value. Is done.

以上のように、油圧ポンプ30のコイル36に供給する電流の大きさあるいは周波数を変化させることで、その油圧ポンプ30の吐出圧を直接制御することができるので、アキュムレータに蓄圧した圧力をレギュレータで調圧して油圧クラッチ20に供給する必要がなくなり、アキュムレータやレギュレータが不要になって部品点数およびコストの削減が可能になる。また油圧ポンプ30の駆動源である超磁歪素子35がμsecオーダーの極めて高い応答性を有することから数kHzの高周波電流で油圧ポンプ30を作動させることが可能になり、従来のベーンポンプやギヤポンプを使用する場合に比べて吐出圧の脈動を低減することができ、しかも発生する油圧を精度良く制御することができる。また電流の周波数を適宜設定することでポンプピストン32の往復運動の周波数を変化させ、油圧ポンプ30の作動に伴う車両の共振を容易に回避することができる。   As described above, since the discharge pressure of the hydraulic pump 30 can be directly controlled by changing the magnitude or frequency of the current supplied to the coil 36 of the hydraulic pump 30, the pressure accumulated in the accumulator can be controlled by a regulator. It is no longer necessary to adjust the pressure and supply it to the hydraulic clutch 20, eliminating the need for an accumulator and a regulator, and reducing the number of parts and the cost. In addition, since the giant magnetostrictive element 35 that is a driving source of the hydraulic pump 30 has extremely high responsiveness on the order of μsec, the hydraulic pump 30 can be operated with a high frequency current of several kHz, and a conventional vane pump or gear pump is used. Compared to the case, the pulsation of the discharge pressure can be reduced, and the generated hydraulic pressure can be controlled with high accuracy. Further, by appropriately setting the frequency of the current, the frequency of the reciprocating motion of the pump piston 32 can be changed, and the resonance of the vehicle accompanying the operation of the hydraulic pump 30 can be easily avoided.

更に、超磁歪素子35を採用したことでコイル36に印加する電圧は数ボルト程度で済み、電動モータで油圧ポンプを駆動する場合の電圧に比べて大幅に低くなるため、ハーネスを細くして重量およびスペースを削減することができる。また油圧ポンプ30の駆動源である超磁歪素子35およびコイル36が、その油圧ポンプ30の内部にコンパクトに収納されるので、電動モータで油圧ポンプを駆動する場合に比べて重量およびスペースを削減することができる。   Furthermore, since the giant magnetostrictive element 35 is used, the voltage applied to the coil 36 is only a few volts, which is much lower than the voltage when the hydraulic pump is driven by an electric motor. And space can be reduced. In addition, since the giant magnetostrictive element 35 and the coil 36, which are the driving source of the hydraulic pump 30, are housed in a compact manner in the hydraulic pump 30, the weight and space are reduced as compared with the case where the hydraulic pump is driven by an electric motor. be able to.

更にまた、電磁クラッチを採用すると残留磁気による摩擦係合部材の引きずりが発生してエンジンEの駆動力がロスする問題があり、またエンジンEで油圧ポンプを駆動するとエンジンEの駆動力が直接ロスする問題があるが、超磁歪素子35で油圧ポンプ30を駆動して油圧クラッチ20を作動させることで、エンジンEの燃料消費量を節減することができる。   Furthermore, when an electromagnetic clutch is used, there is a problem that the frictional engagement member is dragged by residual magnetism and the driving force of the engine E is lost, and when the hydraulic pump is driven by the engine E, the driving force of the engine E is directly lost. However, the fuel consumption of the engine E can be reduced by operating the hydraulic clutch 20 by driving the hydraulic pump 30 with the giant magnetostrictive element 35.

尚、吸入油路42に設けた第2油圧センサ45は、油圧ポンプ30を周波数制御する際に使用するもので、油圧ポンプ30を駆動する電流の周波数が高くなり過ぎてリザーバ43や吸入油路42が負圧になった場合、前記電流の周波数を低くして負圧の発生を抑制する機能を有している。   The second hydraulic sensor 45 provided in the suction oil passage 42 is used when the hydraulic pump 30 is frequency-controlled, and the frequency of the current for driving the hydraulic pump 30 becomes too high, so that the reservoir 43 and the suction oil passage are provided. When 42 becomes negative pressure, the frequency of the current is lowered to suppress the generation of negative pressure.

次に、図4に基づいて本発明の第2実施例を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

第2実施例は、第1実施例のオリフィス46に対してリリーフバルブ53を並列に設けたものである。第1油圧センサ40や制御手段48の異常により油圧クラッチ20の油室25の油圧が過剰に高まったとき、オリフィス46を通過するオイルの流通抵抗により油室25の油圧の速やかな解放が阻害されるが、リリーフバルブ53が開弁することで油室25の油圧を速やかに解放し、油圧ポンプ30や油圧クラッチ20の損傷を未然に防止することができる。   In the second embodiment, a relief valve 53 is provided in parallel to the orifice 46 of the first embodiment. When the oil pressure in the oil chamber 25 of the hydraulic clutch 20 is excessively increased due to an abnormality in the first oil pressure sensor 40 or the control means 48, rapid release of the oil pressure in the oil chamber 25 is hindered by the flow resistance of the oil passing through the orifice 46. However, when the relief valve 53 is opened, the hydraulic pressure in the oil chamber 25 can be quickly released, and damage to the hydraulic pump 30 and the hydraulic clutch 20 can be prevented.

第2実施例のその他の作用効果は、第1実施例の作用効果と同一である。   Other functions and effects of the second embodiment are the same as those of the first embodiment.

次に、図5に基づいて本発明の第3実施例を説明する。   Next, a third embodiment of the present invention will be described with reference to FIG.

第3実施例は、第1実施例のオリフィス46に代えて制御手段48により開度が制御可能な可変オリフィス54を設けたものである。可変オリフィス54の開度を増加させるとオイルが流れたときの油圧の立ち上がりが緩やかになり、可変オリフィス54の開度を減少させるとオイルが流れたときの油圧の立ち上がりが急激になるため、油圧クラッチ20の係合時の締結トルクの立ち上がりを任意に制御することができる。   In the third embodiment, a variable orifice 54 whose opening degree can be controlled by the control means 48 is provided instead of the orifice 46 of the first embodiment. When the opening of the variable orifice 54 is increased, the rise of the hydraulic pressure when oil flows becomes gentle, and when the opening of the variable orifice 54 is decreased, the rise of the hydraulic pressure when oil flows is abrupt. The rise of the fastening torque when the clutch 20 is engaged can be arbitrarily controlled.

第3実施例のその他の作用効果は、第1実施例の作用効果と同一である。   Other functions and effects of the third embodiment are the same as those of the first embodiment.

次に、図6に基づいて本発明の第4実施例を説明する。   Next, a fourth embodiment of the present invention will be described with reference to FIG.

第1実施例〜第3実施例は、油圧クラッチ20の油室25とリザーバ43とが排出油路47で接続されていたが、第4実施例は排出油路47を備えておらず、その代わりに吐出油路38および吸入油路42がカットバルブ55で接続される。油圧ポンプ30がオイルを吐出して油圧クラッチ20が締結するとき、制御手段48からの指令でカットバルブ55は閉弁しており、吐出油路38および吸入油路42の連通が遮断されている。油圧クラッチ20の締結を解除するとき、制御手段48からの指令でカットバルブ55を開弁すると、油圧クラッチ20の油室25の油圧は吐出油路38からカットバルブ55を経て低圧の吸入油路42に逃がされるため、油圧クラッチ20の締結トルクを瞬時に解放することができる。   In the first to third embodiments, the oil chamber 25 of the hydraulic clutch 20 and the reservoir 43 are connected by the discharge oil passage 47, but the fourth embodiment does not have the discharge oil passage 47, Instead, the discharge oil passage 38 and the suction oil passage 42 are connected by the cut valve 55. When the hydraulic pump 30 discharges oil and the hydraulic clutch 20 is engaged, the cut valve 55 is closed by a command from the control means 48 and the communication between the discharge oil passage 38 and the suction oil passage 42 is shut off. . When releasing the engagement of the hydraulic clutch 20, if the cut valve 55 is opened in response to a command from the control means 48, the hydraulic pressure in the oil chamber 25 of the hydraulic clutch 20 passes from the discharge oil passage 38 through the cut valve 55 to the low-pressure intake oil passage. Therefore, the engagement torque of the hydraulic clutch 20 can be released instantaneously.

これにより、油圧クラッチ20の締結解除時の応答性を高めることができるだけでなく、第1油圧センサ40や制御手段48の異常により油圧クラッチ20の油室25の油圧が過剰に高まったとき、カットバルブ55を開弁して油室25の圧力を速やかに逃がすことで、油圧ポンプ30や油圧クラッチ20の損傷を未然に防止することができる。また車両Vの制動時に前輪Wf,Wfの制動力は後輪Wr,Wrの制動力よりも高くなるように設定されているため、制動時に油圧クラッチ20が速やかに締結解除しないと前輪Wf,Wfの制動力が後輪Wr,Wrに伝達されて車両Vの挙動を乱す可能性がある。しかしながら、本実施例によれば、制動時に油圧クラッチ20が速やかに締結解除されて前輪Wf,Wfと後輪Wr,Wrとが切り離されるため、安定した制動性能を得ることができる。   Thereby, not only can the response at the time of releasing the engagement of the hydraulic clutch 20 be improved, but also when the oil pressure in the oil chamber 25 of the hydraulic clutch 20 is excessively increased due to the abnormality of the first hydraulic sensor 40 or the control means 48, the cut is performed. By opening the valve 55 and quickly releasing the pressure in the oil chamber 25, damage to the hydraulic pump 30 and the hydraulic clutch 20 can be prevented. Since the braking force of the front wheels Wf and Wf is set to be higher than the braking force of the rear wheels Wr and Wr when the vehicle V is braked, the front wheels Wf and Wf must be fastened and released immediately when braking. May be transmitted to the rear wheels Wr and Wr to disturb the behavior of the vehicle V. However, according to this embodiment, the hydraulic clutch 20 is quickly engaged and released during braking, and the front wheels Wf, Wf and the rear wheels Wr, Wr are disconnected, so that stable braking performance can be obtained.

第4実施例のその他の作用効果は、第1実施例の作用効果と同一である。   Other functions and effects of the fourth embodiment are the same as those of the first embodiment.

次に、図7に基づいて本発明の第5実施例を説明する。   Next, a fifth embodiment of the present invention will be described with reference to FIG.

第5実施例は、第1実施例〜第4実施例の油圧ポンプ30と同じ構造および機能を有する第1油圧ポンプ30と、第1油圧ポンプ30と同じ構造であって異なる機能を有する第2油圧ポンプ30′とを備えている。第2油圧ポンプ30′の吐出ポート37は排出油路47を介してリザーバ43に接続され、吸入ポート41は制御手段48に接続されたカットバルブ56を介して吐出油路38に接続される。   In the fifth embodiment, a first hydraulic pump 30 having the same structure and function as the hydraulic pump 30 of the first to fourth embodiments and a second structure having the same structure and different functions as the first hydraulic pump 30 are provided. And a hydraulic pump 30 '. The discharge port 37 of the second hydraulic pump 30 ′ is connected to the reservoir 43 via the discharge oil passage 47, and the suction port 41 is connected to the discharge oil passage 38 via the cut valve 56 connected to the control means 48.

しかして、油圧クラッチ20の締結時には第1油圧ポンプ30のポンプピストン32を駆動し、吐出ポート37からチェックバルブ39、吐出油路38を経て油室25にオイルを供給することで油圧クラッチ20を締結する。このとき、カットバルブ56は図示した閉弁状態にあるため、第1油圧ポンプ30が吐出するオイルが第2油圧ポンプ30′のポンプ室33に供給されることがない。また油圧クラッチ20に供給される油圧が過剰になった場合には、図4で説明した第2実施例と同様に、リリーフバルブ53が開弁して油圧が解放される。   Thus, when the hydraulic clutch 20 is engaged, the pump piston 32 of the first hydraulic pump 30 is driven, and the oil is supplied from the discharge port 37 to the oil chamber 25 through the check valve 39 and the discharge oil passage 38, whereby the hydraulic clutch 20 is operated. Conclude. At this time, since the cut valve 56 is in the illustrated closed state, the oil discharged from the first hydraulic pump 30 is not supplied to the pump chamber 33 of the second hydraulic pump 30 ′. When the hydraulic pressure supplied to the hydraulic clutch 20 becomes excessive, the relief valve 53 is opened and the hydraulic pressure is released, as in the second embodiment described with reference to FIG.

油圧クラッチ20を締結解除する場合には、カットバルブ56を開弁すると同時に第2油圧ポンプ30′のポンプピストン32を駆動することで、油圧クラッチ20の油室25のオイルが吐出油路38、カットバルブ56、チェックバルブ44および吸入ポート41を介して第2油圧ポンプ30′のポンプ室33に吸入され、これにより油圧クラッチ20を締結解除の応答性を飛躍的に高めることができる。   When releasing the engagement of the hydraulic clutch 20, the cut valve 56 is opened and the pump piston 32 of the second hydraulic pump 30 'is driven at the same time, so that the oil in the oil chamber 25 of the hydraulic clutch 20 is discharged to the discharge oil passage 38, The air is sucked into the pump chamber 33 of the second hydraulic pump 30 ′ through the cut valve 56, the check valve 44 and the suction port 41, whereby the responsiveness for releasing the engagement of the hydraulic clutch 20 can be dramatically improved.

第5実施例のその他の作用効果は、第1実施例の作用効果と同一である。   Other functions and effects of the fifth embodiment are the same as those of the first embodiment.

次に、図8に基づいて本発明の第6実施例を説明する。   Next, a sixth embodiment of the present invention will be described with reference to FIG.

第6実施例の駆動力配分装置は、左右の後輪Wr,Wrに駆動力を均等に配分してトラクションを高める以外に、左右の後輪Wr,Wrに駆動力を選択的に配分して旋回性能の向上や直進安定性の向上を図るものである。そのために、第4ベベルギヤ22と左右の後輪Wr,Wrの車軸24,24との間に、第1実施例〜第5実施例の油圧クラッチ20と同一構造の左右の油圧クラッチ20L,20Rが配置される。また左右の油圧クラッチ20L,20Rに対応して、第1実施例〜第5実施例の油圧ポンプ30と同一構造の左右の油圧ポンプ30L,30Rが配置される。左右の油圧ポンプ30L,30Rを左右の油圧クラッチ20L,20Rに接続する吐出油路38,38は完全に独立しており、リザーバ43を左右の油圧ポンプ30L,30Rに接続する吸入油路42,42は一部共通であり、左右の油圧クラッチ20L,20Rをリザーバ43に接続する排出油路47は一部共通である。   The driving force distribution device of the sixth embodiment selectively distributes the driving force to the left and right rear wheels Wr, Wr in addition to equally distributing the driving force to the left and right rear wheels Wr, Wr to increase traction. The aim is to improve turning performance and straight running stability. For this purpose, left and right hydraulic clutches 20L, 20R having the same structure as the hydraulic clutch 20 of the first to fifth embodiments are provided between the fourth bevel gear 22 and the axles 24, 24 of the left and right rear wheels Wr, Wr. Be placed. Corresponding to the left and right hydraulic clutches 20L, 20R, left and right hydraulic pumps 30L, 30R having the same structure as the hydraulic pump 30 of the first to fifth embodiments are arranged. The discharge oil passages 38, 38 connecting the left and right hydraulic pumps 30L, 30R to the left and right hydraulic clutches 20L, 20R are completely independent, and the intake oil passage 42, connecting the reservoir 43 to the left and right hydraulic pumps 30L, 30R, 42 is partly common, and part of the oil discharge passage 47 that connects the left and right hydraulic clutches 20L, 20R to the reservoir 43 is common.

また制御手段48には、前輪速度センサ49および後輪速度センサ50に加えて、車両Vのヨーレートを検出するヨーレートセンサ51および車両Vの横加速度を検出する横加速度センサ52が接続される。   In addition to the front wheel speed sensor 49 and the rear wheel speed sensor 50, a yaw rate sensor 51 that detects the yaw rate of the vehicle V and a lateral acceleration sensor 52 that detects the lateral acceleration of the vehicle V are connected to the control means 48.

しかして、車両Vの急発進時や急加速時に前輪Wf,Wfがスリップすると、左右の油圧ポンプ30L,30Rが同時に作動して左右の油圧クラッチ20L,20Rを同時に締結することで、四輪駆動状態を実現して走破性を高めることができる。また左右の後輪Wr,Wrに均等に駆動力を配分することでいわゆる差動制限機能を発揮させたり、左右の後輪Wr,Wrの一方がスリップした場合に他方に駆動力を配分したりすることで、泥濘からの脱出等を容易にすることができる。   Thus, when the front wheels Wf and Wf slip when the vehicle V starts suddenly or accelerates, the left and right hydraulic pumps 30L and 30R are simultaneously operated to simultaneously engage the left and right hydraulic clutches 20L and 20R. The state can be realized and the running performance can be improved. Also, the driving force is equally distributed to the left and right rear wheels Wr, Wr to exhibit a so-called differential limiting function, or when one of the left and right rear wheels Wr, Wr slips, the driving force is distributed to the other. By doing so, escape from mud can be facilitated.

またヨーレートセンサ51や横加速度センサ52の出力に基づいて車両Vが高速旋回状態にあることが検出された場合、旋回外輪側の油圧クラッチ20L,20Rだけを締結して旋回外輪に駆動力を配分することで、旋回を補助するヨーモーメントを発生させて旋回性能を高めることができ、逆に旋回内輪側の油圧クラッチ20L,20Rだけを締結して旋回内輪に駆動力を配分することで、旋回を抑制するヨーモーメントを発生させて車両挙動の安定性を高めることができる。   When it is detected that the vehicle V is in a high-speed turning state based on the outputs of the yaw rate sensor 51 and the lateral acceleration sensor 52, only the hydraulic clutches 20L and 20R on the turning outer wheel side are engaged and the driving force is distributed to the turning outer wheel. Thus, the yaw moment that assists turning can be generated to improve turning performance, and conversely, only the hydraulic clutches 20L, 20R on the turning inner ring side are engaged and the driving force is distributed to the turning inner wheel, thereby turning. The stability of the vehicle behavior can be improved by generating a yaw moment that suppresses the vehicle.

第6実施例のその他の作用効果は、第1実施例の作用効果と同一である。   Other functions and effects of the sixth embodiment are the same as those of the first embodiment.

次に、図9に基づいて本発明の第7実施例を説明する。   Next, a seventh embodiment of the present invention will be described with reference to FIG.

第6実施例は左右の油圧クラッチ20L,20Rに対応して左右の油圧ポンプ30L,30Rを備えているが、第7実施例は単一の油圧ポンプ30のみを備えている。また第6実施例は左右の油圧クラッチ20L,20Rの油室25,25とリザーバ43とが排出油路47で接続されていたが、第7実施例は排出油路47を備えておらず、その代わりに油圧ポンプ30の吐出油路38および吸入油路42が制御手段48により制御されるカットバルブ57で接続される。また油圧ポンプ30の吐出油路38が左右の油圧クラッチ20L,20Rに向かって二股に分岐する部分に、制御手段48により制御される三方弁58が配置される。   Although the sixth embodiment includes left and right hydraulic pumps 30L and 30R corresponding to the left and right hydraulic clutches 20L and 20R, the seventh embodiment includes only a single hydraulic pump 30. In the sixth embodiment, the oil chambers 25, 25 of the left and right hydraulic clutches 20L, 20R and the reservoir 43 are connected by the discharge oil passage 47, but the seventh embodiment does not include the discharge oil passage 47, Instead, the discharge oil passage 38 and the suction oil passage 42 of the hydraulic pump 30 are connected by a cut valve 57 controlled by the control means 48. Further, a three-way valve 58 controlled by the control means 48 is disposed at a portion where the discharge oil passage 38 of the hydraulic pump 30 is bifurcated toward the left and right hydraulic clutches 20L and 20R.

従って、三方弁58が図示した中央位置にあるときに油圧ポンプ30を駆動すると、左右の油圧クラッチ20L,20Rを締結して四輪駆動状態にすることができ、また三方弁58を図示した中央位置から上位置あるいは下位置に操作すると、左側の油圧クラッチ20Lのみ、あるいは右側の油圧クラッチ20Rのみを締結して左右の後輪Wr,Wrの一方だけに駆動力を配分することができる。また左右の油圧クラッチ20L,20Rの締結を解除するとき、制御手段48からの指令でカットバルブ57を開弁すると、左右の油圧クラッチ20L,20Rの油室25,25の油圧は吐出油路38からカットバルブ57を経て低圧の吸入油路42に逃がされるため、左右の油圧クラッチ20L,20Rの締結トルクを瞬時に解放することができる。   Accordingly, when the hydraulic pump 30 is driven when the three-way valve 58 is at the center position shown in the figure, the left and right hydraulic clutches 20L and 20R can be fastened into a four-wheel drive state, and the three-way valve 58 is shown in the center shown in the figure. When operated from the position to the upper position or the lower position, only the left hydraulic clutch 20L or only the right hydraulic clutch 20R is engaged, and the driving force can be distributed to only one of the left and right rear wheels Wr, Wr. Further, when releasing the engagement of the left and right hydraulic clutches 20L, 20R, if the cut valve 57 is opened by a command from the control means 48, the oil pressure in the oil chambers 25, 25 of the left and right hydraulic clutches 20L, 20R is discharged from the discharge oil passage 38. Is released to the low-pressure intake oil passage 42 through the cut valve 57, so that the fastening torque of the left and right hydraulic clutches 20L, 20R can be instantaneously released.

これにより、左右の油圧クラッチ20L,20Rにそれぞれ対応して左右の油圧ポンプ30L,30Rを設ける場合に比べて部品点数を削減することができる。しかも左右の油圧クラッチ20L,20Rの締結解除時の応答性を高めることができるだけでなく、第1油圧センサ40,40や制御手段48の異常により左右の油圧クラッチ20L,20Rの油室25,25の油圧が過剰に高まったとき、カットバルブ57を開弁して油室25,25の圧力を速やかに逃がすことで、油圧ポンプ30や左右の油圧クラッチ20L,20Rの損傷を未然に防止することができる。また車両Vの制動時に左右の油圧クラッチ20L,20Rが速やかに締結解除されて前輪Wf,Wfと後輪Wr,Wrとが切り離されるため、安定した制動性能を得ることができる。   Thereby, the number of parts can be reduced compared with the case where the left and right hydraulic pumps 30L and 30R are provided corresponding to the left and right hydraulic clutches 20L and 20R, respectively. Moreover, not only can the responsiveness when the left and right hydraulic clutches 20L, 20R are released be released, but also the oil chambers 25, 25 of the left and right hydraulic clutches 20L, 20R can be caused by an abnormality in the first hydraulic sensors 40, 40 and the control means 48. When the hydraulic pressure of the oil pump increases excessively, the cut valve 57 is opened to quickly release the pressure in the oil chambers 25, 25, thereby preventing damage to the hydraulic pump 30 and the left and right hydraulic clutches 20L, 20R. Can do. In addition, since the left and right hydraulic clutches 20L, 20R are quickly engaged and released when the vehicle V is braked, and the front wheels Wf, Wf and the rear wheels Wr, Wr are disconnected, stable braking performance can be obtained.

第7実施例のその他の作用効果は、第6実施例の作用効果と同一である。   Other functions and effects of the seventh embodiment are the same as those of the sixth embodiment.

次に、図10に基づいて本発明の第8実施例を説明する。   Next, an eighth embodiment of the present invention will be described with reference to FIG.

第6実施例は左右の油圧クラッチ20L,20Rの油室25,25とリザーバ43とが排出油路47で接続されていたが、第8実施例は排出油路47を備えておらず、その代わりに左右の油圧ポンプ30L,30Rの吐出油路38,38および吸入油路42,42がカットバルブ59,59で接続される。左右の油圧ポンプ30L,30Rがオイルを吐出して左右の油圧クラッチ20L,20Rが締結するとき、制御手段48からの指令でカットバルブ59,59は閉弁しており、吐出油路38,38および吸入油路42,42の連通が遮断されている。左右の油圧クラッチ20L,20Rの締結を解除するとき、制御手段48からの指令でカットバルブ59,59を開弁すると、左右の油圧クラッチ20L,20Rの油室25,25の油圧は吐出油路38,38からカットバルブ59,59を経て低圧の吸入油路42,42に逃がされるため、左右の油圧クラッチ20L,20Rの締結トルクを瞬時に解放することができる。   In the sixth embodiment, the oil chambers 25, 25 of the left and right hydraulic clutches 20L, 20R and the reservoir 43 are connected by the discharge oil passage 47, but the eighth embodiment does not have the discharge oil passage 47, Instead, the discharge oil passages 38, 38 and the suction oil passages 42, 42 of the left and right hydraulic pumps 30L, 30R are connected by cut valves 59, 59. When the left and right hydraulic pumps 30L and 30R discharge oil and the left and right hydraulic clutches 20L and 20R are engaged, the cut valves 59 and 59 are closed by a command from the control means 48, and the discharge oil passages 38 and 38 are closed. In addition, the communication between the suction oil passages 42 and 42 is blocked. When releasing the engagement of the left and right hydraulic clutches 20L, 20R, if the cut valves 59, 59 are opened by a command from the control means 48, the hydraulic pressures in the oil chambers 25, 25 of the left and right hydraulic clutches 20L, 20R are discharged oil passages. Since the valves 38 and 38 are released to the low-pressure intake oil passages 42 and 42 through the cut valves 59 and 59, the fastening torques of the left and right hydraulic clutches 20L and 20R can be instantaneously released.

第8実施例のその他の作用効果は、第6実施例の作用効果と同一である。   Other functions and effects of the eighth embodiment are the same as those of the sixth embodiment.

次に、図11に基づいて本発明の第9実施例を説明する。   Next, a ninth embodiment of the present invention will be described with reference to FIG.

第6実施例は左右の油圧クラッチ20L,20Rをそれぞれ対応する左右の油圧ポンプ30L,30Rで作動させているが、第9実施例は左右の油圧クラッチ20L,20Rを共通の油圧ポンプ30で同時に作動させている。左右の油圧クラッチ20L,20Rは一体化されており、それらに共通の油室25の両側に左右ののクラッチピストン26,26が配置される。従って、油圧ポンプ30から油室25に油圧を供給すると、左右のクラッチピストン26,26が同時に押圧されて左右の油圧クラッチ20L,20Rが同時に締結される。   In the sixth embodiment, the left and right hydraulic clutches 20L and 20R are operated by the corresponding left and right hydraulic pumps 30L and 30R, respectively. In the ninth embodiment, the left and right hydraulic clutches 20L and 20R are simultaneously operated by the common hydraulic pump 30. It is operating. The left and right hydraulic clutches 20L and 20R are integrated, and left and right clutch pistons 26 and 26 are disposed on both sides of an oil chamber 25 common to them. Accordingly, when hydraulic pressure is supplied from the hydraulic pump 30 to the oil chamber 25, the left and right clutch pistons 26, 26 are simultaneously pressed, and the left and right hydraulic clutches 20L, 20R are simultaneously engaged.

このように、左右の油圧クラッチ20L,20Rが単一の油室25を共有することで、部品点数を削減して構造を簡素化できるだけでなく、左右の油圧クラッチ20L,20Rの締結トルクがアンバランスになるのを防止して左右の後輪Wr,Wrに駆動力を均一に配分することができる。   As described above, the left and right hydraulic clutches 20L and 20R share a single oil chamber 25, so that not only the number of parts can be reduced and the structure can be simplified, but also the fastening torque of the left and right hydraulic clutches 20L and 20R can be reduced. It is possible to evenly distribute the driving force to the left and right rear wheels Wr and Wr by preventing the balance.

第9実施例のその他の作用効果は第6実施例の作用効果と同一であるが、左右の油圧クラッチ20L,20Rの締結トルクを独立に制御することはできない。   Other functions and effects of the ninth embodiment are the same as those of the sixth embodiment, but the fastening torques of the left and right hydraulic clutches 20L and 20R cannot be controlled independently.

次に、図12に基づいて本発明の第10実施例を説明する。   Next, a tenth embodiment of the present invention will be described with reference to FIG.

第10実施例は第9実施例の変形であって、油室25を共有する左右のクラッチピストン26,26が直径の異なる有底円筒状に形成され、相互に摺動自在に嵌合して内部に油室25を区画している。これにより、クラッチピストン26,26にシリンダの機能を持たせ、シリンダを不要にして部品点数の更なる削減を可能にすることができる。   The tenth embodiment is a modification of the ninth embodiment, in which the left and right clutch pistons 26, 26 sharing the oil chamber 25 are formed in a bottomed cylindrical shape having different diameters and are slidably fitted to each other. An oil chamber 25 is partitioned inside. As a result, the clutch pistons 26 and 26 can have a cylinder function, and the cylinder can be made unnecessary and the number of parts can be further reduced.

第10実施例のその他の作用効果は第9実施例の作用効果と同一である。   Other functions and effects of the tenth embodiment are the same as those of the ninth embodiment.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、請求項1の発明における油圧ポンプ30,30L,30Rは超磁歪素子35を用いたものに限定されず、任意の構造のものを採用することができる。   For example, the hydraulic pumps 30, 30 </ b> L, and 30 </ b> R in the invention of claim 1 are not limited to those using the giant magnetostrictive element 35, and those having an arbitrary structure can be adopted.

また本発明の駆動源は実施例のエンジンEに限定されず、電動モータ等の他の駆動源であっても良い。   The drive source of the present invention is not limited to the engine E of the embodiment, and may be another drive source such as an electric motor.

また実施例では前輪Wf,Wfを主駆動輪とし、後輪Wr,Wrを副駆動輪とした車両を例示したが、本発明は前輪Wf,Wfを副駆動輪とし、後輪Wr,Wrを主駆動輪とした車両に対しても適用することができる。   Further, in the embodiment, a vehicle in which the front wheels Wf, Wf are main driving wheels and the rear wheels Wr, Wr are auxiliary driving wheels is illustrated, but the present invention uses the front wheels Wf, Wf as auxiliary driving wheels, and the rear wheels Wr, Wr are The present invention can also be applied to a vehicle that uses main drive wheels.

第1実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 1st Example. 油圧ポンプに供給する電流の大きさと油圧ポンプが発生する油圧との関係を示すグラフA graph showing the relationship between the magnitude of current supplied to the hydraulic pump and the hydraulic pressure generated by the hydraulic pump 油圧ポンプに供給する電流の周波数と油圧ポンプが発生する油圧との関係を示すグラフGraph showing the relationship between the frequency of the current supplied to the hydraulic pump and the hydraulic pressure generated by the hydraulic pump 第2実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 2nd Example. 第3実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 3rd Example. 第4実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 4th Example. 第5実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 5th Example. 第6実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 6th Example. 第7実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 7th Example. 第8実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 8th Example. 第9実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 9th Example. 第10実施例に係る四輪駆動車両の駆動力配分装置を示す図The figure which shows the driving force distribution apparatus of the four-wheel drive vehicle which concerns on 10th Example.

符号の説明Explanation of symbols

E エンジン(駆動源)
V 車両
Wf 前輪(主駆動輪)
Wr 後輪(副駆動輪)
20 油圧クラッチ
20L 油圧クラッチ
20R 油圧クラッチ
25 油室
26 クラッチピストン
30 油圧ポンプ(第1油ポンプ)
30′ 第2油圧ポンプ
30L 油圧ポンプ
30R 油圧ポンプ
35 超磁歪素子
36 コイル
37 吐出ポート
38 吐出油路
40 第1油圧センサ(油圧センサ)
43 リザーバ
47 排出油路
48 制御手段
49 前輪速度センサ(走行状態検出手段)
50 後輪速度センサ(走行状態検出手段)
51 ヨーレートセンサ(走行状態検出手段)
52 横加速度センサ(走行状態検出手段)
54 可変オリフィス
58 三方弁
E Engine (drive source)
V Vehicle Wf Front wheel (main drive wheel)
Wr Rear wheel (sub drive wheel)
20 Hydraulic clutch 20L Hydraulic clutch 20R Hydraulic clutch 25 Oil chamber 26 Clutch piston 30 Hydraulic pump (first oil pump)
30 'second hydraulic pump 30L hydraulic pump 30R hydraulic pump 35 giant magnetostrictive element 36 coil 37 discharge port 38 discharge oil passage 40 first hydraulic sensor (hydraulic sensor)
43 Reservoir 47 Drained oil passage 48 Control means 49 Front wheel speed sensor (running state detection means)
50 Rear wheel speed sensor (running state detection means)
51 Yaw rate sensor (running state detection means)
52 Lateral acceleration sensor (running state detection means)
54 Variable orifice 58 Three-way valve

Claims (10)

駆動源(E)から主駆動輪(Wf)に伝達される駆動力の一部を油圧クラッチ(20,20L,20R)を介して副駆動輪(Wr)に配分可能な四輪駆動車両の駆動力配分装置において、
油圧クラッチ(20,20L,20R)を締結する油圧を発生する油圧ポンプ(30,30L,30R)と、
車両(V)の走行状態を検出する走行状態検出手段(49〜52)と、
走行状態検出手段(49〜52)で検出した車両(V)の走行状態に基づいて油圧ポンプ(30,30L,30R)が発生する油圧を直接制御することで、主駆動輪(Wf)および副駆動輪(Wr)間の駆動力の配分を制御する制御手段(48)と、
を備えたことを特徴とする四輪駆動車両の駆動力配分装置。
Driving a four-wheel drive vehicle capable of distributing a part of the driving force transmitted from the driving source (E) to the main driving wheel (Wf) to the auxiliary driving wheel (Wr) via the hydraulic clutch (20, 20L, 20R). In the power distribution device,
A hydraulic pump (30, 30L, 30R) for generating hydraulic pressure for fastening the hydraulic clutch (20, 20L, 20R);
Traveling state detection means (49-52) for detecting the traveling state of the vehicle (V);
By directly controlling the hydraulic pressure generated by the hydraulic pumps (30, 30L, 30R) based on the traveling state of the vehicle (V) detected by the traveling state detection means (49-52), the main drive wheel (Wf) and the auxiliary drive wheel (Wf) Control means (48) for controlling the distribution of the driving force between the drive wheels (Wr);
A driving force distribution device for a four-wheel drive vehicle.
油圧ポンプ(30,30L,30R)は超磁歪素子(35)で駆動されることを特徴とする、請求項1に記載の四輪駆動車両の駆動力配分装置。   The driving force distribution device for a four-wheel drive vehicle according to claim 1, wherein the hydraulic pump (30, 30L, 30R) is driven by a giant magnetostrictive element (35). 油圧ポンプ(30,30L,30R)の吐出ポート(37)と油圧クラッチ(20,20L,20R)の油室(25)とを接続する吐出油路(38)の油圧を検出する油圧センサ(40)を備え、
制御手段(48)は油圧センサ(40)で検出した油圧が目標油圧に一致するように油圧ポンプ(30,30L,30R)の作動を制御することを特徴とする、請求項1または請求項2に記載の四輪駆動車両の駆動力配分装置。
Hydraulic sensor (40) for detecting the hydraulic pressure of the discharge oil passage (38) connecting the discharge port (37) of the hydraulic pump (30, 30L, 30R) and the oil chamber (25) of the hydraulic clutch (20, 20L, 20R). )
The control means (48) controls the operation of the hydraulic pump (30, 30L, 30R) so that the hydraulic pressure detected by the hydraulic sensor (40) matches the target hydraulic pressure. A drive force distribution device for a four-wheel drive vehicle according to claim 1.
油圧クラッチ(20,20L,20R)の油室(25)とリザーバ(43)とを接続する排出油路(47)に可変オリフィス(54)を設けたことを特徴とする、請求項3に記載の四輪駆動車両の駆動力配分装置。   The variable orifice (54) is provided in the discharge oil passage (47) connecting the oil chamber (25) and the reservoir (43) of the hydraulic clutch (20, 20L, 20R), according to claim 3. Drive power distribution device for four-wheel drive vehicles. 油圧ポンプ(30,30L,30R)は超磁歪素子(35)を伸縮させる磁界を発生するコイル(36)を備え、
制御手段(48)はコイル(36)に供給する電流の大きさを制御することを特徴とする、請求項2に記載の四輪駆動車両の駆動力配分装置。
The hydraulic pump (30, 30L, 30R) includes a coil (36) that generates a magnetic field for expanding and contracting the giant magnetostrictive element (35).
The driving force distribution device for a four-wheel drive vehicle according to claim 2, wherein the control means (48) controls the magnitude of the current supplied to the coil (36).
油圧ポンプ(30,30L,30R)は超磁歪素子(35)を伸縮させる磁界を発生するコイル(36)を備え、
制御手段(48)はコイル(36)に供給する電流の周波数を制御することを特徴とする、請求項2に記載の四輪駆動車両の駆動力配分装置。
The hydraulic pump (30, 30L, 30R) includes a coil (36) that generates a magnetic field for expanding and contracting the giant magnetostrictive element (35).
The driving force distribution device for a four-wheel drive vehicle according to claim 2, wherein the control means (48) controls the frequency of the current supplied to the coil (36).
左右の副駆動輪(Wr)の各々に油圧クラッチ(20L,20R)を設けたことを特徴とする、請求項1〜請求項6の何れか1項に記載の四輪駆動車両の駆動力配分装置。   The driving force distribution of a four-wheel drive vehicle according to any one of claims 1 to 6, wherein a hydraulic clutch (20L, 20R) is provided on each of the left and right auxiliary drive wheels (Wr). apparatus. 油圧クラッチ(20)に作動油を供給する第1油圧ポンプ(30)と、油圧クラッチ(20)から作動油を吸入する第2油圧ポンプ(30′)とを設けたことを特徴とする、請求項1に記載の四輪駆動車両の駆動力配分装置。   A first hydraulic pump (30) for supplying hydraulic oil to the hydraulic clutch (20) and a second hydraulic pump (30 ') for sucking hydraulic oil from the hydraulic clutch (20) are provided. Item 4. A driving force distribution device for a four-wheel drive vehicle according to Item 1. 左右の副駆動輪(Wr)にそれぞれ設けられた油圧クラッチ(20L,20R)に供給される作動油を三方弁(58)により制御することを特徴とする、請求項7に記載の四輪駆動車両の駆動力配分装置。   The four-wheel drive according to claim 7, wherein hydraulic oil (20L, 20R) provided to the left and right auxiliary drive wheels (Wr) is controlled by a three-way valve (58). Vehicle driving force distribution device. 左右の副駆動輪(Wr)にそれぞれ設けられた油圧クラッチ(20L,20R)は、共通の油室(25)を挟むように配置された左右のクラッチピストン(26)によりそれぞれ締結されることを特徴とする、請求項7に記載の四輪駆動車両の駆動力配分装置。
The hydraulic clutches (20L, 20R) provided on the left and right auxiliary drive wheels (Wr) are respectively fastened by the left and right clutch pistons (26) arranged so as to sandwich the common oil chamber (25). The driving force distribution device for a four-wheel drive vehicle according to claim 7, characterized in that it is characterized in that:
JP2003381143A 2003-11-11 2003-11-11 Driving force distribution device of four-wheel drive vehicle Withdrawn JP2005145094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381143A JP2005145094A (en) 2003-11-11 2003-11-11 Driving force distribution device of four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381143A JP2005145094A (en) 2003-11-11 2003-11-11 Driving force distribution device of four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JP2005145094A true JP2005145094A (en) 2005-06-09

Family

ID=34690608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381143A Withdrawn JP2005145094A (en) 2003-11-11 2003-11-11 Driving force distribution device of four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2005145094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164662A1 (en) * 2011-05-30 2012-12-06 トヨタ自動車株式会社 Vehicle control device
KR101791313B1 (en) 2015-11-04 2017-10-27 현대위아 주식회사 Method for estimating clutch pressure of e-LSD

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164662A1 (en) * 2011-05-30 2012-12-06 トヨタ自動車株式会社 Vehicle control device
CN103561987A (en) * 2011-05-30 2014-02-05 丰田自动车株式会社 Vehicle control device
JP5605505B2 (en) * 2011-05-30 2014-10-15 トヨタ自動車株式会社 Vehicle control device
US9002560B2 (en) 2011-05-30 2015-04-07 Toyota Jidosha Kabushiki Kaisha Control device of a vehicle
KR101791313B1 (en) 2015-11-04 2017-10-27 현대위아 주식회사 Method for estimating clutch pressure of e-LSD

Similar Documents

Publication Publication Date Title
JP4756323B2 (en) Hydraulic drive system and improved control valve assembly thereof
JP5983871B2 (en) Brake device
US9611906B2 (en) Hydraulic vehicle clutch system and method
US20090032360A1 (en) Hydraulic Vehicle Clutch System and Method
US8900086B2 (en) Hydraulic vehicle clutch system, drivetrain for a vehicle including same, and method
EP1020340B1 (en) Hydraulic brake system
RU2650339C2 (en) Hydraulic transmission device
US5644916A (en) Hydraulic pressure supply system for variable torque transfer of four-wheel drive vehicle
JP5795605B2 (en) Brake hydraulic pressure control device for vehicles
CN101151469A (en) Method of controlling a hydrostatic drive
WO2011042987A1 (en) Vehicle controller
US8240143B2 (en) Hydraulic energy recovery system
JP2006143204A (en) Electronic control brake system with piezoelectric actuator
JP2005145094A (en) Driving force distribution device of four-wheel drive vehicle
US6488112B1 (en) Electrohydraulic steering system
JP2003160045A (en) Hydraulic brake device
US8627657B2 (en) Vehicle hydrostatic transmission device
JP4411727B2 (en) Brake fluid pressure source and brake device
JP4484986B2 (en) Brake fluid pressure source device and brake device
JPH10329676A (en) Braking device
JPH114504A (en) Brake system for vehicle
JPH08270789A (en) Automobile type driving controller for hydraulic variable displacement type pump
JP2615806B2 (en) Acceleration slip control device for four-wheel drive vehicle
JPH1081223A (en) Brake control system
JP2001047994A (en) Brake system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807