JP2005144569A - Two-dimensional arrangement structure base board and particulate separated from this base board - Google Patents

Two-dimensional arrangement structure base board and particulate separated from this base board Download PDF

Info

Publication number
JP2005144569A
JP2005144569A JP2003381951A JP2003381951A JP2005144569A JP 2005144569 A JP2005144569 A JP 2005144569A JP 2003381951 A JP2003381951 A JP 2003381951A JP 2003381951 A JP2003381951 A JP 2003381951A JP 2005144569 A JP2005144569 A JP 2005144569A
Authority
JP
Japan
Prior art keywords
fine particles
substrate
dimensional array
array structure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003381951A
Other languages
Japanese (ja)
Inventor
Takao Matsumoto
隆夫 松元
Hiroyuki Takei
弘之 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003381951A priority Critical patent/JP2005144569A/en
Publication of JP2005144569A publication Critical patent/JP2005144569A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making at a low cost and high throughput by highly densely forming a two-dimensional arrangement structure on a base board by highly accurately controlling a metal interval; and to provide a measuring system using these sensors by providing various sensors using this two-dimensional arrangement structure. <P>SOLUTION: Metal is deposited from above particulates, after contracting a shape of individual particulates by anisotropic dry etching, by constructing particulate arrangement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は基板上に固相化された光学的または化学的、さらには電気的に特異な性質を有する二次元配列構造体を形成する技術に関する。
本発明はまたその二次元配列構造体を有することを特徴とする光学的または化学的、さらには電気的なセンサに関する。
本発明はまたその二次元配列構造体を構成する個々の微粒子を利用した技術に関する。
The present invention relates to a technique for forming a two-dimensional array structure having optically, chemically, or electrically specific properties immobilized on a substrate.
The invention also relates to an optical, chemical or even electrical sensor characterized by having the two-dimensional array structure.
The present invention also relates to a technique using individual fine particles constituting the two-dimensional array structure.

金属や誘電体、あるいは半導体の微粒子の物理化学的特性は、微粒子の間隔に大きく依存する。一例として、表面増強ラマンスペクトロスコピー(SERS;Surface Enhanced Raman Spectroscopy)計測装置がある。これは基板上に金属微粒子を島状に形成し、微粒子間に形成される増強された光の電場を利用するものであり、従来よりも4桁高い感度のラマン計測が実現されている。また表面プラズモン共鳴(SPR;Surface Plasmon Resonance)と呼ばれる現象を利用したバイオセンサがある。これらの応用において最も重要な技術は金属と金属の間隔とその表面密度であるが、従来技術ではこれらを制御することが困難であった。特に金属微粒子を用いた場合、十分な光増強効果を得るためには粒子間の間隔を1ナノメートルの精度で制御する必要があるが、このような精度で粒子間隔を制御して、かつ表面に密に並べることは困難であった。従来の技術の一つとして島状薄膜蒸着法がある。ガラス基板などに金属を数ナノメートル蒸着すると、自然と金属の島状薄膜が形成される。または液体中に懸濁された微粒子を基板上に吸着するにあたって微粒子間の電気的斥力を制御することにより吸着後の微粒子間隔を変化する方法がある。斥力が弱い場合には吸着が疎になり、斥力が弱い場合には密となる。また、電子線(EB;Electron Beam)リソグラフィー、原子間力顕微鏡(AFM;Atomic Force Microscope)リソグラフィーなどを用いて基板に微粒子を形成する方法などもあるが、膨大なコストと低いスループットという大きな問題がある。島状蒸着法、微粒子間の斥力を制御する方法では、間隔を高精度で制御することが困難あるいは不可能である。また、EBリソグラフィー、AFMリソグラフィーなどでは、任意の形状の微粒子を任意の間隔で形成することが可能であるが、膨大な時間とコストがかかる。   The physicochemical properties of fine particles of metal, dielectric, or semiconductor greatly depend on the interval between the fine particles. One example is a surface enhanced Raman spectroscopy (SERS) measurement device. In this method, metal fine particles are formed in an island shape on a substrate, and an enhanced electric field formed between the fine particles is used, and Raman measurement with sensitivity that is four orders of magnitude higher than that of the prior art is realized. In addition, there is a biosensor using a phenomenon called surface plasmon resonance (SPR). The most important technologies in these applications are the metal-to-metal spacing and its surface density, but it has been difficult to control these with the prior art. In particular, when metal fine particles are used, in order to obtain a sufficient light enhancement effect, it is necessary to control the spacing between the particles with an accuracy of 1 nanometer. It was difficult to line up closely. One conventional technique is an island-shaped thin film deposition method. When metal is deposited on a glass substrate by several nanometers, an island-like thin film of metal is naturally formed. Alternatively, there is a method of changing the distance between the fine particles after adsorption by controlling the electric repulsion between the fine particles when adsorbing the fine particles suspended in the liquid on the substrate. Adsorption is sparse when the repulsive force is weak, and dense when the repulsive force is weak. In addition, there is a method of forming fine particles on a substrate by using electron beam (EB) lithography, atomic force microscope (AFM) lithography, etc., but there is a big problem of enormous cost and low throughput. is there. It is difficult or impossible to control the interval with high accuracy by the island-like deposition method or the method of controlling the repulsive force between the fine particles. Further, in EB lithography, AFM lithography, and the like, fine particles having an arbitrary shape can be formed at arbitrary intervals, but enormous time and cost are required.

特開2003−14765号JP 2003-14765 A

解決しようとする問題点は
(1)金属間隔の制御
(2)スループットとコスト
という2つである。
There are two problems to be solved: (1) metal spacing control (2) throughput and cost.

本発明は上記した2つの問題点を同時に解決し、金属間隔を高い精度で制御した二次元配列構造体を基板上に高密度に形成し、しかも低いコストと高いスループットで作成する方法を提供するものである。また、この二次元配列構造体構造体を利用した各種センサを提供するものである。さらには、これらのセンサを使用した計測系を提供するものである。   The present invention solves the above-mentioned two problems at the same time, and provides a method for forming a two-dimensional array structure in which metal intervals are controlled with high accuracy on a substrate with high density, and at low cost and high throughput. Is. The present invention also provides various sensors using the two-dimensional array structure structure. Furthermore, a measurement system using these sensors is provided.

上記(1)及び(2)の問題に対しては、微粒子配列を構築し、異方性ドライエッチングにより個々の微粒子の形状を縮小させた後に微粒子の上から金属を蒸着することにより解決できる。   The problems (1) and (2) can be solved by constructing a fine particle array, reducing the shape of each fine particle by anisotropic dry etching, and then depositing metal from the fine particles.

上記課題を解決するための一つの方法を図1に示す。まず、平坦な基板上1に金属薄膜2を蒸着する。単分散の誘電体微粒子3を金属薄膜2の上に密に一層形成する。次に、微粒子3の形状を異方性ドライエッチングにより縮小し、縮小した微粒子4間に間隙5を形成してから、金属薄膜6を蒸着すると、金属間の間隙7が自由に制御された微粒子を形成することが可能になる。   One method for solving the above problem is shown in FIG. First, a metal thin film 2 is deposited on a flat substrate 1. Monodisperse dielectric fine particles 3 are densely formed on the metal thin film 2. Next, when the shape of the fine particles 3 is reduced by anisotropic dry etching and the gap 5 is formed between the reduced fine particles 4 and then the metal thin film 6 is deposited, the fine particles in which the gap 7 between the metals is freely controlled. Can be formed.

図2では直径112ナノメートルのポリスチレン微粒子を使った場合に異方性ドライエッチングによって微粒子の形状と微粒子間の間隙がどう変化するかを模式的に示した。酸素プラズマを使用した異方性ドライエッチングでポリスチレンのエッチング速度は約2.1ナノメートル/秒であった。基板8の上に微粒子配列9を一層形成した場合、エッチング前には微粒子同士が密に接しているため、間隙10は存在しない(a)。エッチング時間を5秒(b)、10秒(c)、15秒(d)と伸ばしていくと、微粒子は次第にラグビーボール状の形になり、それに伴って間隙12、14、16が形成されていく。図3にこの間隙の大きさを表にまとめたものを示す。図3は直径112ナノメートルの微粒子でエッチング速度が約2.1ナノメートル/秒の場合を示す。このように本発明の手法では垂直方向のエッチング速度の数10分の1の精度で微粒子間の間隔が制御できることになり、表に示すように1ナノメートル以下の精度で制御された間隙を形成できることがわかる。さらに本発明ではこのような間隙が基板全体にわたって一度に高い密度で形成できるため、極めてスループットが高い。EBリソグラフィーやAFMリソグラフィーなどの手法ではスループットが低い上に、1ナノメートル以下の精度で間隙を形成するのは困難であるか、実質的に不可能であると思われる。図4に本発明により形成された二次元配列構造体を構成する微粒子の構造を透過電子顕微鏡により観察した例を示す。図4(a)は直径112ナノメートルの微粒子を基板上に一層形成し、酸素プラズマによる異方性ドライエッチングを行なわずに、金を10ナノメートル蒸着し、二次元配列構造体を形成し、しかる後に超音波処理により微粒子を剥離し、透過電子顕微鏡で観察したものであり、図4(b)は直径112ナノメートルの微粒子を基板上に一層形成し、酸素プラズマによる異方性ドライエッチングを15秒行ない、金を10ナノメートル蒸着し、二次元配列構造体を形成し、しかる後に超音波処理により微粒子を剥離し、透過電子顕微鏡で観察したものである。両者を比較すると、図2に模式的に示したようにエッチングが行なわれていることが確認できる。すなわち、微粒子の形状はラグビーボール状となり、また微粒子の側面における金薄膜の最表面の位置が極くわずか(数ナノメートル以下)異なっていることがわかる。図5には本発明により形成された直径79ナノメートルの微粒子を用いた二次元配列構造体の表面を走査電子顕微鏡で観察した一例を示した。   FIG. 2 schematically shows how the shape of the fine particles and the gap between the fine particles are changed by anisotropic dry etching when polystyrene fine particles having a diameter of 112 nanometers are used. In anisotropic dry etching using oxygen plasma, the etching rate of polystyrene was about 2.1 nanometers / second. When the fine particle array 9 is formed on the substrate 8, the fine particles are in close contact with each other before the etching, so that there is no gap 10 (a). As the etching time is increased to 5 seconds (b), 10 seconds (c), and 15 seconds (d), the fine particles gradually have a rugby ball shape, and gaps 12, 14, and 16 are formed accordingly. Go. FIG. 3 shows a summary of the gap sizes in a table. FIG. 3 shows a case where the fine particles have a diameter of 112 nanometers and the etching rate is about 2.1 nanometers / second. As described above, according to the method of the present invention, the interval between the fine particles can be controlled with an accuracy of several tenths of the etching rate in the vertical direction, and as shown in the table, a controlled gap is formed with an accuracy of 1 nanometer or less. I understand that I can do it. Further, in the present invention, such a gap can be formed at a high density all over the substrate at a time, so that the throughput is extremely high. With EB lithography, AFM lithography, and the like, the throughput is low, and it is difficult or practically impossible to form the gap with an accuracy of 1 nanometer or less. FIG. 4 shows an example in which the structure of fine particles constituting the two-dimensional array structure formed according to the present invention is observed with a transmission electron microscope. In FIG. 4A, a fine particle having a diameter of 112 nanometers is formed on a substrate in a single layer, and 10 nm of gold is deposited without performing anisotropic dry etching with oxygen plasma to form a two-dimensional array structure. Thereafter, the fine particles were peeled off by sonication and observed with a transmission electron microscope. FIG. 4B shows that a fine particle having a diameter of 112 nanometers is formed on a substrate, and anisotropic dry etching using oxygen plasma is performed. This was performed for 15 seconds, gold was deposited by 10 nanometers to form a two-dimensional array structure, and then fine particles were peeled off by ultrasonic treatment and observed with a transmission electron microscope. When both are compared, it can be confirmed that etching is performed as schematically shown in FIG. That is, it can be seen that the shape of the fine particles is a rugby ball shape, and the position of the outermost surface of the gold thin film on the side surface of the fine particles is slightly different (a few nanometers or less). FIG. 5 shows an example in which the surface of a two-dimensional array structure using fine particles having a diameter of 79 nanometers formed according to the present invention is observed with a scanning electron microscope.

関連する技術として、固定化された誘電体微粒子をマスクとして利用する方法が報告されている。基板上に規則正しく配列された誘電体微粒子を異方性ドライエッチングし、任意の材料を蒸着もしくはスパッタリング後に誘電体微粒子を取り除くことにより、円形パターンが転写される。異方性ドライエッチングにより任意間隔で形成された円形パターンを微細加工技術の出発点とすることにより、任意材料の微粒子を任意の間隔で形成できる。   As a related technique, a method of using immobilized dielectric fine particles as a mask has been reported. The circular fine pattern is transferred by anisotropically dry-etching the dielectric fine particles regularly arranged on the substrate and removing the dielectric fine particles after depositing or sputtering an arbitrary material. By using a circular pattern formed at an arbitrary interval by anisotropic dry etching as a starting point of the fine processing technique, fine particles of an arbitrary material can be formed at an arbitrary interval.

また、関連技術の適応分野としてホトニックバンドギャップ材料の作成が挙げられる。基板上に規則正しく配列された誘電体の間隔を異方性ドライエッチングで制御することにより、ホトニックバンドギャップ材料としての光学特性を変化させることができる。   In addition, production of photonic band gap materials can be cited as an application field of related technology. By controlling the distance between the dielectrics regularly arranged on the substrate by anisotropic dry etching, the optical characteristics as the photonic band gap material can be changed.

これらの技術に対し、本発明の特徴は異方性ドライエッチングされた誘電体微粒子上に蒸着またはスパッタリングにより形成された金属、半導体の特性を直接利用することにある。微小体として粒径が20ナノメートルから100ミクロンのポリスチレン微粒子、SiO微粒子、TiO微粒子が容易に入手できる。エッチングはナノメートルの単位で制御することができる。 In contrast to these techniques, the feature of the present invention resides in the direct use of the characteristics of metals and semiconductors formed by vapor deposition or sputtering on dielectric fine particles subjected to anisotropic dry etching. As fine particles, polystyrene fine particles, SiO 2 fine particles, and TiO 2 fine particles having a particle diameter of 20 nanometers to 100 microns can be easily obtained. Etching can be controlled in nanometer units.

本発明により、光学特性、電気特性、化学特性を自由に変えられる二次元配列構造体を実現出来る。本発明によれば、高い感度を持つセンサが安価にかつ迅速に実現出来る。さらに、本発明による二次元配列構造体を用いると局所的な光の増強が可能であり、高い感度のセンサを実現できる。さらに本構造体では二次元の高密度配列化により、スループットを上げることが可能である。さらに、この構造体を用いると局所的に増強された光によって基板を局所的に加熱することが可能になる。また、さらにはこの構造体を構成する各材質を適当に選択することによって触媒作用、電池などへの応用が可能となる。具体的には金と酸化チタンとの組み合わせにより太陽電池を実現することが可能になる。   According to the present invention, a two-dimensional array structure in which optical characteristics, electrical characteristics, and chemical characteristics can be freely changed can be realized. According to the present invention, a sensor with high sensitivity can be realized inexpensively and quickly. Furthermore, when the two-dimensional array structure according to the present invention is used, local light enhancement is possible, and a highly sensitive sensor can be realized. Furthermore, in this structure, throughput can be increased by two-dimensional high-density arrangement. Furthermore, when this structure is used, the substrate can be locally heated by locally enhanced light. Further, by appropriately selecting each material constituting the structure, application to a catalytic action, a battery or the like becomes possible. Specifically, a solar cell can be realized by a combination of gold and titanium oxide.

本発明の利用形態の一実施例を図6に示す。基板17上に形成した厚さ20ナノメートルの金薄膜18上に直径79ナノメートルの単分散ポリスチレン微粒子19を一層吸着し、さらに金20を厚さ20ナノメートル蒸着すると、顕著な吸収スペクトルを有する二次元配列構造体が得られる。吸収ピーク波長は、構造体表面の屈折率に依存してシフトする。分子吸着による屈折率変化にも敏感に応答するため、金微粒子表面20をたんぱく質、DNAなどの生体分子21で修飾することによって、光学式バイオセンサとして利用できる。ターゲット分子22の選択的結合23が、吸収スペクトルのシフトにより検出できる。本応用において、吸着されたポリスチレン微粒子に金を蒸着する前に、ポリスチレン微粒子に酸素プラズマによる異方性エッチング処理を施すと、微粒子間にギャップが形成される。さらに、厚さ20ナノメートルに金を蒸着すると顕著な吸収スペクトルを有する構造体が得られる。吸収ピーク波長は異方性ドライエッチングの条件、特にエッチング時間により決まり、エッチング時間が長いほど吸収ピーク波長は短波長側にシフトする。エッチング処理により吸収ピーク波長がシフトするのみならず、分子吸着に伴い生じる吸収ピークの変化量が増大することから、センサ感度の向上につながる。一例を図7に示す。図7(a)は直径79ナノメートルの微粒子配列をエッチングすることなく厚さ20ナノメートルの金を蒸着して作成した基板表面にアビジンを吸着させ、安定させた後の吸収スペクトルで、アビジンに対する抗体が結合した後の吸収スペクトルが図7(b)である。この時の吸収スペクトルのピーク波長のシフト量は約9ナノメートルであった。図7(c)と図7(d)は金を蒸着する前にエッチングを5秒施した基板による同一条件での測定結果であり、このときのピーク波長のシフト量は11ナノメートルであった。図7(e)と図7(f)は金を蒸着する前にエッチングを10秒施した基板による同一条件での測定結果であり、このときのピーク波長のシフト量は15ナノメートルであった。これらの結果から明らかなようにエッチングによって吸収スペクトルのピーク波長が短波長側へシフトするのに伴い、ピークの半値幅が小さくなり、抗体の結合に伴う吸収スペクトルのピーク波長のシフト量が増加していることがわかる。検出できるピーク波長のシフト量が大きいほど高感度の測定ができる。   An example of the mode of use of the present invention is shown in FIG. When a monodisperse polystyrene fine particle 19 having a diameter of 79 nanometers is further adsorbed on a gold thin film 18 having a thickness of 20 nanometers formed on a substrate 17 and further gold 20 is deposited to a thickness of 20 nanometers, a remarkable absorption spectrum is obtained. A two-dimensional array structure is obtained. The absorption peak wavelength shifts depending on the refractive index of the structure surface. Since it responds sensitively to changes in the refractive index due to molecular adsorption, it can be used as an optical biosensor by modifying the gold fine particle surface 20 with a biomolecule 21 such as protein or DNA. Selective binding 23 of the target molecule 22 can be detected by shifting the absorption spectrum. In this application, if the polystyrene fine particles are subjected to an anisotropic etching process using oxygen plasma before gold is deposited on the adsorbed polystyrene fine particles, a gap is formed between the fine particles. Furthermore, when gold is deposited to a thickness of 20 nanometers, a structure having a significant absorption spectrum is obtained. The absorption peak wavelength is determined by anisotropic dry etching conditions, particularly the etching time. The longer the etching time, the more the absorption peak wavelength shifts to the short wavelength side. Not only the absorption peak wavelength is shifted by the etching process, but also the amount of change in the absorption peak caused by molecular adsorption increases, leading to an improvement in sensor sensitivity. An example is shown in FIG. FIG. 7 (a) is an absorption spectrum after adsorbing and stabilizing avidin on the surface of a substrate prepared by depositing gold having a thickness of 20 nanometers without etching an array of fine particles having a diameter of 79 nanometers. The absorption spectrum after the antibody is bound is shown in FIG. The shift amount of the peak wavelength of the absorption spectrum at this time was about 9 nanometers. FIGS. 7 (c) and 7 (d) are measurement results under the same conditions using a substrate that was etched for 5 seconds before gold deposition, and the peak wavelength shift amount at this time was 11 nanometers. . FIG. 7 (e) and FIG. 7 (f) are measurement results under the same conditions using a substrate that was etched for 10 seconds before gold deposition, and the peak wavelength shift amount at this time was 15 nanometers. . As is clear from these results, as the peak wavelength of the absorption spectrum shifts to the short wavelength side due to etching, the half width of the peak decreases, and the shift amount of the peak wavelength of the absorption spectrum accompanying antibody binding increases. You can see that The higher the shift amount of the peak wavelength that can be detected, the higher the sensitivity can be measured.

本発明の利用形態の一実施例を図8に示す。SiO微小体27層を基板24上に形成し、次にSiO微小体27をCFなどの反応性ガスを利用した異方性ドライエッチング処理により、10ナノメートルのギャップ29を形成する。さらに厚さ2ナノメートルのクロム、厚さ20ナノメートルの金を蒸着することにより金微粒子薄膜層が形成できる。金微粒子間のギャップ領域は生体分子30による表面修飾が施されており、特定生体分子間の特異的結合によるターゲット分子の選択的補足が可能となっている。フェロセン31で標識されたターゲット分子32を予め表面に吸着させておき、競合法により検出する。すなわち、試料中の非標識ターゲット分子32との競合の結果残るフェロセン32標識ターゲット分子32の量に応じて電極26間の抵抗値が変わることから、ターゲット分子の量を電気的に検出することが可能となる。 FIG. 8 shows an embodiment of the usage mode of the present invention. A SiO 2 minute body 27 layer is formed on the substrate 24, and then a 10 nanometer gap 29 is formed on the SiO 2 minute body 27 by anisotropic dry etching using a reactive gas such as CF 4 . Furthermore, a gold fine particle thin film layer can be formed by vapor-depositing chromium having a thickness of 2 nanometers and gold having a thickness of 20 nanometers. The gap region between the gold fine particles is subjected to surface modification by the biomolecule 30, and the target molecule can be selectively supplemented by specific binding between specific biomolecules. A target molecule 32 labeled with ferrocene 31 is previously adsorbed on the surface and detected by a competition method. That is, since the resistance value between the electrodes 26 varies depending on the amount of the ferrocene 32 labeled target molecule 32 remaining as a result of competition with the unlabeled target molecule 32 in the sample, the amount of the target molecule can be detected electrically. It becomes possible.

本発明の利用形態の一実施例を図9に示す。ガスセンサの構成部品である微粒子薄膜として、本発明の微粒子を用いることができる。空気中でSnOなどの半導体薄膜41表面に酸素が負電荷吸着すると、半導体から吸着酸素への電子移行により、空気中では表面近傍領域40での導電率が低くなる。しかし、還元性の可燃性ガスが存在すると吸着酸素が消費されるため、導電率が再び増大する。この特性を有効的に利用するためには多数のSnO微粒子を極めて小さいブリッジ39で結合する必要がある。そこでSiO微小体層36を基板33および34上に形成し、次にSiO微粒子36をCFなどの反応性ガスを利用した異方性ドライエッチング処理により、ギャップ38を形成する。さらにSnO薄膜37を蒸着することにより、結合されたSnO微粒子が形成できる。ギャップ38の距離により微粒子間のブリッジ形状を制御することができ、ガスセンサ感度の向上が可能となる。
以下では本発明による二次元配列構造体を構成する特異な構造を有する微粒子の利用法を述べる。
FIG. 9 shows an embodiment of the usage mode of the present invention. The fine particles of the present invention can be used as the fine particle thin film which is a component of the gas sensor. When oxygen is negatively adsorbed on the surface of the semiconductor thin film 41 such as SnO 2 in the air, the conductivity in the near-surface region 40 is lowered in the air due to electron transfer from the semiconductor to the adsorbed oxygen. However, the presence of reducing flammable gas consumes adsorbed oxygen, which increases the conductivity again. In order to effectively use this characteristic, it is necessary to bind a large number of SnO 2 fine particles with a very small bridge 39. Therefore, the SiO 2 minute body layer 36 is formed on the substrates 33 and 34, and then the gap 38 is formed by anisotropic dry etching using the reactive gas such as CF 4 for the SiO 2 fine particles 36. Further, by depositing a SnO 2 thin film 37, bonded SnO 2 fine particles can be formed. The bridge shape between the fine particles can be controlled by the distance of the gap 38, and the gas sensor sensitivity can be improved.
Hereinafter, a method of using fine particles having a unique structure constituting the two-dimensional array structure according to the present invention will be described.

本発明の機能性基板としての利用形態の一実施例を図10に示す。透明基板42上に金薄膜43を蒸着する。この上に微粒子44を適当な間隔で配列させ、しかる後に金属薄膜45を蒸着する。この基板の一部47には光48を照射し、他の部分46には光を照射しないでおく。本発明による二次元配列構造体を構成する個々の微粒子構造の性質として光による局所的加熱性があることがわかっている。このメカニズムはまだ解明されたとは言えないが、図11に示すように金属と誘電体との界面が重要な役割を果たしていると考えられる。光がこのような構造に照射されるとたとえば領域55、54、および53などの部分で局所的な光の増強が生じることがわかっている。この光の増強作用により、局所的な加熱が生じ、条件によっては金が溶解するほどの高温になることもある。図12はそのような一例を示したもので本発明に記載したポリスチレンの微粒子に金薄膜を蒸着した構造を有する基板に局所的に光を照射すると金薄膜が溶解して隣接する微粒子同士が融合することを示した。図の右下が光を照射した部分である。このような光による局所的加熱という性質を使うと基板の温度を光で局所的に制御することが可能になり、たとえば加熱により親水性から疎水性へと変化するような材料42を微粒子層と反対側の基板に形成しておけば局所的に親水性と疎水性のパターンを形成することができ、印刷などの用途に用いることができる。   FIG. 10 shows an example of a usage form of the present invention as a functional substrate. A gold thin film 43 is deposited on the transparent substrate 42. Fine particles 44 are arranged on this at appropriate intervals, and then a metal thin film 45 is deposited. A portion 48 of the substrate is irradiated with light 48 and the other portion 46 is not irradiated with light. It has been found that there is local heating by light as a property of the individual fine particle structure constituting the two-dimensional array structure according to the present invention. Although this mechanism has not yet been elucidated, it is considered that the interface between the metal and the dielectric plays an important role as shown in FIG. It has been found that when light is irradiated onto such a structure, for example, local light enhancement occurs in areas such as regions 55, 54, and 53. This light enhancement action causes local heating, and depending on the conditions, the temperature may be so high that gold dissolves. FIG. 12 shows such an example. When a substrate having a structure in which a gold thin film is vapor-deposited on polystyrene fine particles described in the present invention is locally irradiated with light, the gold thin film dissolves and adjacent fine particles are fused. Showed that to do. The lower right of the figure is the portion irradiated with light. If such a property of local heating by light is used, the temperature of the substrate can be locally controlled by light. For example, a material 42 that changes from hydrophilic to hydrophobic by heating can be used as the fine particle layer. If formed on the substrate on the opposite side, hydrophilic and hydrophobic patterns can be locally formed, and can be used for printing and the like.

本発明の太陽電池としての利用形態の一実施例を図13に示す。導電性の基板56に粒子径50ナノメートルのTiO微粒子57を一層吸着させ、異方性ドライエッチングにより微粒子間に1ナノメートルのギャップを形成する。次に金58を厚さ20ナノメートル蒸着する。さらに金の表面は光を吸収する分子59で修飾しておく。このようにして作成した基板ともう一枚の導電性基板61で電解質溶液60をサンドイッチした構造とすることで光電池を実現することができる。 FIG. 13 shows an example of the usage form of the present invention as a solar cell. A TiO 2 fine particle 57 having a particle diameter of 50 nanometers is further adsorbed on the conductive substrate 56, and a gap of 1 nanometer is formed between the fine particles by anisotropic dry etching. Next, gold 58 is deposited to a thickness of 20 nanometers. Furthermore, the gold surface is modified with molecules 59 that absorb light. A photovoltaic cell can be realized by adopting a structure in which the electrolyte solution 60 is sandwiched between the substrate thus prepared and another conductive substrate 61.

本発明の基板から剥離した微粒子の利用形態の一実施例を図14に示す。剥離した微粒子73の金薄膜74表面に特定の細胞68上に存在するターゲット分子67に対する抗体66を吸着させておく。色々な種類の細胞を含む溶液にこの微粒子を加えると抗体を吸着した微粒子は特定の細胞68の表面に特異的に吸着する。しかる後にこの溶液全体に光を照射すると、微粒子が局所的に加熱されるため、微粒子が吸着した細胞は死滅する。このようにして様々な細胞を含む溶液の中から特定の細胞のみを除去することができ、たとえば感染性のある細胞などを除去する手法として役立つ。   FIG. 14 shows an example of the utilization form of the fine particles peeled from the substrate of the present invention. An antibody 66 against a target molecule 67 existing on a specific cell 68 is adsorbed on the surface of the gold thin film 74 of the peeled fine particles 73. When these fine particles are added to a solution containing various types of cells, the fine particles adsorbed with antibodies are specifically adsorbed on the surface of specific cells 68. Thereafter, when the entire solution is irradiated with light, the microparticles are locally heated, and the cells to which the microparticles are adsorbed die. In this way, only specific cells can be removed from a solution containing various cells, which is useful as a technique for removing infectious cells, for example.

本発明による二次元配列構造体の作成法の説明図。(a)は基板。(b)は基板上に金属薄膜を蒸着する過程。(c)は金属薄膜の上に微粒子を一層形成する過程。(d)は異方性ドライエッチングにより微粒子の形状を縮小させる過程。(e)は縮小させた微粒子の上から金属薄膜を蒸着させる過程。Explanatory drawing of the creation method of the two-dimensional array structure by this invention. (A) is a substrate. (B) is a process of depositing a metal thin film on the substrate. (C) is a process of forming one layer of fine particles on the metal thin film. (D) is a process of reducing the shape of the fine particles by anisotropic dry etching. (E) is a process of depositing a metal thin film on the reduced fine particles. 本発明による二次元配列構造体の作成法において直径112ナノメートルの微粒子を基板上に密に配列させた場合に異方性ドライエッチングの時間により微粒子の形状と微粒子間の間隙が変化することを説明するための断面図。(a)はエッチングなし、(b)は5秒エッチング後、(c)は10秒エッチング後、(d)は15秒エッチング後。In the method for producing a two-dimensional array structure according to the present invention, when fine particles having a diameter of 112 nanometers are densely arranged on a substrate, the shape of the fine particles and the gap between the fine particles change depending on the time of anisotropic dry etching. Sectional drawing for demonstrating. (A) No etching, (b) After 5 seconds etching, (c) After 10 seconds etching, (d) After 15 seconds etching. 本発明による二次元配列構造体の作成法において微粒子を基板上に密に配列させた場合に異方性ドライエッチングの時間による直径112ナノメートルの微粒子間の高さと間隙の変化を説明する表。The table | surface explaining the change of the height between the microparticles | fine-particles of diameter 112 nanometer by the time of anisotropic dry etching, and a clearance gap, when microparticles | fine-particles are densely arranged on the board | substrate in the preparation method of the two-dimensional arrangement structure by this invention. 本発明による二次元配列構造体の作成法において異方性ドライエッチングによる直径112ナノメートルの微粒子の形状の変化を示す透過電子顕微鏡写真。(a)はエッチングなしの場合、(b)は15秒エッチングした場合。黒い部分が蒸着した金属薄膜、白い線で示した丸は直径112ナノメートルの微粒子の形状を示す。The transmission electron micrograph which shows the change of the shape of 112 nanometer diameter microparticles | fine-particles by anisotropic dry etching in the preparation method of the two-dimensional array structure by this invention. (A) No etching, (b) Etching for 15 seconds. The metal thin film on which the black part is deposited, and the circle indicated by the white line indicate the shape of fine particles having a diameter of 112 nanometers. 本発明による二次元配列構造体の走査電子顕微鏡写真。The scanning electron micrograph of the two-dimensional array structure by this invention. 本発明による二次元配列構造体の光学特性を利用した抗原抗体反応検出センサへの適用原理を示す図。The figure which shows the application principle to the antigen antibody reaction detection sensor using the optical characteristic of the two-dimensional arrangement | sequence structure by this invention. 本発明による二次元配列構造体の光学特性を利用した抗原抗体反応検出センサへの適用例を示す図。The figure which shows the example applied to the antigen antibody reaction detection sensor using the optical characteristic of the two-dimensional arrangement | sequence structure by this invention. 本発明による二次元配列構造体の電気特性を利用したバイオセンサへの適用例を示す図。The figure which shows the example applied to the biosensor using the electrical property of the two-dimensional array structure by this invention. 本発明による二次元配列構造体の電気特性を利用したガスセンサへの適用例を示す図。The figure which shows the example applied to the gas sensor using the electrical property of the two-dimensional array structure by this invention. 本発明による二次元配列構造体に光を局所的に照射して表面の親水性と疎水性を自由に変えることのできる機能性基板への適用例を示す図。The figure which shows the example of application to the functional board | substrate which can irradiate light locally to the two-dimensional array structure by this invention, and can change the hydrophilic property and hydrophobicity of a surface freely. 本発明による二次元配列構造体の光による局所加熱原理を示す図。The figure which shows the local heating principle by the light of the two-dimensional array structure by this invention. 本発明による二次元配列構造体の光による局所加熱を示す走査電子顕微鏡写真。The scanning electron micrograph which shows the local heating by the light of the two-dimensional arrangement | sequence structure by this invention. 本発明による二次元配列構造体の太陽電池への適用例を示す図。The figure which shows the example of application to the solar cell of the two-dimensional array structure by this invention. 本発明による二次元配列構造体から剥離した特有の構造を有する微粒子に光を照射することにより微粒子の付着した部分のみを加熱する治療法への適用例を示す図。The figure which shows the example of application to the treatment method which heats only the part to which the microparticles | fine-particles adhered by irradiating light to the microparticles | fine-particles which have peeled from the two-dimensional arrangement | sequence structure by this invention.

符号の説明Explanation of symbols

1:基板
2: 金属薄膜
3: 微粒子
4: エッチング後の微粒子
5: エッチング後形成された微粒子間の間隙
6: 金属薄膜
7:金属薄膜間の間隙
8: 基板
9:エッチングをしていない微粒子
10: エッチングをしていない微粒子間の間隙
11: エッチングを10秒おこなった微粒子
12: エッチングを10秒おこなった微粒子間の間隙
13: エッチングを15秒おこなった微粒子
14: エッチングを15秒おこなった微粒子間の間隙
15: エッチングを30秒おこなった微粒子
16: エッチングを30秒おこなった微粒子間の間隙
17:基板
18: 金属薄膜
19: 微粒子
20:金属薄膜
21:金属薄膜表面に結合させた抗原分子
22:溶液中の抗体分子
23:金属薄膜表面に結合させた抗原分子に結合した抗体分子
24:基板
25: 金属薄膜
26: 電極
27: 微粒子
28:金属薄膜
29:生体分子
30:フェロセンで標識されたターゲット分子
31:非標識ターゲット分子
32:生体分子に結合したターゲット分子
33:基板
34: 金属薄膜
35: 電極
36: 微粒子
37:金属薄膜
38:金属薄膜間の間隙
39:ブリッジ
40:SO22次元配列構造体
41:表面近傍の低導電率領域
42:温度依存性材料
43:金薄膜
44:微粒子
45:金薄膜
46:光を照射しない部分
47:光を照射した部分
48:光
49:基板
50:金属薄膜
51:誘電体微粒子
52:金属薄膜
53:金属薄膜上で光が増強される部分
54:金属薄膜間隙で光が増強される部分
55:基板上の金属薄膜と誘電体微粒子の間で光が増強される部分56:電極
57:酸化チタン微粒子
58:金薄膜
59:光吸収性色素
60:電解質溶液
61:対向電極
62:導線
63:電気的負荷
64:微粒子
65:金属薄膜
66:抗体分子
67:細胞表面上のターゲット分子
68:ターゲット分子を表面に有する細胞
69:ターゲット分子を表面に有しない細胞
70:光。
1: Substrate 2: Metal thin film 3: Fine particle 4: Fine particle 5 after etching: Gaps between fine particles formed after etching 6: Metal thin film 7: Gaps between metal thin films 8: Substrate 9: Fine particles 10 not etched : Gaps between fine particles not etched 11: Fine particles 12 etched 10 seconds: Gaps between fine particles etched 10 seconds 13: Fine particles etched 15 seconds 14: Fine particles etched 15 seconds Gap 15: Fine particles 16 etched 30 seconds: Gap between fine particles etched 30 seconds 17: Substrate 18: Metal thin film 19: Fine particles 20: Metal thin film 21: Antigen molecules 22 bonded to the surface of the metal thin film 22: Antibody molecule 23 in solution: antibody molecule bound to antigen molecule bound to metal thin film surface 24: substrate 25: gold Genus thin film 26: Electrode 27: Fine particle 28: Metal thin film 29: Biomolecule 30: Target molecule 31 labeled with ferrocene 31: Unlabeled target molecule 32: Target molecule bonded to biomolecule 33: Substrate 34: Metal thin film 35: Electrode 36: Fine particles 37: Metal thin film 38: Gap 39 between metal thin films 39: Bridge 40: SO22 dimensional array structure 41: Low conductivity region 42 near surface 42: Temperature dependent material 43: Gold thin film 44: Fine particle 45: Gold thin film 46: light-irradiated portion 47: light-irradiated portion 48: light 49: substrate 50: metal thin film 51: dielectric fine particle 52: metal thin film 53: portion where light is enhanced on the metal thin film 54: metal thin film gap The portion 55 where light is enhanced by 55: The portion where light is enhanced between the metal thin film and the dielectric fine particles on the substrate 56: Electrode 57: Titanium oxide fine particles 58: Gold thin film 59 Light absorbing dye 60: Electrolytic solution 61: Counter electrode 62: Conductor 63: Electrical load 64: Fine particle 65: Metal thin film 66: Antibody molecule 67: Target molecule 68 on cell surface 68: Cell 69 having target molecule on its surface 69: Cell 70 without target molecule on the surface: light.

Claims (7)

基板上に密に固定されている誘電体あるいは半導体の微粒子を異方性ドライエッチング処理により縮小させ、蒸着もしくはスパッタリングにより金属もしくは半導体を微粒子上に半球状に付着させることにより隣り合った微粒子の金属どうしの間隙を任意の距離に制御して形成する二次元配列構造体基板。 Adjacent fine particles of metal or semiconductor finely fixed on a substrate are reduced by anisotropic dry etching, and metal or semiconductor is deposited hemispherically on the fine particles by vapor deposition or sputtering. A two-dimensional array structure substrate formed by controlling gaps between each other at an arbitrary distance. 請求項1において、特に誘電体の材質がポリスチレン、SiO、TiOのいずれかであり、金属が金、銀、銅などの貴金属であることを特徴とする二次元配列構造体を有する光学式バイオセンサ。 2. The optical system having a two-dimensional array structure according to claim 1, wherein the dielectric material is in particular one of polystyrene, SiO 2 , and TiO 2 , and the metal is a noble metal such as gold, silver, or copper. Biosensor. 請求項1において、特に誘電体の材質がTiOであり、金属が金であることを特徴とする二次元配列構造体を有する基板、あるいは該基板を有する太陽電池。 2. The substrate having a two-dimensional array structure or a solar cell having the substrate according to claim 1, wherein the dielectric material is TiO 2 and the metal is gold. 請求項1において、SnOを蒸着もしくはスパッタすることにより形成された二次元配列構造体を構成部品としたガスセンサ。 The gas sensor according to claim 1, wherein the two-dimensional array structure formed by vapor deposition or sputtering of SnO 2 is used as a component. 請求項1において、白金もしくは白金パラジウムを蒸着もしくはスパッタすることにより形成された二次元配列構造体の電気特性を利用した、マイクロ波から赤外線領域まで応答する高速検波器。 2. The high-speed detector that responds from microwave to infrared region using the electrical characteristics of a two-dimensional array structure formed by vapor deposition or sputtering of platinum or platinum palladium. 請求項1に記載された二次元配列構造体を有する基板に局所的または全体に光を照射することを特徴とする装置。 An apparatus for irradiating a substrate having the two-dimensional array structure according to claim 1 locally or entirely. 請求項1に記載された二次元配列構造体から剥離・単離された微粒子およびその溶液。
Fine particles exfoliated and isolated from the two-dimensional array structure according to claim 1 and a solution thereof.
JP2003381951A 2003-11-12 2003-11-12 Two-dimensional arrangement structure base board and particulate separated from this base board Pending JP2005144569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381951A JP2005144569A (en) 2003-11-12 2003-11-12 Two-dimensional arrangement structure base board and particulate separated from this base board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381951A JP2005144569A (en) 2003-11-12 2003-11-12 Two-dimensional arrangement structure base board and particulate separated from this base board

Publications (1)

Publication Number Publication Date
JP2005144569A true JP2005144569A (en) 2005-06-09

Family

ID=34691144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381951A Pending JP2005144569A (en) 2003-11-12 2003-11-12 Two-dimensional arrangement structure base board and particulate separated from this base board

Country Status (1)

Country Link
JP (1) JP2005144569A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051941A (en) * 2005-08-18 2007-03-01 Doshisha Fine particle aggregate arranged board and its manufacturing method, and analysis method of trace amount of substance using the board
JP2007139612A (en) * 2005-11-18 2007-06-07 Fujifilm Corp Microstructure, method of manufacturing same, raman spectroscopy and raman spectroscopic device
WO2007086189A1 (en) * 2006-01-30 2007-08-02 Konica Minolta Medical & Graphic, Inc. Fluorescent labeling substance of nanoparticle or nanorod
JP2007273746A (en) * 2006-03-31 2007-10-18 Sumitomo Chemical Co Ltd Method of micromachining solid-state surface and light emitting element
JP2007292598A (en) * 2006-04-25 2007-11-08 Canon Inc Target substance detecting element, and substrate for manufacturing therefor, target substance detecting method and device using same
JP2008096189A (en) * 2006-10-10 2008-04-24 Fujirebio Inc Fluorometric method, measuring chip for fluorometry and manufacturing method therefor
JP2008538414A (en) * 2005-04-22 2008-10-23 富士レビオ株式会社 Sensor chip with bonded non-metallic particles including a metal coating
JP2009515181A (en) * 2005-11-09 2009-04-09 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック(セーエヌエールエス) Nanoparticle detection method and application field thereof
JP2009128297A (en) * 2007-11-27 2009-06-11 Tokyo Medical & Dental Univ Method of forming minute particles, and inspection method of biological substance using the minute particles
EP2101166A1 (en) 2008-03-14 2009-09-16 FUJIFILM Corporation Inspection chip producing method and specimen detecting method
JP2010021189A (en) * 2008-07-08 2010-01-28 Omron Corp Photoelectric device
JP2011506960A (en) * 2007-12-11 2011-03-03 コリア フード リサーチ インスティテュート Substrate manufacturing method for sensor application using optical characteristics and substrate thereby
JP2011101941A (en) * 2009-10-15 2011-05-26 Kanagawa Acad Of Sci & Technol Hollow microbody and method for producing the same
JP2011526075A (en) * 2008-06-26 2011-09-29 スリーエム イノベイティブ プロパティズ カンパニー Manufacturing method of light extractor
JP2011208993A (en) * 2010-03-29 2011-10-20 Toyo Univ Analyzing substrate, and method for manufacturing the same
JP2012217443A (en) * 2011-04-14 2012-11-12 Toyo Univ Metal ion supply system
JP2013215728A (en) * 2008-02-29 2013-10-24 National Institute Of Advanced Industrial Science & Technology Arrangement structural material for hexagonal non-close-packed particle and functional material comprising the same material
US8578758B2 (en) 2006-01-11 2013-11-12 Sony Corporation Gas sensor and method for production thereof
JP2013231641A (en) * 2012-04-27 2013-11-14 Toyo Univ Spectroscopic substrate
JP2014215266A (en) * 2013-04-30 2014-11-17 学校法人 東洋大学 Thin layer chromatography plate and method of using the same
JP2014215267A (en) * 2013-04-30 2014-11-17 学校法人 東洋大学 Method for producing substrate for surface reinforcement spectroscopy
CN107800383A (en) * 2017-09-12 2018-03-13 太仓协鑫光伏科技有限公司 A kind of solar silicon wafers subfissure detection device and its detection method
JP2019035612A (en) * 2017-08-10 2019-03-07 王子ホールディングス株式会社 Substrate for analysis and method for manufacturing the same
KR20200095964A (en) * 2019-02-01 2020-08-11 한국과학기술연구원 Method for preparing dielectric substrates comprising metal nanoparticles with controlled size on their curved surface by thermal evaporation followed by solid dewetting
RU2773389C1 (en) * 2021-07-20 2022-06-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Integrated optical sensor for determining the content of impurities in gas-air media

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538414A (en) * 2005-04-22 2008-10-23 富士レビオ株式会社 Sensor chip with bonded non-metallic particles including a metal coating
US8288166B2 (en) 2005-04-22 2012-10-16 Fujirebio Inc. Sensor chip with connected non-metallic particles comprising a metallic coating
JP4739859B2 (en) * 2005-08-18 2011-08-03 学校法人同志社 Fine particle assembly array substrate, method for producing the same, and method for analyzing trace substances using the substrate
JP2007051941A (en) * 2005-08-18 2007-03-01 Doshisha Fine particle aggregate arranged board and its manufacturing method, and analysis method of trace amount of substance using the board
JP2009515181A (en) * 2005-11-09 2009-04-09 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック(セーエヌエールエス) Nanoparticle detection method and application field thereof
US7967910B2 (en) 2005-11-18 2011-06-28 Fujifilm Corporation Fine structure body, process for producing the same, and Raman spectroscopic method and apparatus
JP2007139612A (en) * 2005-11-18 2007-06-07 Fujifilm Corp Microstructure, method of manufacturing same, raman spectroscopy and raman spectroscopic device
US8578758B2 (en) 2006-01-11 2013-11-12 Sony Corporation Gas sensor and method for production thereof
JP5169223B2 (en) * 2006-01-30 2013-03-27 コニカミノルタエムジー株式会社 Fluorescent labeling substance consisting of nanoparticles or nanorods
WO2007086189A1 (en) * 2006-01-30 2007-08-02 Konica Minolta Medical & Graphic, Inc. Fluorescent labeling substance of nanoparticle or nanorod
JP2007273746A (en) * 2006-03-31 2007-10-18 Sumitomo Chemical Co Ltd Method of micromachining solid-state surface and light emitting element
JP2007292598A (en) * 2006-04-25 2007-11-08 Canon Inc Target substance detecting element, and substrate for manufacturing therefor, target substance detecting method and device using same
JP2008096189A (en) * 2006-10-10 2008-04-24 Fujirebio Inc Fluorometric method, measuring chip for fluorometry and manufacturing method therefor
JP2009128297A (en) * 2007-11-27 2009-06-11 Tokyo Medical & Dental Univ Method of forming minute particles, and inspection method of biological substance using the minute particles
JP2011506960A (en) * 2007-12-11 2011-03-03 コリア フード リサーチ インスティテュート Substrate manufacturing method for sensor application using optical characteristics and substrate thereby
JP2013215728A (en) * 2008-02-29 2013-10-24 National Institute Of Advanced Industrial Science & Technology Arrangement structural material for hexagonal non-close-packed particle and functional material comprising the same material
US8045171B2 (en) 2008-03-14 2011-10-25 Fujifilm Corp Inspection chip producing method and specimen detecting method
EP2101166A1 (en) 2008-03-14 2009-09-16 FUJIFILM Corporation Inspection chip producing method and specimen detecting method
JP2011526075A (en) * 2008-06-26 2011-09-29 スリーエム イノベイティブ プロパティズ カンパニー Manufacturing method of light extractor
JP2010021189A (en) * 2008-07-08 2010-01-28 Omron Corp Photoelectric device
JP2011101941A (en) * 2009-10-15 2011-05-26 Kanagawa Acad Of Sci & Technol Hollow microbody and method for producing the same
JP2011208993A (en) * 2010-03-29 2011-10-20 Toyo Univ Analyzing substrate, and method for manufacturing the same
JP2012217443A (en) * 2011-04-14 2012-11-12 Toyo Univ Metal ion supply system
JP2013231641A (en) * 2012-04-27 2013-11-14 Toyo Univ Spectroscopic substrate
JP2014215266A (en) * 2013-04-30 2014-11-17 学校法人 東洋大学 Thin layer chromatography plate and method of using the same
JP2014215267A (en) * 2013-04-30 2014-11-17 学校法人 東洋大学 Method for producing substrate for surface reinforcement spectroscopy
JP2019035612A (en) * 2017-08-10 2019-03-07 王子ホールディングス株式会社 Substrate for analysis and method for manufacturing the same
CN107800383A (en) * 2017-09-12 2018-03-13 太仓协鑫光伏科技有限公司 A kind of solar silicon wafers subfissure detection device and its detection method
KR20200095964A (en) * 2019-02-01 2020-08-11 한국과학기술연구원 Method for preparing dielectric substrates comprising metal nanoparticles with controlled size on their curved surface by thermal evaporation followed by solid dewetting
KR102193206B1 (en) * 2019-02-01 2020-12-18 한국과학기술연구원 Method for preparing dielectric substrates comprising metal nanoparticles with controlled size on their curved surface by thermal evaporation followed by solid dewetting
RU2773389C1 (en) * 2021-07-20 2022-06-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Integrated optical sensor for determining the content of impurities in gas-air media

Similar Documents

Publication Publication Date Title
JP2005144569A (en) Two-dimensional arrangement structure base board and particulate separated from this base board
KR101886619B1 (en) Surface Enhanced Raman Scattering Substrate, Device for Detecting Molecule and the Fabrication Method thereof
Pak et al. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons
Hicks et al. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography
US6778316B2 (en) Nanoparticle-based all-optical sensors
Li et al. Nanosphere lithography at the gas/liquid interface: a general approach toward free-standing high-quality nanonets
Qin et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography
TWI418516B (en) Nanoparticle film and forming method and application thereof
Watanabe et al. Spontaneous formation of cluster array of gold particles by convective self-assembly
Barcelo et al. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique
JP2007017432A (en) Sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance, and its manufacturing method
Ghopry et al. Au Nanoparticle/WS2 Nanodome/Graphene van der Waals heterostructure substrates for surface-enhanced Raman spectroscopy
Saito et al. Novel gold-capped nanopillars imprinted on a polymer film for highly sensitive plasmonic biosensing
WO2010104520A1 (en) Broad band structures for surface enhanced raman spectroscopy
Yao et al. Soft embossing of nanoscale optical and plasmonic structures in glass
Tiefenauer et al. Fast and versatile multiscale patterning by combining template-stripping with nanotransfer printing
WO2019146692A1 (en) Analysis substrate
Ghopry et al. Intermixed WS2+ MoS2 nanodisks/graphene van der Waals heterostructures for surface-enhanced Raman spectroscopy sensing
KR20110138186A (en) Surface plasmon resonance sensor containing prism deposited metallic carbon nanostructure layer, and preparing method of the same
Wang et al. Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids
Arai et al. An optical biosensor based on localized surface plasmon resonance of silver nanostructured films
De Sanctis et al. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications
Li et al. Convex-meniscus-assisted self-assembly at the air/water interface to prepare a wafer-scale colloidal monolayer without overlap
Sammi et al. Recent advances in nanoporous AAO based substrates for surface-enhanced raman scattering
Pandey et al. Au-nanoislands and quantum dots growth on flexible light weight MWCNTs paper exhibiting SEM resolution and NIR photodetecting capabilities

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424